BeyondMix: Leveraging Structural Priors and
Long-Range Dependencies for
Domain-Invariant LiDAR Segmentation

Yujia Chen'?, Rui Sun®, Wangkai Li'?, Huayu Mai'?, Zhuoyuan Li'?,
Zhixin Cheng'?, Tianzhu Zhang'>*
!'University of Science and Technology of China
2National Key Laboratoray of Deep Space Exploration, Deep Space Exploration Laboratory
3Shenzhen International Graduate School, Tsinghua University
{yujia_chen, issunrui, lwklwk, mai556, sa23010094,
chengzhixin}@mail.ustc.edu.cn, tzzhang @ustc.edu.cn

Abstract

Domain adaptation for LiIDAR semantic segmentation remains challenging due to
the complex structural properties of point cloud data. While mix-based paradigms
have shown promise, they often fail to fully leverage the rich structural priors
inherent in 3D LiDAR point clouds. In this paper, we identify three critical yet
underexploited structural priors: permutation invariance, local consistency, and
geometric consistency. We introduce BeyondMix, a novel framework that har-
nesses the capabilities of State Space Models (specifically Mamba) to construct
and exploit these structural priors while modeling long-range dependencies that
transcend the limited receptive fields of conventional voxel-based approaches. By
employing space-filling curves to impose sequential ordering on point cloud data
and implementing strategic spatial partitioning schemes, BeyondMix effectively
captures domain-invariant representations. Extensive experiments on challenging
LiDAR semantic segmentation benchmarks demonstrate that our approach consis-
tently outperforms existing state-of-the-art methods, establishing a new paradigm
for unsupervised domain adaptation in 3D point cloud understanding.

1 Introduction

LiDAR sensors maintain operational integrity under adverse conditions [41} 164, 6} [20] where camera-
based perception fails. Semantic segmentation enables critical scene understanding for autonomous
navigation safety [46l 139, [7]]. Despite significant advancements through deep learning methodolo-
gies [16} 33,179,162, [1]], LIDAR segmentation requires extensive annotated datasets—a substantial
challenge given the prohibitive resource requirements for manually labeling point clouds comprising
about 10° points per scan. While synthetic data provides readily available annotations, it introduces
domain shift, violating the i.i.d. assumption between training and deployment distributions in sta-
tistical learning theory [58]], consequently degrading model performance. Unsupervised domain
adaptation (UDA) techniques have been extensively studied to address this issue by transferring
knowledge from a labeled source domain to an unlabeled target domain, and improve the model’s
performance on the target dataset without requiring additional annotations. The unstructured nature
of LiDAR point clouds coupled with challenges in designing effective alignment methodologies
renders UDA for LiDAR segmentation particularly difficult.
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Figure 1: (a) Performance comparison across diverse mixing methodologies. (b) Schematic illus-
tration of distinct structural priors. (c) Comparative analysis of properties between our proposed
approach and existing methods.

In previous work, the Mix-based paradigm [48} |19} 68]] has gained prominence due to algorithmic
simplicity and empirical efficacy. These approaches generate intermediate domains by strategically
combining source and target distributions, thereby smoothing decision boundaries and facilitating fea-
ture disentanglement [56]. Mix-based paradigm encompass various integration criteria: CoSMix [48]]
leverages semantic labels, PolarMix [68]] utilizes azimuth angles, and LaserMix [19] incorporates
inclination patterns for source-target domain fusion.

As illustrated in Figure [T] (a), which empirically validates the efficacy of structured Mix-based
paradigms, we observe that naive random mixing of source-target domains results in substantial
performance degradation. This deterioration occurs because the destruction of intrinsic geometric
structure prior fundamentally compromises representational learning, rendering models incapable
of extracting meaningful discriminative features. For example, when automobile and architectural
elements are randomly mixed, their intersecting regions confound class-specific feature learning
processes. We find that existing approaches leverage different structural priors: (1) category semantic
integrity (CoSMix [48]]), (2) azimuthal semantic consistency(PolarMix [68]]), and (3) spatial region
integrity(LaserMix [19]). However, the inherent structural priors in 3D LiDAR point clouds extend
significantly beyond these three isolated dimensions, presenting substantial unexplored potential.

Through theoretical analysis, we uncover that previous paradigm have overlooked three critical
structural priors, as illustrated in Figure[I](b): (1) Permutation Invariance Prior, whereby point
cloud representations should remain consistent regardless of acquisition trajectory or scanning
order [42, l43]] (e.g., different angular perspectives or sampling paths), preserving invariance to
permutation operations. (2) Local Consistency Prior, whereby point cloud features should maintain
consistency across different local spatial partitions [63} 23]], independent of acquisition perspective or
artificially defined spatial segmentation schemes; and (3) Geometric Consistency Prior, whereby
LiDAR point cloud geometric structures (surface curvatures, normal vectors) should maintain stability
under various processing operations [29, [71]], with remaining points preserving critical geometric
information even under partial masking. However, these three structural priors intuitively resist
straightforward implementation through mix-based paradigm like previous work.

In addition, autonomous driving LiDAR datasets typically comprise hundreds of thousands of points
per scan. The predominant methodology employs voxelization with U-Net architectures, wherein
predictions for each voxel depend on its surrounding neighborhood—defined by the network’s



receptive field—representing a careful balance between computational efficiency and performance.
Our analysis demonstrates that Mix-based operations attain effectiveness by integrating scans from
both the source and target domains, thereby ensuring that voxels receive informative signals from
both domains within their receptive fields. When receptive fields encompass cross-domain contextual
information, as illustrated in Figure 2} Point A, the model is constrained from relying solely on
domain-specific cues, fundamentally promoting the learning of domain-invariant representations.
We provide a theoretical justification in the Appendix. However, current mix-based methodologies
suffer from a critical limitation: their sparse mixing patterns result in numerous voxels possessing
receptive fields confined to single domains, significantly constraining the adaptation capacity of UDA
frameworks. We conduct an exemplary analysis of LaserMix [19] which, despite achieving the most
comprehensive mixing strategy and superior performance, still exhibits the aforementioned limitation.
When LaserMix partitions scans into 2-6 regions based on inclination angle, each region spans
approximately 360-1,300 voxels within the 4,000-voxels coordinate space. However, mainstream
UNet architectures maintain receptive fields of merely 230 voxels, consequently resulting in numerous
voxels being unable to simultaneously capture information from both domains. Similar observations
have been documented across alternative mixing methodologies [48} [68]. As illustrated in Figure 2}
Point B’s receptive field fails to encompass both domains, fundamentally impeding the learning of
domain-invariant representations.

Remarkably, we observe that recent

advances in the State Space Model. — > Beam? — Beam4
SSMs [10] and Mamba [8] have 0
emerged as promising architectural
paradigms for sequence modeling, ow-
ing to their robust long-range model-
ing capabilities, and linear-time com-
plexity. The Mamba architecture ne-
cessitates the transformation of un-
ordered 3D LiDAR data into struc-
tured point sequences while preserv-
ing spatial proximity relationships. L
Our investigation reveals a twofold ad- R Jm
vantage: (1) Mamba’s diverse scan- ~pf

ning methodologies can potentially ST SRS
address the limitations inherent in -
mix-based approaches by construct-
ing varied structural priors and effec-
tively leveraging these priors. (2) Its
sequential processing paradigm cou-
pled with linear time complexity for
modeling long-range dependencies en-
ables comprehensive exploration of
structural priors, thereby significantly
expanding the effective receptive field, as illustrated by Point C in Figure 2]
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Figure 2: Comparative Analysis of Receptive Fields Across
Different Methodologies. Point A illustrates a receptive field
containing only a single domain, while Point B shows a
receptive field spanning both domains. Point C demonstrates
the implementation of SSMs, which effectively leverage long-
range dependencies between points, resulting in an expansive
receptive field.

In this work, we introduce BeyondMix, which leverages Mamba to construct structural priors be-
yond the capabilities of existing mix-based methods while simultaneously exploiting long-range
dependency modeling to transcend limited voxel receptive fields for enhanced domain-invariant
representation learning—as illustrated in Figure[T](c). Specifically: Space-filling curves provide an
established mechanism for imposing sequential ordering on point cloud data by mapping multidimen-
sional space to one-dimensional sequences while maintaining locality properties. Two predominant
approaches—Hilbert curves [13]] and Z-order curves [34]—serve distinct computational purposes:
Hilbert curves optimize range queries, while Z-order curves facilitate hierarchical indexing (visu-
alization analysis in Appendix). (1) Diverse space-filling curves induce different spatial proximity
relationships that inherently satisfy permutation invariance prior requirements. (2) Leveraging
the local semantic similarity property of LiDAR point clouds [19], we implement both cylindrical
partitioning (via inclination angles) and rectangular partitioning (via Z-axis coordinates) for each
scan. These different sub-region divisions enable the construction of local consistency prior. (3)
Recognizing that scans with varying densities maintain invariant structural properties, we formulate
geometric consistency prior.
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Figure 3: BeyondMix overview. For labeled source domain data z° and mixed domain data 2™, we

compute supervised loss £° and L,; through the student network f;,,, while for unlabeled target
data z*, we compute adaptive loss £¢ via both student f,;, and teacher f;., networks. Additionally,
we design three additional structural priors: (1) Permutation Invariance Prior across different Lidar
point orderings, (2) Local Consistency Prior between various structural partitioning schemes, and (3)
Geometric Consistency Prior across different point density distributions.

Our contributions can be summarized as: (1) Problem Identification (WHY): We provide a dual-
perspective analysis of existing mix-based methods in UDA for LiDAR point cloud segmentation,
revealing insufficient exploitation and utilization of structural priors; (2) Methodology Design
(WHAT): We propose BeyondMix, leveraging Mamba to construct structural priors beyond mix-based
methods while thoroughly exploiting long-range dependencies to overcome limited voxel receptive
fields; (3) Implementation (HOW): Extensive experiments demonstrate that BeyondMix consistently
achieves SOTA performance on two challenging LiDAR semantic segmentation benchmarks.

2 Related Work

UDA for Point Cloud Segmentation. UDA for point cloud semantic segmentation follows two
main paradigms: (1) Range-view methods that address domain shift in 2D projections, evolving
from Cycle-GAN techniques (ePointDA [77]) and geodesic alignment (SqueezeSegV2 [65]) to
domain-specific knowledge extraction (Gated [45], CCL [22])); and (2) 3D-based methods operating
directly on point clouds through density normalization (C&L [70], PCT [69]), statistical alignment
(DGT [[73]), and domain-invariant feature learning [59}161} 72,173,781 168L |19} 48]]. This latter category
encompasses three key approaches: adversarial training methodologies (ADVENT [59], FADA [61],
MRNet [78]) using discriminator networks to align feature representations; prototype guidance
techniques (PMAN [72], PCAN [73])) that extract source domain prototypes to enhance target domain
learning; and mixup strategies (CoSMix [48]], PolarMix [68]], LaserMix [19])) that integrate domains
through various criteria. While mix-based methods effectively construct intermediate domains and
partially leverage structural priors, their efficacy remains fundamentally constrained by insufficient
exploration and utilization of the complete prior space available in LiDAR point cloud representations.
More related work is provided in the Appendix.

3 Method

In this section, we first formalize the standard self-training paradigm for 3D UDA semantic segmen-
tation and Mamba, respectively (Sec . Then, we introduce our new 3D LiDAR UDA framework,
BeyondMix, a novel approach that thoroughly exploits and leverages structural priors unattainable
by previous mix-based methods, while alleviating the limited receptive field issues inherent in prior
approaches (Sec[3.2). Finally, we provide comprehensive details regarding training and inference
procedures (Sec[3.2)). The overall framework of our proposed approach is illustrated in Figure



3.1 Preliminaries

Self-Training (ST) for 3D UDA semantic segmentation. Due to its empirical efficacy and con-
vergence stability, the self-training paradigm has emerged as the predominant framework for 3D
unsupervised domain adaptation tasks. For a labeled source LiDAR point cloud scan x*, we employ
the standard cross-entropy loss function to derive precise semantic segmentation predictions for each

individual voxel:
1 N K
L= =5 D> vilog Pk, )
1=1 k=0
where K denotes the total number of semantic classes, y; represents the ground-truth semantic
label, and P, represents the class-conditional probability prediction for the i-th voxel across the K
semantic categories.

For an unlabeled target domain scan x?, we leverage pseudo-labeling as a supervised learning strategy

to facilitate domain adaptation:
1 N K
t ~t t
Lh=-= ; kzﬂyilogpi,k. @
The pseudo-labels are generated by the teacher network f;.,, yielding the network’s class-conditional

probability output P;(x!). We then apply a confidence thresholding mechanism with a predefined
threshold 7 to filter these pseudo-labels, selecting only the most reliable pseudo-annotations:

3

. arg max P\” (x!), ifmax P{”(x!) > 7
Ui = c c
0, otherwise

where 7 € [0, 1] is a confidence threshold. The teacher network’s weights are dynamically updated
through an Exponential Moving Average (EMA) strategy implemented by the student network fg,,,
ensuring smooth and stable knowledge transfer: /°* = a0!*®  + (1 — «)05™ ,where o € [0, 1) is
the momentum coefficient, and € represents the network parameters, ¢ denotes the current training
iteration, and val represents the update interval.

Mamba. The SSMs is initially introduced in the field of control engineering to model dynamic

systems. Specifically, the SSMs in deep learning encompass three key variables: the input x(t), the
latent state representation h(t), and the output y(t). The system can be defined as follows:

B'(t) = Ah(t) + Bx(t), y(t) = CHK(t). “)

where A represents the state transition matrix that describes how the system states volve, B denotes
the control matrix that describes the influence of the inputs on the states, and C defines state impact
on outputs. To handle discrete-time sequence data inputs, the Zero-Order Hold is typically used:

hi = Ahi—1 + By, y: = Chy, A =exp(AA),B=(AA) '(exp(AA) —1)AB, )

where A represents the temporal discretization interval. However, due to the linear time invariant
nature of SSM, the parameters (A, A, B, C) remain fixed across all time steps, which limits the
expressive capacity of SSM. To overcome this limitation, Mamba [8]] introduces a hardware-aware
scan algorithm to achieve near-linear complexity and a selection mechanism that treats the parameters
(A, B, C) as functions of the input, effectively transforming the SSM into a time-varying model:

he = ¢px(ze)he—1 + dpgl(ze)ze, Yo = dc(xe)he, (6)

where ¢x (), pg(x:) and ¢pc(x¢) denote the parameter matrices are dependent on the inputs z;.

3.2 BeyondMix

BeyondMix selects the most prevalent mixing strategy LaserMix [[19] to generate mixed scans and
labels by combining source and target domain data, thereby constructing mix-based structural priors:

N K
) ) ) 1 ) )
mix . s t mixr . s t mir __ - mix mix
T = LaserMix(z’,z"), y = LaserMix(y°,y"), L =-5 ; kz,o% log P, (1)
where Lix is the cross-entropy supervision error for the mixed scan. The discriminative feature
representation F' € RM*¢ (whose spatial proximity relationships still preserve the 3D structure) is
then obtained by processing the mixed scan z"*** through the encoder network, where M is the num-
ber of features and C' is the feature dimension. To further enhance the learning of domain-invariant



representations in discriminative features, we propose three key structural priors beyond conventional
mixing approaches—permutation invariance, local consistency, and geometric consistency—while si-
multaneously modeling long-range dependencies through efficient sequence processing mechanisms.

Permutation Invariance Prior. Diverse space-filling curves, due to their different computa-
tional approaches to spatial proximity, induce different 1D sequential arrangements that inher-
ently satisfy permutation invariance prior requirements [42, 43|]. Simultaneously, their sequen-
tial ordering thoroughly leverages structural prior cues and explores long-range dependencies.
Specifically, let 7y : {1,...,M} — {1,..., M} be the Hilbert curve permutation [13]] and
7wz {l,...,M} — {1,..., M} be the Z-order permutation [34]. By applying the Hilbert and
Z-order permutations 7y and 7, we obtain the reordered features Fy = F|ry] and F; = Fry],
respectively. For each ordered sequence, the Mamba processes the features sequentially to generate
permutation-sensitive features:

O = M(Fm) GRMXC, Oz = M(Fz) ERMXC, ®)

where M(-) represents the Mamba model. To enforce consistency across differentially ordered
input features, we employ inverse mappings of the original permutations, thereby reconstructlng

representanons in the default ordering for equivariance constraints: Oy = Oy [Ty l and Oy =

Ogzlry, 7 l Lpermutation 18 then formulated as the mean squared error (MSE) between corresponding
features across sequences:

Loermutation = | On OZHZ ©)

Local Consistency Prior. The spatial distribution of objects and backgrounds in real-world LIDAR
scans exhibits pronounced spatial correlations and semantic regularities 63}, 23} [19]. Specifically, the
semantic composition of LiDAR point clouds demonstrates strong locality-based patterns, wherein ob-
jects and backgrounds within proximal spatial regions tend to share characteristic semantic attributes.
For instance, close-range areas of the LiDAR scan predominantly manifest road-like semantics, while
distant regions typically encompass more complex urban landscape elements such as buildings and
vegetation. Moreover, near-ground spatial zones predominantly feature road and sidewalk semantics,
with minimal representation of elevated structures like buildings. This indicates that 3D LiDAR point
clouds possess distinct height and range attribute priors, which encourages us to leverage structural
priors for partitioning point cloud scans. However, regardless of the partitioning approach, LIDAR
point cloud features should maintain consistency. Therefore, we construct local consistency priors
and adopt two partitioning strategies: first, using the Z-axis to leverage category height attributes for
division; second, using elevation angle to partition based on category-to-sensor distance attributes.

First, we employ elevation angle 6 and Z-axis height z as primary stratification mechanisms for

segmenting the discriminative feature representation F € RM*C into distinct cylindrical and
rectangular regions. We accomplish this by quantizing 0; and z; into disjoint intervals. The cylindrical

partitioning is defined as: R} = {F | Hmm <0; < Hﬁnax} 0 =1,...,L, where anm and 0!
define the angular bounds of the [-th region. Similarly, the rectangular partltromng is formulated
as: RY = {F | zpin < 2 < Zpax} v = 1,...,V, where zp,;,, and 27, define the height bounds of
the v-th region. Subsequently, we implement Region-wise Hllbert Ordering within each segmented
region, employing a Hilbert curve-based approach to systematically arrange features while preserving
intra-region spatial proximity and geometric relationships. We then concatenate these ordered
subregions according to their regional sequence to generate distinct permutation schemes 7, and
my that encode different structural priors. Applying these permutations yields reordered feature
representations F;, = F|r;] and Fyy = F[ry]. Following Equation|[8] we generate permutation-
sensitive features Oy, and Oy . To establish local consistency prior, we map these features back to

the default ordering through inverse permutation: Oy, = Oy [n; '] and Oy = Oz[r']. The local
consistency prior loss is formulated as follows:

Lioear = |01~ Ov ] (10)

Geometric Consistency Prior. Despite their sparsity and lack of ordering, 3D LiDAR point clouds
exhibit strong geometric redundancy due to underlying surface continuity. Point clouds typically
form coherent structures with local smoothness and global consistency, enabling reliable inference
of original geometry even from partially masked representations [42} 29, [71]. We leverage this
property to establish geometric consistency priors through masking operations. We generate a

density-perturbed version F' by applying a random binary mask Mask € {0,1}M:
F = {F;| Mask; =1}, where Mask; ~ Bernoulli(1 — p), (11)



Table 1: Comparison results of SynLiDAR — SemanticKITTI adaptation in terms of mloU. The
highest scores for each semantic class are highlighted using a color-coding system:

results are marked in , Target only results in gray, and the overall best performance metrics in
blue.

2 9 B 4 % 2 g 3 D"-D 5 8§ 5 X

2| . © 2 % I £ © 2 g £ 5 8 =2 g 8§ E g 2 9o
Methods 8§ £ E E 8 & £ E ¢ & % E £ ¢ E 8§ - E
Source only 204[359 7.5 107 0.6 29 133 447 34 21.8 69 29.6 0.0 341 7.4 629 260 355 30.3 14.1
Target only 60.4]96.2 17.6 559 79.5 51.4 65.5 84.9 2.8 932 385 79.8 1.9 90.4 57.3 86.8 654 72.7 643 432
AdaptSegNet [57]  |27.9]52.1 10.8 112 2.6 9.6 15.1 359 2.6 62.2 10.4 413 0.1 58.1 17.1 68.0 38.4 38.7 359 20.4
CLAN [32] 30.5/51.0 158 16.8 2.2 7.8 187 46.8 3.0 689 11.1 449 0.1 59.6 17.5 71.7 41.1 44.0 37.7 19.8
ADVENT (59 30.5/59.9 13.8 146 3.0 8.0 17.7 458 3.0 67.6 11.3 456 0.1 61.7 15.8 72.4 41.5 47.0 345 153
FADA [61] 25.6(49.9 67 5.1 25 100 57 26.6 2.3 658 10.8 37.8 0.1 60.3 21.5 60.4 37.2 31.9 354 17.4
MRNet [78] 283[49511.0 122 22 86 160 464 2.7 60.0 105 41.9 0.1 55.1 16.5 68.1 38.0 40.7 365 20.8
PMAN [72] 33.7|71.0 149248 1.6 6.6 23.6 61.1 55 753 10.5 54.1 0.1 47.9 174 69.6 38.6 61.5 37.0 18.6
CoSMix [48] 29.9]56.4 102208 2.1 13.0 25.6 41.3 22 674 82 434 0.0 57.9 12.2 684 44.8 350 42.1 17.0
PolarMix [68] 31.0|763 8.4 178 3.9 6.0 26.6 408159703 0.0 444 0.0 684 147 69.6 38.1 37.1 40.6 10.6
LaserMix [19] 36.0/90.3 7.8 372 2.3 2.4 40.6 49.1 5.1 80.5 9.9 57.4 0.0 57.6 3.4 77.6 46.6 60.1 42.0 13.6
PCAN [73] 37.0(85.0 17.5 27.4 10.4 11.9 27.5 63.7 2.6 78.1 13.5 50.1 0.1 68.5 20.0 76.2 41.3 45.7 41.0 21.8
DGT-ST [73] 43.1/92.9 173434 150 6.1 49.2 542 42 864 19.1 623 0.0 782 9.2 83.3 56.0 59.1 512 32.3

BeyondMix (Ours) |45.4(93.3 17.1 449 16.1 14.7 51.0 61.4 8.3 87.0 21.3 68.2 0.0 78.1 17.1 83.1 59.5 59.8 52.6 30.3
BeyondMix++ (Ours) 46.2| 94.0 15.1 47.2 17.6 16.5 55.2 599 6.8 87.0 24.1 69.3 0.0 79.3 14.7 81.8 61.0 62.8 53.3 32.1
AT +23.8+58.1+7.6+36.5+17.0+13.6+41.9+15.2+3.4+65.2+14.2+39.7+0.0+45.2+7.3 +18.9+35.0+27.3+23.0+18.0

and p € [0,1) is the subsampling rate. We then apply Hilbert curve ordering to generate density-
sensitive feature representations O and O:

M
O=M(F)eR"*C  O=M(F)eR" ™, where M = Mask. (12)

i=1

For the computation of geometric consistency loss, we consider only the unmasked portions of the
representation, thereby ensuring that the loss function evaluates only regions with reliable geometric
information. Let Z = {i | Mask; = 1} be the index set of unmasked points. We define the masked
subset of O as Oz = {O; | i € Z}. The loss is computed as:

1 M @ Amll?
£geometric = M ; HOIl - O(Z) ’2- (13)

Training and Inference. The total loss for our training is given by:
Etotal - LS + Lt + )\mixﬁmix + )\prior(ﬁpermutation + [flocal + ﬁgeometric% (14)

where \p,;; and A\, are the balancing coefficients for the loss. For inference, we only use the
original network structure.

Expansion to other Mix-based methods. Existing mix-based methods each possess distinct struc-
tural priors. Thoroughly exploiting and leveraging a diverse range of structural priors can significantly
enhance model performance. Based on this insight, we extend BeyondMix to BeyondMix++, which
randomly selects from various existing mixing strategies when generating intermediate domains,
including CoSMix [48]], LaserMix [[19], and PolarMix [68]].

4 Experiments

4.1 Experimental Setup

Datasets. We utilize three common LiDAR datasets, performing two synthetic-to-real UDA tasks.
(1) SynLiDAR [69] is a synthetic dataset containing 198,396 point clouds with 32 semantic classes
across 13 sequences. It simulates a Velodyne HDL-64E LiDAR sensor. We follow the authors’ in-
structions [69] and use 19,840 point clouds for training and 1,976 for validation. (2) SemanticKITTI
[2]is a real-world dataset collected in Karlsruhe, Germany, featuring 28 semantic classes. It was
captured using a Velodyne HDL-64E LiDAR sensor. We use sequences 00-10 (19,130 scans) for
training, while sequence 08 (4,071 scans) serves as validation. (3) SemanticPOSS [37] consists of



Table 2: Comparison results of SynLiDAR — SemanticPOSS adaptation in terms of mloU. The
highest scores for each semantic class are highlighted using a color-coding system:

results are marked in , Target only results in gray, and the overall best performance metrics in

blue.
Methods \ mloU \ bi.clst car  trunk veget. traf. pole garb. build. cone. fence bi.cle ground pers.
Source only 383 | 472 436 378 703 111 338 195 679 112 199 96 779 478
Target only 573 | 61.6 751 484 779 477 378 299 778 377 512 549 812 639
AdaptSegNet [57] 393 | 439 482 390 69.6 155 336 213 643 127 250 116 760 499
CLAN [32] 395 | 439 466 413 710 151 343 204 696 95 232 120 751 513
ADVENT [59] 40.1 | 446 476 403 712 156 356 220 684 106 259 104 767 523
FADA [61] 376 | 396 412 388 692 163 321 181 679 115 220 130 714 479
MRNet [78] 394 | 435 472 3901 704 155 328 220 661 132 242 112 768 500
PMAN [72] 465 | 526 615 468 751 188 365 214 747 183 258 375 737 619
CoSMix [48] 446 | 536 476 448 751 168 379 253 727 199 397 108 800 56.5
PolarMix [68 326 | 391 250 119 642 58 296 153 448 133 238 107 790 304
LaserMix [19] 455 | 584 613 477 690 219 395 309 610 161 365 71 795 626
PCAN [73] 444 | 486 621 375 740 239 314 222 769 65 419 119 790 612
DGT-ST (73] 508 | 551 707 461 742 301 363 441 810 43 628 103 785 672
BeyondMix (Ours) | 529 | 57.6 685 462 769 321 392 405 799 214 627 128 797 67.1
BeyondMix++ (Ours) 537 | 59.1 698 480 769 374 385 428 810 215 616 147 793 673
At | +15.4 | +11.9 4262 +102 +6.6 +263 +4.7 +233 +131 +103 +41.7 +51 +14 194

2,988 annotated real-world point clouds with 14 semantic classes, collected at Peking University,
China, using a Pandora 40-line LiDAR sensor. We use sequence 03 for validation and all remaining
sequences for training.

Evaluation protocol. Following virtual-to-real adaptation protocols established in previous
works [69} 48| 73], we conduct two UDA experiments: SynLiDAR — SemanticPOSS (mapping to 14
segmentation classes) and SynLiDAR — SemanticKITTI (mapping to 19 segmentation classes). We
adopt the widely accepted Intersection over Union (IoU) metric for semantic segmentation assessment.
The IoU is calculated separately for each semantic category, providing class-specific insight into
segmentation quality.

Implementation. Our implementation framework leverages PyTorch [38] and MinkowskiEngine [5],
running on a single NVIDIA RTX A6000 GPU with 48GB VRAM. The semantic segmentation
backbone employs a U-Net architecture MinkUNet34. For structural priors and Long-Range de-
pendencies, we adhered to the default configuration with the Mamba architecture parameterized as
follows: input dimension of 256, hidden state dimension of 256, convolutional kernel width of 4,
and expansion factor of 2. In alignment with established practices in recent literature [48) (72, [73]],
we utilize raw XY Z coordinates as the primary input features. Our processing pipeline maintains a
consistent voxel size of 0.05m while accommodating variable point cloud densities without explicit
size constraints. The optimization process employs the Adam optimizer [[17]] with a starting learning
rate of 2.5e-4, governed by a polynomial decay schedule with power coefficient 0.9. Comprehensive
experimental configuration details are available in the Appendix.

4.2 Comparative Study

We conduct comprehensive experiments to evaluate the performance of domain adaptation from
SynLiDAR to SemanticKITTI and SemanticPOSS datasets. The mloU and per-class IoU scores are
reported in Tables [[|and 2] Qualitative Results can be found in the Appendix.

Quantiative Results: (1) SynLiDAR — SemanticKITTI Adaptation. Our proposed BeyondMix++
achieves state-of-the-art performance with an mloU of 46.2%, surpassing all baseline methods by
a significant margin (+23.8% over the source-only model). Notably, BeyondMix++ demonstrates
exceptional improvements in challenging categories such as car (+58.1%), person (+41.9%), and
road (+65.2%), highlighting its robustness in adapting to diverse object scales and geometries.
Compared to the recent DGT-ST [73]], BeyondMix++ attains consistent gains across 13 out of 19
classes. (2) SynLiDAR — SemanticPOSS Adaptation. BeyondMix++ achieves an mloU of 53.7%,
outperforming existing methods by up to +8.2% (vs. LaserMix[19]]). Remarkably, our method
exhibits superior generalization on sparse objects(e.g., traffic-sign). Furthermore, BeyondMix++
significantly narrows the performance gap between source-only and target-only models, indicating its
capability to achieve more effective domain-invariant representation learning.



4.3 Ablation Study

Without loss of generalizability, we stick with SynLiDAR — semanticKITTI in our ablations. More
ablation studies are presented in the Appendix.

The Effect of Components. To validate the effectiveness of the proposed components in Beyond-
Mix++, we conduct a systematic ablation study by progressively integrating different loss functions.
Using the self-training-based DGT-ST [73] as
our baseline, as shown in Table 3] we observe
that employing the mixed method L,,;x yields a
1.0% improvement. Exploring and constructing

Table 3: Comparative study of different components.

# ‘['mix [’permutation Elocal Egeometric‘ mIOU(%)

different structural priors through £, crmutation, (1) | 43.1
Liocal, and Lgeometric contributes improvements ol v 441 +1.0)
of 1.4%, 1.6%, and 1.3% respectively, indicating 3| v v 445 (+1.4)
that each structural prior can help with domain-  (4)| v 4477 (+1.6)
invariant representation learning. The pair- (5)| v 434 (+1.3)
wise combinations of these components yield

stronger gains (1.9-2.7%), demonstrating syn- Eg; 5 5 v v igg 2:3;:
ergistic effects in feature representation. Our ®) v v v 45.0 ( +I:9)
full method ultimately achieves a substantial

performance of 46.2% mloU, representing a sig- O v v v v [462(+3.0)

nificant gain of 3.1% over the baseline. These

results confirm the complementary nature of our proposed components in helping the model learn
more comprehensive domain-invariant representations under different structural priors, through
Permutation Invariance Prior, Local Consistency Prior, and Geometric Consistency Prior.

Table 4: Compari-
son between differ-

Table 5: Compari-
son between differ-

Table 6: Compari-
son between differ-

Table 7: Comparison between differ-
ent mix strategies.

ent cylindrical parti- entrectangular parti-  ent Mask Ratios. # [CosMix PolarMix LaserMix | mIoU(%)

tioning region num- tioning region num- | v 451 (-1.1)

ber L. ber M. Mask(%) | mIoU(%) () v 448 (-1.4)

Num L] mloU(%) Num M [ mloU(%) 40 [459(-03) @ Y 454008
3 45.4 (-0.8) 2 45.3 (-0.9) 50 46.2 @ v v 45.7 (-0.5)
4 45.6 (-0.6) 3 46.2 60 455(-0.8) | Vv v 46.0 (-0.2
5 46.2 4 46.0 (-0.2) 70 449 (-1.3) © v v 459 (:0.3)
6 45.7(-0.5) 5 45.8 (-0.4) 80 443(-1.9) | v v v | 462

The Effect of Local Consistency Prior. Tables§] and [5]evaluate different partitioning configurations
for our Local Consistency Prior. The optimal setup combines 5 cylindrical regions and 3 rectangular
regions, achieving an ideal balance between segregating semantically distinct areas while preserving
contextual information within regions. This configuration provides the best partitioning of spatial
correlations and semantic regularities, helping the model improve UDA performance.

The Effect of Geometric Consistency Prior. Table|6reveals that a 50% mask ratio achieves optimal
performance (46.2% mloU) for density consistency regularization. A lower ratio (40%) shows
minor degradation (-0.3%) due to insufficient density variation, while higher ratios (60-80%) cause
increasingly significant performance drops (-0.8% to -1.9%) as excessive point removal compromises
structural information. The 50% mask ratio effectively balances creating meaningful density variation
while preserving sufficient structural context for learning density-invariant representations across
different geometric structure prior.

The Effect of Mix Strategies. As shown in Table [/} individual strategies show limited effectiveness:
LaserMix (45.4%), CosMix (45.1%), and PolarMix (44.8%) each capture different domain-invariant
features but with performance gaps. Dual combinations demonstrate complementary benefits: Cos-
Mix+LaserMix (46.0%), PolarMix+LaserMix (45.9%), and CosMix+PolarMix (45.7%) all outper-
form individual approaches. The integration of all three strategies achieves optimal performance
(46.2% mloU), confirming that our BeyondMix++ successfully leverages the diverse structural priors
and strengths of each mixing method to capture a more comprehensive range of domain-invariant
features for robust LIDAR semantic segmentation.
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5 Conclusion

BeyondMix addresses fundamental limitations in LiDAR segmentation domain adaptation by inte-
grating three previously overlooked structural priors—permutation invariance, local consistency, and
geometric consistency—with Mamba’s sequential processing. Our approach overcomes conventional
receptive field constraints while effectively modeling long-range dependencies, achieving state-of-
the-art performance across benchmarks and highlighting the critical importance of structural priors in
cross-domain representation learning.
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Justification: The abstract and introduction accurately reflect the main contributions. Please refer to
abstract and Section[ll
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* The answer NA means that the abstract and introduction do not include the claims made in the
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¢ The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
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¢ The claims made should match theoretical and experimental results, and reflect how much the
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Question: Does the paper discuss the limitations of the work performed by the authors?
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these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
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on a few datasets or with a few runs. In general, empirical results often depend on implicit
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example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.
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they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
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¢ The answer NA means that the paper does not include theoretical results.
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¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide implementation details in Section[4.T|and Appendix[C]
Guidelines:

¢ The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer:
Justification: The code will be open-sourced to the community upon acceptance of the paper.
Guidelines:

¢ The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: Please refer to Section[4.3]and Appendix|[|for experimental details.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

¢ The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: We describe the computer resources in Section[d.T|and Appendix[C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted in this paper adheres fully to the NeurlPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: Please refer to Appendix [K]for our discussions on the societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer:
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: All models and baselines from existing assets are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA|
Justification:The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer:
Justification: LLM is used only for editing.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Theoretical Insight

In our main text, we discuss that within the context of unsupervised domain adaptation, when a point’s receptive
field spans across two domains in the mixed images generated by the mix operation, the model can effectively
learn domain-invariant features for this point. Conversely, if a point’s receptive field is confined entirely within a
single domain, the model struggles to learn domain-invariant features for that point. We now provide a detailed
proof to support this claim.

We formulate our unsupervised domain adaptation framework as follows. We define the source domain X’s and
target domain X;, with a shared feature space Z C R?. Our model architecture consists of two key components:
a feature extractor f : X — Z that maps input data to the feature space, and a classifier h : Z — ) that
performs the classification task. The learning objective combines two loss functions: the cross-entropy loss Lcg
for supervised learning on the source domain, and the domain alignment loss Laiign to minimize the discrepancy
between feature distributions of the source and target domains. For z, € X5 and x; € X, generate a mixed
sample:

Tmiz = ATs + (1 — N)z¢, A ~ Beta(q, 8), (15)

where A\ ~ Beta(a, 3) indicates that the random variable A follows a Beta distribution with parameters « and .

We prove two claims: 1. Forward Proposition: If a receptive field spans both domains (i.e., covers regions
from both x5 and x+, domain-invariant features are learned. 2. Reverse Proposition: If a receptive field covers
only a single domain, domain-invariant features cannot be effectively learned.

1. Proof of Forward Proposition: Cross-Domain Receptive Fields Enable Domain-Invariant Features

For a mixed sample, the gradient of the loss w.r.t. feature extractor parameters 6 is:

OLmin _ )\aﬁcE(h(f(Is))7ys)

aﬁangn(f(mt); f(fEs))
a6 00 .

+ (-2 50,

16)

We observe that the first term (A-weighted) enforces sensitivity to source domain labels, while the second term
((1 — X)-weighted) enforces alignment between target and source features. The combined gradient forces ¢ to
satisfy constraints from both domains, thereby driving the learning of domain-invariant patterns. This can be
understood through an information-theoretic lens: maximizing cross-domain mutual information /(z; y) while
minimizing I(z; d) (where d denotes the domain label). The mix operation effectively disrupts domain-specific
information, leading to:

I(z;d) < H(d) — H(d|2) ~ 0, (17)

where z implies domain-invariant representations. Therefore, cross-domain receptive fields enable the model to
learn domain-invariant features.

2.Proof of Reverse Proposition: Single-Domain Receptive Fields Fail to Learn Domain-Invariant Features

If A € {0, 1} (no mixing), gradients depend solely on one domain:

o0
005 O Laign ((e0)) A= (4

pr [ PLemtiUiean - y_
=0.

90 ’

Source-only training (A = 1): Overfitting to domain-specific features (e.g., textures) degrades target general-
ization.

Target-only training (A = 0): Lack of supervision leads to trivial alignment (e.g., feature collapse).

Due to domain shift (P(y|xs) # P(y|x:)), single-domain training causes:

f(@s) # fze) evenif ys =y, (19)
which results in misaligned distributions. The Maximum Mean Discrepancy (MMD) between domains remains:
MMD(Zs, 2¢) = ||E-, [¢(zs)] — Ez, [¢(20)] I3, > O, (20)

where ¢ maps to a reproducing kernel Hilbert space. Therefore, single-domain receptive fields fail to learn
domain-invariant features.

B More Related Works

Point Cloud Semantic Segmentation. Point cloud semantic segmentation has evolved through three primary
representation paradigms: (1) Projection-based approaches like MVCNN [51] and RangeNet++ [33] utilize
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CNN architectures via 2D mapping but sacrifice geometric detail; (2) Voxel-based methods improve compu-
tational efficiency through regular grid processing, as demonstrated by MinkowskiNet [5]], TANet [31], and
Cylinder3D [80]; and (3) Point-based networks enable end-to-end processing of raw point clouds, progressing
from PointNet [42] through PointNet++ [43], DGCNN [63]], Point Transformer [76], and PointNeXt [44], each
enhancing local geometric modeling capabilities. This work employs MinkowskiNet as its backbone architecture
due to its optimal balance between computational efficiency and segmentation accuracy.

State Space Models. State Space Models (SSMs) have evolved into powerful sequence modeling tools, progress-
ing from S4 [[10]], which established HiPPO-based long-range dependency modeling, through computational
refinements in S4D [11]], DSS [9]], and S5 [49], culminating in Mamba [8] with its data-dependent state dynamics
and hardware-aware design. In computer vision, SSMs have demonstrated remarkable versatility: Vision
Mamba [30] pioneered pure SSM architectures for image tasks, VM-UNet [47] adapted them for medical image
segmentation, while S4ND [35] and Motion Mamba [75]] extended their application to multi-dimensional data
and action recognition. Recent advances including PointMamba [28]], PCM [74], and Mamba3D [12] have
successfully adapted Mamba to unordered point cloud data. Our work further extends this trajectory by demon-
strating SSMs’ effectiveness in unsupervised domain adaptation for LIDAR 3D point clouds, outperforming
previous approaches in addressing domain shift challenges.

Multi-modal UDA methods for Point Cloud Segmentation. Unlike previous 2D unsupervised domain adapta-
tion approaches [4, 126,127,155 |3} 24} 25]] for segmentation tasks [54, 152, 53], unsupervised domain adaptation
(UDA) for 3D semantic segmentation has garnered significant scholarly attention, particularly regarding the
principled exploitation and fusion of multimodal information streams for cross-domain generalization. Seminal
investigations [21} 160] explored the utilization of auxiliary modalities such as depth—available exclusively
during source domain training—to facilitate adaptation of 3D semantic segmentation frameworks. Subsequently,
xMUDA [[14] established a paradigmatic approach by enforcing cross-modal consistency constraints, thereby
enabling bidirectional knowledge transfer between image and point cloud representations to enhance domain
generalization capabilities. Further advancements to this paradigm [[15] incorporated sophisticated cross-modal
fusion mechanisms and contrastive learning objectives to optimize representation alignment across both modali-
ties and domains. Contemporary research has extended these foundational approaches through integration of
advanced vision architectures and refined fusion methodologies. For instance, [40] incorporates the Segment
Anything Model [18] (SAM) to augment 2D modality representations, consequently enhancing 3D segmentation
performance through more effective cross-modal knowledge transfer. The authors of [67] propose a sequen-
tial fusion-then-distillation framework, which first aligns 2D and 3D feature representations within a shared
latent manifold before employing positive distillation techniques to preserve complementary modality-specific
information during the adaptation process. Furthermore, [S0]] introduces an adaptive regularization framework
for modality-guided feature fusion, facilitating dynamic and contextually appropriate integration of visual and
geometric information under domain distribution shifts.

C More Implementation Details

Our implementation framework leverages PyTorch [38] and MinkowskiEngine [5]], running on a single NVIDIA
RTX A6000 GPU with 48GB VRAM. The semantic segmentation backbone employs a U-Net architecture
MinkUNet34. For structural priors and Long-Range dependencies, we adhered to the default configuration
with the Mamba architecture parameterized as follows: input dimension of 256, hidden state dimension of
256, convolutional kernel width of 4, and expansion factor of 2. In alignment with established practices in
recent literature [48| [72| [73]], we utilize raw XY Z coordinates as the primary input features. The critical
hyperparameters o and val are configured at 0.99 and 100, respectively. Our processing pipeline maintains
a consistent voxel size of 0.05m while accommodating variable point cloud densities without explicit size
constraints. The training regimen incorporates a comprehensive suite of data augmentation techniques, including
random rotational transformations, Gaussian noise perturbation, coordinate jittering, and other enhancement
strategies. The optimization process employs the Adam optimizer [17] with a starting learning rate of 2.5e-4,
governed by a polynomial decay schedule with power coefficient 0.9. The network undergoes training for 100,000
iterations with each batch containing 2 samples. The loss function coefficients Ay, and Aprior are set to 1 and
0.01, respectively. The downsampling rate p is configured at 50%, while the number of cylindrical partitions L
and rectangular partitions V' are set to 3 and 5, respectively. When implementing BeyondMix++ with CosMix
integration, which originally generates bidirectional mixed domains (source—target and target—source), we
randomly select a single directional transformation for intermediate domain generation to maintain computational
efficiency while preserving adaptation benefits.

D Space-filling Curve.

To more intuitively observe the impact of different space-filling curves on spatial proximity, we visualize
the Hilbert curve and Z-order curve as shown in Figure [ (a), (b), (e) and (f) with dimensions of three and
two, respectively. Z-order curves are renowned for their computational efficiency, while Hilbert curves are
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Figure 4: Space-filling curves.

distinguished by their locality-preserving property. For clarity of demonstration, we present our analysis in 2D.
The spatial proximity in point clouds can be eftectively preserved through point cloud serialization, whereby
points that are adjacent in sequences maintain their neighborhood relationships in the point cloud representation.
Figure [4] (c) and (g) illustrate randomly distributed points, which are subsequently sorted using the Hilbert
curve and Z-order curve as shown in FigureE](d) and (h). As observed, and consistent with previous research
findings [36], the Hilbert curve demonstrates superior spatial proximity preservation compared to the Z-order
curve.

E Pseudo Algorithm

Algorithm[T]presents the comprehensive training procedure of our proposed BeyondMix++ framework for LIDAR
semantic segmentation under unsupervised domain adaptation. The algorithm operates on a teacher-student
architecture (self-training paradigm), processing both source domain data with ground truth labels and unlabeled
target domain data. For each training batch, we first compute supervised segmentation loss on source data and
adaptation loss using teacher-generated pseudo-labels on target data. The core of BeyondMix++ is constructing
three additional structural priors: (1) Permutation Invariance Prior, whereby point cloud representations
should remain consistent regardless of acquisition trajectory or scanning order [42|43] (e.g., different angular
perspectives or sampling paths), preserving invariance to permutation operations. (2) Local Consistency Prior,
whereby point cloud features should maintain consistency across different local spatial partitions [63 23],
independent of acquisition perspective or artificially defined spatial segmentation schemes; and (3) Geometric
Consistency Prior, whereby LiDAR point cloud geometric structures (surface curvatures, normal vectors)
should maintain stability under various processing operations [29\|71]], with remaining points preserving critical
geometric information even under partial masking. However, these three structural priors intuitively resist
straightforward implementation through mix-based paradigm like previous work. These components collectively
form the total loss, which works alongside traditional mixing loss to guide the student network’s training. The
teacher network parameters are periodically updated through exponential moving average (EMA) of the student
network weights, ensuring stable knowledge transfer. This unified approach effectively leverages Mamba to
fully explore and utilize structural prior cues and expand receptive fields and enhance the ability to extract
domain-invariant representations from unstructured 3D LiDAR point cloud data.

F More Metrics

We adopt the widely accepted Intersection over Union (IoU) metric for semantic segmentation assessment.
The IoU is calculated separately for each semantic category, providing class-specific insight into segmentation
quality. To obtain a holistic view of model performance, we derive the Mean Intersection over Union (mloU)
by averaging these individual class IoU values. This comprehensive measurement effectively captures both the
precision and consistency of our segmentation results across the entire spectrum of semantic categories.
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Figure 5: Qualitative results of UDA segmentation for SynLiDAR — SemanticKITTI and SynLiDAR
— SemanticPOSS tasks. Boxes highlight some regions of interest.
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Figure 6: Error Map of UDA segmentation for SynLiDAR — SemanticKITTI and SynLiDAR —
SemanticPOSS tasks. Boxes highlight some regions of interest. The binary visualization scheme
employs red coloring to highlight misclassified points, whereas gray regions represent accurate
predictions.
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Algorithm 1 Pseudo algorithms of BeyondMix++.

1: Inputs:Source Domain D° = {(2°y*)}, Target Domain D* = {z*}
2: Define: Student Network f;,, Teacher Network f;.,, Momentum Coefficient «, Update interval
val

3: Qutput: Student Network fs;,,

4: for each batch of (x*,%*) in D, z! in D*. For brevity. do

5:  # Source Domain:

6:  Calculate L£° for fg, by Eq. (1) > Source loss
7. # Target Domain:

8:  Obtain pseudo-labels from f; by Eq. (3)

9:  Calculate £ for fiq by Eq. (2) > Target loss
10:  # Mixed Scan:
11:  Calculate L, for fsi, = h o g by Eq. (7) > Mix loss

12:  # Permutation Invariance Prior:

13:  Calculate permutation-sensitive features O and Oz by Eq. (8)

14:  Calculate Lpermutation for for, by Eq. (15) > Permutation Invariance Prior loss
15:  # Local Consistency Prior:

16:  Calculate permutation-sensitive features O, and Oy by Eq. (8)

17:  Calculate Locq; for fsi, by Eq. (10) > Spatial Consistency loss
18:  # Geometric Consistency Prior:

19:  Calculate permutation-sensitive features O and O by Eq. (12)

20:  Calculate Lgeometric for fsi, by Eq. (13) > Density Consistency loss
21:  # Training:

22:  Calculate total loss:

23: ‘Ctotal =L + ‘Ct + Amimﬁmix + Ap’r’io’r (‘Cpermutation + ‘Clocal + ‘Cgeometric)a by Eq (14)
24:  Gradient backward Liosa) for fsz > Update student model
25.  # EMA Update:

26: if Interval == val: then

27: gler = afice |+ (1 — a)fi™, Update teacher model
28:  end if
29: end for
Table 8: Ablation studies of EMA coefficient a. Table 9: Ablation studies of Threshold 7.
EMA « \ mloU(%) Threshold 7 |  mlIoU(%)
0.5 45.6 (-0.6) 0.5 45.4 (-0.8)
0.7 45.9(-0.3) 0.6 45.8(-0.4)
0.9 46.0(-0.2) 0.7 46.2
0.99 46.2 0.8 45.9 (-0.3)
0.999 45.8 (-0.4) 0.9 449 (-1.3)

G More Qualitative Results

To further validate the effectiveness of our proposed BeyondMix++ framework, we present qualitative segmenta-
tion results on both source and target domains. Figure[5illustrates representative examples that demonstrate
the superior cross-domain generalization capabilities of our approach compared to baseline methods. In the
first row featuring SemanticKITTI scenes, BeyondMix++ produces significantly more accurate and consistent
sidewalk segmentation. The baseline method erroneously classifies portions of terrain as sidewalks, while
our approach correctly delineates the boundary between these semantically similar but functionally distinct
classes. The second row demonstrates BeyondMix++’s superior performance on terrain classification within
SemanticKITTI. Our method correctly identifies terrain regions that are misclassified by the baseline approach,
particularly in areas where terrain meets boundaries. In the SemanticPOSS visualizations (third row), Be-
yondMix++ achieves substantially more accurate segmentation of vegetation and other-vehicle classes. The
baseline method exhibits fragmented predictions and class confusion in these categories, whereas our approach
produces coherent and semantically consistent segmentations. The fourth row further validates BeyondMix++’s
cross-domain generalization capabilities, where it correctly segments vegetation and sidewalk regions in Se-
manticPOSS that are severely misclassified by baseline approaches. The baseline exhibits notable confusion
between vegetation and sidewalk—a common challenge in domain adaptation for LiDAR segmentation. These
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qualitative results collectively demonstrate that BeyondMix++ effectively leverages different structural priors
to learn domain-invariant features. The State Space Model architecture enhances BeyondMix++’s ability to
expand receptive fields and extract robust features from unstructured 3D point cloud data. By incorporating
Permutation, Local, and Geometric consistency prior mechanisms, our approach successfully captures long-range
contextual information and geometric relationships that remain stable across domains, leading to more accurate
and consistent segmentation across different LiDAR sensor configurations and environmental conditions.

H More Error Map Results

In Figure[6] we present additional visualization results with corresponding error maps for the SynLiDAR —
SemanticKITTI and SynLiDAR — SemanticPOSS adaptation scenarios, comparing our BeyondMix++ approach
with CoSMix [48]], LaserMix [19], and DGT-ST [73] The error maps clearly demonstrate that BeyondMix++
produces significantly fewer misclassifications compared to alternative methods, underscoring the effectiveness
of our proposed approach in cross-domain LiDAR semantic segmentation.

Table 10: Comparison between different co- Table 11: Comparison between different co-
efficient \,,5z. efficient \y;,;.
Amiz \ mloU(%) Auni \ mloU(%)
0.5 45.5 (-0.7) 0.1 44.4 (-1.8)
0.8 45.8(-0.4) 0.05 45.2(-1.0)
1 46.2 0.01 46.2
1.2 46.1(-0.1) 0.001 45.5 (-0.7)

I More Ablation Study.

Confidence Threshold. Table [J presents our ablation study on the confidence threshold 7, which plays a
critical role in pseudo-label generation for unsupervised domain adaptation. Our experiments demonstrate that
7=0.7 achieves optimal performance (46.2% mloU), establishing an effective balance between pseudo-label
quality and quantity. Lower threshold values (0.5 and 0.6) result in decreased performance (-0.8% and -0.4%
respectively), indicating that excessively lenient thresholds introduce noisy pseudo-labels that adversely affect
training. Conversely, higher threshold values (0.8 and 0.9) also lead to performance degradation (-0.3% and -1.3%
respectively), with a particularly significant drop at 7=0.9. This suggests that overly strict thresholds discard
potentially useful supervision signals from moderately confident predictions. The sharp performance decline
with 7=0.9 (-1.3%) is especially noteworthy, indicating that excessively high confidence thresholds severely
limit the number of available pseudo-labels, significantly hampering the model’s ability to adapt to the target
domain. These results confirm that 7=0.7 provides the optimal trade-off between pseudo-label precision and
recall, enabling effective knowledge transfer in our BeyondMix++ framework for LIDAR semantic segmentation
under domain shift conditions.

EMA. Table [§] presents our ablation study on the Exponential Moving Average (EMA) coefficient c, which
controls how quickly the teacher model incorporates updates from the student model. We observe that «=0.99
achieves optimal performance (46.2% mloU), establishing an effective balance between stability and adaptability
in teacher-student knowledge transfer. Lower « values (0.5, 0.7, and 0.9) show progressively increasing
performance (-0.6%, -0.3%, and -0.2% respectively), indicating that faster teacher updates compromise model
stability by introducing excessive fluctuations during training. Conversely, an extremely high « value (0.999)
also results in performance degradation (-0.4%), suggesting overly conservative teacher updates fail to effectively
incorporate emerging domain knowledge. These results confirm that «=0.99 optimally balances stability and
adaptability in the teacher-student framework, enabling effective knowledge distillation for unsupervised domain
adaptation in LiDAR semantic segmentation. This finding aligns with our theoretical understanding that the
teacher model must maintain sufficient consistency while gradually incorporating valuable representations
learned by the student model.

Balancing Coefficients. Table[T0]shows Amiz = 1.0 yields optimal performance (46.2% mloU). Lower values
(0.5, 0.8) reduce performance by 0.7% and 0.4%, suggesting insufficient mixed-domain learning, while a higher
value (1.2) shows minimal impact (-0.1%). This suggests the model exhibits robustness to small increases in this
coefficient, with a balanced value of 1.0 providing optimal regularization. For Ap,;or (Table , the optimal
value is 0.01. Larger values (0.1, 0.05) significantly degrade performance (-1.8%, -1.0%) by overemphasizing
consistency constraints, which can overshadow the primary segmentation objective. Conversely, a smaller value
(0.001) also reduces performance (-0.7%) as the regularization becomes too weak to effectively guide domain-
invariant feature learning. These findings confirm that proper balance between loss components (A = 1.0,
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Aprior = 0.01) is crucial for effective domain adaptation and diverse structural prior cues, as well as maximizing
the extraction of domain-invariant features across different receptive fields.

Different Long-range Modeling Methods. To comprehensively validate our approach, we evaluated alternative
long-range dependency modeling techniques, including the widely adopted Point Transformer v3 (PTv3) [66],
which implements attention mechanisms within locally grouped point cloud sequences. Our analysis revealed
that the standard PTv3 implementation constrains the receptive field to 1024 points, which proves insufficient
for our application domain. As demonstrated in our main text, the minimum requisite receptive field exceeds
1300 points (potentially substantially more, contingent upon mixing strategies and scanning methodologies).
Mamba, conversely, exhibits an unbounded receptive field, rendering it particularly suitable for modeling the
long-range dependencies essential to our task domain. The quantitative experimental results presented in Table ??
substantiate our theoretical assertions. Furthermore, Pamba establishes that "SSM can process the entire point
cloud of 100,000+ points expeditiously without subdivision and model uncompressed long-range dependencies,"
affirming that "SSM demonstrates superior suitability compared to transformer architectures for extracting
long-term dependencies.” This aligns precisely with our requirements, as each scan in our outdoor LiDAR
dataset comprises over 100,000 points. While we implemented PTv3 with a parameter setting of P = 2048,
the quadratic computational complexity inherent to transformer architectures rendered the processing speed
prohibitively inefficient for practical deployment.

Table 12: Comparison between Different Long-range Modeling Methods.

Method mloU (%)
PTv3 (P=1024) 45.6
Mamba 46.2

J Limitations

Despite the demonstrated effectiveness of BeyondMix, several limitations warrant acknowledgment. First, the
sequential transformation of 3D point clouds introduces computational overhead that may impact real-time
performance in resource-constrained autonomous systems. Second, while our approach leverages three key
structural priors, additional domain-specific priors may exist that could further enhance performance. Third, the
effectiveness of our method may vary across different sensor configurations and point cloud densities, potentially
requiring domain-specific adjustments. Finally, our current implementation primarily focuses on semantic
segmentation tasks, and its generalizability to other point cloud understanding tasks, such as object detection or
instance segmentation, requires further investigation.

K Broader Impacts

BeyondMix contributes to advancing autonomous driving technologies by enhancing LiDAR semantic segmen-
tation capabilities across diverse environmental conditions. This advancement has potential societal benefits,
including improved transportation safety, reduced accidents, and enhanced mobility for individuals with dis-
abilities. However, the deployment of such technologies raises important ethical considerations regarding
privacy, security, and the potential for algorithmic bias. Additionally, as autonomous systems become more
prevalent, careful consideration must be given to their environmental impact, including energy consumption and
electronic waste. We encourage the research community to address these broader implications while advancing
the technical capabilities of domain adaptation methods for 3D perception systems.
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