
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Uncertainty-aware Preference Alignment for Diffusion Policies
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Abstract
Recent advancements in diffusion policies have
demonstrated promising performance in decision-
making tasks. To align these policies with hu-
man preferences, a common approach is incorpo-
rating Preference-based Reinforcement Learning
(PbRL) into policy tuning. However, since pref-
erence data is practically collected from popula-
tions with different backgrounds, a key challenge
lies in handling the inherent uncertainties in peo-
ple’s preferences during policy updates. To ad-
dress this challenge, we propose the Diff-UAPA
algorithm, designed for uncertainty-aware prefer-
ence alignment in diffusion policies. Specifically,
Diff-UAPA introduces a novel iterative preference
alignment framework in which the diffusion pol-
icy adapts incrementally to preferences from dif-
ferent user groups. To accommodate this online
learning paradigm, Diff-UAPA employs a maxi-
mum posterior objective, which aligns the diffu-
sion policy with regret-based preferences under
the guidance of an informative Beta prior. This ap-
proach enables direct optimization of the diffusion
policy without specifying any reward functions,
while effectively mitigating the influence of incon-
sistent preferences across different user groups.
We conduct extensive experiments across various
robot control tasks and diverse human preference
configurations, demonstrating the robustness and
reliability of Diff-UAPA in achieving effective
preference alignment.

1. Introduction
Reinforcement Learning (RL) algorithms commonly em-
ploy either deterministic or Gaussian policies to tackle se-
quential decision-making tasks by optimizing cumulative re-
wards (Sutton & Barto, 2018; Wang et al., 2022). Although
these RL policies have demonstrated notable success across
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Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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a wide range of applications (Mnih et al., 2015; Silver et al.,
2016; Fang et al., 2019), they may struggle with learning
multi-modal policies, which may hinder their ability to gen-
eralize effectively and lead to suboptimal performance in
complex environments (Zhu et al., 2023). Recently, dif-
fusion models have gained attention due to their strong
modeling capabilities (Ho et al., 2020; Song et al., 2020).
As a result, more studies have investigated the application
of diffusion models in RL tasks, particularly in leveraging
diffusion models as policies to model complex action distri-
butions and behaviors (Wang et al., 2023; Chen et al., 2023a;
Kang et al., 2023a; Lu et al., 2023; Chi et al., 2023). To
learn a diffusion policy that generates desired outputs, recent
approaches have leveraged Preference-based Reinforcement
Learning (PbRL) (Christiano et al., 2017) techniques, which
address a learning-to-rank problem using preference data,
enabling alignment with human intentions (Wallace et al.,
2024; Dong et al., 2024; Shan et al., 2024).

In practice, preferences are typically gathered from a di-
verse population, encompassing a wide range of expertise,
perspectives, and beliefs. This diversity presents a signif-
icant challenge, as preferences from different user groups
may conflict or evolve over time, introducing great uncer-
tainties during policy updates. To ensure more reliable
preference alignment, this necessitates the development of
a policy that could account for the uncertainty arising from
potentially inconsistent preferences. However, common
PbRL approaches are typically based on the Bradley-Terry
model (Bradley & Terry, 1952) with maximum likelihood
estimation, which lacks sensitivity to the inherent uncertain-
ties from preference datasets.

To address the uncertainties in preference alignment, several
methods (Liang et al., 2022; Shin et al., 2023; Xue et al.,
2024) have employed techniques such as ensemble models
and Bayesian dropout. However, the underlying mechanism
by which the estimated ensembles correlate with uncertainty
remains largely unexplained. Motivated by recent work (Xu
et al., 2025), which proposes learning a distributional reward
model using a Maximum A Posteriori (MAP) objective to
address epistemic uncertainty from an offline preference
dataset, we explore how to bypass the reward learning and
develop an uncertainty-aware algorithm beyond the offline
setting for aligning diffusion policies.
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Figure 1. The framework of Diff-UAPA. Given the potentially inconsistent preference dataset ranked by diverse humans, we first learn a
Beta prior to capture uncertainties, and then derive a Maximum A Posteriori (MAP) objective to align the diffusion policies.

In this work, we introduce Uncertainty-aware Preference
Alignment for Diffusion Policies (Diff-UAPA),a novel al-
gorithm designed to align diffusion policies with human
preferences using an uncertainty-aware objective, as illus-
trated in Figure 1. Specifically, we introduce an iterative
preference alignment framework, in which the diffusion pol-
icy progressively adapts to the labels coming from different
user groups, each of which may have distinct preferences.
To address this challenge, Diff-UAPA involves learning an
informative Beta prior that captures the uncertainty arising
from diverse human preferences. By interpreting prefer-
ence alignment as a voting process, we demonstrate that
the Beta distribution is sensitive to the uncertainty among
compared trajectories, assigning high confidence to trajecto-
ries in which the majority of human raters share a common
preference and low confidence to those with divergent pref-
erences. To ensure computational tractability, we parame-
terize the Beta distribution with neural networks and train
the model via variational inference.

Guided by the informative Beta prior, Diff-UAPA aligns
the diffusion policy with a regret-based preference model,
which inherently defines a unified Maximum A Posteriori
(MAP) objective. This method enables direct optimization
of the diffusion policy without requiring a reward function,
while also effectively accounting for the uncertainties aris-
ing from noisy preferences across diverse user groups.

To evaluate the empirical performance of Diff-UAPA, we
conduct extensive experiments across a diverse range of
robot manipulation and locomotion tasks, comparing its
performance against recently proposed baseline methods.
Furthermore, we investigate its effectiveness using hetero-
geneous human preference data, including synthesized, re-
alistic, and noisy preferences. The results demonstrate the
robustness and reliability of Diff-UAPA in handling varying
levels of uncertainty in preference data.

2. Related Works
2.1. Preference-based Reinforcement Learning
Preference-based Reinforcement Learning (PbRL) is a piv-
otal approach for aligning agents with human intent, particu-
larly in scenarios where specifying explicit reward functions
is challenging (MacGlashan et al., 2017; Warnell et al.,

2018; Wirth et al., 2017). Previous works generally adopt a
two-step procedure, where an explicit reward model is first
inferred from human preferences using the Bradley-Terry
model (Bradley & Terry, 1952), followed by training an
RL agent to optimize the learned reward (Christiano et al.,
2017; Ibarz et al., 2018). Building on this framework, sev-
eral methods (Lee et al., 2021; Park et al., 2022; Hejna III
& Sadigh, 2023; Liu et al., 2022; Liang et al., 2022; Hwang
et al., 2023; Choi et al., 2024) have enhanced the learning
process, focusing on improving efficiency and capability.
In terms of preference modeling, while earlier works gen-
erally assume that preferences are generated based on the
sum of Markovian rewards, recent studies (Kim et al., 2023;
Verma & Metcalf, 2024) have proposed modeling prefer-
ences using non-Markovian rewards. Instead of learning an
explicit reward model, another line of research focuses on
directly optimizing policies or extracting value functions
from human preferences (An et al., 2023; Hejna et al., 2024;
Hejna & Sadigh, 2024). This approach is more straightfor-
ward, avoiding the biases and information bottleneck from
intermediate reward modeling (Kang et al., 2023b).

2.2. Diffusion Policy for Decision Making
Diffusion models have outperformed earlier generative mod-
els in both sample quality and training stability, gaining
significant attention across various domains, including of-
fline RL (Janner et al., 2022; Ajay et al., 2023), online
RL (Yang et al., 2023; Chen et al., 2024), and robotics (Srid-
har et al., 2024; Chen et al., 2023b; Xu et al., 2023). Re-
cent advancements have leveraged diffusion models as RL
policies to capture arbitrary action distributions, improving
decision-making capabilities (Zhu et al., 2023). Among
these works, Diffusion-QL (Wang et al., 2023), first inte-
grated diffusion policies into the Q-learning framework.
Following this, SfBC (Chen et al., 2023a) refined policy
learning by decoupling behavior learning from action evalu-
ation, while CEP (Lu et al., 2023) extended this framework
to enable sampling from broader energy-guided distribu-
tions. CPQL (Chen et al., 2024) introduced consistency
models to accelerate training and sampling, and EQP (Kang
et al., 2023a) enhanced training efficiency with single-step
model predictions for action approximations. In preference-
based tasks, AlignDiff (Dong et al., 2024) utilized diffusion
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planners to generate trajectories aligned with human pref-
erences through a two-step procedure, while FKPD (Shan
et al., 2024) introduced a one-step framework for direct
alignment. However, these methods often fail to account
for the uncertainties inherent in human preferences. How to
handle these uncertainties when aligning diffusion policies
remains a critical challenge (Casper et al., 2023).

3. Problem Formulation
Preference-based Reinforcement Learning (PbRL). Re-
inforcement Learning (RL) algorithms (Sutton & Barto,
2018) typically consider an episodic Markov Decision Pro-
cess (MDP), which is formally defined as a tuple M =
(S,A, pR, pT , γ, T, µ0), where: 1) S and A represent the
state and action spaces, 2) pR(r|s, a) and pT (s

′|s, a) define
the (stochastic) reward and transition functions, 3) γ ∈ (0, 1]
is the discount factor, 4) µ0 denotes the initial state distri-
bution and 5) T ∈ (0,∞) denotes a non-fixed planning
horizon, and the games is reset when the agent reaches a ter-
minating or goal state at a time step T . In many applications,
the reward function is not directly available, reducing the
episodic MDP to a reward-free MDP M/r. To resolve this
challenge, PbRL algorithms (Christiano et al., 2017) pro-
posed learning the reward function from human preferences
datatset. Specifically, given an unlabeled dataset of trajec-
tory segments Dτ = {τ}, humans randomly select a pair
of trajectories and rank them according to their preferences
on the optimality. By recording these pair-wise compar-
isons, we create a preference dataset Dpref = {(τw, τ l)},
where each trajectory segment of length k is defined as
τ = (s1, a1, s2, a2, . . . , sk, ak), and τw is preferred over
τ l. Based on this dataset, recent methods (Christiano et al.,
2017; Ibarz et al., 2018) commonly infer the rewards by em-
ploying the Bradley-Terry model (Bradley & Terry, 1952)
with maximum likelihood estimation (MLE).

Uncertainty Model in Preference Alignment. The
Bradley-Terry model (Bradley & Terry, 1952) can effec-
tively model pairwise comparisons, whether by explicitly
inferring a reward function (Christiano et al., 2017; Lee
et al., 2021; Park et al., 2022) or by directly aligning poli-
cies with preferences (Hejna et al., 2024; An et al., 2023).
However, this approach fails to account for the inherent
uncertainty in human preferences (Newman, 2023; Xu et al.,
2025), particularly when these preferences are collected
from a diverse population with varying levels of expertise,
perspectives, and beliefs. More critically, for continuous
learning, the policy must adapt dynamically to preferences
from different user groups, which often arrive incrementally
over time. To resolve these challenges, we study an iterative
preference alignment problem:

Definition 3.1. (Iterative Preference Alignment) Let Dτ =
τ denote the trajectory dataset, and let Dn

pair = (τ i, τ j)

represent the pairwise comparisons dataset constructed at
the nth iteration. These comparisons are generated by 1)
sampling pairs of trajectories from Dτ and 2) inviting a
group of annotators to label them. The algorithm must
progressively align the policy π with the preference dataset
Dn

pair at each round n ∈ [1, N ] in an online manner.

In this setting, different groups of human annotators may
provide inconsistent or even conflicting preferences for the
same pair of trajectories (Liang et al., 2022; Shin et al., 2023;
Xue et al., 2024). The problem solver must dynamically
adapt the policy to iteratively updated preference signals
while ensuring that the learned policy effectively represents
general human preferences by performing online updates.

Additionally, apart from the preference signals, the trajec-
tory dataset Dτ can in principle be updated based on inter-
action from the environment. However, in practice, such
interactions are not always available, and thus we assume
Dτ mainly records only offline trajectories. The primary
challenge is to stabilize the policy optimization process and
learn a reliable control policy by effectively managing the
aleatoric uncertainty inherent in stochastic and potentially
inconsistent preference signals on the provided trajectories.

Preference Alignment for Diffusion Policies. While pre-
vious PbRL methods have commonly focused on policies
modeled by feed-forward neural networks, recent studies
highlight the superior control performance achieved by
diffusion-based policies (Zhu et al., 2023). Denoising dif-
fusion models (Ho et al., 2020) represent a class of gen-
erative models characterized by an iterative diffusion and
denoising process. Diffusion models have gained signifi-
cant attention in decision-making tasks due to their ability
to represent complex multi-modal distributions (Zhu et al.,
2023). This capability is crucial for characterizing the pol-
icy function πθ(a|s), surpassing previous deterministic or
Gaussian-based policies (Chi et al., 2023; Wang et al., 2023).
Diffusion policies are typically formulated as conditional
generative models as follows1:

(1)
πθ(at|st) =

∫
N (aIt ;0, I)

I∏
i=1

πθ(a
i−1
t |ait, st)dat1:I ,

where πθ(at
i−1|ati, st) is often parameterized as Gaus-

sian with fixed timestep-dependent covariances as
N (ai−1

t |µθ(a
i
t, st, i),Σ

i). Although diffusion policies can
be trained from offline datasets, their performance is of-
ten constrained by the size, quality, and availability of the
expert demonstration dataset. As a result, many previous
methods have utilized RL algorithms to improve these poli-
cies with experience data sampled from an interactive MDP

1In this work, we use superscripts (i ∈ {0, 1, . . . , I} to denote
diffusion timesteps and subscripts (t ∈ {0, 1, . . . , T}) to denote
trajectory timesteps.
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environment (Kang et al., 2023a; Psenka et al., 2024). In
this setting, recent research (Wallace et al., 2024) proposed
leveraging Direct Preference Optimization (DPO) (Rafailov
et al., 2023) to align diffusion policies with human prefer-
ences based on Dpref. Specifically, DPO algorithms directly
optimize policies without learning a reward model, thereby
significantly enhancing the efficiency and stability of the
training process. To train πθ, the maximum likelihood ob-
jective for state-action pairs is defined as follows:

L(θ) = −E
[
log σ

(
− λI· (2)(

(∥ϵw − ϵθ(a
i,w, sw, i)∥22 − ∥ϵw − ϵref(a

i,w, sw, i)∥22)

− (∥ϵl − ϵθ(a
i,l, sl, i)∥22 − ∥ϵl − ϵref(a

i,l, sl, i)∥22)
)]

,

where 1)
(
(sw, a0,w), (sl, a0,l)

)
∼ Dpref are state-action

samples from preference dataset, 2) i ∼ U(0, I) is the
diffusion timestep, and 3) ai,w/l ∼ q(ai,w/l|a0,w/l, sw/l)
denotes the action a0,w/l corrupted with noise ϵw/l after i
diffusion steps, as defined in (Ho et al., 2020). In this study,
we explore addressing the iterative preference alignment
problem by aligning human preferences with a diffusion
policy model.

4. Uncertainty-Aware Preference Alignment
for Diffusion Policies

In this section, we outline our approach for aligning a dif-
fusion policy with human preferences while effectively ac-
counting for uncertainty. Specifically, we present: 1) a Max-
imum Likelihood Estimation (MLE) objective for diffusion
policy alignment, based on maximum entropy framework
and direct preference optimization (Section 4.1), 2) a Maxi-
mum A Posteriori (MAP) objective that incorporates a Beta
prior model for capturing the underlying uncertainties (Sec-
tion 4.2), and 3) the training procedure for the Beta prior
model (Section 4.3).

4.1. Maximum Likelihood Diffusion Policy Alignment
MaxEnt Alignment under Regret Preference. Follow-
ing previous works on preference alignment (Hejna et al.,
2024; Rafailov et al., 2024; Ouyang et al., 2022), we adopt
the Maximum Entropy (MaxEnt) RL framework. In this
approach, the objective is to learn a policy πθ that not only
maximizes its cumulative discounted rewards but also in-
corporates the causal entropy, while regularizing the KL-
divergence from a reference policy (Ziebart, 2010):

max
π

Eπ

[
T∑

t=0

γt(r(st, at)− α log
π(at|st)
πref(at|st)

)

]
, (3)

Here, α determines the weight of entropy in the optimization
objective. Upon learning an optimal policy π∗, we can com-
pute the corresponding optimal state-value function V ∗(st),
the optimal state-action value function Q∗(st, at), and the

optimal advantage function A∗(st, at) ≜ Q∗(st, at) −
V ∗(st). More importantly, in the MaxEnt RL setting,
the optimal advantage function is proportional to the log-
likelihood of the optimal and reference policy (Haarnoja
et al., 2017; Hejna et al., 2024):

A∗(st, at) = α log
π∗(at|st)
πref(at|st)

. (4)

To stabilize the process of preference alignment, we fol-
low (Knox et al., 2022) and base the preference alignment on
discounted regrets, defined as −

∑
γt
(
V (st)−Q(st, at)

)
.

In this framework, a trajectory segment is preferred if it
incurs lower regret compared to the intended optimal policy,
so that the preference between trajectory segments (τw, τ l)
can be modeled as:

PA∗(τw≻τ l) = (5)

exp
∑k

t=0 γ
tA∗(swt , a

w
t )

exp
∑k

t=0 γ
tA∗(swt , a

w
t ) + exp

∑k
t=0 γ

tA∗(slt, a
l
t)
.

By substituting Equation (4) into Equation (5), the advan-
tage function A∗ can be replaced by the optimal policy
π∗ under the MaxEnt framework. The learned policy πθ

can then be optimized through maximum the likelihood of
generating preferences as follows (Hejna et al., 2024):

L(τw,τ l)
CPL (θ) = − log σ

(
α· (6)

(

k∑
t=0

γt log
πθ(a

w
t |swt )

πref(awt |swt )
−

k∑
t=0

γt log
πθ(a

l
t|slt)

πref(alt|slt)
)
)
,

Diffusion Policy Alignment. To adapt the previous model
to aligning the diffusion policy πθ(at|st) as defined in
Equation (1), a primary difficulty is due to the intractabil-
ity of diffusion policy πθ(at|st) =

∫
πθ(a

0:I
t |st)da1:It , as

it requires marginalizing over all possible diffusion paths
(a1t , a

2
t , . . . , a

I
t ) that lead to a0t . To address it, we propose

modeling the chain reward function (Wallace et al., 2024):

r(st, a
0
t ) = Eπθ(a1:I

t |a0
t ,st)

[r(st, a
0:I
t )]. (7)

The optimal chain advantage function can be defined as:

A∗(st, a
0
t ) = Eπ∗

θ (a
1:I
t |a0

t ,st)

[
A∗(st, a

0:I
t )
]

(8)

= Eπ∗
θ (a

1:I
t |a0

t ,st)

[
α log

π∗
θ(a

0:I
t |st))

πref(a0:It |st))

]
. (9)

In principle, we can interpret the latent diffusion actions as a
unified chain action at = a0:It , despite the final output being
determined by a0t . This perspective allows us to reformulate
Equation (3) in terms of the diffusion policy:

max
πθ

Eπθ(at|st)

[
T∑

t=0

γt(r(st, at)− α log
πθ(at|st))
πref(at|st))

]
.

(10)

This objective is defined over the entire diffusion path at,
which aims to maximize the cumulative rewards and the
entropy within a trajectory across the reverse process.

4
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By paralleling from Equation (3) to Equation (6), the ob-
jective in (10) can be directly optimized with respect to
the diffusion policy πθ(at|st) by maximizing the following
likelihood:

L(τw,τ l)
1,MLE (θ) = − log σ

(
α· (11)( k∑

t=0

Eπθ(a
1:I,w
t |swt ,a0,w

t )

[
γt log

πθ(awt |swt )
πref(awt |swt )

]

−
k∑

t=0

Eπθ(a
1:I,l
t |slt,a

0,l
t )

[
γt log

πθ(alt|slt)
πref(alt|slt)

]))
,

where σ is the sigmoid function. However, major challenges
in optimizing this objective lie in: 1) inefficiency, due to
the sequential computation required across many timesteps,
and 2) intractability, stemming from the need to evaluate
the joint distribution. Inspired by Wallace et al. (2024),
we leverage Jensen’s inequality and the convexity of the
− log σ function to move the expectation operator outside,
thereby improving efficiency. Additionally, we approximate
the reverse process πθ(a

1:I
t |st) using the forward process

q(a1:It |st), which makes the problem more tractable. With
some algebra, we derive the following loss function:

L(τw,τ l)
1,MLE (θ) ≤ −Eai,w

t ∼q(ai,w
t |a0,w

t ,swt ),

ai,l
t ∼q(ai,l

t |a0,l
t ,slt)

[
log σ

(
− αI·

( k∑
t=0

γt(∥ϵw − ϵθ(a
i,w
t , swt , i)∥22 − ∥ϵw − ϵref(a

n,w
t , swt , i)∥22)

−
k∑

t=0

γt(∥ϵl − ϵθ(a
i,l
t , slt, i)∥22 − ∥ϵl − ϵref(a

i,l
t , slt, i)∥2)

))]
= L(τw,τ l)

2,MLE (θ), (12)

The detailed deviation is shown in Appendix A.

4.2. Bayesian Alignment with Informative Beta Prior

The regret preference model (Equation (5)) represents the
likelihood of generating human preferences based on the
advantage function. The corresponding maximum likeli-
hood objective implicitly assumes a uniform prior over∑k

t=0 γ
tA∗(st, at), which does not account for the uncer-

tainty within the preference dataset, and may lead to diver-
gence in the parameters of the learned policy (Newman,
2023; Xu et al., 2025). We present how to derive a more
informative prior as follows.

Since human feedback is based on two trajectories rather
than individual state-action pairs, we assume that the
strength of a trajectory is defined by its trajectory-level
advantage, represented by its discounted cumulative advan-

tages under the diffusion policy πθ:

Aπθ (τ) =

k∑
t=0

γtAπθ (st, at)

=

k∑
t=0

γtEπθ(a1:I
t |a0

t ,st)
[Aπθ (st, at)] . (13)

The average strength of the trajectories under policy πθ is
then defined as:

Āπθ = Eτ∼Dτ
Aθ(τ) =

1

|Dpref|
∑

τ∈Dpref

Aπθ (τ). (14)

Therefore, the probability of a trajectory with strength
Aπθ (τ) winning against the average candidate is ϕ(τ) =
σ(Aπθ (τ)− Āπθ ) ∈ (0, 1). By applying the chain rule, the
prior on the advantage function can be defined as:

p0(A
πθ (τ)) = p0(ϕ(τ))

dϕ(τ)
dAπθ (τ)

= p0(ϕ(τ))σ
′(Aπθ (τ)− Āπθ )(1− 1

|Dpref|
). (15)

This prior reflects our initial belief about the strength of
different trajectories within the dataset. Motivated by Xu
et al. (2025), we use the Beta distribution as the informative
prior, i.e., p0(ϕ(τ)) = Beta(ϕ(τ);α, β). The main benefits
of the Beta distribution are: 1) it is the conjugate prior for
the Bernoulli distribution, and ϕ(τ) naturally ranges from
(0, 1), which simplifies updates with new evidence, and 2)
the parameters α and β can intuitively represent the counts
of preferred and unpreferred human feedback. By reformu-
lating Eq. (15), we present the following proposition:
Proposition 4.1. Let the informative prior p0(ϕ(τ)) be
a Beta distribution Beta(ϕ(τ);α, β). This prior can ef-
fectively capture the uncertainty arising from the itera-
tive preference alignment process (Definition 3.1). Con-
sequently, the prior on the strength of a trajectory is pro-
portional to Beta((ϕ(τ);α+1, β+1)), i.e., p0(Aπθ (τ)) ∝
Beta(ϕ(τ);α+ 1, β + 1).

The proof is shown in Appendix C. The corresponding prior
loss can then be derived in a manner similar to the derivation
of the maximum likelihood loss (Eq. 11):

Lτ
1,prior(θ)

= − logBeta(ϕ(τ);α+ 1, β + 1)

≤ −E
[
logBeta

(
σ

(
− αI ·

( k∑
t=0

γt(
∥∥ϵ− ϵθ(a

i
t, st, i)

∥∥2
2
−

∥∥ϵ− ϵref(a
i
t, st, i)

∥∥2
2
)−

k∑
τ∈Dpref,t=0

γt

|Dpref|
(
∥∥ϵ− ϵθ(a

i
t, st, i)

∥∥2 −
∥∥ϵ− ϵref(a

i
t, st, i)

∥∥2)));α+ 1, β + 1

)]
= Lτ

2,prior(πθ) (16)
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Appendix B shows the detailed proof. Equation (16) can be
interpreted as guiding the policy to align the estimated ad-
vantage function for trajectories with their prior distribution.
Since PMAP(A(τ)) ∝ p0(A(τ)) · PMLE(A(τ)), by incorpo-
rating the prior into the MLE objective and maximizing the
log form of the posterior, we can derive the Diff-UAPA loss:

LDiff-UAPA(θ) = E(τw,τ l)∼Dpref

[
L(τw,τ l)
2,MLE (πθ)

+ Lτw

2,prior(πθ) + Lτ l

2,prior(πθ)
]
. (17)

Maximizing the posterior probability, rather than the likeli-
hood, incorporates prior knowledge and regularizes advan-
tage values, preventing divergence. We introduce how to
estimate the Beta prior in the following section.

4.3. Training the Beta Prior Model

To learn the Beta prior p0(ϕ(τ)|Dpref) = Beta(ϕ(τ);α, β)
in continuous spaces, following (Xu et al., 2025), we pro-
pose using a variational inference approach to approximate it
by estimating the approximate posterior qξ(ϕ(τ)|Dpref), i.e.,
p0(ϕ(τ)|Dpref) ≃ qξ(ϕ(τ)|Dpref), where ξ is the model pa-
rameters. The objective is to minimize the Kullback-Leibler
(KL) divergence between the prior and posterior, which
is equivalent to maximizing the Evidence Lower Bound
(ELBO). This leads to the following interpretation of the
corresponding trajectory-wise objective (Xu et al., 2025):

max
ξ

Eτ

[
Eqξ,(τw,τ l)∈Dpref

[log ϕ(τw)]− (18)

Eqξ,(τw,τ l)∈Dpref
[log ϕ(τ l)]−DKL[qξ(ϕ(τ)|τ) ∥ p(ϕ(τ))]

]
,

where 1) qξ(ϕ(τ)|τ) = Beta(ατ , βτ ), where [ατ , βτ ] =
fBeta
ξ (τ) and fBeta

ξ denotes a neural network, 2) p(ϕ(τ)) =
Beta(α0, β0), with α0, β0 specifying our prior belief (we
set α0 = β0 = 1 in this work), and 3) ϕ(τ) represents the
Bernoulli probability that τw is ranked higher than τ l. The
first two terms aim to optimize the parameter ξ to align
with the preference dataset, while the final KL-divergence
term ensures the posterior distribution does not deviate too
far from the prior belief, which can be optimized using the
Dirichlet VAE approach (Joo et al., 2020).

In this work, we implement fBeta
ξ (τ) using a transformer-

based neural network (Vaswani, 2017), where the trajectory
τ is fed as input and [ατ , βτ ] is produced as the output to
form the Beta prior distribution. The complete Diff-UAPA
algorithm is shown in Algorithm 1.

5. Empirical Evaluation
In this section, we empirically evaluate the proposed Diff-
UAPA algorithm on four robot manipulation tasks across
two environments (Section 5.1) and locomotion tasks with

Algorithm 1 Uncertainty-aware Preference Alignment for
Diffusion Policies (Diff-UAPA)

1: Input: Trajectory dataset Dτ , preference dataset Dpref,
prior training epochs M , policy training epochs N .

2: Initialize Beta prior model fBeta
ξ (τ), reference policy

πref(a|s), and diffusion policy πθ(a|s).
3: Learn πref based on Dτ through behavior cloning.
4: for m = 1, · · · ,M do
5: Update the Beta prior fBeta

ξ with objective (18).
6: end for
7: for n = 1, · · · , N do
8: Update the diffusion policy πθ by minimizing

Eq. (17).
9: end for

real human preferences (Section 5.2), where preferences are
continuously updated and may exhibit inconsistencies. Ad-
ditionally, we evaluate the noise sensitivity of the proposed
method under different levels of preference inconsistency
(Section 5.3).

Experiment Settings. We evaluate the methods on three
tasks in Robomimic (Mandlekar et al., 2021) and one long-
horizon Franka Kitchen (Gupta et al., 2019) environment
for manipulation tasks, as well as two environments in
D4RL (Fu et al., 2020) with real human preferences for
locomotion tasks. Our experiments consist of four rounds
of iterative updates, with each round consisting of a fixed
number of training episodes. To account for potential incon-
sistencies in human preferences, we introduce a reverse rate
into the ground-truth preference data. Specifically, in each
update round, we randomly select 20% of trajectory pairs
and apply a 50% reversal rate by swapping the winner and
the loser. The learning rate is reset at the beginning of each
round to enhance stability and convergence. After training,
the policy is evaluated over 10 episodes in 56 parallel envi-
ronments. Each experiment is repeated using three different
random seeds, and the mean± standard deviation (std) of
the results is reported. More experimental details can be
found in Appendix D.1.

Comparison Methods. We utilize two baseline poli-
cies: the Gaussian-based policy from Behavior Transformer
(BET) (Shafiullah et al., 2022) and the Diffusion Policy
(Diff) (Chi et al., 2023). In BET, we apply focal loss
(Mukhoti et al., 2020) for preference-based learning and
leverage the full set of trajectories in the preference dataset
for training the diffusion policy.

Building on BET, we propose the following compari-
son methods: 1) BET-Direct Preference Optimization
(BET-DPO) and 2) BET-Contrastive Preference Learning
(BET-CPL), which leverage direct preference optimization

6
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Table 1. Success rates (in percentage) of all methods across the Robomimic and Kitchen tasks, with each value presented as the mean ±
std, computed over 3 training seeds and 560 evaluation episodes. The best results for each task are highlighted in bold. For the Kitchen
task, px indicates the frequency of interaction with x or more objects.

Robomimic Kitchen

Lift Can Square p1 p2 p3 p4

BET 43.6± 3.8 48.8± 3.1 55.1± 2.0 96.4± 1.2 96.2± 1.0 76.6± 1.3 44.6± 2.0
BET-CPL 49.2± 4.4 42.1± 1.1 57.6± 2.3 97.0± 1.0 96.4± 0.5 88.4± 2.3 62.6± 2.0
BET-DPO 43.7± 3.3 47.0± 1.0 42.7± 3.6 85.5± 8.5 84.8± 8.7 80.9± 9.4 57.4± 6.6

Diff 45.1± 3.0 47.9± 2.3 52.8± 2.9 99.2± 0.8 98.4± 1.1 91.8± 0.8 59.0± 1.1
Diff-CPL 48.6± 2.2 45.9± 2.8 55.2± 5.7 100.0± 0.0 99.6± 0.2 94.2± 0.2 63.5± 0.8

FKPD 51.2± 0.7 58.5± 2.5 64.4± 2.7 99.8± 0.3 98.3± 1.4 89.5± 2.9 64.1± 3.2
Diff-UAPA-C 56.1± 0.9 61.3± 2.2 68.1± 0.6 100.0± 0.0 99.7± 0.2 95.4± 0.6 70.9± 2.5
Diff-UAPA-I 54.3± 1.1 59.9± 1.7 66.2± 1.3 99.9± 0.1 99.8± 0.2 95.7± 1.9 71.7± 4.6

(Rafailov et al., 2023) and contrastive preference learning
(Hejna et al., 2024) to align the BET model. For diffusion-
based policies, we introduce: 3) Diffusion Policy-CPL (Diff-
CPL) that uses the MLE loss for aligning the diffusion
policy (Obj. 12), and 4) FKPD (Shan et al., 2024) that per-
forms forward KL regularized preference optimization. For
our Diff-UAPA algorithm, we explore two distinct strate-
gies for updating the Beta prior model: 5) Diff-UAPA-C
that trains the Beta model using full preference data across
the iterations without updates, and 6) Diff-UAPA-I that in-
crementally updates the Beta model on the current noisy
preference data through the iterative process.

5.1. Model Performance in Robot Manipulation Tasks

Task Description. In this experiment, we evalu-
ate the model’s performance across three tasks from
Robomimic (Mandlekar et al., 2021) and the Franka Kitchen
task introduced in (Gupta et al., 2019), both of which use
state-based observations. Specifically, the three Robomimic
tasks—Lift, Can, and Square—address different manipu-
lation challenges in a simulated environment, including
object lifting, can manipulation, and square positioning. On
the other hand, the Franka Kitchen task involves complex,
multi-step, long-horizon activities that require interactions
with seven distinct objects, with the objective to complete
as many demonstrated tasks as possible, regardless of the
execution order. Following Chi et al. (2023), we use suc-
cess rate as the primary evaluation metric. For each task,
the reference policy πref is trained to achieve a success rate
of approximately 40%. We then roll out the policy to col-
lect 560 trajectories per task and construct the preference
dataset based on their rewards. Please check Appendix D.2

for environmental details and Appendix D.3 for details on
preference dataset construction.

Results Analysis. Table 1 presents the evaluation perfor-
mance across three Robomimic tasks and the more complex
Kitchen task. The results indicate that both variants of Diff-
UAPA consistently outperform other methods across differ-
ent tasks. This is primarily due to their use of a Beta prior,
which effectively captures the uncertainty arising from po-
tentially inconsistent preferences, thereby enhancing the dif-
fusion policy training process. Moreover, the performance
gap between Diff-UAPA-C and Diff-UAPA-I is relatively
small, suggesting that the Beta prior can be trained effec-
tively in both approaches, depending on the specific practice.
This flexibility enhances the practical applicability of the
proposed method. Notably, for the long-horizon Kitchen
task, Diff-UAPA-I, which trains the Beta model incremen-
tally, slightly outperforms Diff-UAPA-C, which pre-trains
the Beta model using the complete dataset. This difference
can be attributed to the fact that incremental training allows
the model to adapt more dynamically to the changing pref-
erences and environmental conditions over time, whereas
pre-training may not fully capture such variability. We also
provide the visualization results in Figure 2 in Appendix D.5

5.2. Model Performance in Locomotion Tasks

Task Description. The primary goal of Preference-based
Reinforcement Learning (PbRL) is to align policies with
human preferences. In this section, we assess the perfor-
mance of Diff-UAPA using real human preferences pro-
vided by the Uni-RLHF benchmark (Yuan et al., 2024) in
the HalfCheetah and Walker environments from the D4RL
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Table 2. Episodic rewards of all methods in the HalfCheetah and Hopper environments with real human preferences.

BET BET-CPL BET-DPO Diff Diff-CPL FKPD Diff-UAPA-C Diff-UAPA-I

HalfCheetah 2577± 198 2976± 66 2948± 37 2838± 325 3121± 148 3060± 201 3399± 72 3297± 101
Hopper 1161± 90 1226± 85 1129± 79 1296± 137 1313± 103 1370± 120 1591± 51 1499± 70

benchmark (Fu et al., 2020). To ensure the dataset encom-
passes a diverse range of trajectories for meaningful com-
parison, we use medium-expert datasets for both environ-
ments. These datasets combine expert demonstrations from
a near-optimal policy with suboptimal data generated by a
medium-performing policy. Please check Appendix D.2 for
more environmental details.

Results Analysis. The empirical results for the locomo-
tion tasks are presented in Table 2. We observe that Diff-
UAPA consistently outperforms other baselines across both
environments. The key reason for this is that, during the
iterative preference alignment process, some trajectory pairs
may receive inconsistent preference labels. These noisy
labels introduce greater uncertainty, making it challenging
for the policy to accurately assess the true value of these
trajectories and replicate the higher-performing ones. Diff-
UAPA effectively addresses this challenge by leveraging
a prior model that captures this uncertainty, enabling the
policy to evaluate the trajectories more fairly and reliably,
which in turn leads to improved overall performance. We
also observe that diffusion-based policies generally achieve
better results than Gaussian-based policies, primarily due to
their superior modeling capabilities, which becomes more
crucial when accounting for underlying uncertainties.

5.3. Experiments on Noise Sensitivity

Task Description. In this section, we perform a noise
sensitivity evaluation in the Franka Kitchen environment
to assess the robustness of different methods. Specifically,
we adjust the reversal rate r from 50% (as used in previous
experiments) to 25% and 75%, to evaluate the method’s
stability under different levels of inconsistency. For clarity,
we present only the most challenging p4 metric.

Table 3. Evaluation results of p4 metric under different levels of
reverse rates in the Kitchen environment.

r=25% r=50% r=75%

BET-CPL 65.7± 1.6 62.6± 2.0 55.0± 2.5
BET-DPO 60.2± 4.8 57.4± 6.6 47.2± 7.0
Diff-CPL 66.0± 1.0 63.5± 0.8 57.1± 2.5

FKPD 71.3± 2.3 64.1± 3.2 62.3± 4.6
Diff-UAPA-C 75.3± 2.9 70.9± 2.5 70.5± 3.8
Diff-UAPA-I 75.5± 3.0 71.7± 4.6 69.1± 5.2

Results Analysis. Table 3 presents the evaluation results.
As the noise level increases (i.e., the reversal rate), all meth-
ods show a decline in performance, highlighting the signifi-
cance of uncertainties in the dataset. However, compared to
the other methods, Diff-UAPA consistently exhibits better
performance with the highest success rate regardless of the
scale of noise. This underscores the effectiveness of incor-
porating the Beta prior model to handle such uncertainties.

6. Limitation
Offline Trajectory Dataset. This paper primarily focuses
on learning from an offline trajectory dataset with poten-
tially inconsistent human preferences that are iteratively
updated, where the agent cannot directly interact with the
environment. This partial offline setup may limit the agent’s
ability to explore and discover improved strategies through
interactive online learning. However, our method can also
generalize to an online setting, where both trajectories and
human preferences are dynamically updated over time.

Computational Overhead. The integration of training a
Beta prior model through variational inference adds compu-
tational complexity compared to simpler MLE-based meth-
ods. However, by utilizing efficient techniques like the
reparameterization trick to enhance scalability, the compu-
tational overhead of training the Beta model is minimal in
practice, adding only a small additional time cost relative to
the diffusion training process.

7. Conclusion
In this paper, we present an uncertainty-aware preference
alignment approach for diffusion policies using an itera-
tively updated preference dataset. Building on the maximum
likelihood objective for directly aligning diffusion policies
without learning a reward model, we introduce a Maximum
A Posteriori (MAP) objective with an informative Beta prior,
which is capable of capturing the uncertainty arising from
potentially inconsistent human preferences. Empirical re-
sults across various domains demonstrate the effectiveness
of our method. For future work, we extend this framework
to the online RL setting with complex tasks involving hu-
manoid robots or dexterous hand. By enabling agents to
interact with the environment, our system can dynamically
adapt to evolving human preferences, thereby solving more
difficult applications.
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Impact Statement
The potential broader impact of this work is significant, as
it advances the field of human-aligned decision-making in
artificial intelligence (AI) and robotics. From an ethical
perspective, this work emphasizes reducing bias and incon-
sistency in preference-based reinforcement learning, which
aligns with the principles of fairness and equity in AI. How-
ever, challenges remain in ensuring the informed collection
of preference data and safeguarding against misuse, such
as exploiting preference alignment for manipulative or un-
ethical purposes. Transparency in how user preferences are
modeled and incorporated into decision-making policies is
crucial to building trust and accountability.

Future societal consequences may include the development
of AI systems that better reflect the diverse needs of global
populations, contributing to more personalized and human-
centric technologies. However, there is also the risk of over-
reliance on population-level preferences that might inad-
vertently marginalize minority views or lead to unintended
consequences if preferences are improperly interpreted or
misaligned with ethical considerations. Addressing these
risks requires careful oversight, interdisciplinary collabora-
tion, and ongoing dialogue with diverse stakeholders.
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A. More Details in Section 4.1
We detailed the deviation from Equation (11) to Equation (12) here.
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1,MLE (θ)

= − log σ
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Since − log σ(x) is a convex function:
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′′
= (σ(x)− 1)
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According to Jensen’s inequality:
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According to Formula (1), it can be further simplified as:
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where 1) i ∼ U(0, I) is the diffusion timestep, 2) ai,w/l
t ∼ q(a

i,w/l
t |a0,w/l

t , sw/l denotes the action a
0,w/l
t corrupted with

noise ϵw/l after i diffusion steps, and 3) ϵw/l
θ is the noise predictor.

B. More Details in Section 4.2
We detailed the deviation of Equation (16) here.
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L(τw,τ l)
1,prior (θ)
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Since − log σ(Beta(x;α, β)) is a convex function when α+ β ≥ 2. Define g(t) = − log
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)
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This shows log(1 + e−t) is strictly convex in t. Therefore, for the function
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[
σ
(
Beta(x; α+ 1, β + 1)

)]
,

the inner part Beta(x; α+ 1, β + 1) serves as the real argument t, and the composition preserves convexity, implying f(x)
is convex.
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According to Formula (1), it can be further simplified as:

−E τ∈Dpref,

ai,·
t ∼q(ai,·

t |a0,·
t ,s·t)

[
log σ

(
− αI ·

( k∑
t=0

γt(∥ϵw − ϵθ(a
i,w
t , swt , i)∥22 − ∥ϵw − ϵref(a

n,w
t , swt , i)∥22)

−
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|Dpref|
(∥ϵτ − ϵθ(a

i,τ
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i,τ
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))]

where 1) i ∼ U(0, I) is the diffusion timestep, 2) ai,·t ∼ q(ai,·t |a0,·t , s· denotes the action a0,·t corrupted with noise ϵ· after i
diffusion steps, and 3) ϵ·θ is the noise predictor.

C. Proof of Proposition 4.1
Proposition 4.1 can be divided into two parts: 1) the uncertainty-aware property of the Beta prior, and 2) the prior on the
strength of a trajectory.

Part 1. We show the uncertainty-aware capability of the Beta prior Beta(ϕ(τ);α, β) during the iterative preference alignment
process outlined in Definition 3.1 as follows.

The probability density function (PDF) of the Beta distribution Beta(ϕ(τ);α, β) is given by:

f(ϕ(τ);α, β) =
ϕ(τ)

α−1
(1− ϕ(τ))β−1

B(α, β)
, 0 ≤ ϕ(τ) ≤ 1, (19)

where B(α, β) =
∫ 1

0
tα−1(1− t)β−1 dt is the Beta function, serving as a normalizing constant.

The variance of a Beta distribution Beta(ϕ(τ);α, β) is given by the following formula:

Var(Beta(α, β)) =
αβ

(α+ β)2(α+ β + 1)
. (20)

In the process described in Definition 3.1, the uncertainty arises from the varying preferences of different human raters
for a given trajectory pair (τ i, τ j). Without loss of generality, assuming an initial belief of Beta(1, 1) for each trajectory,
and with 10 raters evaluating a candidate pair (τ i, τ j), the Beta prior is updated according to the preferences expressed
by the raters. For instance, in the first case, where 9 raters prefer τ i and 1 rater prefers τ j , the Beta prior for τ i would be
updated to Beta(10, 2). In the second case, where 5 raters prefer τ i and 5 prefer τ j , the Beta prior for τ i would become
Beta(6, 6). Intuitively, we would be more confident with less uncertainty in the first case, as the majority of raters share the
same preference.

The Beta distribution effectively captures this uncertainty. As shown in Equation (20), the variance of Beta(10, 2) is smaller
than that Beta(6, 6), indicating that Beta(10, 2) is ’sharper’ and reflects less uncertainty, which aligns with our intuition.

Part 2. We prove that the prior on the strength of a trajectory is proportional to Beta((ϕ(τ);α+1, β+1)), i.e., p0(Aπθ (τ)) ∝
Beta(ϕ(τ);α+ 1, β + 1), as follows.

Recall that the probability of a trajectory τ with strength Aπθ (τ) winning against the average candidate is given by
ϕ(τ) = σ(Aπθ (τ)− Āπθ ) ∈ (0, 1). Let Aπθ (τ)− Āπθ be denoted as Ãπθ (τ). According to Equation (19), we have that
the Beta distribution over ϕ(τ) = σ(Ãπθ (τ)) is:

Beta(σ(Ãπθ (τ));α, β) ∝ σ(Ãπθ (τ))
α−1

(1− σ(Ãπθ (τ)))β−1. (21)

The derivative of the sigmoid function is:

σ′(Ãπθ (τ)) = σ(Ãπθ (τ))(1− σ(Ãπθ (τ))). (22)
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By incorporating Equation (21) and Equation (22) into Equation (15), we have that:

p0(A
πθ (τ)) ∝ σ(Ãπθ (τ))

α
(1− σ(Ãπθ (τ)))β

∝ Beta(σ(Ãπθ (τ));α+ 1, β + 1)

= Beta(ϕ(τ);α+ 1, β + 1). (23)

D. More Experimental Details
D.1. Experimental Settings

In this paper, we utilized a total of 4 NVIDIA GeForce RTX 3090 GPUs, each with 24 GB of memory. The random seeds
used for the experiments were 42, 43, and 44. We trained the agents offline and selected the final epoch for evaluation across
56 parallel environments, each with 10 episodes. Additionally, we employed a transformer-based architecture for the Beta
model as in the preference transformer (Kim et al., 2023).

D.2. Environmental Details

Manipulation Tasks. Robomimic (Mandlekar et al., 2021) is a large-scale robotic manipulation benchmark designed to
explore imitation learning and offline reinforcement learning (RL). It consists of five tasks, each with a proficient human (PH)
teleoperated demonstration dataset, and four tasks also feature mixed proficient/non-proficient human (MH) demonstration
datasets, resulting in a total of nine variants. In this paper, we focus on three tasks: Lift, Can, and Square. Specifically:

• Lift: The robot arm must lift a small cube. This is the simplest task.

• Can: The robot must move a Coke can from a large bin to a smaller target bin. This task is slightly more challenging
than Lift, as picking up the can is more difficult than picking up the cube, and the can must be placed accurately in the
target bin.

• Square: The robot is required to pick up a square nut and place it onto a rod. This task is significantly more difficult
than Lift and Can, as it demands high precision to pick up the nut and insert it into the rod.

The Franka Kitchen is also a widely used environment for evaluating the performance of methods in learning complex,
long-horizon tasks. Introduced in Relay Policy Learning (Gupta et al., 2019), the environment features seven objects for
interaction and includes a human demonstration dataset consisting of 566 demonstrations, each completing four tasks
in random order. The objective is to execute as many of the demonstrated tasks as possible, regardless of their order,
highlighting both short-horizon and long-horizon multimodal capabilities.

Locomotion Tasks. We evaluate our locomotion tasks using the D4RL benchmark (Fu et al., 2020), which is widely
used in reinforcement learning (RL) for continuous control tasks. In this paper, we focus on the Hopper and HalfCheetah
environments. In these environments, the goal is to maximize the cumulative reward within a single episode by navigating a
sequence of actions that optimize the agent’s movement and efficiency. More specifically:

• Hopper: In this task, the agent controls a 2D hopping robot, with the objective of balancing and moving the robot
forward using as few steps as possible.

• HalfCheetah: In this task, the agent controls a 2D robotic cheetah, aiming to run as fast as possible while maximizing
speed and maintaining stability.

D.3. Manipulation Preference Dataset

For the robot manipulation tasks, we train two policies using behavior cloning: the BET policy and the diffusion policy.
Training proceeds until a 40% success rate is reached. To build the simulation environment, we deploy 56 parallel
environments, each initialized with a different seed to ensure varied initial positions for the agent. We then collect 560
trajectories per policy. From these, we randomly select 500 trajectory pairs and label them based on the sum of their rewards.
During training, each trajectory is sliced using the observed steps as the stride, and these segments are compared. In the
iterative update process, for each update round, we randomly select 20% of the trajectory pairs and apply a 50% reversal rate
by swapping the winner and loser. To improve stability and convergence, the learning rate is reset at the start of each round.
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D.4. Hyperparameters

Our experiments are primarily based on the codebase from (Chi et al., 2023). Therefore, we retain the same hyperparameters
for training the diffusion policy as specified in (Chi et al., 2023) for each experiment. The specific hyperparameters for
Diff-UAPA are listed in Table 4.

Table 4. List of the specific hyperparameters for the proposed Diff-UAPA. To ensure fair comparisons, we maintain consistency in other
parameters of the same neural networks across different models.

Parameters Robomimic Kitchen D4RL

General
Training Epochs 600 600 600
Episode Length 400 280 1000

Beta Model
Network 256 256 256
Learning Rate 2e-5 2e-5 3e-5
Number of Attention Heads 4 4 4
Number of Layers 2 2 1
Batch Size 32 32 64
Initial Belief α = β = 1 α = β = 1 α = β = 1

D.5. Visualization Results

Figure 2 presents visualization results from the manipulation tasks. It is evident that the baseline method, Diff-CPL, which is
trained using the MLE objective, struggles to handle certain critical scenarios, particularly those involving noisy preferences.

Failing to grab the handleInsufficient 
lifting height
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grab the object

Lift Can Square Kitchen
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Figure 2. Visualization results in four manipulation tasks.
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