
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCENE CHANGE DETECTION WITH VISION-
LANGUAGE REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Scene change detection (SCD) is crucial for urban monitoring and navigation, but
remains challenging in real-world environments due to lighting variations, sea-
sonal shifts, viewpoint differences, and complex urban layouts. Existing methods
rely solely on low-level visual features, limiting their ability to accurately iden-
tify various changed objects amid the visual complexity of urban scenes. In this
paper, we propose a vision-language framework for scene change detection that
breaks through the single-modal bottleneck by incorporating semantic understand-
ing through language. Our approach features a modular language component that
leverages vision-language models (VLMs) to generate textual descriptions of de-
tected changes, which are fused with visual features through a feature enhancer.
Additionally, we introduce a geometric-semantic matching module that refines the
predictions. To enable comprehensive evaluation, we present NYC-CD, a large-
scale dataset of 8,122 real-world image pairs from New York City with multiclass
change annotations, created through our semi-automatic annotation pipeline. Our
method demonstrates strong performance across street-view benchmarks, achiev-
ing state-of-the-art results through semantic-visual feature integration. Extensive
experiments demonstrate that our language module consistently improves exist-
ing change-detection architectures by substantial margins, highlighting the fun-
damental value of incorporating linguistic reasoning into visual change detection
systems.

1 INTRODUCTION

Figure 1: MixVPR (Ali-Bey et al., 2023) recall
(R@1/5/10/20) vs. month offset evaluated on
NYU-VPR dataset (Sheng et al., 2021). VPR per-
formance degrades with time and drops sharply
at the summer to winter transition, with persistent
impact.

Visual place recognition (VPR) seeks to iden-
tify a previously visited location from visual
input. Although contemporary VPR systems
perform well on short timescales, their preci-
sion deteriorates as the temporal gap between
query and database images widens, as shown
in Figure 1. Seasonal changes, construction,
storefront updates, and vegetation growth grad-
ually make the database less representative of
the world, causing the retrieval recall to fall
even when the place is the same. Our moti-
vation is to confront this drift directly: if we
can detect what changed, we can update or cu-
rate the database accordingly, and rebound VPR
performance toward its original level without
retraining the entire pipeline.

This perspective naturally foregrounds scene
change detection (SCD): given two images of the same location captured at different times, deter-
mine what has changed and where alterations are evident in the captured frame. High–quality SCD
provides the actionable signal needed for database maintenance and map updating: new objects can
be incorporated, removed structures can be pruned, and appearance changes can be reflected in fresh
exemplars. Crucially, the change signal should be object–aware (beyond coarse pixel differencing)
so that updates target semantically meaningful entities rather than transient noise.
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Table 1: Comparison of major scene change detection datasets with our NYC-CD.

Datasets Real/Sim Indoor/Outdoor Image Pairs Target change Non-target change
CD2014 (Wang et al., 2014) Real Outdoor 7000 dynamic object –
PCD TSUNAMI (JST, 2015) Real Outdoor 100 structural change weather, light
PCD GSV (JST, 2015) Real Outdoor 100 structural change weather, light
VL-CMU-CD (Alcantarilla et al., 2018) Real Outdoor 1362 structural change weather, light
PSCD (Sakurada et al., 2020) Real Outdoor 770 structural change weather, light
CARLA-OBJCD* (Hamaguchi et al., 2020) Sim Outdoor 15000 new/missing object light
GSV-OBJCD* (Hamaguchi et al., 2020) Real Outdoor 500 new/missing object weather, light
Changesim (Park et al., 2021) Sim Indoor ∼130,000 new/missing/rotated/replaced dusty air, low illumination
Standardsim (Mata et al., 2022) Sim Indoor 12718 new/missing object –
UMAD (Li et al., 2024a) Real Outdoor 26301 anomalous object, dynamic object,

new/missing object
weather, light

NYC-CD (Ours) Real Outdoor 8122 new/missing object, appearance, new
object due to viewpoint change

weather, light, anonymized people and
car, motion blur

However, urban SCD is challenging. First, the change space is diverse—new/missing objects,
construction progress, facade and billboard updates, foliage cycles, and dynamic traffic—often co-
occurring within the same scene. Second, the acquisition is very often unconstrained: camera view-
points differ between passes, along with parallax, scale changes, and occlusions that complicate
correspondence. Third, illumination and weather introduce strong appearance shifts, and distractors
such as reflections and shadows that mimic change. Finally, scalable supervision is difficult: large,
real–world datasets with fine–grained object-level change labels are costly to obtain.

Existing solutions address subsets of the problem but leave important gaps. Simulation-based ap-
proaches (Park et al., 2021) provide controlled data, but struggle to transfer to the messiness of city
streets. Fixed viewpoint methods (Wang et al., 2023b) bypass viewpoint variation by design, limiting
their applicability to mobile platforms. Recent pipelines that employ vision foundation models (Kim
& Kim, 2025) have improved robustness but remain largely uni-modal, relying on visual evidence
alone and thus lacking priors, that help inform what has changed. As a result, predictions can be
fragmented, sensitive to noise, or insensitive to subtle semantic changes.

In short, the gap is the lack of explicit, object-level priors about expected changes, priors that purely
visual pipelines do not encode. Existing methods only consider uni-modal data, i.e., images, while
neglecting to mine the rich semantic information available in multimodal data. This leaves the
following question unclear: Does applying a vision–language scheme enhance scene change de-
tection? Our hypothesis is that language-derived semantics—concise, structured descriptions of
what changed—can act as priors that guide visual representations toward object-complete and con-
textually relevant masks. By combining what changed (language) with where changed (vision),
the model should suppress distractors (e.g. reflections, shadows), disambiguate semantically subtle
appearance shifts, and generalize across viewpoint and domain differences, ultimately producing
cleaner predictions that better support long-term VPR-database updating.

The contributions of this paper are as follows:

• We propose a vision-language framework for SCD that injects language priors about
changes and fuses them with visual features to produce precise object-aware change masks
robust to illumination, appearance, and viewpoint shifts.

• We introduce a scalable semiautomatic annotation pipeline that enables a large-scale
and real-world dataset with multi-class change labels, providing the diversity and scale
necessary to study urban SCD at the object level.

• We present extensive experiments on street-view benchmarks, showing consistent gains
over baselines and demonstrating that our language-informed SCD framework improves
change-detection models to achieve state-of-the-art performance on multiple datasets.

2 RELATED WORKS

2.1 SCENE CHANGE DETECTION DATASETS

Table 1 highlights key differences between existing datasets and our proposed NYC-CD dataset.
Most existing real-world datasets focus on limited change categories: CD2014 (Wang et al., 2014)
targets only dynamic objects, while PCD TSUNAMI (JST, 2015), PCD GSV (JST, 2015), VL-
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CMU-CD (Alcantarilla et al., 2018), and PSCD (Sakurada et al., 2020) concentrate on struc-
tural changes with pixel-level annotations. Object-level datasets like CARLA-OBJCD (Ham-
aguchi et al., 2020) and GSV-OBJCD (Hamaguchi et al., 2020) provide bounding box annota-
tions for new/missing objects, while UMAD (Li et al., 2024a) expands to include anomalous
and dynamic objects but still lacks appearance and viewpoint-induced changes. Recent simulated
datasets—CARLA-OBJCD (Hamaguchi et al., 2020), Changesim (Park et al., 2021), and Standard-
sim (Mata et al., 2022)—offer large-scale data (up to 130,000 pairs) but lack real-world complexity,
lighting variations, and unexpected occlusions. In contrast, our NYC-CD dataset provides 8,122
real-world outdoor image pairs with comprehensive change taxonomy covering new/missing ob-
jects, appearance changes, and viewpoint-induced changes, while offering segmented masks rather
than bounding boxes for precise localization and excluding non-target changes such as weather,
lighting, anonymized people, cars, and motion blur.

2.2 SCENE CHANGE DETECTION METHODS

The majority of existing scene change detection methods share a fundamental limitation: reliance on
uni-modal visual information. Supervised learning approaches, whether using convolutional neural
networks (CNNs) (Varghese et al., 2018; Wang et al., 2023b; Park et al., 2022; Huang et al., 2023;
Alcantarilla et al., 2018) or vision transformers (Lin et al., 2025; Wang et al., 2023a; Sachdeva &
Zisserman, 2023; Huo et al., 2023), have achieved notable success in controlled settings. CNN-based
methods such as ChangeNet (Varghese et al., 2018) and C-3PO (Wang et al., 2023b) establish strong
baselines, while transformer-based methods such as RSCD (Lin et al., 2025) leverage self-attention
mechanisms for improved long-range dependency modeling. However, both architectures remain
constrained by relying on low-level visual features, which produce fragmented change masks that
are disturbed by shadows and reflections while overlooking the semantic context of changed objects.

Recent advances in 3D Gaussian splatting (Lu et al., 2025; Jiang et al., 2025; Cho et al., 2025;
Cheng et al., 2025; Zeng et al., 2025) and weakly/self-supervised learning (Sakurada et al., 2020; Li
et al., 2024b; 2023; Lee & Kim, 2024; Hoyer et al., 2024; Ramkumar et al., 2021; Alpherts et al.,
2025; Ramkumar et al., 2022) address specific challenges but maintain the uni-modal bottleneck.
Gaussian splatting methods like 3DGS-CD (Lu et al., 2025) excel at handling geometric variations
through 3D scene representations, yet require dense multiview captures that may not always be
available. Weakly supervised approaches such as DiffMatch (Li et al., 2024b) and self-supervised
methods such as EMPLACE (Alpherts et al., 2025) reduce annotation requirements but still learn
exclusively from visual patterns. Training-free zero-shot methods (Kim & Kim, 2025; Kannan &
Min, 2025) such as GeSCF offer impressive generalization using pre-trained models, but remain
limited by visual-only features. Our approach overcomes this limitation by introducing a language
module that integrates seamlessly with any existing architecture. By incorporating VLM-generated
textual descriptions, adding our language and matching modules consistently boosts performance
across all tested baselines with particularly dramatic improvements on complex urban scenes.

Although language-integrated change detection is emerging, existing methods differ significantly
from our approach. ChangeCLIP (Dong et al., 2024) focuses on remote sensing applications with
top-down perspective and relatively simple structured changes, such as building construction or
deforestation, lacking the complexity of street-level variations. ViewDelta (Varghese et al., 2024)
requires user-provided text prompts specifying expected changes, necessitating prior knowledge
and potentially missing unexpected variations. Our method fundamentally differs by automatically
generating comprehensive descriptions of all detected changes using GPT-4o, and then integrate text
descriptions with visual features using our feature enhancer.

3 ANNOTATION METHOD

Our annotation method aims to systematically identify and categorize scene changes between image
pairs to create high-quality training data. Given a pair of images I0 and I1 captured at different
times from potentially different viewpoints, our method annotates three distinct types of change
on I1 with respect to I0: (1) new/missing objects, representing objects that appear or disappear
between captures; (2) vegetation changes, capturing seasonal or growth-related alterations in plants
and trees; and (3) objects not in view due to significant viewpoint change, distinguishing geometric
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Figure 2: Overview of our semi-automatic annotation pipeline. GPT-4o generates descriptions of
changed vegetation and objects from image pairs, which Grounded SAM 2 uses to segment changes.
SAM2 Tracking identifies temporal inconsistent segments, and MAST3R estimates the common
view between image pairs. Object Matching and Common View Matching filter noises and classify
viewpoint-induced changes, producing initial masks. Manual inspection refines these masks into
accurate ground truth for training and evaluation.

occlusions from actual scene changes. This multiclass annotation approach enables more nuanced
understanding of urban scene dynamics compared to binary change detection.

Figure 2 presents the general pipeline of our annotation method. We dive into each module below.

Change Captioning. The annotation process begins by using GPT-4o to generate comprehensive
descriptions of changes between pairs of images. We provide the model with I0 and I1 along with
carefully crafted text prompts with one for vegetation and one for object changes (see Appendix A.1
for detailed prompts). In both cases, GPT-4o is explicitly instructed to exclude weather variations,
lighting differences, and pedestrians (which are already anonymized in our dataset) to focus on
semantically meaningful changes. The model is tasked with identifying objects and vegetation that
appear in I1 but not in I0. For vegetation changes, we specifically request descriptive attributes such
as “green trees” or “bare bushes” to capture seasonal variations. This process yields two distinct
lists: changed objects with their descriptions and changed vegetation with appearance attributes.

Open Vocabulary Segmentation. The descriptive lists from GPT-4o are processed through
Grounded SAM 2 (Ren et al., 2024), which combines Grounding DINO’s open-set object detection
capabilities with SAM’s precise segmentation. This architecture enables detection and segmentation
of arbitrary regions based on text input, making it ideal for our diverse urban scenes. Grounded SAM
2 segments all instances of objects from the GPT-generated list in I1, regardless of whether they rep-
resent actual changes. For instance, if GPT identifies “chairs” as a change due to additional chairs
appearing in I1, Grounded SAM 2 segments both preexisting and new chairs. Similarly, vegetation
is segmented using descriptive phrases like “bare trees” or “green foliage,” where the descriptive
nature inherently indicates that these segments represent changes.

SAM2 Tracking. To identify temporally inconsistent regions, we use SAM2 (Ravi et al., 2024)
tracking capabilities across the image pair. The process begins with automatic segment generation
in I1, producing comprehensive masks of objects. These segments are then used as prompts for
I0, allowing us to identify segments present in I1 but absent in I0—potential indicators of scene
changes. However, this raw output often includes fractured or incomplete object masks and irrele-
vant changes such as shadows or reflections. These temporal inconsistency masks require refinement
through matching with the semantically meaningful masks from Grounded SAM 2.

Object Matching. We refine the change detection by computing the overlap between SAM2 track-
ing masks and Grounded SAM 2 object masks. For each SAM2 mask, we calculate the intersection
ratio α with Grounded SAM masks, retaining only those where α > αt (a predefined threshold).
This matching process leverages the complementary strengths of both approaches: SAM2 tracking
identifies changing regions but may include irrelevant variations, while Grounded SAM 2 identifies
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Figure 3: 5 image pairs (column) with multi-class change detection mask annotated by our pipeline.

semantically relevant objects that are potentially changing regions. The intersection yields high-
confidence masks that represent the actual changes in relevant objects.

Common View Estimation and Matching. To distinguish between actual scene changes and
viewpoint-induced variations, we employ MAST3R (Leroy et al., 2024) for robust dense match-
ing between image pairs. MAST3R excels in two-view regimes, predicting dense correspondences
and estimating the common-view region that is the area visible in both images. We calculate the
overlap between each filtered object mask and the common-view mask. Objects overlapping with
the common view are classified as genuine new/missing object changes, while those outside are
categorized as objects not in view. The same classification process applies to the vegetation masks
in Grounded SAM 2, distinguishing actual vegetation changes from viewpoint-induced occlusions.
This step produces our initial pseudo-masks with multi-class labels.

Manual Inspection. The final stage involves careful human verification of the initial pseudo-masks
to ensure annotation quality. We systematically review each pair of images, discarding those with
false negatives (unlabeled changes in the initial masks) to maintain the completeness of the data
set. False positive masks are manually removed to ensure precision. This semiautomatic approach
efficiently combines the scalability of automated methods with the accuracy of human judgment,
producing high-quality multiclass change detection annotations for complex urban scenes. Figure 3
shows the multiclass change mask annotated by our semiautomatic method for different image pairs.

4 THE NYC-CD DATASET

The NYC-CD dataset comprises 8,122 carefully curated image pairs extracted from the NYU-VPR
dataset (Sheng et al., 2021), providing a comprehensive benchmark for urban scene change detec-
tion. The source NYU-VPR dataset contains street-level imagery recorded throughout Manhattan,
New York from May 2016 to March 2017, captured using smartphone cameras mounted on the front,
back and side of fleet vehicles. All images include GPS tags for spatial reference, while pedestrians
and vehicles are replaced with white pixels using MSeg (Lambert et al., 2020) to preserve privacy.
They are . This rich temporal and spatial coverage of one of the world’s most dynamic urban envi-
ronments provides an ideal foundation for studying complex scene changes.

To construct meaningful image pairs for change detection, we employ visual place recognition
(VPR) instead of simple GPS matching. VPR retrieves the most visually similar images for a query
from a database of images with known camera poses, ensuring sufficient visual overlap between
the paired images. We specifically use images from different quarters as database and queries (Q1
paired with Q3, Q2 paired with Q4), guaranteeing a minimum three-month temporal gap between
image pairs to capture meaningful scene changes. Using MixVPR (Ali-Bey et al., 2023), a state-
of-the-art VPR method, we pair each database image with its top-ranked retrieval result to form
potential change pairs. This VPR-based approach is crucial because GPS coordinates alone would
often yield image pairs with minimal or no viewpoint overlap, making change detection infeasi-
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Figure 4: Overview of the proposed architecture. Image 0 and Image 1 are processed by a shared-
weight image encoder to extract features F0 and F1. Multimodal LLM/GPT-4o generates descrip-
tions of changed objects in Image 1 relative to Image 0. A text feature backbone encodes these
descriptions into text features, which are used by an image feature enhancer to augment F1, pro-
ducing enhanced features F ′

1. The enhanced features are merged with F0 and passed through a
segmentation head to produce the initial change mask. SAM’s class-agnostic masks and Grounding
SAM masks are then leveraged to refine the initial mask using both geometric and semantic cues.

ble. By prioritizing visual similarity while maintaining temporal separation, we ensure that each
potential pair contains sufficient common content for meaningful change analysis while capturing
the natural viewpoint variations that occur in real-world scenarios.

The NYC-CD dataset introduces several unique characteristics that distinguish it from existing
benchmarks. Most notably, it explicitly incorporates and annotates viewpoint-induced changes, ad-
dressing a critical gap in current datasets that either assume static cameras or attempt to minimize
viewpoint differences. In practical applications like autonomous navigation and augmented reality,
viewpoint variations are inevitable and can create apparent changes that are purely geometric rather
than semantic. By categorizing these as a distinct change type, our dataset enables algorithms to
differentiate genuine scene changes from perspective-induced variations. Furthermore, the dataset
captures the full complexity of dense urban environments with large temporal spans. The urban en-
vironment is rich with diverse changes, including seasonal foliage variations, ongoing construction,
evolving storefront appearances, and dynamic objects in motion. Unlike controlled simulated envi-
ronments that cannot replicate real-world unpredictability, NYC-CD provides authentic urban scene
dynamics, making it an essential resource for developing robust change detection systems capable
of handling the complexities of real-world deployment.

5 METHODOLOGY

5.1 OVERALL ARCHITECTURE

We introduce an innovative methodology that integrates vision-language models into scene change
detection, addressing the fundamental limitations of uni-modal approaches. As illustrated in Fig-
ure 4, our architecture consists of two key components: a language module and a geometric-semantic
matching module that can be seamlessly integrated into any existing change detection model to
enhance its performance. The base architecture follows a standard supervised change detection
pipeline: a shared weight image feature backbone extracts features F0 and F1 from the input image
pair (I0, I1), which are then processed through cross-attention mechanisms and merged to form a
unified feature representation. This merged feature passes through a segmentation head to produce
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the initial change mask. Our contribution lies in two critical enhancements: (1) the language mod-
ule that enriches the image feature F1 with semantically aware text features before merging with
F0, effectively compensating for the inherent limitations of visual-only representations, and (2) the
geometric-semantic matching module that refines the initial predictions by leveraging both SAM’s
class-agnostic object proposals and Grounded SAM’s semantically informed segmentation, ensuring
detected changes are both complete and contextually accurate.

5.2 LANGUAGE MODULE

The language module leverages the powerful visual-linguistic understanding capabilities of GPT-4o
to inject semantic awareness into the change detection process. Given an image pair, GPT-4o first
generates comprehensive descriptions of objects that appear in I1 but not in I0, effectively identify-
ing potential changes through natural language. These textual descriptions are then processed by a
text feature backbone to extract rich semantic features. The image feature enhancer takes the orig-
inal image features F1 and enhances them with the extracted text features to produce semantically
enriched features F1’.

The feature enhancer architecture, adapted from GroundingDINO (Liu et al., 2024), consists of mul-
tiple stacked enhancement layers that facilitate cross-modal fusion. Each layer employs deformable
self-attention for processing image features, allowing the model to adaptively focus on relevant spa-
tial regions, while vanilla self-attention is used for text features to maintain semantic coherence. We
incorporate bidirectional cross-attention mechanisms, image-to-text and text-to-image, that enable
deep feature alignment between modalities. The image-to-text attention allows visual features to
query relevant semantic information, while text-to-image attention grounds textual concepts in vi-
sual regions. This bidirectional information flow ensures that the enhanced features F0’ contain both
precise spatial localization from the visual domain and rich semantic understanding from the lan-
guage domain, significantly improving the model’s ability to distinguish meaningful changes from
irrelevant variations.

5.3 GEOMETRIC AND SEMANTIC MATCHING MODULE

The geometric and semantic matching module elevates change detection from pixel-level analysis
to object-level understanding by refining the initial segmentation masks through complementary
matching strategies. This module addresses two critical challenges in change detection: incomplete
object segmentation and noise from irrelevant changes.

The geometric matching component leverages SAM2’s tracking capabilities to ensure spatial com-
pleteness of detected changes (Ravi et al., 2024). By generating class-agnostic object proposals and
tracking them across the image pair, SAM2 identifies regions with temporal inconsistency. We eval-
uated the overlap ratio α between each SAM tracking mask and the initial prediction, retaining only
those masks where α > αt (a predefined threshold). This geometric matching effectively completes
fragmented object segments that may be partially detected in the initial mask, ensuring that entire
objects are identified as changed rather than just portions of them.

The semantic matching component employs Grounded SAM (Ren et al., 2024) to filter out noise
and validate semantic relevance. Using the change descriptions generated by GPT-4o, Grounded
SAM produces semantically informed segmentation masks for the identified objects. By computing
overlap ratios between these semantic masks and the initial predictions, we can distinguish between
genuine object-level changes and spurious detections caused by shadows, reflections, or other ir-
relevant variations. Masks that satisfy both geometric and semantic matching criteria represent
high-confidence, semantically meaningful changes (see Appendix Figure 8 for qualitative results).

The synergy between these two matching strategies is crucial: geometric matching ensures spa-
tial completeness, while semantic matching guarantees relevance. This dual validation process
transforms noisy, incomplete pixel-level predictions into clean, comprehensive object-level change
masks, significantly improving both the precision and interpretability of the detection results. The
final output provides not just binary change information but semantically rich, object-aware change
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Table 2: F1-score and IoU comparison of GeSCF, RSCD, and C-3PO models with and without the
language module on three datasets: Ours, VL-CMU-CD, and PSCD. Bold numbers indicate highest
performance per column. Delta values in parentheses show the effect of adding the language module.

Model Language Our Dataset VL-CMU-CD PSCD
F1 IoU F1 IoU F1 IoU

GeSCF No 0.16 0.10 0.77 0.65 0.40 0.28
GeSCF Yes 0.57 (+0.41) 0.49 (+0.38) 0.82 (+0.05) 0.71 (+0.06) 0.49 (+0.09) 0.37 (+0.09)
RSCD No 0.13 0.07 0.83 0.73 0.54 0.40
RSCD Yes 0.72 (+0.59) 0.62 (+0.55) 0.85 (+0.02) 0.75 (+0.02) 0.59 (+0.05) 0.46 (+0.06)
C-3PO No 0.09 0.10 0.50 0.39 0.67 0.55
C-3PO Yes 0.57 (+0.48) 0.47 (+0.37) 0.73 (+0.23) 0.67 (+0.28) 0.57 (-0.10) 0.44 (-0.11)

detection that better serves downstream applications in urban monitoring and autonomous naviga-
tion.

6 RESULTS

6.1 SETUP

We evaluated our proposed method against three representative baselines that span different archi-
tectural paradigms in change detection. C-3PO (Wang et al., 2023b) represents traditional CNN-
based approaches, employing pixel-level change detection through convolutional neural networks.
RSCD (Lin et al., 2025) exemplifies modern transformer-based methods, utilizing DINOv2 (Oquab
et al., 2023) features with full image cross-attention mechanisms. GeSCF (Kim & Kim, 2025)
demonstrates zero-shot capabilities by using pre-trained SAM without task-specific training.

Our evaluation encompasses seven diverse datasets that collectively challenge change detection
methods in diverse scenarios and perspectives. For street view evaluation, we used our NYC-CD
dataset, VL-CMU-CD, PSCD, and ChangeSim. These datasets were specifically chosen for their
scene diversity, ranging from natural disasters to gradual urban development and from real-world
to simulated environments. For fair comparison, we carefully filter all datasets to exclude biased
ground truth annotations (see Appendix Figure 6).

6.2 RESULTS

Quantitative comparison. Table 2 presents comprehensive quantitative comparisons across three
diverse datasets, demonstrating the substantial impact of our language-enhanced approach. In our
challenging NYC-CD dataset, the integration of language and matching modules yields dramatic
improvements across all baseline methods. RSCD achieves the highest performance with our en-
hancements, yielding nearly a five-fold increase in detection accuracy. Similarly, impressive gains
are observed for GeSCF and C-3PO, highlighting that our modules effectively address the complex
urban changes present in the dataset. In VL-CMU-CD, our approach achieves state-of-the-art re-
sults, with RSCD + language reaching 0.85 F1 and 0.75 IoU. The consistent improvements across
all baselines on this dataset demonstrate our method’s robustness to different architectural backends.
Although PSCD shows more modest gains, this likely reflects the dataset’s focus on disaster-induced
changes, where geometric cues may be more critical than semantic understanding. In general, these
results validate that the incorporation of language-based semantic reasoning substantially enhances
change detection performance, particularly for complex urban environments with diverse changes.

Multi-class change detection analysis in Table 3 corroborates our approach. The RSCD baseline
shows varying performance across categories, with dynamic changes proving more challenging.
Integrating our modules consistently improves results across all classes, with particularly strong
gains in the most difficult categories such as object not in view (see Appendix Figure 9). Overall,
these enhancements yield higher mean performance and demonstrate more balanced and robust
detection, especially in scenarios involving geometric transformations and appearance variations.

Qualitative comparison. In Figure 5, our method demonstrates consistently cleaner, object-
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Class / Summary F1-score IoU
RSCD RSCD + Our Modules (∆) RSCD RSCD + Our Modules (∆)

0. Non-change area 0.899 0.945 (+0.046) 0.816 0.895 (+0.079)
1. New/Missing Object 0.438 0.472 (+0.034) 0.281 0.309 (+0.028)
2. Vegetation Change 0.655 0.703 (+0.048) 0.487 0.542 (+0.055)
3. Object not in view 0.459 0.563 (+0.104) 0.298 0.391 (+0.093)
Mean (Macro F1 / mIoU) 0.613 0.671 (+0.058) 0.471 0.534 (+0.063)

Table 3: Comparison of RSCD and RSCD with our modules on multi-class change detection.

Figure 5: Comparative results of the current state-of-the-art model and our method under
various environments. Our method outperforms with precise boundaries and edges, where the
state-of-the-art model hardly captures changes.

complete predictions than the current SOTA (RSCD unified model) in varied urban scenes. Whereas
the baseline often misses subtle changes or produces fragmented blobs, our results exhibit crisp
boundaries and accurate edges that align with object extents. The predictions remain robust to
misleading cues—such as glass reflections, shadows, and transient clutter—allowing the model to
localize multiple changes within the same frame without crosstalk. Crucially, the approach captures
diverse change types beyond new/missing objects, including vegetation and broader appearance al-
terations, illustrating stronger robustness under illumination and viewpoint variations.

7 CONCLUSION

In this work we tackle urban scene change detection under long-term, cross-view, and seasonal
variation by coupling vision backbones with language-derived semantics. We contribute (i) a vi-
sion–language framework that fuses text cues about what has changed with image features to guide
fine-grained segmentation, (ii) a scalable semi-automatic annotation pipeline that enables a large
real-world dataset with multiclass change labels, and (iii) an extensive evaluation showing consis-
tent gains in street-view benchmarks. Together, these results demonstrate that injecting language
priors overcomes the limits of purely visual methods, improving robustness to illumination, appear-
ance, and viewpoint shifts while providing a practical path to scalable supervision. Looking ahead,
we will reduce residual annotation bias, strengthen robustness to localization/viewpoint noise, and
move toward an open, foundation-style model that transforms both street-view and remote-sensing
change detection.
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A APPENDIX

A.1 TEXT PROMPTS TO GPT-4O

Text prompt for object changes: I have 2 images of outdoor scenes: A and B. In this task, you
must not talk about weather, lighting, vehicles, people, or animals. Refrain from mentioning any
elements that are not directly observable or are obscure. You must try your best to find all objects
you see in A. For every object you see in A, you should try your best to find a corresponding object
in B. Then, you must try your best to find all objects you see in B. For every object you see in B, you
should try your best to find a corresponding object in A. In your response, just give me a numbered
list of objects that you fail to find a match in B, and a numbered list of objects that you fail to find a
match in A. Do not use prepositions.

Text prompt for vegetation changes: I have 2 images of outdoor scenes: A and B. In this task, you
must try your best to find all vegetations you see in A. For every plant you see in A, you should try
your best to find if it changed in B. Then, you must try your best to find all vegetations you see in B.
For every plant you see in B, you should try your best to find if it changed in A. In your response,
just give me a numbered list of changed plant names in A, and a numbered list of changed plant
names in B. If the plant is removed, do not include it in the list. If there are no visible changed
plants in the image A, write “1. None”. If there are no visible changed plants in the image B, write
“1. None”. If a plant is changed, only include the plant name after change. Do not use prepositions
such as to. For example: green trees, bare trees, green bushes, bare bushes, potted plants, etc.

12

https://arxiv.org/abs/2508.08867


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 NOISY LABEL EXAMPLES FROM VL-CMU-CD DATASET

Figure 6: Example of noisy label. The image pairs are from VL-CMU-CD and the changed car is
not annotated.

A.3 EVALUATION METRIC

We employ two standard metrics for the quantitative evaluation of binary change detection perfor-
mance: Intersection over Union (IoU) and F-1 score. IoU measures the overlap between predicted
and ground-truth masks by dividing the intersection (pixels correctly identified as changed) by the
union (all pixels marked as changed in either prediction or ground-truth). The F-1 score, calculated
as the harmonic mean of precision and recall, provides a balanced measure of detection precision.
Higher F-1 score and IoU indicate better alignment with ground truth (Figure 7).

Figure 7: Higher IOU or F-1 score indicate better alignment with ground truth.
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A.4 QUALITATIVE RESULTS FOR MATCHING MODULE

Figure 8: Qualitative results of the matching module. Each column shows Image t0, Image t1, the
initial pseudo-mask, and the final change mask. The module suppresses spurious responses and
yields complete, object-accurate masks.

A.5 QUALITATIVE RESULTS FOR MULTI-CLASS CHANGE DETECTION

Figure 9: Additional comparative results of our multi-class change detection method with ground
truth and current SOTA method shows our method also outperforms significantly in complex urban
environment as well.
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A.6 CROSS-DOMAIN GENERALIZATION RESULTS

Figure 10: Improvement of the language module on F1-score and IoU across multiple domains.
Results are from a unified model trained jointly on seven datasets—four street-view (NYC-CD, VL-
CMU-CD, PSCD, ChangeSim) and three remote sensing (S2Looking, SYSU-CD, CDD).

We include three remote sensing datasets: S2Looking (Shen et al., 2021), SYSU-CD (Shi et al.,
2021), and CDD (Lebedev et al., 2018) to assess cross-domain generalization. The generalization
capability of our language module is further validated through multi-domain experiments combin-
ing street view and remote sensing datasets (Figure 10). Training a unified model across all seven
datasets: four street view datasets (NYC-CD, VL-CMU-CD, PSCD, ChangeSim) and three remote
sensing datasets (S2Looking, SYSU-CD, CDD) reveal consistent performance improvements re-
gardless of imaging perspective or domain. The language module improves performance by approx-
imately 10% on average in all datasets, with particularly strong gains in our NYC-CD dataset (over
10% improvement in both F1 and IoU) and VL-CMU-CD (approximately 12% improvement in
F1). Even remote sensing datasets, which have fundamentally different viewing angles and change
characteristics compared to street-level imagery, benefit from our semantic enhancement, with im-
provements ranging from 5% to 15% in F1 scores. This cross-domain effectiveness demonstrates
that the semantic understanding provided by language transcends specific imaging modalities, offer-
ing a domain-agnostic solution to improve change detection. The consistent improvements across
such diverse datasets, from disaster assessment to urban monitoring, from ground-level to aerial per-
spectives, underscore the fundamental value of incorporating linguistic reasoning into visual change
detection, suggesting that semantic context is universally beneficial regardless of the specific appli-
cation domain or imaging conditions.

15


	Introduction
	Related Works
	Scene Change Detection datasets
	Scene Change Detection Methods

	Annotation Method
	The NYC-CD Dataset
	Methodology
	Overall Architecture
	Language Module
	Geometric and Semantic Matching Module

	Results
	Setup
	Results

	Conclusion
	Appendix
	Text Prompts to GPT-4o
	Noisy label examples from VL-CMU-CD dataset
	Evaluation metric
	Qualitative results for matching module
	Qualitative results for multi-class change detection
	Cross-domain generalization results


