
Under review as a conference paper at ICLR 2022

AUG-ILA: MORE TRANSFERABLE INTERMEDIATE
LEVEL ATTACKS WITH AUGMENTED REFERENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

An intriguing property of deep neural networks is that adversarial attacks can
transfer across different models. Existing methods such as the Intermediate Level
Attack (ILA) further improve black-box transferability by fine-tuning a reference
adversarial attack, so as to maximize the perturbation on a pre-specified layer of
the source model. In this paper, we revisit ILA and evaluate the effect of applying
augmentation to the images before passing them to ILA. We start by looking into
the effect of common image augmentation techniques and exploring novel aug-
mentation with the aid of adversarial perturbations. Based on the observations,
we propose Aug-ILA, an improved method that enhances the transferability of an
existing attack under the ILA framework. Specifically, Aug-ILA has three main
characteristics: typical image augmentation such as random cropping and resiz-
ing applied to all ILA inputs, reverse adversarial update on the clean image, and
interpolation between two attacks on the reference image. Our experimental re-
sults show that Aug-ILA outperforms ILA and its subsequent variants, as well as
state-of-the-art transfer-based attacks, by achieving 96.99% and 87.84% average
attack success rates with perturbation budgets 0.05 (13/255) and 0.03 (8/255),
respectively, on nine undefended models.

1 INTRODUCTION

Recent studies (Szegedy et al., 2013; Goodfellow et al., 2015) showed that deep neural network
(DNN) models are vulnerable to adversarial attacks, where perturbations are added to the clean data
to fool the models in making erroneous classification. Such adversarial perturbations are usually
crafted to be almost imperceptible by humans, yet causing apparent fluctuations in the model output.
The effectiveness of adversarial attacks on deep learning models raises concerns in multiple fields,
especially for security-sensitive applications.

Another intriguing phenomenon is that adversarial attacks can transfer across different models (Pa-
pernot et al., 2016). One explanation for this phenomenon is the overlapping decision boundaries
shared by different models (Liu et al., 2017; Dong et al., 2018). In many black-box settings where
the attacker has no access to the internal state of the model, such transferability can be exploited
either to generate attacks from a surrogate model (Zhou et al., 2018) or to provide proper guidance
to reduce the number of model queries (Guo et al., 2019).

While many methods set their goals to generate highly transferable attacks (Moosavi-Dezfooli et al.,
2016; Wu et al., 2020; Guo et al., 2020), some attempt to improve the transferability of a given
adversarial example by fine-tuning it. Huang et al. (2019) proposed the Intermediate Level Attack
(ILA), a technique that takes an existing adversarial example as reference and boosts its black-box
transferability by maximizing the projection of the intermediate feature map discrepancies between
attacks. After being fine-tuned by ILA, a strong white-box attack can achieve remarkable black-box
transferability, outperforming previous methods based on direct generation of transfer-based attacks
(Zhou et al., 2018; Xie et al., 2019). More specifically, ILA takes three input images as references to
fine-tune the attack, including a clean image, a reference attack of the clean image, and the updated
image from the previous iteration. Both the clean image and reference attack remain unchanged
throughout the fine-tuning process. If we view the fine-tuning process of ILA as a generalization task
that attempts to make an attack effective for different models, a possible direction for improvement
is to increase the diversity of the input references, such as through applying data augmentation.
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Clean image I-FGSM + ILA I-FGSM + Aug-ILA (Ours)

Figure 1: Visualization of the generated images among: clean image, ILA, and Aug-ILA (Ours), with the
perturbation budget ε = 0.03. Rather than adding uninterpretable noise, Aug-ILA appears to smoothen the
original fine texture and overwrite new texture on the image.

In this paper, we revisit ILA and explore possible room for improvement. A natural way to promote
input diversity is to apply data augmentation techniques to the input references. We first evalu-
ate the effect of typical image transformation operations in the context of ILA. Then, we look into
transformations exploiting the adversarial perturbation, and apply them together with the best image
transformation found previously. Specifically, we incorporate a mixture of augmentation opera-
tions: random image cropping and resizing on all input examples, reverse adversarial update on the
clean image, and attack interpolation on the reference attack. Incorporating these adaptations to the
original ILA, we propose the Augmented Intermediate Level Attack (Aug-ILA) to further enhance
black-box transferability. By fine-tuning simple baseline attacks such as the Iterative Fast Gradi-
ent Sign Method (I-FGSM), Aug-ILA not only outperforms ILA and its subsequent variants, but
also state-of-the-art transfer-based attacks. Visualizations of the adversarial examples fine-tuned by
Aug-ILA are illustrated in Figure 1 and Appendix N.

Our main contributions can be summarized as follows:

• We analyze the formulation of ILA and conduct extensive experiments to study the effect
of some common image transformation operations as well as transformations exploiting
the adversarial perturbation for augmenting the ILA references.

• We propose Aug-ILA, a method that fine-tunes a given adversarial attack to reinforce
its attack transferability. Aug-ILA follows the framework of ILA, but with effective
augmentations introduced to its references. The resulting black-box transferability of
Aug-ILA outperforms the original ILA by 18.97% on average with perturbation budget
ε = 0.03(≈ 8/255).

• We identify factors affecting the transfer success rate and explain the roles of intermediate
feature perturbation and augmentation in a transfer-based attack.

2 RELATED WORK

In the context of adversarial machine learning, the most common threat models are the white-box
and black-box settings. The white-box setting assumes that one has access to the victim model’s
internal state, including its gradient, parameters, training dataset, etc. The black-box setting, on
the other hand, only allows querying the model with input but prohibits subsequent access to the
model information. While more variations such as the grey-box and no-box settings exist, they are
generally not considered in this work.

Typical white-box attacks exploit the gradient of the model to generate adversarial examples. The
Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) generates attacks by adding the signed
gradient of the loss with respect to the image back to the image, obtaining a higher loss and possibly
incorrect prediction. The Iterative Fast Gradient Sign Method (I-FGSM, also known as BIM) (Ku-
rakin et al., 2017a) performs FGSM iteratively while clipping the difference between the adversarial
example and the original image within the perturbation budget. Projected Gradient Descent (PGD)
(Madry et al., 2018) first initiates a random start within the perturbation budget and runs I-FGSM to
update the attack.
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In the black-box setting, one can estimate the model information by repeatedly querying the model
with varying inputs (Chen et al., 2017; Brendel et al., 2018). Recently, some novel methods have
been proposed in order to reduce the number of queries (Ilyas et al., 2018; Bhagoji et al., 2018; Li
et al., 2020a). However, the number of queries to the models is still abnormally large, making it easy
to be detected by real-world systems. This turns the spotlight back to transfer-based attacks, where
adversarial examples mainly rely on black-box transferability instead of consecutive attempts.

2.1 TRANSFER-BASED ATTACKS

Since strong gradient-based white-box attacks do not have high transferability by themselves (Ku-
rakin et al., 2017b), a number of attempts have been made in the research community to improve
transferability apart from increasing the attack strength.

MI-FGSM. Dong et al. (2018) first introduced the Momentum Iterative Fast Gradient Sign Method
(MI-FGSM) to incorporate momentum to stabilize the update direction in iterative attacks, resulting
in more transferable attacks.

DIM. The Diverse Input Method (DI2-FGSM, or DIM) (Xie et al., 2019) applies random resizing
and zero-padding with a certain probability to the image in each iteration of I-FGSM.

TIM. Dong et al. (2019) pointed out the discretion of attention map between the defended and
undefended models and proposed the Translation-Invariant Method (TIM) by attacking an ensemble
of translated images. To reduce the computational overhead, it was shown that kernel convolution
can be applied to the gradient to achieve similar effects.

SIM and NI-FGSM. Lin et al. (2020) introduced the scale-invariant property of DNN and proposed
the Scale-Invariant Method (SIM) to attack an ensemble of images with a scaling factor of 0.5 on
the pixel values. In the same paper, the Nesterov Iterative Fast Gradient Sign Method (NI-FGSM)
was introduced, aiming to escape from poor local maxima with the Nesterov accelerated gradient.

VMI-FGSM. Wang & He (2021) proposed variance tuning. For each iteration, the gradient is ad-
justed with an expectation of gradient sampled from the image’s neighborhood. Combining variance
tuning with the composition of previous methods, denoted as the Composite Transformation Method
(CTM), they achieved one of the strongest transfer-based black-box attacks on defended models.

A more recent work (Wu et al., 2021) replaced all input transformations with a DNN model trained
to apply distortions that neutralize the adversarial noises. After preparing the denoising model, the
attack is generated with the objective to sustain such distortions. All these methods suggested that
adversarial transferability could be improved by augmenting the images or tuning the magnitude of
gradient updates.

Alternatively, some recently proposed methods exposed the surprising nature of CNN model ar-
chitectures and utilized them to generate transferable attacks. Wu et al. (2020) found that attack
transferability can be enhanced by scaling up the gradient in the skip connection and referred to the
technique as Skip Gradient Method (SGM). Guo et al. (2020) revised the linear property of DNN
models and proposed LinBP to propagate backward without considering the non-linear layers.

2.2 INTERMEDIATE LEVEL ATTACK FOR FINE-TUNING ADVERSARIAL EXAMPLES

Consider an input image x, an existing adversarial attack x′, a model F , and a function Fl that
outputs the feature maps at layer l of the model. The original ILA projection loss proposed by
Huang et al. (2019) minimizes the dot product:

L(x, x′, x′′) = −∆y′′l ·∆y′l (1)

where ∆y′l and ∆y′′l are two vectors defined as follows:

∆y′l = Fl(x′)− Fl(x) (2)

∆y′′l = Fl(x′′)− Fl(x) (3)

This is equivalent to maximizing ∆y′′l ·∆y′l. The idea behind the formulation is to increase the norm
without sacrificing the perturbation direction that causes misclassification. Due to the constraint of
the perturbation budget, there is hardly room for fine-tuning in the image space. Instead, projection
maximization is carried out in the feature space, specifically at layer l of the model.
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Based on the same framework, Li et al. (2020b) proposed another formulation of ILA:
max

x′′
(Fl(x′′)− Fl(x))Tw* (4)

where w* is a pre-computed parameter vector that directly maps the intermediate-level discrepancies
to predict the adversarial loss, skipping the remaining model layers. One notable trick of the design
is that the computation of w* involves every feature map discrepancy Fl(x′t)−Fl(x) in each iteration
t during the generation of x′. We refer to this attack as ILA++ in the rest of this paper.

3 OUR METHOD

Based on what we have observed from the previous work, adversarial attacks tend to exhibit higher
transferability when more references are involved. The increase of references can be achieved by
data augmentation and reusing the temporal information over multiple iterations. From Equation (1),
all three ILA input references x, x′ and x′′ are images, suggesting the possibility of applying image
augmentation like that for representation learning to improve model generalization.

One natural way to augment the images is to apply image transformation to the input before retriev-
ing the intermediate feature maps. Consequently, the function Fl can be substituted by

F ′l (x) = Fl(T (x)) (5)
where T can be any image transformation function. However, unlike attacks that enforce a wrong
prediction at the logit output, ILA aims to maximize the projection of feature map discrepancies.
This requires perfect pixel alignment of x, x′ and x′′, as a tiny shift in the image pixel induces
misalignment in the feature map. Spatial transformations such as translation, cropping and rotation
are required to be applied identically to all three ILA references. Otherwise, the optimization of ILA
ends up being trivial in the sense of distorted feature discrepancies. Our claim is empirically verified
in Appendix B, where the transformation T is not identical for the images.

Different from augmentation that generalizes model representation, our task is to improve attack
transferability, which can be interpreted as generalizing an adversarial example to succeed in attack-
ing more models. Hence, apart from the common image processing methods, we may also explore
any transformation associated with the adversarial perturbation. Intuitively, augmentation based on
the adversarial perturbation can be viewed as an evaluation of multiple attacks before fine-tuning
the final attack. This kind of pixel-wise augmentation can be applied to the images independently
without conflicting with most spatial transformations. Algorithm 1 depicts the algorithmic details
for applying these transformations together to ILA, where the clip function is to ensure that the first
argument is within the range of the second and third arguments.

Algorithm 1 Aug-ILA

Require: x, x′, Fl, perturbation budget ε, step size a, number of iterations n, a sequence of transformation
functions T
x′′ ← x′
for i← 1 to n do

xrev ← 2x− x′ . reverse adversarial update
Randomly initialize T . to ensure the image augmentations are aligned
∆y′l ← Fl(T (x′))− Fl(T (xrev))
∆y′′l ← Fl(T (x′′))− Fl(T (xrev))
x′′ ← x′′ − a sign(∇x′′(−∆y′′l ·∆y′l))
x′′ ← clip(x′′, x− ε, x + ε)
x′′ ← clip(x′′, 0, 1)

α← ‖∆y′′l ‖2
‖∆y′′

l ‖2+‖∆y′
l‖2

x′ ← αx′′ + (1− α)x′ . attack interpolation
end for
return x′′

3.1 REVERSE ADVERSARIAL UPDATE ON THE CLEAN EXAMPLE

Let us reconsider Equation (2). To perform ILA, we need to obtain the feature map discrepancies
between the reference attack x′ and the unperturbed image x. Although x is correctly classified
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by the model, there is no information on how confident the model is and how well the input can
represent the ground-truth class. In contrast, if x is not only correctly classified, but it is also done
with a high confidence, the discrepancy of the feature maps is expected to intrinsically reflect more
useful information about the attack.

In order to boost the confidence of x, we propose to add a negative perturbation to it, which is
exactly opposite to applying an adversarial attack. If we consider the entire model, this operation is
expected to decrease the loss of the classifier, making the classification task easier by emphasizing
features that are more significant for the task. Thus, we also expect such input to highly activate
the intermediate layers, providing a better guidance for image update in ILA. Our preliminary study
on the effect of reverse adversarial update can be found in Appendix A, which verifies the benign
behavior brought by the reverse adversarial update. With the reverse adversarial perturbation, as
expected, the model gives a lower loss and higher confidence on the correct class.

Instead of crafting a new adversarial attack which would incur extra computational demand, we can
extract the perturbation from the existing reference attack x′, turning the transformation into

Tadv(x) = x− (x′ − x) = 2x− x′ (6)

The idea of such an update is similar to DeepDream (Mordvintsev et al., 2015), in which the image
is updated towards the models’ interpretation of the target class. After the transformation, we look
for the feature discrepancies caused by a bi-directional perturbation ±ε sign(∇xJ(θ, x, y)), with the
positive side being the adversarial attack and the negative side being the augmentation.

3.2 ATTACK INTERPOLATION ON THE REFERENCE ATTACK

Besides the clean image x, the reference attack x′ is another factor to remain unchanged throughout
all the ILA iterations. Given the image transformation in Equation (5), it is unlikely to work with
another image transformation unaligned with the other images. Similar to Section 3.1, we instead
exploit the adversarial noise to be the augmentation.

According to the intuition of Best Transfer Direction (BTD) in Huang et al. (2019), the stronger
the reference attack is, the better ILA performs. This inspires us to strengthen the reference attack
during the iterations of ILA, by interpolating the reference attack itself with a stronger attack. The
output of the previous iteration, x′′, is a good candidate for a strong attack. At iteration t, we set

x′t+1 = αx′′t + (1− α)x′t (7)

where α is a weighting factor in the range [0, 1] to control the proportion of the two attacks. This
augmentation is similar to mixup (Zhang et al., 2018), except that we are mixing two adversarial
examples, rather than two images from different classes. By interpolating two attacks, we can
strengthen the transferability of the reference attack while preserving its original characteristics.

Based on our preliminary findings, setting α to non-trivial values such as 0.5 suffices to yield sat-
isfactory performance. However, a constant value lacks consideration of the behavior of the two
attacks. Precisely, we hope to perform an adaptive interpolation depending on the effectiveness of
x′′t . If x′′t is weak after a single update, α should bias towards preserving the reference attack more
than mixing with the new attack. Since ILA focuses on maximizing the linear projection between
feature map discrepancies, the norm of the feature map discrepancy can be a good indicator of the
performance. Consequently, we set

α =
‖∆y′′l ‖2

‖∆y′′l ‖2 + ‖∆y′l‖2
(8)

If we neglect the transformation in Section 3.1 for simplicity, ∆y′l and ∆y′′l will remain the same as
what we obtained from Equations (2) and (3), respectively. Note that the value of α is recomputed
in each iteration before interpolation is applied.

A similar approach of reusing previous attacks in the temporal domain can be applied to the reverse
adversarial update in Section 3.1. The reference attack x′ in Equation (6) can be further extended to a
collection of x′t for every iteration t. This is not the only work to consider the temporary values of the
reference attack before its convergence. ILA++ (Li et al., 2020b) also collects all losses computed
during the generation of the reference attack, achieving superiority over the standard ILA. Different
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from Li et al. (2020b) which uses past losses (with respect to x′) to help update x′′t , we make use
of the past x′t directly as an augmentation to enrich the information regarding feature discrepancies
under different attacks.

4 EXPERIMENTAL RESULTS

In this section, we start by comparing the effect of different image transformations. After combin-
ing the transformations that benefit the most, we evaluate the attack transferability of Aug-ILA in
comparison with previous methods based on fine-tuning as well as state-of-the-art transfer-based at-
tack generation methods. Finally, we investigate the selection of parameters and identify influential
factors to an attack’s transferability.

Setup. Following the line of work in transfer-based attacks, we use a total of nine classification
models to evaluate attack transferability, including ResNet50 (He et al., 2016), VGG19 (Simonyan
& Zisserman, 2015), Inception V3 (Inc. V3) (Szegedy et al., 2016), Wide ResNet50 2x (WRN)
(Zagoruyko & Komodakis, 2016), DenseNet161 (DenseNet) (Huang et al., 2017), ResNeXt101
(ResNeXt) (Xie et al., 2017), MobileNet V2 (MobileNet) (Sandler et al., 2018), PNASNet5 (PNAS-
Net) (Liu et al., 2018) and SENet50 (SENet) (Hu et al., 2018). Among these models, we use
ResNet50, VGG19 and Inception V3 as the source models of the attack. All of the models are
pretrained on ImageNet (Russakovsky et al., 2015), with the model parameters of PNASNet1 and
SENet2 obtained from public repositories and the remaining from Torchvision (Paszke et al., 2019).
For the choice of the intermediate layer, we opt the layer 3-1 for ResNet50, layer 9 for VGG19, and
layer 6a for Inception V3, where the former two have been shown to result in good performance by
Li et al. (2020b). Due to the ineffectiveness of transfer-based targeted attacks (Liu et al., 2017), we
mainly consider untargeted attacks with ε values of 0.05 (≈ 13/255) and 0.03 (≈ 8/255), under the
`∞ norm constraint.

To measure the attack success rate, we randomly sample 5000 images from the ILSVRC2012 vali-
dation set with all images being classified correctly by the nine models. That means, the original test
accuracy before the attack is 100% for every model. The default number of iterations of I-FGSM
is 10 and the attack step size (learning rate) is set to max( 1

255 ,
ε

no. of iterations ). To mount a complete
attack, we first run I-FGSM for 10 iterations on the source model, and then pass the example as
the reference attack to Aug-ILA for fine-tuning. We use the same model to be the source model of
I-FGSM and Aug-ILA. We run Aug-ILA and other fine-tuning methods for 50 iterations in all the
experiments.

4.1 EFFECTIVENESS OF COMMON IMAGE AUGMENTATION OPERATIONS

We select four image transformation operations that are commonly used, including translation, crop-
ping, rotation and color jittering. To test our claim regarding the pixel misalignment causing poor
transferability in ILA, we also implement an unaligned version of translation and cropping, such that
the transformations with different randomized values are applied to each of the references x, x′ and
x′′. We then report the transfer success rates on Inception V3 and VGG19 over varying perturbation
budget ε. The comparison of different transformations is shown in Appendix B.

From the result, translation and cropping yield more transferable attacks than the other transforma-
tions, especially when the perturbation budget ε is small. Under a critical constraint when ε = 0.01
(≈ 3/255), augmentations without proper alignment fail to transfer at all, with the attack success
rate very close to 0. Between translation and cropping, cropping consistently gives better perfor-
mance. A further evaluation of attack transferability after the incorporation of reverse adversarial
update (denoted as ‘adversarial’) is reported in Appendix C, demonstrating that further incorpora-
tion of adversarial reverse update leads to higher transferability. Among different combinations,
we find that ‘adversarial + cropping’ stably gives outstanding results, while further complement of
translation degrades the transferability. Hence, we opt for random cropping together with reverse
adversarial update as the default augmentation of Aug-ILA.

1https://github.com/Cadene/pretrained-models.pytorch
2https://github.com/moskomule/senet.pytorch
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text in size 8 pt

ε Method ResNet50∗ Inc. v3 WRN VGG19 PNASNet

0.05

I-FGSM 100.0% 25.80% 72.12% 48.34% 29.62%
I-FGSM + ILA 100.0% 51.50% 93.20% 86.60% 65.20%
I-FGSM + ILA++ 99.98% 63.68% 96.36% 90.57% 70.34%
I-FGSM + Aug-ILA (Ours) 99.78% 90.02% 99.04% 98.76% 93.18%
VMI-CT-FGSM 99.96% 69.66% 91.04% 81.78% 73.38%
I-FGSM + LinBP + SGM + ILA 100.0% 72.46% 98.88% 96.82% 81.82%

0.03

I-FGSM 99.96% 14.88% 41.28% 26.36% 17.40%
I-FGSM + ILA 99.98% 34.56% 79.88% 66.72% 43.32%
I-FGSM + ILA++ 99.98% 41.44% 87.14% 75.24% 49.18%
I-FGSM + Aug-ILA (Ours) 99.42% 66.02% 93.92% 92.90% 75.76%
VMI-CT-FGSM 98.28% 47.42% 69.94% 56.46% 48.08%
I-FGSM + LinBP + SGM + ILA 100.0% 42.08% 90.82% 84.08% 53.90%

ε Method DenseNet ResNeXt MobileNet SENet Average

0.05

I-FGSM 57.80% 70.90% 54.56% 71.92% 59.01%
I-FGSM + ILA 85.50% 91.00% 84.00% 91.90% 83.21%
I-FGSM + ILA++ 92.32% 92.30% 89.34% 96.28% 87.90%
I-FGSM + Aug-ILA (Ours) 98.40% 96.90% 98.12% 98.72% 96.99%
VMI-CT-FGSM 88.50% 82.22% 82.82% 92.64% 84.67%
I-FGSM + LinBP + SGM + ILA 97.64% 95.96% 95.60% 98.96% 93.13%

0.03

I-FGSM 31.42% 41.82% 31.88% 44.00% 38.78%
I-FGSM + ILA 69.16% 78.48% 67.60% 80.16% 68.87%
I-FGSM + ILA++ 79.08% 78.46% 75.28% 87.64% 74.83%
I-FGSM + Aug-ILA (Ours) 91.04% 87.76% 90.38% 93.40% 87.84%
VMI-CT-FGSM 66.06% 58.02% 60.22% 72.84% 64.15%
I-FGSM + LinBP + SGM + ILA 85.24% 80.58% 80.56% 92.64% 78.88%

∗ The source model used to generate the attack.

Table 1: Attack success rates of ImageNet adversarial examples on different models, generated from ResNet50
in the untargeted setting.

4.2 BLACK-BOX TRANSFERABILITY OF AUG-ILA

Our previous experiments only evaluate the transformation function T , without interpolation on
the reference attack. In this section, we enable all augmentations discussed previously, forming
the complete Aug-ILA. We first demonstrate the superiority of Aug-ILA over ILA (Huang et al.,
2019) and ILA++ (Li et al., 2020b). We use ResNet50 as the source model and choose layer 3-
1 as the intermediate layer for all three fine-tuned attacks. The result is shown in Table 1, while
the comparison of attacks generated from VGG19 and Inception V3 can be found in Appendix E.
Moreover, additional experiments with single-step attack (FGSM) and other datasets (CIFAR-10
and CIFAR-100) are shown in Appendix F and Appendix G, respectively.

In Table 1, we can see that Aug-ILA outperforms both ILA and ILA++ for all the models except
the source model (ResNet50). The apparent improvement in attack transferability reflects the effec-
tiveness of augmentation with respect to both image transformation and adversarial transformation.
Another observation worth mentioning is that the attack difficulty increases according to how much
the model architectures differ. For example, attacks generated from ResNet (with skip connections)
tend to transfer better to models also with skip connections, such as WRN, DenseNet, ResNeXt,
comparing to others such as Inception V3 and PNASNet. However, the improvement in transfer-
ability brought by Aug-ILA is more significant under such model dissimilarity, as reflected in the
large gap of attack success rates between Aug-ILA and the baselines for Inception V3 and PNAS-
Net. We believe such a phenomenon can be attributed to the extensive augmentations that enable
Aug-ILA to exploit gradients with better resemblance to different architectures.

In the next step, we show that the supremacy of Aug-ILA is not limited to methods based on fine-
tuning, but also other state-of-the-art transfer-based attacks. In (Wang & He, 2021), combination
of the Composite Transformation Method (CTM) and variance tuning, dubbed VMI-CT-FGSM (or
VMI-SI-TI-DI-FGSM more detailedly), exhibits remarkably high transferability among the state-
of-the-art methods. On the other hand, Guo et al. (2020) found that LinBP works favorably together
with SGM (Wu et al., 2020) and ILA, with their incorporation further advancing transferability to a
new level. Using the same setting as before, we also include the attack success rates of the two com-
bined methods into Table 1, with the hyper-parameters and other details specified in Appendix D.
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Figure 2: Attack transferability over different choices of the intermediate layer for ResNet50, VGG19 and
Inception V3. The dotted curve shows the performance of ILA without augmentation. ‘3-1’ in ResNet50 refers
to the first residual block of the third meta-block. The naming of layers of Inception V3 follows the PyTorch
convention.

Under our choices of model architecture, VMI-CT-FGSM does not work well to transfer between
different model architectures, despite its remarkable performance in attacking defended models.
Among the baselines, I-FGSM + LinBP + SGM + ILA achieves the best transferability between
undefended models, while it is still slightly outperformed by Aug-ILA.

To further evaluate the performance of Aug-ILA, we conduct experiments on defended models. The
details are reported in Appendix H.

4.3 EFFECT OF DIFFERENT HYPER-PARAMETERS

In the previous sections, translation and random cropping are found to be the two most effective
image augmentations to be applied to the ILA references. We hope to evaluate the best values for
the shifting proportion and cropping size. We test different values of the shifting factor between
0 to 0.5 inclusively for translation. Similarly, we also test with the size factor of random cropping
between 0.5 and 1.0 inclusively. The experiments for both augmentations are reported in Appendix I.
The result indicates that proper hyper-parameters for the transformations contribute greatly to attack
transferability, with the best value of 0.05 for translation and 0.95 for random cropping.

Next, we study the effect of α used for attack interpolation, with fixed values between 0 and 1, in
addition to the adaptive choice computed from the norm of the feature map discrepancy. The result
is shown in Appendix J. Although a non-trivial value of α suffices to improve the performance, the
adaptive selection using Equation (8) results in optimal or sub-optimal attack transferability in most
cases.

Another important factor is the intermediate layer where ILA is performed. We apply ILA and Aug-
ILA at each layer of the source models, and plot the attack success rates in Figure 2. The overall
fluctuation pattern is similar, but Aug-ILA results in peaks that are more protruded, by virtue of the
various augmentations. However, we also observe that for shallow layers, Aug-ILA turns out to have
limited performance, sometimes even inferior to its baseline. While Huang et al. (2019) interpreted
the tendency above in terms of the linearity of the decision boundary, we offer our explanation from
the perspective of intermediate feature perturbation.

4.4 ROLES OF INTERMEDIATE LAYER PERTURBATION AND AUGMENTATION

Transfer-based attacks can be viewed as using one model’s gradient to estimate other models’ gradi-
ents. However, it was shown that the gradient directions of different models are almost orthogonal to
each other (Liu et al., 2017). Locally, each layer of the target model can cause a weakening effect to
the attack, assembling to lead to the gradient orthogonality. The deeper the attack goes, the weaker
its influence becomes. For an attack on the intermediate feature, since it transits through fewer lay-
ers, both forward and backward, it is weakened to a lesser degree. One problem is, if the attack only
perturbs the intermediate feature without considering the remaining layers, it is also less capable
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of altering the model decision, getting demoted to an essentially weaker attack. Therefore, in the
choice of the ILA layer, one that is either too shallow or too deep decays the attack transferability.

With the same insight, three factors can be identified for black-box transferability:
1. Perturbation strength
2. Similarity between the predicted gradient and the actual gradient
3. Difference in architecture between the source model and the target model.

The first two factors increase transferability while the last one hinders the attack to transfer. Factor 1
is determined by the perturbation budget, but it can be improved implicitly by ILA, such that the
intermediate perturbation is also strengthened. However, factor 1 does not dominate the attack
transferability, since the victim model does not necessarily have any resembling architecture to the
source model. Such difference, which is factor 3, induces the weakening effect on the attack. We
will show that Aug-ILA accomplishes a good balance between factors 1 and 2, leading to a less
severe weakening effect from factor 3.

Since ILA maximizes the projection of feature discrepancies, the norm of the feature discrepancy
should also be larger (factor 1). We visualize the L2 norm of Fl(x′′) − Fl(x) at different layers in
ResNet50 and compare with different attacks in Figure 3. Also, we estimate factor 2 by computing
the cosine distance between the model gradient suggested by the attack (x′′ − x) and the gradient
direction of the clean image (∇xJ(θ, x, y)), with the result shown in Table 2.

One interesting finding is that the L2 norm of ILA is actually stronger than that of Aug-ILA in
shallow layers, which agrees with the poor transferability of Aug-ILA when applied at the first
few layers in Figure 2. However, after the selected layer in ILA, the perturbation norm of Aug-
ILA surpasses ILA and the situation continues until the output of the model. In the meantime, de-
spite the strengthened feature perturbation, ILA causes the gradient direction to be more orthogonal
(worse for transferability) to the actual gradient direction of the model, comparing to I-FGSM. Aug-
ILA, nevertheless, slightly improves the gradient estimation without significant loss in perturbation
strength. With a stronger perturbation strength together with a better predicted model gradient, Aug-
ILA facilitates its comeback for the perturbation in deeper layers, and therefore its resulting attack
is more transferable than the baselines.

1 1-1 1-2 1-3 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 3-5 3-6 4-1 4-2 4-3
Model layer

2

4

6

8

10

12

14

16

L2
 N

or
m

I-FGSM
I-FGSM + ILA
I-FGSM + Aug-ILA

Figure 3: L2 norm of Fl(x′′) − Fl(x) at
different layers of ResNet50.

Source Target Cosine distance
I-FGSM ILA Aug-ILA

ResNet50 VGG19 0.0110 0.0067 0.0089
Inception V3 0.0016 0.0010 0.0016

Inception V3 ResNet50 0.0024 0.0013 0.0017
VGG19 0.0042 0.0029 0.0026

VGG19 ResNet50 0.0049 0.0031 0.0035
Inception V3 0.0016 0.0013 0.0016

Table 2: Cosine distance between x′′ − x and ∇xJ(θ, x, y). A
larger cosine distance refers to a closer prediction of the gradient
direction.

5 CONCLUSION

In this paper, we present Aug-ILA, which applies extra augmentation to the input references in
the ILA framework. We evaluate different image transformations to be applied, and select random
cropping to be our base augmentation. The transformation has to be applied consistently to all the
input images in order to align the values of the intermediate feature maps. Moreover, we apply
two more augmentations exploiting the adversarial perturbation, namely, reverse adversarial update
and attack interpolation across iterations. By incorporating all the augmentations introduced, Aug-
ILA not only outperforms ILA and its variants, but also the combination of state-of-the-art methods
for transfer-based attacks. We have conducted extensive studies to study the effects of different
hyper-parameters. Finally, we provide explanations on the effect of augmentation in terms of the
weakening effect to the perturbation strength. As we only perform simple image transformation op-
erations to augment the ILA references, one potential improvement is to consider more sophisticated
augmentations such as automatic data augmentation, which will be marked for future studies.
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A EFFECT OF REVERSE ADVERSARIAL UPDATE ON THE MODEL
PERFORMANCE

We would like to verify the intuition of using reverse adversarial update, specifically, whether in
practice such operation can decrease the loss and increase the model confidence. Therefore, we
randomly sample 5000 images, including those that are misclassified by the model. Then we apply
I-FGSM10 in the form of reverse adversarial update to the images, and pass them back to the model
for classification. We record the loss and apply softmax to the logits to obtain the confidence, and
report the average result of all 5000 images. The result is summarized in Table 3.

Furthermore, we also inspect the class activation map (CAM) of the source model. Figure 4 visual-
izes some of the results. For some images (the first two), updating reversely helps the model focus
on more features. For the remaining (the latter two), adversarial reverse update does not exhibit a
significant change of intermediate layers’ contribution to the ground-truth class.

Model Image Loss Confidence Accuracy

ResNet50 Clean 0.9755 0.7913 75.08%
Reversely updated 0.3070 0.8847 92.20%

Inception V3 Clean 1.1165 0.7339 76.44%
Reversely updated 0.3525 0.8296 94.60%

VGG19 Clean 1.1431 0.7419 70.54%
Reversely updated 0.5756 0.8998 89.98%

Table 3: Changes in loss and confidence after applying reverse adversarial update on the images for ResNet50.

Clean image

CAM (Clean image)

CAM (Reversely Updated)

Clean image

CAM (Clean image)

CAM (Reversely Updated)

Clean image

CAM (Clean image)

CAM (Reversely Updated)

Clean image

CAM (Clean image)

CAM (Reversely Updated)

Figure 4: CAM visualization of the images after reverse adversarial update.
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To test the effect of reversely updated examples on targeted models, we also feed them into the
remaining undefended models and observe the change in accuracy. The result is reported in Table 4,
which shows that reverse adversarial update not only benefits the source model, but also many of
the other models with similar architecture. It shows that reverse adversarial update can be beneficial
to many of the target models under proper choices of hyper-parameters such as the source model.

Source model Target model
ResNet50 Inception v3 WRN VGG19 PNASNet

- 75.08% 76.44% 77.58% 70.54% 71.34%
ResNet50 92.20% 79.48% 82.22% 74.06% 72.84%

Inception V3 78.58% 94.60% 80.70% 73.62% 72.88%
VGG19 78.46% 79.56% 80.06% 89.98% 71.76%

Source model Target model
DenseNet ResNeXt MobileNet SENet Average

- 75.86% 78.30% 70.48% 75.36% 74.55%
ResNet50 80.70% 82.70% 73.70% 80.70% 79.84%

Inception V3 80.54% 81.54% 73.04% 78.80% 79.37%
VGG19 80.58% 81.02% 74.38% 79.00% 79.42%

Table 4: Top-1 accuracy of the models under the example with reverse adversarial update from different source
models. The source model “-” indicates clean example without any perturbation.

B EFFECT OF DIFFERENT IMAGE TRANSFORMATION OPERATIONS

For translation, we shift the image by a random factor of [−0.1, 0.1] of the image size, both vertically
and horizontally. Cropping operations consist of random cropping of 95% of the size, followed by
an upsampling to the original shape. The rotation degree ranges between [−90◦, 90◦]. Color jittering
tweaks all the brightness, contrast, saturation by 0.2 and hue by 0.1. Random cropping is found to be
the one resulting in the highest attack transferability, followed by translation and rotation. Pixel-wise
transformations such as color jittering only exhibit limited improvement to transferability comparing
to spatial transformations.
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Figure 5: Attack success rates of applying translation, cropping, rotation and color jittering as augmentation
in ILA.
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C EFFECT OF REVERSE ADVERSARIAL UPDATE ON ATTACK
TRANSFERABILITY
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Figure 6: Attack success rates of different augmentation, in conjunction with adversarial reverse update (de-
noted as adversarial). The performance of simple augmentation without reverse adversarial update is also
included as baseline.

D HYPER-PARAMETERS USED IN THE BASELINES

We reproduce the algorithms of variance tuning, CTM (DIM, TIM, SIM), MI-FGSM and NI-FGSM
according to the repository released by Wang & He (2021), and test the attacks under our experi-
mental settings. The list of hyper-parameters used in the experiments is shown in Table 5, which
are the default values in their corresponding papers. For the implementation of SGM and LinBP, we
directly use the official implementation released by Guo et al. (2020).

Method Hyper-parameter Value
MI-FGSM α 1.0
NI-FGSM α 1.0

DIM Probability 0.5
Upscale ratio 1.1

TIM Kernel size 7× 7
SIM Scale copies 5 (i = 0, 1, 2, 3, 4)

Variance Tuning N 20
β 1.5/255

SGM λ 0.5

LinBP I-FGSM iteration 300
Layer ‘3-1’ for ResNet50

Table 5: Hyperparameters used in the baselines.
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E ATTACKS USING OTHER SOURCE MODELS

ε Method ResNet50 Inc. v3 WRN VGG19∗ PNASNet

0.05
I-FGSM + ILA 77.32% 45.42% 74.78% 99.40% 70.30%
I-FGSM + ILA++ 79.56% 47.08% 76.04% 99.30% 70.76%
I-FGSM + Aug-ILA (Ours) 87.36% 66.40% 87.00% 99.02% 82.34%

0.03
I-FGSM + ILA 53.78% 25.94% 49.54% 99.34% 46.30%
I-FGSM + ILA++ 57.88% 27.94% 52.94% 99.30% 49.48%
I-FGSM + Aug-ILA (Ours) 66.22% 40.82% 64.90% 97.82% 60.24%

ε Method DenseNet ResNeXt MobileNet SENet Average

0.05
I-FGSM + ILA 67.38% 61.68% 85.34% 72.90% 72.72%
I-FGSM + ILA++ 68.66% 63.56% 85.60% 74.46% 73.89%
I-FGSM + Aug-ILA (Ours) 81.72% 80.30% 93.06% 85.84% 84.78%

0.03
I-FGSM + ILA 40.12% 36.26% 66.52% 49.42% 51.91%
I-FGSM + ILA++ 44.88% 39.70% 68.70% 53.62% 54.94%
I-FGSM + Aug-ILA (Ours) 57.38% 54.02% 77.58% 63.32% 64.70%

∗ The source model used to generate the attack.

Table 6: Attack success rates of ImageNet adversarial examples on different models, generated from VGG19
in the untargeted setting.

ε Method ResNet50 Inc. v3∗ WRN VGG19 PNASNet

0.05
I-FGSM + ILA 57.26% 97.84% 51.98% 61.70% 54.16%
I-FGSM + ILA++ 57.80% 97.60% 51.72% 60.54% 52.86%
I-FGSM + Aug-ILA (Ours) 85.16% 98.14% 83.24% 89.16% 81.38%

0.03
I-FGSM + ILA 34.18% 96.98% 29.62% 37.56% 34.02%
I-FGSM + ILA++ 36.74% 97.18% 31.90% 38.90% 35.14%
I-FGSM + Aug-ILA (Ours) 57.94% 91.18% 53.54% 65.22% 56.38%

ε Method DenseNet ResNeXt MobileNet SENet Average

0.05
I-FGSM + ILA 46.14% 42.24% 64.38% 48.86% 58.28%
I-FGSM + ILA++ 47.42% 44.08% 62.62% 49.72% 58.26%
I-FGSM + Aug-ILA (Ours) 78.88% 74.54% 89.16% 80.42% 84.45%

0.03
I-FGSM + ILA 27.00% 23.72% 43.36% 29.64% 39.56%
I-FGSM + ILA++ 29.06% 25.68% 43.82% 31.58% 41.11%
I-FGSM + Aug-ILA (Ours) 47.80% 43.06% 65.96% 51.58% 59.18%

∗ The source model used to generate the attack.

Table 7: Attack success rates of ImageNet adversarial examples on different models, generated from Inception
V3 in the untargeted setting.
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F EXPERIMENTS WITH SINGLE-STEP ATTACK

ε Method ResNet50∗ Inc. v3 WRN VGG19 PNASNet

0.05

FGSM 80.86% 28.78% 37.08% 46.24% 36.04%
FGSM + ILA 93.36% 28.56% 51.94% 58.22% 38.48%
FGSM + ILA++ 97.88% 43.14% 74.88% 65.92% 44.04%
FGSM + Aug-ILA (Ours) 96.98% 57.48% 87.20% 91.76% 67.40%

0.03

FGSM 84.68% 20.44% 29.00% 30.96% 23.52%
FGSM + ILA 88.60% 19.48% 38.02% 39.50% 24.04%
FGSM + ILA++ 97.02% 29.82% 60.02% 50.64% 30.60%
FGSM + Aug-ILA (Ours) 89.72% 32.46% 65.44% 72.60% 40.08%

ε Method DenseNet ResNeXt MobileNet SENet Average

0.05

FGSM 32.48% 30.72% 45.32% 41.42% 42.10%
FGSM + ILA 39.10% 40.12% 52.42% 52.58% 50.53%
FGSM + ILA++ 65.80% 65.48% 66.12% 74.12% 66.38%
FGSM + Aug-ILA (Ours) 79.48% 74.20% 84.18% 83.70% 80.26%

0.03

FGSM 25.10% 22.38% 29.86% 31.70% 33.07%
FGSM + ILA 28.50% 29.22% 35.76% 39.56% 38.08%
FGSM + ILA++ 50.54% 50.62% 52.66% 61.36% 53.70%
FGSM + Aug-ILA (Ours) 55.68% 48.22% 58.74% 62.56% 58.39%

∗ The source model used to generate the attack.

Table 8: Attack success rates of ImageNet adversarial examples with single-step FGSM as the reference attack,
generated from ResNet50 in the untargeted setting.

G EXPERIMENTS WITH MORE DATASETS

To show the generalization capability of Aug-ILA, we conduct experiments with two more datasets,
namely CIFAR-10 and CIFAR-100 (Krizhevsky, 2012). Partly following Li et al. (2020b), we con-
sider four models: VGG19 with batch normalization (Simonyan & Zisserman, 2015), Wide ResNet-
28-10 (WRN) (Zagoruyko & Komodakis, 2016), ResNeXt-29 (ResNeXt) (Xie et al., 2017) and
DenseNet-190 (DenseNet) (Huang et al., 2017). The model parameters are obtained from a public
repository3. For both datasets, we randomly sample 3000 images from the test set that are classified
correctly by all four models and we pick VGG19 to be the source model. The experimental results
using CIFAR-10 and CIFAR-100 are shown in Table 9 and Table 10 respectively.

For both CIFAR-10 and CIFAR-100, the attack success rates of the baselines are much higher than
that of ImageNet. Although Aug-ILA mostly attains the highest attack success rate among the
baselines, we observe that the degree of improvement is not as high as that in Table 1. It may
be because of the tiny size and low resolution (32×32 for both CIFAR-10 and CIFAR-100) of the
images, leading to a reduction in the effect of data augmentation such as random cropping.

ε Method VGG19∗ WRN ResNeXt DenseNet Average

0.05

I-FGSM 99.54% 67.91% 67.91% 64.00% 74.84%
I-FGSM + ILA 99.54% 97.85% 98.19% 97.08% 98.16%
I-FGSM + ILA++ 99.57% 98.00% 98.17% 97.40% 98.29%
I-FGSM + Aug-ILA 98.77% 98.22% 98.46% 98.06% 98.38%

0.03

I-FGSM 99.32% 55.27% 55.43% 51.64% 51.64%
I-FGSM + ILA 99.45% 88.26% 89.61% 87.15% 91.12%
I-FGSM + ILA++ 99.13% 89.67% 90.13% 87.40% 91.58%
I-FGSM + Aug-ILA 98.31% 93.05% 93.42% 91.45% 94.06%

∗ The source model used to generate the attack.

Table 9: Attack success rates of CIFAR-10 adversarial examples on different models, generated from VGG19
in the untargeted setting.

3https://github.com/bearpaw/pytorch-classification
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ε Method VGG19∗ WRN ResNeXt DenseNet Average

0.05

I-FGSM 99.45% 48.15% 39.45% 42.41% 57.37%
I-FGSM + ILA 99.03% 92.73% 88.97% 88.63% 92.34%
I-FGSM + ILA++ 99.10% 93.13% 89.53% 89.70% 92.87%
I-FGSM + Aug-ILA 96.08% 92.65% 90.56% 90.69% 92.50%

0.03

I-FGSM 98.84% 38.91% 31.94% 33.77% 50.87%
I-FGSM + ILA 98.91% 80.77% 72.71% 73.93% 81.58%
I-FGSM + ILA++ 98.53% 81.23% 74.77% 74.60% 82.28%
I-FGSM + Aug-ILA 95.22% 84.37% 78.33% 78.56% 84.12%

∗ The source model used to generate the attack.

Table 10: Attack success rates of CIFAR-100 adversarial examples on different models, generated from
VGG19 in the untargeted setting.

H EFFECT OF AUG-ILA ON DEFENDED MODELS

In this section, we evaluate the effect of Aug-ILA on defended models. We consider three robust
models using ensemble adversarial training (Tramer et al., 2018), including an ensemble of 3 ad-
versarially trained Inception V3 (Inc-v3ens3), an ensemble of 4 adversarially trained Inception V3
(Inc-v3ens4), and an ensemble of 3 adversarially trained Inception-ResNet-v2 (IncRes-v2ens). On
top of that, we also test the attacks against three defenses: HGD (Liao et al., 2018), R&P (Xie et al.,
2018) and NIPS-r34, which are the top 3 defenses in the NIPS 2017 adversarial competition. For
all three defenses, we adopt the default models and hyper-parameters used in their corresponding
repositories.

We ported the implementation of Aug-ILA into the same experimental setup used in previous
works (Dong et al., 2018; 2019; Wang & He, 2021), which includes 1000 sampled test images
and the pretrained parameters of the models. Then we compare the baselines, including I-FGSM,
MI-FGSM, MI-CT-FGSM, NI-CT-FGSM, and VNI-CT-FGSM, with ILA and Aug-ILA inserted.
We pick Inception V3 as the source model, and all attacks are performed with perturbation size
ε = 16/255(≈ 0.0627). For ILA and Aug-ILA, we finetune the attack for 50 iterations by choosing
the layer 6a in Inc-V3adv , an adversarially trained Inception V3 model. The attack success rate
against each of the defenses is reported in Table 11. From preliminary results, ILA cannot improve
the attack success rate on the defended models, so it is removed in the experiments with stronger
attacks. Nevertheless, Aug-ILA is able to improve the attack success rate of most of the attacks,
except VNI-CT-FGSM.

Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P NIPS-r3
I-FGSM 12.1% 10.9% 5.80% 2.70% 4.00% 8.30%
I-FGSM + ILA 10.1% 10.6% 5.00% 0.10% 2.50% 7.90%
I-FGSM + Aug-ILA 43.0% 33.4% 24.0% 35.1% 23.6% 14.3%
MI-FGSM 14.1% 13.0% 6.60% 4.60% 5.00% 8.30%
MI-FGSM + ILA 14.1% 12.5% 6.40% 0.70% 3.60% 5.40%
MI-FGSM + Aug-ILA 44.2% 36.3% 24.6% 33.6% 25.3% 28.5%
MI-CT-FGSM 65.5% 62.1% 45.5% 56.6% 44.5% 52.5%
MI-CT-FGSM + Aug-ILA 69.0% 65.8% 49.8% 62.1% 51.6% 65.0%
NI-CT-FGSM 58.8% 54.4% 40.0% 49.2% 38.0% 46.1%
NI-CT-FGSM + Aug-ILA 66.8% 62.4% 44.5% 55.8% 46.5% 52.8%
VNI-CT-FGSM 79.1% 77.4% 65.3% 72.7% 63.5% 70.8%
VNI-CT-FGSM + Aug-ILA 75.6% 73.2% 58.3% 68.4% 81.6% 64.0%

Table 11: Attack success rates of ImageNet adversarial examples, generated from Inception V3 in the untar-
geted setting.

4https://github.com/anlthms/nips-2017/tree/master/mmd
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I HYPER-PARAMETERS FOR IMAGE TRANSFORMATION OPERATIONS
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Figure 7: Attack success rates of different hyper-parameters for random cropping and translation, using
ResNet50 as the source model with ε = 0.03(≈ 8/255).

J EFFECT OF α ON ATTACK INTERPOLATION
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Figure 8: Attack success rates over different values of α, using ResNet50 as the source model with ε = 0.03.

K INTERMEDIATE FEATURE DISCREPANCIES ON OTHER MODELS

We extend the experiments examining the L2 norm of Fl(x′′)−Fl(x) in Figure 3. Using the attacks
generated by the same source model (ResNet50), we also test the magnitude of the intermediate
feature discrepancies for VGG19 and Inception V3, as shown in Figure 9. The magnitude of the
norm depends on the size of the feature maps, so it cannot be compared directly across layers but
relatively among different attacks. Agreeing with our explanation in Section 4.4, the L2 norm of
Aug-ILA starts with comparable strength to that of ILA in shallow layers, but outpaces ILA when
the layers get deeper.
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Figure 9: L2 norm of Fl(x′′)− Fl(x) at the intermediate layers of VGG19 and Inception V3.

L ABLATION STUDY ON THE THREE AUGMENTATIONS IN AUG-ILA

Aug-ILA can be regarded as a generalization of the original ILA, with the extension of three major
parameters. With the cropping size set to 1.0, α = 0, and reverse adversarial update disabled,
Aug-ILA degenerates to ILA. We conduct ablation study on the effect of the three augmentations
by removing each of them from Aug-ILA and reporting the performance of the reduced methods in
Table 12. Alternatively, we also observe the change in attack success rates with each of the three
augmentation components added into the original ILA, and report the result in Table 13.

It is found that cropping contributes the most to attack transferability, followed by the remaining two
methods. However, from Table 13, we can see that attack interpolation alone does not contribute
much unless it is applied together with other augmentations.

ε Method ResNet50∗ Inc. v3 WRN VGG19 PNASNet

0.05

I-FGSM + Aug-ILA 99.78% 90.02% 99.04% 98.76% 93.18%
w/o Cropping 99.78% 66.78% 96.92% 95.12% 75.84%
w/o Attack interpolation 99.96% 77.10% 98.00% 94.60% 82.22%
w/o Reverse adversarial update 99.74% 89.20% 98.54% 98.80% 91.40%

0.03

I-FGSM + Aug-ILA 99.42% 66.02% 93.92% 92.90% 75.76%
w/o Cropping 99.72% 39.74% 86.64% 79.80% 49.76%
w/o Attack interpolation 99.96% 54.26% 91.82% 83.46% 62.22%
w/o Reverse adversarial update 98.76% 62.56% 91.46% 92.28% 71.38%

ε Method DenseNet ResNeXt MobileNet SENet Average

0.05

I-FGSM + Aug-ILA 98.40% 96.90% 98.12% 98.72% 96.99%
w/o Cropping 93.96% 92.68% 93.26% 96.98% 90.15%
w/o Attack interpolation 96.52% 95.74% 94.92% 97.68% 92.97%
w/o Reverse adversarial update 98.22% 96.80% 97.80% 98.44% 96.55%

0.03

I-FGSM + Aug-ILA 91.04% 87.76% 90.38% 93.40% 87.84%
w/o Cropping 77.06% 76.08% 75.66% 85.96% 74.49%
w/o Attack interpolation 87.26% 85.92% 83.52% 92.06% 82.28%
w/o Reverse adversarial update 90.18% 86.32% 88.86% 90.94% 85.86%

∗ The source model used to generate the attack.

Table 12: Comparison of the attack success rates of ImageNet adversarial examples on different models, with
each augmentation removed from Aug-ILA.
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ε Method ResNet50∗ Inc. v3 WRN VGG19 PNASNet

0.05

I-FGSM + ILA 100.0% 51.50% 93.20% 86.60% 65.20%
w/ Attack interpolation 99.84% 61.88% 96.82% 95.42% 72.12%
w/ Reverse adversarial update 99.94% 61.36% 96.72% 89.38% 65.94%
w/ Cropping 99.96% 74.30% 97.42% 94.62% 78.78%
w/ All (Aug-ILA) 99.78% 90.02% 99.04% 98.76% 93.18%

0.03

I-FGSM + ILA 99.98% 34.56% 79.88% 66.72% 43.32%
w/ Attack interpolation 99.60% 34.22% 85.06% 78.04% 43.14%
w/ Reverse adversarial update 99.98% 37.86% 87.46% 71.76% 42.72%
w/ Cropping 99.96% 50.80% 90.14% 82.26% 56.30%
w/ All (Aug-ILA) 99.42% 66.02% 93.92% 92.90% 75.76%

ε Method DenseNet ResNeXt MobileNet SENet Average

0.05

I-FGSM + ILA 85.50% 91.00% 84.00% 91.90% 83.21%
w/ Attack interpolation 73.12% 73.14% 74.04% 83.28% 88.96%
w/ Reverse adversarial update 93.36% 92.28% 92.68% 96.22% 87.08%
w/ Cropping 92.68% 92.20% 89.26% 96.20% 91.68%
w/ All (Aug-ILA) 98.40% 96.90% 98.12% 98.72% 96.99%

0.03

I-FGSM + ILA 69.16% 78.48% 67.60% 80.16% 68.87%
w/ Attack interpolation 73.12% 73.14% 74.04% 83.28% 71.52%
w/ Reverse adversarial update 78.08% 77.82% 74.36% 87.52% 73.06%
w/ Cropping 83.74% 82.34% 82.04% 89.18% 79.64%
w/ All (Aug-ILA) 91.04% 87.76% 90.38% 93.40% 87.84%

∗ The source model used to generate the attack.

Table 13: Comparison of the attack success rates of ImageNet adversarial examples on different models, with
each augmentation added to Aug-ILA.

M STUDY ON THE RUNNING TIME OF THE ALGORITHMS

In this section, we compare the running time between ILA and Aug-ILA. We report the running time
required to run attack on the 5000 sampled images from the ILSVRC2012 validation set. The setup
is the same as the previous experiments, which we run I-FGSM for 10 iterations followed by ILA
for 50 iterations. The batch size is set to 100. All the experiments are performed on a machine with
an Intel Xeon Silver 4214R CPU and Nvidia GeForce RTX3090 GPU. The result is summarized in
Table 14.

Method Running Time (s)
Total Average (per batch)

I-FGSM 336 6.72
I-FGSM + ILA 947 18.94
I-FGSM + Aug-ILA 1083 21.66

Table 14: Running time comparison between ILA and Aug-ILA.

Comparing with ILA, Aug-ILA has three more augmentations applied. Firstly, random cropping is
performed once for every ILA iteration. Secondly, reverse adversarial update requires basic arith-
metic on the images. The computation time of these two processes is insignificant and hence negli-
gible. However, attack interpolation requires the computation of α with the norms. Since we need to
obtain the intermediate feature output of the new x′′, an extra forward pass to the model is required
per iteration. Such extra pass is the major overhead introduced by Aug-ILA. From Table 14, the 50
extra forward passes increases the running time by around 14%, which is still reasonable in terms of
generation of adversarial attack.
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N MORE VISUALIZATIONS ON THE GENERATED EXAMPLES

Clean image I-FGSM + ILA I-FGSM + Aug-ILA (Ours)

Clean image I-FGSM + ILA I-FGSM + Aug-ILA (Ours)

Clean image I-FGSM + ILA I-FGSM + Aug-ILA (Ours)

Clean image I-FGSM + ILA I-FGSM + Aug-ILA (Ours)

Figure 10: Visualization of the generated images among: clean image, ILA, and Aug-ILA (Ours), with the
perturbation budget ε = 0.03(≈ 8/255).
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