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Abstract

We revisit the classical problem of finding an approximately stationary point of the average
of n smooth and possibly nonconvex functions. The optimal complexity of stochastic first-
order methods in terms of the number of gradient evaluations of individual functions is
O
(
n + n1/2ε−1), attained by the optimal SGD methods SPIDER (Fang et al., 2018) and PAGE

(Li et al., 2021), for example, where ε is the error tolerance. However, i) the big-O notation
hides crucial dependencies on the smoothness constants associated with the functions, and
ii) the rates and theory in these methods assume simplistic sampling mechanisms that
do not offer any flexibility. In this work we remedy the situation. First, we generalize
the PAGE algorithm so that it can provably work with virtually any (unbiased) sampling
mechanism. This is particularly useful in federated learning, as it allows us to construct and
better understand the impact of various combinations of client and data sampling strategies.
Second, our analysis is sharper as we make explicit use of certain novel inequalities that
capture the intricate interplay between the smoothness constants and the sampling procedure.
Indeed, our analysis is better even for the simple sampling procedure analyzed in the PAGE
paper. However, this already improved bound can be further sharpened by a different
sampling scheme which we propose. In summary, we provide the most general and most
accurate analysis of optimal SGD in the smooth nonconvex regime. Finally, our theoretical
findings are supported by carefully designed experiments.

1 Introduction

In this paper, we consider the minimization of the average of n smooth functions (1) in the nonconvex setting
in the regime when the number of functions n is very large. In this regime, calculation of the exact gradient
can be infeasible and the classical gradient descent method (GD) (Nesterov, 2018) can not be applied. The
structure of the problem is generic, and such problems arise in many applications, including machine learning
(Bishop & Nasrabadi, 2006) and computer vision (Goodfellow et al., 2016). Problems of this form are the
basis of empirical risk minimization (ERM), which is the prevalent paradigm for training supervised machine
learning models.
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1.1 Finite-sum optimization in the smooth nonconvex regime

We consider the finite-sum optimization problem

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x)
}

, (1)

where fi : Rd → R is a smooth (and possibly nonconvex) function for all i ∈ [n] := {1, . . . , n}. We are
interested in randomized algorithms that find an ε-stationary point of (1) by returning a random point x̂

such that E
[
∥∇f(x̂)∥2

]
≤ ε. The main efficiency metric of gradient-based algorithms for finding such a point

is the (expected) number of gradient evaluations ∇fi; we will refer to it as the complexity of an algorithm.

1.2 Related work

The area of algorithmic research devoted to designing methods for solving the ERM problem (1) in the
smooth nonconvex regime is one of the most highly developed and most competitive in optimization.

The path to optimality. Let us provide a lightning-speed overview of recent progress. The complexity of
GD for solving (1) is O

(
nε−1), but this was subsequently improved by more elaborate stochastic methods,

including SAGA, SVRG and SCSG (Defazio et al., 2014; Johnson & Zhang, 2013; Lei et al., 2017; Horváth
& Richtárik, 2019), which enjoy the better complexity O

(
n + n2/3ε−1). Further progress was obtained by

methods such as SNVRG and Geom-SARAH (Zhou et al., 2018; Horváth et al., 2020), improving the complexity
to Õ

(
n + n1/2ε−1). Finally, the methods SPIDER, SpiderBoost, SARAH and PAGE (Fang et al., 2018; Wang

et al., 2019; Nguyen et al., 2017; Li et al., 2021), among others, shaved-off certain logarithmic factors and
obtained the optimal complexity O

(
n + n1/2ε−1), matching lower bounds (Li et al., 2021).

Optimal, but hiding a secret. While it may look that this is the end of the road, the starting point of
our work is the observation that the big-O notation in the above results hides important and typically very
large data-dependent constants. For instance, it is rarely noted that the more precise complexity of GD is
O
(
L−nε−1) , while the complexity of the optimal methods, for instance PAGE, is O

(
n + L+n1/2ε−1) , where

L− ≤ L+ are different and often very large smoothness constants. Moreover, it is easy to generate examples
of problems (see Example 1) in which the ratio L+/L− is as large as one desires.

Client and data sampling in federated learning. Furthermore, several modern applications, notably
federated learning (Konečný et al., 2016; McMahan et al., 2017), depend on elaborate client and data
sampling mechanisms, which are not properly understood. However, optimal SGD methods were considered
in combination with very simple mechanisms only, such as sampling a random function fi several times
independently with replacement (Li et al., 2021). We thus believe that an in-depth study of sampling
mechanisms for optimal methods will be of interest to the federated learning community. There exists prior
work on analyzing non-optimal SGD variants with flexible mechanisms For example, using the “arbitrary
sampling” paradigm, originally proposed by Richtárik & Takáč (2016) in the study of randomized coordinate
descent methods, Horváth & Richtárik (2019) and Qian et al. (2021) analyzed SVRG, SAGA, and SARAH
methods, and showed that it is possible to improve the dependence of these methods on the smoothness
constants via carefully crafted sampling strategies. Further, Zhao & Zhang (2014) investigated the stratified
sampling, but only provided the analysis for vanilla SGD, and in the convex case.

1.3 Summary of contributions

• Specifically, in the original paper (Li et al., 2021), the optimal (w.r.t. n and ε) optimization method PAGE
was analyzed with a simple uniform mini-batch sampling with replacement. We analyze PAGE with virtually
any (unbiased) sampling mechanism using a novel Definition 1. Moreover, we show that some samplings can
improve the convergence rate O

(
n + L+n1/2ε−1) of PAGE. We obtain the new state-of-the-art convergence

rates in the considered setting (see Table 2).
• We improve the analysis of PAGE using a new quantity, the weighted Hessian Variance L± (or L±,w),
that is well-defined if the functions fi are Li–smooth. It is important that we get strictly better theoretical
guarantees without any additional assumptions on the structure of (1). We show that, when the functions
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Table 1: The constants A, B, wi and |S| that characterize the samplings in Definition 1.

Sampling scheme A wi B |S| Reference

Uniform With Replacement 1/τ 1/n 1/τ ≤ τ Sec. E.3

Importance 1/τ qi
1/τ ≤ τ Sec. E.3

Nice (= Uniform Without Replacement) n−τ
τ(n−1)

1/n
n−τ

τ(n−1) τ Sec. E.1

Independent 1∑n

i=1
pi

1−pi

pi
1−pi∑n

i=1
pi

1−pi

0
∑n

i=1 pi Sec. E.2

Extended Nice n−τ
τ(n−1)

li∑n

i=1
li

n−τ
τ(n−1) ≤ τ Sec. E.4

We now provide a brief explanation of the samplings (more mathematically rigorous explanations are provided in the
corresponding sections from “Reference”): 1) Uniform With Replacement is a sampling, where we take exactly τ
elements from a set with replacement. 2) Importance is a sampling, where we take exactly τ elements from a set
with replacement, and a new sampled element is taken non-uniformly. 3) Nice is a sampling, where we take exactly τ
elements from a set without replacement. 4) Independent is a sampling, where we take each element independently with
a predefined probability. 5) Extended Nice is a sampling, where we repeat each ith element li times before applying the
Nice sampling.
Notation: n = # of data points; τ = batch size; qi = probability to sample ith data point in the multinomial distribution;
pi = probability to sample ith data point in the bernoulli distribution; li = # of times to repeat ith data point before
apply the Nice sampling.

fi are “similar” in the sense of the weighted Hessian Variance, PAGE enjoys faster convergence rates (see
Table 2). Also, unlike (Szlendak et al., 2022), we introduce weights wi that can play a crucial role in some
samplings. Moreover, the experiments in Sec 5 agree with our theoretical results.
• Our framework is flexible and can be generalized to the composition of samplings. These samplings naturally
emerge in federated learning (Konečný et al., 2016; McMahan et al., 2017), and we show that our framework
can be helpful in the analysis of problems from federated learning.

2 Assumptions

We need the following standard assumptions from nonconvex optimization.
Assumption 1. There exists f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd.
Assumption 2. There exists L− ≥ 0 such that ∥∇f(x) − ∇f(y)∥ ≤ L− ∥x − y∥ for all x, y ∈ Rd.

Assumption 3. For all i ∈ [n], there exists a constant Li > 0 such that ∥∇fi(x) − ∇fi(y)∥ ≤ Li ∥x − y∥ for
all x, y ∈ Rd.

Note that Assumption 2 follows from Assumption 3 with L− ≤ 1
n

∑n
i=1 Li.

2.1 Tight variance control of general sampling estimators

In Algorithm 1 (a generalization of PAGE), we form an estimator of the gradient ∇f via subsampling. In our
search for achieving the combined goal of providing a general (in terms of the range of sampling techniques
we cater for) and refined (in terms of the sharpness of our results, even when compared to known results
using the same sampling technique) analysis of PAGE, we have identified several powerful tools, the first of
which is Definition 1. Let

Sn :=
{

(w1, ..., wn) ∈ Rn

∣∣∣∣∣w1, ..., wn ≥ 0,

n∑
i=1

wi = 1
}

be the standard simplex and (Ω, F , P) a probability space.
Definition 1 (S(A, B, {wi}n

i=1) and Weighted AB Inequality). Consider any random mapping S : Rd ×
· · · × Rd × Ω → Rd, which we will call “sampling”, such that E [S(a1, . . . , an; ω)] = 1

n

∑n
i=1 ai for all
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a1, . . . , an ∈ Rd, and there exist A, B ≥ 0 and weights (w1, . . . , wn) ∈ Sn such that

E
[∥∥∥∥S(a1, . . . , an; ω) − 1

n

n∑
i=1

ai

∥∥∥∥2
]

≤ A
n

n∑
i=1

1
nwi

∥ai∥2 − B

∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥2
, (2)

for all a1, . . . , an ∈ Rd. The collection of such samplings will denote as S(A, B, {wi}n
i=1).

For simplicity, we denote S ({ai}n
i=1) := S(a1, . . . , an) := S(a1, . . . , an; ω). The main purpose of a sampling

S ∈ S(A, B, {wi}n
i=1) is to estimate the mean 1

n

∑n
i=1 ai using some random subsets (possibly containing

some elements more than once) of the set {a1, . . . , an}. We refer to Table 1, where we provide examples of
samplings that satisfy this definition. One of the simplest examples is the sampling

S(a1, . . . , an; ω) = aχ, (3)

where χ ∈ [n] is uniformly sampled from the set [n] (the Uniform With Replacement sampling with τ = 1
from Table 1).

We now define the cardinality |S| of a sampling S ∈ S(A, B, {wi}n
i=1).

Definition 2 (Cardinality of a Sampling). Let us take S ∈ S(A, B, {wi}n
i=1), and define the function

Sω(a1, . . . , an) : Rd × · · · × Rd → Rd such that Sω(a1, . . . , an) := S(a1, . . . , an; ω). If the function
Sω(a1, . . . , an) depends only on a subset A(ω) of the arguments (a1, . . . , an), where A(ω) : Ω → 2{a1,...,an},
we define |S| := E [|A(ω)|] .

In terms of our problem (1), the cardinality of a sampling represents the number of the gradients ∇fi that a
sampling calculates in each draw. Note that it can be easily calculated (see Table 1 for details). In the case
of (3), one can see that |S| = 1.

Definition 1 is most closely related to two independent works: (Horváth & Richtárik, 2019) and (Szlendak
et al., 2022). Horváth & Richtárik (2019) analyzed several non-optimal SGD methods for “arbitrary samplings”;
these are random set-valued mappings S with values being the subsets of [n]. The distribution of a such a
sampling is uniquely determined by assigning probabilities to all 2n subsets of [n]. In particular, they consider
the samplings S(a1, . . . , an) = 1

n

∑
i∈S

ai

pi
, pi := Prob(i ∈ S), |S| = |S|, some A ≥ 0, w1, . . . , wn ≥ 0 and

B = 0. Our new set S(A, B, {wi}n
i=1) includes these samplings. Recently, Szlendak et al. (2022) studied a

similar inequality, but in the context of communication-efficient distributed training with randomized gradient
compression operators. They explicitly set out to study correlated compressors, and for this reason introduced
the second term in the right hand side; i.e., they considered the possibility of B being nonzero, as in this way
they obtain a tighter inequality, which they can use in their analysis. However, their inequality only involves
uniform weights {wi}. See Table 1 for an overview of several samplings and the values A, B and {wi} that
belong to S(A, B, {wi}n

i=1) from Definition 1. Our Definition 1 offers the tightest known way to control of the
variance of the sampling estimator, and our analysis can take advantage of it.

2.2 Sampling-dependent smoothness constants

We now define two smoothness constants that depend on the weights {wi}n
i=1 of a sampling S and on the

functions fi.

Definition 3. Given a sampling S ∈ S(A, B, {wi}n
i=1), let L+,w be a constant for which

1
n

n∑
i=1

1
nwi

∥∇fi(x) − ∇fi(y)∥2 ≤ L2
+,w ∥x − y∥2

, (4)

for all x, y ∈ Rd. For (w1, . . . , wn) = (1/n, . . . , 1/n), we define L+ := L+,w.

Definition 4. Given a sampling S ∈ S(A, B, {wi}n
i=1), let L±,w be a constant for which

1
n

n∑
i=1

1
nwi

∥∇fi(x) − ∇fi(y)∥2 − ∥∇f(x) − ∇f(y)∥2 ≤ L2
±,w ∥x − y∥2

, ∀x, y ∈ Rd. (5)

For (w1, . . . , wn) = (1/n, . . . , 1/n), we define L± := L±,w.
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Table 2: The complexity of methods and samplings from Table 1 and Sec 4.

Sampling scheme Complexity Comment

Independent (Horváth & Richtárik, 2019) Θ

(
n +

n2/3
(

1
n

∑n

i=1
Li

)
ε

)
SVRG method

pi ∝ Li

Uniform With Replacement (Li et al., 2021) Θ
(

n +
√

nL+
ε

)
—

Uniform With Replacement (new) Θ
(

n + max{
√

nL±,L−}
ε

)
—

Importance Θ

(
n +

√
n

(
1
n

∑n

i=1
Li

)
ε

)
qi = Li∑

i=1
Li

Stratified Θ

(
n +

max
{√

n

√
1
g

∑g

i=1
L2

i,±,gL−
}

ε

) The functions fi

are splitted into g groups

Notation: n = # of data points; ε = error tolerance; L−, Li, L±, L+ and Li,± are smoothness constants such that
L− ≤ 1

n

∑n

i=1
Li, L− ≤ L+ and L± ≤ L+; g = # of groups in the Stratified sampling.

One can interpret Definition 3 as weighted mean-squared smoothness property (Arjevani et al., 2019), and
Definition 4 as weighted Hessian variance (Szlendak et al., 2022) that captures the similarity between the
functions fi. The constants L+,w and L±,w help us better understand the structure of the optimization
problem (1) in connection with a particular choice of a sampling scheme. Note that Definitions 3, 4 and
Definition 1 are connected with the weights {wi}n

i=1.

The next result states that L2
+,w and L2

±,w are well-defined and finite provided the functions fi are Li–smooth
for all i ∈ [n].
Theorem 5. If Assumption 3 holds, then L2

+,w = L2
±,w = 1

n

∑n
i=1

1
nwi

L2
i satisfy Def. 3 and 4.

Indeed, from Assumption 3 and the inequality ∥∇f(x) − ∇f(y)∥2 ≥ 0 we get

1
n

n∑
i=1

1
nwi

∥∇fi(x) − ∇fi(y)∥2 − ∥∇f(x) − ∇f(y)∥2 ≤
(

1
n

n∑
i=1

1
nwi

L2
i

)
∥x − y∥2

,

thus we can take L2
±,w = 1

n

∑n
i=1

1
nwi

L2
i . The proof for L2

+,w is the same.

From the proof, one can see that we ignore ∥∇f(x) − ∇f(y)∥2 when estimating L2
±,w. However, by doing

that, the obtained result is not tight.

2.3 Clarifications and Discussion

In the literature, including (Li et al., 2021), it is usually considered that one of the following inequalities
holds. For all i ∈ [n],

∥∇fi(x) − ∇fi(y)∥ ≤ Li ∥x − y∥ , ∀x, y ∈ Rd,

for some Li < ∞ (see Assumption 3). The inequality

1
n

n∑
i=1

∥∇fi(x) − ∇fi(y)∥2 ≤ L2
+ ∥x − y∥2

, ∀x, y ∈ Rd,

holds for some L+ < ∞. These inequalities are standard smoothness assumptions (the latter follows from
the former for some L2

+ ≤ 1
n

∑n
i=1 L2

i ). Under the last inequality, Li et al. (2021) get the theoretical bound
O
(
n + L+n1/2ε−1) that depend on L+.

i) We want to emphasize that we also only consider Assumption 3. However, further we show that our
theoretical bounds depend on L±,w (and L+,w) instead of L+, and we provide the examples when L±,w (and
L+,w) are much smaller than L+ (see Table 2). We get this improvement without additional assumptions on
the problem (1).
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ii) The weights wi depend only on a choice of a sampling, and play an essential role in the Importance
sampling, for instance. In Sec 3.3, we show that if we take the Importance sampling with qi = Li/

∑n
i=1 Li

for all i ∈ [n], then wi = Li/
∑n

i=1 Li for all i ∈ [n], and it leads to the fact that L±,w ≤ L+,w ≤ 1
n

∑n
i=1 Li.

One can see that a good choice of a sampling can lead to good weights wi such that the inequalities in
Definitions 3 and 4 are satisfied with small L±,w and L+,w. It holds without additional assumptions about
our problem.

3 A General and Refined Theoretical Analysis of PAGE

In the Algorithm 1, we provide the description of the PAGE method. The description of the method can be
found in (Li et al., 2021, Sec. 2.1) The choice of PAGE as the base method is driven by the simplicity of the
proof in the original paper. However, we believe that other methods, including SPIDER and SARAH, can also
admit samplings from Definition 1.

Algorithm 1 PAGE

1: Input: initial point x0 ∈ Rd, stepsize γ > 0, probability p ∈ (0, 1]
2: g0 = ∇f(x0)
3: for t = 0, 1, . . . , T do
4: xt+1 = xt − γgt

5: Generate a random sampling function St

6: gt+1 =
{

∇f(xt+1) with probability p

gt + St
(
{∇fi(xt+1) − ∇fi(xt)}n

i=1
)

with probability 1 − p

7: end for

In this section, we provide theoretical results for Algorithm 1. Let us define ∆0 := f(x0) − f∗.

Theorem 6. Suppose that Assumptions 1, 2, 3 hold and the samplings St ∈ S(A, B, {wi}n
i=1).

Then Algorithm 1 (PAGE) has the convergence rate E
[∥∥∇f(x̂T )

∥∥2
]

≤ 2∆0
γT , where γ ≤(

L− +
√

1−p
p

(
(A − B) L2

+,w + BL2
±,w

))−1
.

To reach an ε-stationary point, it is enough to do

T := 2∆0
ε

(
L− +

√
1−p

p

(
(A − B) L2

+,w + BL2
±,w

))
(6)

iterations of Algorithm 1. To deduce the gradient complexity, we provide the following corollary.
Corollary 1. Suppose that the assumptions of Thm 6 hold. Let us take p = |S|

|S|+n . Then the complexity (the
expected number of gradient calculations ∇fi) of Algorithm 1 equals

N := Θ (n + |S|T ) = Θ
(

n + ∆0
ε

|S|
(

L− +
√

n
|S|

(
(A − B) L2

+,w + BL2
±,w

)))
.

Proof. At each iteration, the expected # gradient calculations equals pn + (1 − p)|S| ≤ 2|S|. Thus the total
expected number of gradient calculations equals n + 2|S|T to get an ε-stationary point.

The original result from (Li et al., 2021) states that the complexity of PAGE with batch size τ is

Norig := Θ
(

n + ∆0

ε
τ

(
L− +

√
n

τ
L+

))
≥ Θ

(
n + ∆0

√
nL+

ε

)
(7)

for all τ ∈ {1, 2, . . . , n}.

In the following examples, we will see that Cor 1 can guarantee better complexities than (7). These
improvements we get using a refined and tighter analysis of the gradient estimator gt+1 in Sec D. In particular,
we provide a better upper bound to the variance E

[∥∥gt+1 − ∇f(xt+1)
∥∥2
]

, which makes our dependencies on
smoothness constants tighter.
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3.1 Uniform With Replacement sampling

Let us do a sanity check and substitute the parameters of the sampling that the original paper uses. We take
the Uniform With Replacement sampling (see Sec E.3) with batch size τ (note that τ ≥ |S|), A = B = 1/τ and
wi = 1/n for all i ∈ [n] (see Table 1) and get the complexity Nuniform = Θ

(
n + ∆0

ε τ
(

L− +
√

n
τ L±

))
for all τ ∈ {1, 2, . . . , n}. Next, let us fix τ ≤ max

{√
nL±
L−

, 1
}

, and, finally, obtain that Nuniform =

Θ
(

n + ∆0 max{
√

nL±,L−}
ε

)
. Let us compare it with (7). With the same sampling, our analysis provides

better complexity; indeed, note that max{
√

nL±, L−} ≤
√

nL+ (see Lemma 2 in Szlendak et al. (2022)).
Moreover, Szlendak et al. (2022) provides examples of the optimization problems when L± is small and L+ is
large, so the difference can be arbitrary large.

Note that the original analysis of PAGE (Li et al., 2021) is also based on Assumptions 1, 2 and 3, and we do
not have additional assumptions on the structure of the problem (1). We have better theoretical guarantees
in the same setting.

3.2 Nice sampling (= Uniform Without Replacement) sampling

Next, we consider the Nice sampling (see Sec E.1) and get that the complexity Nnice =
Θ
(

n + ∆0
ε τ
(

L− + 1
τ

√
n(n−τ)
(n−1) L±

))
. Unlike the Uniform With Replacement sampling, for ε small enough,

the Nice sampling recovers the complexity of GD for τ = n, which is equal to Θ
(

∆0nL−
ε

)
.

3.3 Importance sampling

Let us consider the Importance sampling (see Sec E.3) that justifies the introduction of the weights wi. We
can get the complexity

Nimportance = Θ
(

n + ∆0

ε
τ

(
L− +

√
n

τ
L±,w

))
≤ Θ

(
n + ∆0 max{

√
nL±,w, L−}
ε

)
for τ ≤ max

{√
nL±,w

L−
, 1
}

. Now, we take qi = wi = Li∑
i=1

Li
and use the results from Sec F to obtain

Nimportance = Θ
(

n + ∆0
√

n( 1
n

∑n

i=1
Li)

ε

)
(See Sec G). In Example 2, we consider the optimization task where

1
n

∑n
i=1 Li is

√
n times smaller than L+. Thus the complexity Nimportance can be at least

√
n times smaller

that the complexity Norig. However, we do not guarantee that Nimportance ≤ Norig in general.

3.4 The power of B > 0

This is the first analysis of optimal SGD, which uses B > 0. In all previous examples, the constant A = B > 0.
If A = B, then the complexity

N = Θ
(

n + ∆0

ε
|S|
(

L− +
√

n

|S|
BL2

±,w

))
,

thus the complexity N does not depend on L2
+,w, which greater of equal to L2

±,w. It can even be possible
that L2

±,w is close or equal to zero, while L2
+,w is arbitrary large. Unlike Definition 3 of L2

+,w,, Definition 4 of
L2

±,w captures the variance of gradient differences. Imagine that (w1, . . . , wn) = (1/n, . . . , 1/n) and fi = f for
all i ∈ [n], then the the left-hand side of (5) equals zero, and we can take L2

±,w = 0. In general, we can not
take L2

+,w = 0 in (4) if fi = f for all i ∈ [n].

3.5 Analysis under PŁ Condition

The previous results can be extended to the optimization problems that satisfy the Polyak-Łojasiewicz
condition. Under this assumption, Algorithm 1 enjoys a linear convergence rate.
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Assumption 4. There exists µ > 0 such that the function f satisfy (Polyak-Łojasiewicz) PŁ-condition:

∥∇f(x)∥2 ≥ 2µ(f(x) − f∗) ∀x ∈ R,

where f∗ = infx∈Rd f(x) > −∞.

Using Assumption 4, we can improve the convergence rate of PAGE.
Theorem 7. Suppose that Assumptions 1, 2, 3, 4 and the samplings St ∈ S(A, B, {wi}n

i=1).
Then Algorithm 1 (PAGE) has the convergence rate E

[
f(xT )

]
− f∗ ≤ (1 − γµ)T ∆0, where γ ≤

min
{(

L− +
√

2(1−p)
p

(
(A − B) L2

+,w + BL2
±,w

))−1
, p

2µ

}
.

Algorithm 2 PAGE with composition of samplings
1: Input: initial point x0 ∈ Rd, stepsize γ > 0, probability p ∈ (0, 1], g0 = ∇f(x0)
2: for t = 0, 1, . . . , T do
3: xt+1 = xt − γgt

4: ct+1 =
{

1 with probability p

0 with probability 1 − p

5: if ct+1 = 1 then
6: gt+1 = ∇f(xt+1)

/* FL Interpretation: With the small probability, calculate the full gradients ∇fi on the nodes and
collect them */

7: else
8: Generate samplings St

i for all i ∈ [n]
9: ht+1

i = St
i

(
{∇fij(xt+1) − ∇fij(xt)}mi

j=1
)

for all i ∈ [n]
/* FL Interpretation: Calculate the mini-batches ht+1

i on the nodes */
10: Generate a sampling St and set gt+1 = gt + St

(
{ht+1

i }n
i=1
)

/* FL Interpretation: Collect ht+1
i only from the sampled nodes */

11: end if
12: end for

4 Composition of Samplings: Application to Federated Learning

In Sec 3, we analyze the PAGE method with samplings that belong to Definition 1. Now, let us assume that
the functions fi have the finite-sum form, i.e., fi(x) := 1

mi

∑mi

j=1 fij(x), thus we an optimization problem

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

1
mi

mi∑
j=1

fij(x)
}

, (8)

Another way to get the problem is to assume that we split the functions fi into groups of sizes mi. Let us
consider (8) instead of (1).

The problem (8) occurs in many applications, including distributed optimization and federated learning
(Konečný et al., 2016; McMahan et al., 2017). In federated learning, many devices and machines (nodes)
store local datasets that they do not share with other nodes. The local datasets are represented by functions
fi, and all nodes solve the common optimization problem (8). Due to privacy reasons and communication
bottlenecks (Kairouz et al., 2021), it is infeasible to store and compute the functions fi locally in one machine.

In general, when we solve (1) in one machine, we have the freedom of choosing a sampling S for the functions
fi, which we have shown in Sec 3. However, in federated learning, a sampling of nodes or the functions fi is
dictated by hardware limits or network quality (Kairouz et al., 2021). Still, each ith node can choose sampling
Si to sample the functions fij . As a result, we have a composition of the sampling S and the samplings Si

(see Algorithm 2).
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Assumption 5. For all j ∈ [mi], i ∈ [n], there exists a Lipschitz constant Lij such that ∥∇fij(x) − ∇fij(y)∥ ≤
Lij ∥x − y∥ for all x, y ∈ Rd.

We now introduce the counterpart of Definitions 3 and 4.
Definition 8. For all i ∈ [n] and any sampling Si ∈ S(Ai, Bi, {wij}mi

j=1), define constant Li,+,wi
such that

1
mi

mi∑
j=1

1
miwij

∥∇fij(x) − ∇fij(y)∥2 ≤ L2
i,+,wi

∥x − y∥2

for all x, y ∈ Rd.

Definition 9. For all i ∈ [n] and any sampling Si ∈ S(Ai, Bi, {wij}mi
j=1), define constant Li,±,wi such that

1
mi

mi∑
j=1

1
miwij

∥∇fij(x) − ∇fij(y)∥2 − ∥∇fi(x) − ∇fi(y)∥2 ≤ L2
i,±,wi

∥x − y∥2

for all x, y ∈ Rd.

Let us provide the counterpart of Thm 6 for Algorithm 2.
Theorem 10. Suppose that Assumptions 1, 2, 3, 5 hold and the samplings St ∈ S(A, B, {wi}n

i=1) and the
samplings St

i ∈ S(Ai, Bi, {wij}mi
j=1) for all i ∈ [n]. Moreover, B ≤ 1. Then Algorithm 2 has the convergence

rate E
[∥∥∇f(x̂T )

∥∥2
]

≤ 2∆0
γT , where γ ≤

(
L− +

√
1−p

p (Ll + Lg)
)−1

,

Ll := 1
n

n∑
i=1

(
A

nwi
+ (1 − B)

n

)
((Ai − Bi)L2

i,+,wi
+ BiL

2
i,±,wi

),

and
Lg := (A − B)L2

+,w + BL2
±,w.

The obtained theorem provides a general framework that helps analyze the convergence rates of the composition
of samplings that belong to Definition 1. We discuss the obtained result in different contexts.

4.1 Federated Learning

For simplicity, let us assume that the samplings St and St
i are Uniform With Replacement samplings with

batch sizes τ and τi for all i ∈ n, accordingly, then to get ε-stationary point, it is enough to do

T := Θ
(

∆0
ε

(
L− +

√
1−p
pτ

(
1
n

∑n
i=1

1
τi

L2
i,± + L2

±

)))
iterations. Note that T ≥ Θ

(
∆0
ε

(
L− +

√
1−p
pτ L2

±

))
for all τi ≥ 1 for all i ∈ [n]. It means that after some

point, there is no benefit in increasing batch sizes τi. In order to balance 1
n

∑n
i=1

1
τi

L2
i,± and L2

±, one can
take τi = Θ

(
L2

i,±/L2
±

)
. The constant L2

i,± captures the intra-variance inside ith node, while L2
± captures the

inter-variance between nodes. If the intra-variance is small with respect to the inter-variance, then our
theory suggests taking small batch sizes and vice versa.

4.2 Stratified sampling

Let us provide another example that is closely related to (Zhao & Zhang, 2014). Let us consider (1) and use a
variation of the Stratified sampling (Zhao & Zhang, 2014): we split the functions fi into g = n/m groups, where
m is the number of functions in each group. Thus we get the problem (8) with f(x) = 1

g

∑g
i=1

1
m

∑m
j=1 fij(x).

Let us assume that we always sample all groups, thus A = B = 0, and the sampling St
i are Nice samplings

with batch sizes τ1 for all i ∈ [n]. Applying Thm 10, we get the convergence rate

Tgroup := Θ
(

∆0
ε

(
L− +

√
1−p
pgτ1

(
1
g

∑g
i=1 L2

i,±

)))
.
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At each iteration, the algorithm calculates gτ1 gradients, thus we should take p = gτ1
gτ1+n to get

the complexity Ngroup := Θ (n + gτ1T ) = Θ
(

n + ∆0
ε

(
gτ1L− +

√
n
√

1
g

∑g
i=1 L2

i,±

))
. Let us take τ1 ≤

max
{√

n
√

1
g

∑g

i=1
L2

i,±
gL−

, 1
}

to obtain the complexity Ngroup = Θ
(

n +
∆0 max

{√
n
√

1
g

∑g

i=1
L2

i,±,gL−
}

ε

)
. Com-

paring the complexity Ngroup with the complexity Nuniform from Sec 3, one can see that if split the functions
fi in a “right way”, such that Li,± is small for i ∈ [n] (see Example 3), then we can get at least

√
n/√

g times
improvement with the Stratified sampling. However, we can be “unlucky” with a splitting of the functions;
thus, we do not guarantee improvement in general.

5 Experiments
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Figure 1: Comparison of samplings and methods on quadratic optimization tasks with various L±.

We now provide experiments1 with synthetic quadratic optimization tasks, where the functions fi, in general,
are nonconvex quadratic functions. Note that our goal here is to check whether the dependencies that our
theory predicts are correct for the problem (1). The procedures that generate synthetic quadratic optimization
tasks give us control over the choice of smoothness constants. All parameters, including the step sizes, are
chosen as suggested by the corresponding theory. In the plots, we represent the relation between the norm of
gradients and the number of gradient calculations ∇fi.

5.1 Quadratic optimization tasks with various Hessian Variances L±

Using Algorithm 3 (see Appendix), we generated various quadratic optimization tasks with different smoothness
constants L± ∈ [0, 1.0] and fixed L− ≈ 1.0 (see Fig. 1). We choose d = 10, n = 1000, regularization λ = 0.001,
and the noise scale s ∈ {0, 0.1, 0.5, 1}. According to Sec 3 and Table 2, the gradient complexity of original
PAGE method (“Vanilla PAGE” in Fig. 1) is proportional to L+. While the gradient complexity of the
new analysis with the Uniform With Replacement sampling (“Uniform With Replacement” in Fig. 1) is
proportional to L±, which is always less or equal L+. In Fig. 1, one can see that the smaller L± with respect
to L+, the better the performance of “Uniform With Replacement.” Moreover, we provide experiments with
the Importance sampling (“Importance” in Fig. 1) with qi = Li∑n

i=1
Li

for all i ∈ [n]. This sampling has the
best performance in all regimes.

5.2 Quadratic optimization tasks with various local Lipschitz constatns Li

Using Algorithm 4 (see Appendix), we synthesized various quadratic optimization tasks with different
smoothness constants Li (see Fig. 2). We choose d = 10, n = 1000, the regularization λ = 0.001, and the
noise scale s ∈ {0, 0.1, 0.5, 10.0}. We generated tasks in such way that the difference between maxi Li and
mini Li increases. First, one can see that the Uniform With Replacement sampling with the new analysis
(“Uniform With Replacement” in Fig. 2) has better performance even in the cases of significant variations
of Li. Next, we see the stability of the Importance sampling (“Importance” in Fig. 2) with respect to this
variations.

1Our code: https://github.com/mysteryresearcher/sampling-in-optimal-sgd
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Figure 2: Comparison of samplings and methods on quadratic optimization tasks with various Li.
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Figure 3: Comparison of samplings on nonconvex machine learning tasks with LIBSVM datasets.

5.3 Nonconvex classification problem with LIBSVM datasets

We now solve nonconvex machine learning tasks and compare samplings on LIBSVM datasets (Chang & Lin,
2011) (see details in Sec A.2). As in previous sections, PAGE with the Importance sampling performs better
in Fig. 3, especially in the australian dataset where the variation of Li is large.
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A Extra Experiments and Details

A.1 Quadratic optimization tasks with various batch sizes.

In this section, we consider the same setup as in Sec 5.1. In Figure 4, we fix L±, and show that the Importance
sampling has better convergence rates with different batch sizes. Note that with large batches, the competitors
reduce to the GD method, and the difference is not significant.
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Figure 4: Comparison of samplings and methods with various batch sizes.

A.2 Details on experiments with LIBSVM datasets

We compare the samplings on practical machine learnings with LIBSVM datasets (Chang & Lin, 2011) (under
the 3-clause BSD license). Parameters of Algorithm 1 are chosen as suggested in Thm 6 and Cor 1. We take
the parameters for Uniform With Replacement and Importance samplings from Table 1 with qi = Li∑n

i=1
Li

.

We consider the logistic regression task with a nonconvex regularization (Wang et al., 2019)

f(x1, x2) := 1
n

n∑
i=1

− log
(

exp
(
a⊤

i xyi

)∑
y∈{1,2} exp

(
a⊤

i xy

))+ λ
∑

y∈{1,2}

d∑
k=1

{xy}2
k

1 + {xy}2
k

 → min
x1,x2∈Rd

,

where {·}k is an indexing operation, ai ∈ Rd is the feature of a ith sample, yi ∈ {1, 2} is the label of a ith

sample, constant λ = 0.001. We fix batch size τ = 1 and take w8a dataset (dimension d = 300, number of
samples n = 49,749) and australian dataset (dimension d = 14, number of samples n = 690) from LIBSVM.
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(a) τclients = 1, #clients n = 10
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(b) τclients = 3, #clients n = 10
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(c) τclients = 6, #clients n = 10
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(d) τclients = 9, #clients n = 10

Figure 6: Comparison of methods on australian dataset from LIBSVM

For the logistic regression, the Lipschitz constants Li can be estimated. The distribution of Lipschitz constants
Li across datapoints for that two datasets is presented in Fig. 5. We use Thm 5 to obtain L2

+,w and L2
±,w.

A.3 Federated learning experiments with LIBSVM dataset

In this experiment2, we compare the Uniform With Replacement sampling and the Importance sampling on
the logistic regression task from Sec. A.2 in a distributed environment. The training of the models is carried
on australian dataset from LIBSVM. The dataset is reshuffled with uniform distribution, and then it is split
across n = 10 clients. In all experiments, we use Algorithm 2 with theoretical stepsizes according to Theorem
10. We take the parameters of the Uniform With Replacement and Importance samplings from Table 1 with
qi = Li∑n

i=1
Li

.

According to Algorithm 2, we have the samplings St that sample clients, and the samplings St
i that sample

data from the local datasets of clients. Algorithm 2 allows mixed sampling strategies that satisfy Assumption 1.
For simplicity, we consider that the samplings St and St

i are of the same type.

For the logistic regression, the Lipschitz constants Li and Lij of the gradients of functions fi(x) and fij(x)
can be estimated. As in Sec A.2, we use Thm 5 to obtain the constants L2

i,+,w, L2
i,±,w, L2

+,w and L2
±,w. The

results of experiments are provided in Fig. 6. We denote by τpoints the batch size of the samplings St
i for all

i ∈ [n], and by τclients the batch size of the sampling St. The number of gradient calculations in Fig. 6 stands
for the total number of gradient calculations in all clients.

We demonstrate results for different values of the batch sizes τclients and τpoints. As in previous experiments,
the Importance sampling has better empirical performance than the Uniform With Replacement sampling. In
addition to it, we observe that plots with small batch sizes τpoints converge faster.

2Our code: https://github.com/mysteryresearcher/page_ab_fl_experiment_a3
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A.4 Computing environment

The code was written in Python 3.6.8 using PyTorch 1.9 (Paszke et al., 2019) and optimization research
simulator FL_PyTorch (Burlachenko et al., 2021). The distributed environment was emulated on a machine
with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz and 64 cores.
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B Auxiliary fact: Variance Decomposition

We use the following auxiliary fact in our proofs: Let us take a random vector ξ ∈ Rd, then

E
[
∥ξ∥2

]
= E

[
∥ξ − E [ξ]∥2

]
+ ∥E [ξ]∥2

. (9)

C Examples of Optimization Problems

Example 1. For simplicity, let us assume that n is even. Let us consider the optimization problem (1) with
fi(x) = a

2 x2 + b
2 x2 for i ∈ {1, · · · , n/2} and fi(x) = − a

2 x2 + b
2 x2 for i ∈ {n/2 + 1, · · · , n}, where x ∈ R and

b ≥ 0. Then f(x) = b
2 x2 and

L2
− = sup

x ̸=y

∥∇f(x) − ∇f(y)∥2

∥x − y∥2 = b2.

Moreover,

L2
+ = sup

x̸=y

1
n

∑n
i=1 ∥∇fi(x) − ∇fi(y)∥2

∥x − y∥2 = 1
2
(
(a + b)2 + (a − b)2) ,

and we can take a arbitrary large.
Example 2. Let us assume that n ≥ 2 and consider the optimization problem (1) with f1(x) = b

2 x2 and
fi(x) = 0 for i ∈ {2, · · · , n}, where x ∈ R and b ≥ 0. Then f(x) = b

2n x2,

L− = sup
x̸=y

∥∇f(x) − ∇f(y)∥
∥x − y∥

= b

n
,

1
n

n∑
i=1

Li = 1
n

sup
x ̸=y

∥∇f1(x) − ∇f1(y)∥2

∥x − y∥2 = b

n
,

and

L+ =

√
sup
x ̸=y

1
n

∑n
i=1 ∥∇fi(x) − ∇fi(y)∥2

∥x − y∥2 = b√
n

.

Example 3. Let us consider the optimization problem (8) with f(x) = 1
g

∑g
i=1

1
m

∑m
j=1 fij(x) and fij(x) =

bi

2 x2 for all i ∈ [g] and j ∈ [m], where x ∈ R and b1 ≥ 0 and bi = 0 for all i ∈ {2, . . . , g}. Then f(x) = b1
2g x2,

L− = sup
x ̸=y

∥∇f(x) − ∇f(y)∥
∥x − y∥

= b1

g
,

L2
± = sup

x ̸=y

1
gm

∑g
i=1
∑m

j=1 ∥∇fij(x) − ∇fij(y)∥2 − ∥∇f(x) − ∇f(y)∥2

∥x − y∥2 =
(

1
g

− 1
g2

)
b2

1,

and

L2
i,± = sup

x ̸=y

1
m

∑n
j=m ∥∇fij(x) − ∇fij(y)∥2 − ∥∇fi(x) − ∇fi(y)∥2

∥x − y∥2 = 0 ∀i ∈ [n].

Substituting the smoothness constants to the complexity Nuniform from Sec 3 and Nuniform from Sec 4, one
can show that

Nuniform = Θ
(

n + ∆0 max{
√

nL±, L−}
ε

)
= Θ

(
n + ∆0

√
nb1

ε
√

g

)
and

Ngroup = Θ

n +
∆0 max

{√
n
√

1
g

∑g
i=1 L2

i,±, gL−

}
ε

 = Θ
(

n + ∆0b1

ε

)
.

The complexity Ngroup is
√

n/√
g times better than the complexity Nuniform.
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D Missing Proofs

Lemma 1. Suppose that Assumption 2 holds and let xt+1 = xt − γgt. Then for any gt ∈ Rd and γ > 0, we
have

f(xt+1) ≤ f(xt) − γ

2
∥∥∇f(xt)

∥∥2 −
(

1
2γ

− L−

2

)∥∥xt+1 − xt
∥∥2 + γ

2
∥∥gt − ∇f(xt)

∥∥2
. (10)

Proof. Using Assumption 2, we have

f(xt+1) ≤ f(xt) +
〈
∇f(xt), xt+1 − xt

〉
+ L−

2
∥∥xt+1 − xt

∥∥2

= f(xt) − γ
〈
∇f(xt), gt

〉
+ L−

2
∥∥xt+1 − xt

∥∥2
.

Next, due to − ⟨x, y⟩ = 1
2 ∥x − y∥2 − 1

2 ∥x∥2 − 1
2 ∥y∥2

, we obtain

f(xt+1) ≤ f(xt) − γ

2
∥∥∇f(xt)

∥∥2 −
(

1
2γ

− L−

2

)∥∥xt+1 − xt
∥∥2 + γ

2
∥∥gt − ∇f(xt)

∥∥2
.

Theorem 6. Suppose that Assumptions 1, 2, 3 hold and the samplings St ∈ S(A, B, {wi}n
i=1).

Then Algorithm 1 (PAGE) has the convergence rate E
[∥∥∇f(x̂T )

∥∥2
]

≤ 2∆0
γT , where γ ≤(

L− +
√

1−p
p

(
(A − B) L2

+,w + BL2
±,w

))−1
.

Proof. We start with the estimation of the variance of the noise:

E
[∥∥gt+1 − ∇f(xt+1)

∥∥2
]

= (1 − p)E
[∥∥gt + St

(
{∇fi(xt+1) − ∇fi(xt)}n

i=1
)

− ∇f(xt+1)
∥∥2
]

= (1 − p)
∥∥St

(
{∇fi(xt+1) − ∇fi(xt)}n

i=1
)

−
(
∇f(xt+1) − ∇f(xt)

)∥∥2 + (1 − p)
∥∥gt − ∇f(xt)

∥∥2
,

where we used the unbiasedness of the sampling. Using Definition 1, we have

E
[∥∥gt+1 − ∇f(xt+1)

∥∥2
]

≤ (1 − p)
(

A

n∑
i=1

1
n2wi

∥∥∇fi(xt+1) − ∇fi(xt)
∥∥2 − B

∥∥∇f(xt+1) − ∇f(xt)
∥∥2
)

+ (1 − p)
∥∥gt − ∇f(xt)

∥∥2
.

Using the definition of L+,w and L±,w, we get

E
[∥∥gt+1 − ∇f(xt+1)

∥∥2
]

≤ (1 − p)
(

A

n∑
i=1

1
n2wi

∥∥∇fi(xt+1) − ∇fi(xt)
∥∥2 − B

∥∥∇f(xt+1) − ∇f(xt)
∥∥2
)

+ (1 − p)
∥∥gt − ∇f(xt)

∥∥2

= (1 − p)
(

(A − B)
(

n∑
i=1

1
n2wi

∥∥∇fi(xt+1) − ∇fi(xt)
∥∥2
)

+ B

(
n∑

i=1

1
n2wi

∥∥∇fi(xt+1) − ∇fi(xt)
∥∥2 −

∥∥∇f(xt+1) − ∇f(xt)
∥∥2
))

+ (1 − p)
∥∥gt − ∇f(xt)

∥∥2

≤ (1 − p)
(
(A − B) L2

+,w + BL2
±,w

) ∥∥xt+1 − xt
∥∥2 + (1 − p)

∥∥gt − ∇f(xt)
∥∥2

.

(11)
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We now continue the proof using Lemma 1. We add (10) with γ
2p × (11), and take expectation to get

E
[
f(xt+1) − f∗ + γ

2p

∥∥gt+1 − ∇f(xt+1)
∥∥2
]

≤ E
[
f
(
xt
)

− f∗ − γ

2
∥∥∇f

(
xt
)∥∥2 −

(
1

2γ
− L−

2

)∥∥xt+1 − xt
∥∥2 + γ

2
∥∥gt − ∇f

(
xt
)∥∥2
]

+ γ

2p
E
[
(1 − p)

∥∥gt − ∇f
(
xt
)∥∥2 + (1 − p)

(
(A − B) L2

+,w + BL2
±,w

) ∥∥xt+1 − xt
∥∥2
]

= E
[
f
(
xt
)

− f∗ + γ

2p

∥∥gt − ∇f
(
xt
)∥∥2 − γ

2
∥∥∇f

(
xt
)∥∥2

−
(

1
2γ

− L−

2 − (1 − p)γ
2p

(
(A − B) L2

+,w + BL2
±,w

))∥∥xt+1 − xt
∥∥2
]

≤ E
[
f
(
xt
)

− f∗ + γ

2p

∥∥gt − ∇f
(
xt
)∥∥2 − γ

2
∥∥∇f

(
xt
)∥∥2
]

,

(12)

where the last inequality holds due to 1
2γ − L−

2 − (1−p)γ
2p

(
(A − B) L2

+,w + BL2
±,w

)
≥ 0 by choosing stepsize

γ ≤
(

L− +
√

1 − p

p

(
(A − B) L2

+,w + BL2
±,w

))−1

.

Now, if we define Φt := f (xt) − f∗ + γ
2p ∥gt − ∇f (xt)∥2, then (12) can be written in the form

E [Φt+1] ≤ E [Φt] − γ

2 E
[∥∥∇f

(
xt
)∥∥2
]

.

Summing up from t = 0 to T − 1, we get

E [ΦT ] ≤ E [Φ0] − γ

2

T −1∑
t=0

E
[∥∥∇f

(
xt
)∥∥2
]

.

Then according to the output of the algorithm, i.e., x̂T is randomly chosen from {xt}t∈[T ] and Φ0 =

f
(
x0)− f∗ + γ

2p ∥g0− ∇f
(
x0) ∥2 = f

(
x0)− f∗ def= ∆0, we have

E
[
∥∇f (x̂T )∥2

]
≤ 2∆0

γT
.

Theorem 7. Suppose that Assumptions 1, 2, 3, 4 and the samplings St ∈ S(A, B, {wi}n
i=1).

Then Algorithm 1 (PAGE) has the convergence rate E
[
f(xT )

]
− f∗ ≤ (1 − γµ)T ∆0, where γ ≤

min
{(

L− +
√

2(1−p)
p

(
(A − B) L2

+,w + BL2
±,w

))−1
, p

2µ

}
.

Proof. From the proof of Thm 6, we know that

E
[∥∥gt+1 − ∇f(xt+1)

∥∥2
]

≤ (1 − p)
(
(A − B) L2

+,w + BL2
±,w

) ∥∥xt+1 − xt
∥∥2 + (1 − p)

∥∥gt − ∇f(xt)
∥∥2

. (13)
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Using Lemma 1, we add (10) with γ
p × (13), and take expectation to get

E
[
f(xt+1) − f∗ + γ

p

∥∥gt+1 − ∇f(xt+1)
∥∥2
]

≤ E
[
f
(
xt
)

− f∗ − γ

2
∥∥∇f

(
xt
)∥∥2 −

(
1

2γ
− L−

2

)∥∥xt+1 − xt
∥∥2 + γ

2
∥∥gt − ∇f

(
xt
)∥∥2
]

+ γ

p
E
[
(1 − p)

∥∥gt − ∇f
(
xt
)∥∥2 + (1 − p)

(
(A − B) L2

+,w + BL2
±,w

) ∥∥xt+1 − xt
∥∥2
]

= E
[
f
(
xt
)

− f∗ +
(

1 − p

2

) γ

p

∥∥gt − ∇f
(
xt
)∥∥2 − γ

2
∥∥∇f

(
xt
)∥∥2

−
(

1
2γ

− L−

2 − (1 − p)γ
p

(
(A − B) L2

+,w + BL2
±,w

))∥∥xt+1 − xt
∥∥2
]

≤ E
[
f
(
xt
)

− f∗ +
(

1 − p

2

) γ

p

∥∥gt − ∇f
(
xt
)∥∥2 − γ

2
∥∥∇f

(
xt
)∥∥2
]

,

where the last inequality holds due to 1
2γ − L−

2 − (1−p)γ
p

(
(A − B) L2

+,w + BL2
±,w

)
≥ 0 by choosing stepsize

γ ≤

(
L− +

√
2(1 − p)

p

(
(A − B) L2

+,w + BL2
±,w

))−1

.

Next, using Assumption 4 and γ ≤ p
2µ , we have

E
[
f(xt+1) − f∗ + γ

p

∥∥gt+1 − ∇f(xt+1)
∥∥2
]

≤ (1 − γµ) E
[
f
(
xt
)

− f∗ + γ

p

∥∥gt − ∇f
(
xt
)∥∥2
]

.

Unrolling the recursion and considering that g0 = ∇f(x0), we can complete the proof of theorem.

E Derivations of the Parameters for the Samplings

E.1 Nice sampling

Let S be a random subset uniformly chosen from [n] with a fixed cardinality τ . Let us fix a1, . . . , an ∈ Rd. A
sampling S(a1, . . . , an) := 1

n

∑
i∈S

ai

pi
is called the Nice sampling, where pi := Prob(i ∈ S).

Let us bound E
[∥∥S(a1, . . . , an) − 1

n

∑n
i=1 ai

∥∥2
]

and find parameters from Definition 1. Note that |S| = |S| =
τ. We introduce auxiliary random variables

χi :=
{

1 i ∈ S

0 otherwise.
.
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Due to pi = Prob (i ∈ S) = τ
n , we have

E

∥∥∥∥∥ 1
n

∑
i∈S

ai

pi

∥∥∥∥∥
2
 = E

∥∥∥∥∥1
τ

n∑
i=1

χiai

∥∥∥∥∥
2


= 1
τ2

n∑
i=1

E
[
∥χiai∥2

]
+ 1

τ2

∑
i ̸=j

E [⟨χiai, χjaj⟩]

= 1
τ2

n∑
i=1

E [χi] ∥ai∥2 + 1
τ2

∑
i ̸=j

E [⟨χi, χj⟩] ⟨ai, aj⟩

= 1
nτ

n∑
i=1

∥ai∥2 + τ − 1
n(n − 1)τ

∑
i ̸=j

⟨ai, aj⟩

= 1
nτ

n∑
i=1

∥ai∥2 + τ − 1
n(n − 1)τ

∥∥∥∥∥
n∑

i=1
ai

∥∥∥∥∥
2

−
n∑

i=1
∥ai∥2


= n − τ

τ(n − 1)
1
n

n∑
i=1

∥ai∥2 + τ − 1
n(n − 1)τ

∥∥∥∥∥
n∑

i=1
ai

∥∥∥∥∥
2

,

where we use E
[
χ2

i

]
= E [χi] = τ

n and E [χiχj ] = τ(τ−1)
n(n−1) , when i ̸= j.

Finally, we have

E

∥∥∥∥∥ 1
n

∑
i∈S

ai

pi
− 1

n

n∑
i=1

ai

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1
n

∑
i∈S

ai

pi

∥∥∥∥∥
2
−

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

= n − τ

τ(n − 1)
1
n

n∑
i=1

∥ai∥2 + τ − 1
n(n − 1)τ

∥∥∥∥∥
n∑

i=1
ai

∥∥∥∥∥
2

−

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

= n − τ

τ(n − 1)

 1
n

n∑
i=1

∥ai∥2 −

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2
 .

Thus we have A = B = n−τ
τ(n−1) and wi = 1

n for all i ∈ [n].

E.2 Independent sampling

Let us define i.i.d. random variables

χi =
{

1 with probability pi

0 with probability 1 − pi,
.

for all i ∈ [n] and take S := {i ∈ [n] | χi = 1}. We now fix a1, . . . , an ∈ Rd. A sampling S(a1, . . . , an) :=
1
n

∑
i∈S

ai

pi
is called the Independent sampling, where pi := Prob(i ∈ S).

22



Published in Transactions on Machine Learning Research (10/2023)

We get

E

∥∥∥∥∥ 1
n

∑
i∈S

ai

pi
− 1

n

n∑
i=1

ai

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1
n

n∑
i=1

1
pi

χiai

∥∥∥∥∥
2
−

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

=
n∑

i=1

E [χi]
n2p2

i

∥ai∥2 +
∑
i ̸=j

E [χi] E [χj ]
n2pipj

⟨ai, aj⟩ −

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

=
n∑

i=1

1
n2pi

∥ai∥2 + 1
n2

∥∥∥∥∥
n∑

i=1
ai

∥∥∥∥∥
2

−
n∑

i=1
∥ai∥2

−

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

= 1
n2

n∑
i=1

(
1
pi

− 1
)

∥ai∥2
.

Thus we have A = 1∑n

i=1
pi

1−pi

, B = 0 and wi =
pi

1−pi∑n

i=1
pi

1−pi

for all i ∈ [n].

E.3 Importance and Uniform With Replacement sampling

Let us fix τ > 0. For all k ∈ [τ ], we define i.i.d. random variables

χk =


1 with probability q1

2 with probability q2
...

n with probability qn,

where (q1, . . . , qn) ∈ Sn (simple simplex). A sampling

S(a1, . . . , an) := 1
τ

τ∑
k=1

aχk

nqχk

is called the Importance sampling. The Importance sampling reduces to the Uniform With Replacement
sampling when qi = 1/n for all i ∈ [n]. Note that |S| ≤ τ.

Let us bound the variance

E

∥∥∥∥∥1
τ

τ∑
k=1

aχk

nqχk

− 1
n

n∑
i=1

ai

∥∥∥∥∥
2


= 1
τ2

τ∑
k=1

E

∥∥∥∥∥ aχk

nqχk

− 1
n

n∑
i=1

ai

∥∥∥∥∥
2
+ 1

τ2

∑
k ̸=k′

E
[〈

aχk

nqχk

− 1
n

n∑
i=1

ai,
aχk′

nqχk′

− 1
n

n∑
i=1

ai

〉]
.

Using the independents and unbiasedness of the random variables, the last term vanishes and we get

E

∥∥∥∥∥1
τ

τ∑
k=1

aχk

nqχk

− 1
n

n∑
i=1

ai

∥∥∥∥∥
2
 = 1

τ2

τ∑
k=1

E

∥∥∥∥∥ aχk

nqχk

− 1
n

n∑
i=1

ai

∥∥∥∥∥
2


(9)= 1
τ2

τ∑
k=1

E
[∥∥∥∥ aχk

nqχk

∥∥∥∥2
]

− 1
τ

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

= 1
τ

n∑
i=1

qi

∥∥∥∥ ai

nqi

∥∥∥∥2
− 1

τ

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2
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= 1
τ

 1
n

n∑
i=1

1
nqi

∥ai∥2 −

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2
 .

Thus we have A = B = 1
τ , and wi = qi for all i ∈ [n].

E.4 Extended Nice sampling

In this section, we analyze the extension of Nice sampling. First, we li times repeat each vector ai, then we
use the Nice sampling. We define

ãi :=



∑n

j=1
lj

nl1
a1 1 ≤ i ≤ l1∑n

j=1
lj

nl2
a2 l1 + 1 ≤ i ≤ l1 + l2

...∑n

j=1
lj

nln
an

∑n−1
j=1 lj ≤ i ≤

∑n
j=1 lj ,

,

where ai ∈ Rd and li ≥ 1 for all i ∈ [n]. Then we have

1
n

n∑
i=1

ai(x) = 1
N

N∑
i=1

ãi(x),

where N :=
∑n

j=1 lj . Also, we denote Nk :=
∑k

j=1 lj .

For some τ > 0, we apply the Nice sampling method:

S(a1, . . . , an) := 1
N

∑
i∈S

ãi

pi
=

N∑
i=1

1
τ

χiãi,

where

χi =
{

1 i ∈ S

0 otherwise
, pi = Prob (i ∈ S) ,

and S is a random set with cardinality τ from [N ]. The sampling S(a1, . . . , an) is called the Extended Nice
sampling.

We now ready to bound the variance. Using the results for the Nice sampling, we obtain

E

∥∥∥∥∥S(a1, . . . , an) − 1
n

n∑
i=1

ai(x)

∥∥∥∥∥
2


= E

∥∥∥∥∥S(a1, . . . , an) − 1
N

N∑
i=1

ãi(x)

∥∥∥∥∥
2

= n − τ

τ(n − 1)
1
N

N∑
i=1

∥ãi∥2 − n − τ

τ(n − 1)

∥∥∥∥∥ 1
N

N∑
i=1

ãi

∥∥∥∥∥
2

= n − τ

τ(n − 1)

(
1
N

(
N

nl1

)2 N1∑
i=1

∥a1∥2 + 1
N

(
N

nl2

)2 N2∑
i=N1+1

∥a2∥2

+ · · · + 1
N

(
N

nln

)2 N∑
i=Nn−1+1

∥an∥2

− n − τ

τ(n − 1)

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2
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= n − τ

τ(n − 1)

(
N

nl1

1
n

∥a1∥2 + N

nl2

1
n

∥a2∥2 + · · · + N

nln

1
n

∥an∥2
)

− n − τ

τ(n − 1)

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

= n − τ

τ(n − 1)

(
n∑

i=1

1
n2wi

∥ai∥2

)
− n − τ

τ(n − 1)

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

where wi = li

N . Thus we have A = B = n−τ
τ(n−1) and wi = li

N for i ∈ [n].

F The Optimal Choice of wi

Let us consider L2
+,w and L2

±,w. In Sec 2, we show that one can take L2
+,w = L2

±,w = 1
n

∑n
i=1

1
nwi

L2
i . Let us

minimize 1
n

∑n
i=1

1
nwi

L2
i with respect to the weights wi such that w1, . . . , wn ≥ 0 and

∑n
i=1 wi = 1. Using

the method of Lagrange multipliers, we can construct a Lagrangian

L(w, λ) := 1
n

n∑
i=1

1
nwi

L2
i − λ

(
n∑

i=1
wi − 1

)
.

Next, we calculate partial derivatives

∂L
∂wi

= − 1
n2w2

i

L2
i − λ = 0∀i ∈ [n]

and get

w2
i = − L2

i

n2λ
.

Using
∑n

i=1 wi = 1, we can show that the weights w∗
i = Li∑n

i=1
Li

are the solutions of the minimization
problem. Moreover,

L2
±,w∗ = 1

n

n∑
i=1

1
nw∗

i

L2
i =

(
1
n

n∑
i=1

Li

)2

.

G The Complexity of Algorithm 1 with the Importance sampling

The expected number of gradient calculations ∇fi of Algorithm 1 with the Importance sampling, the optimal
wi

∗ from Sec. F, and τ ≤ max
{√

nL±,w

L−
, 1
}

equals

Nimportance = O

n + ∆0

ε
τ

L− +
√

n

τ

√√√√ 1
n

n∑
i=1

1
nwi

∗ L2
i


= O

(
n + ∆0

ε
τ

(
L− +

√
n

τ

1
n

n∑
i=1

Li

))

= O

(
n + ∆0

ε

√
nL±,w∗ +

∆0
√

n
( 1

n

∑n
i=1 Li

)
ε

)

= O

(
n +

∆0
√

n
( 1

n

∑n
i=1 Li

)
ε

)
.

H Missing Proofs: The Composition of Samplings

Lemma 2. Let us assume that a random sampling function S belongs to Definition 1 with some A, B and
weights wi, and a random sampling function Si belongs to Definition 1 with some Ai, Bi and weights wij for
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all i ∈ [n]. Moreover, B ≤ 1. Then

E


∥∥∥∥∥∥S (S1 (a11, . . . , a1m1) , . . . , Sn (an1, . . . , anmn

)) − 1
n

n∑
i=1

 1
mi

mi∑
j=1

aij

∥∥∥∥∥∥
2


≤ 1
n

n∑
i=1

(
A

nwi
+ (1 − B)

n

)Ai

mi

mi∑
j=1

1
miwij

∥aij∥2 − Bi

∥∥∥∥∥∥ 1
mi

mi∑
j=1

aij

∥∥∥∥∥∥
2


+ A

n

n∑
i=1

1
nwi

∥∥∥∥∥∥ 1
mi

mi∑
j=1

aij

∥∥∥∥∥∥
2

− B

∥∥∥∥∥∥ 1
n

n∑
i=1

 1
mi

mi∑
j=1

aij

∥∥∥∥∥∥
2

,

where aij ∈ Rd for all j ∈ [mi] and i ∈ [n].

Proof. We denote âi := Si (ai1, . . . , aimi
) and ai := 1

mi

∑mi

j=1 aij . Using (9), we have

E

∥∥∥∥∥S (â1, . . . , ân) − 1
n

n∑
i=1

ai

∥∥∥∥∥
2


= E

ES

∥∥∥∥∥S (â1, . . . , ân) − 1
n

n∑
i=1

ai

∥∥∥∥∥
2


= E

ES

∥∥∥∥∥S (â1, . . . , ân) − 1
n

n∑
i=1

âi

∥∥∥∥∥
2
+ E

∥∥∥∥∥ 1
n

n∑
i=1

âi − 1
n

n∑
i=1

ai

∥∥∥∥∥
2
 .

Next, using Definition 1 for the sampling S, we get

E

∥∥∥∥∥S (â1, . . . , ân) − 1
n

n∑
i=1

ai

∥∥∥∥∥
2


≤ A
1
n

n∑
i=1

1
nwi

E
[
∥âi∥2

]
− BE

∥∥∥∥∥ 1
n

n∑
i=1

âi

∥∥∥∥∥
2


+ E

∥∥∥∥∥ 1
n

n∑
i=1

âi − 1
n

n∑
i=1

ai

∥∥∥∥∥
2
 .

Due to (9), we obtain

E

∥∥∥∥∥S (â1, . . . , ân) − 1
n

n∑
i=1

ai

∥∥∥∥∥
2


≤ A
1
n

n∑
i=1

1
nwi

E
[
∥âi − ai∥2

]
+ A

1
n

n∑
i=1

1
nwi

∥ai∥2

− BE

∥∥∥∥∥ 1
n

n∑
i=1

âi − 1
n

n∑
i=1

ai

∥∥∥∥∥
2
− B

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1
n

n∑
i=1

âi − 1
n

n∑
i=1

ai

∥∥∥∥∥
2
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= A
1
n

n∑
i=1

1
nwi

E
[
∥âi − ai∥2

]
+ A

1
n

n∑
i=1

1
nwi

∥ai∥2

+ (1 − B)E

∥∥∥∥∥ 1
n

n∑
i=1

âi − 1
n

n∑
i=1

ai

∥∥∥∥∥
2
− B

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

= A
1
n

n∑
i=1

1
nwi

E
[
∥âi − ai∥2

]
+ A

1
n

n∑
i=1

1
nwi

∥ai∥2

+ (1 − B)
n2

n∑
i=1

E
[
∥âi − ai∥2

]
− B

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

= 1
n

n∑
i=1

(
A

nwi
+ (1 − B)

n

)
E
[
∥âi − ai∥2

]
+ A

1
n

n∑
i=1

1
nwi

∥ai∥2 − B

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

.

Using Definition 1 for the samplings Si, we have

E

∥∥∥∥∥S (â1, . . . , ân) − 1
n

n∑
i=1

ai

∥∥∥∥∥
2


≤ 1
n

n∑
i=1

(
A

nwi
+ (1 − B)

n

)Ai
1

mi

mi∑
j=1

1
miwij

∥aij∥2 − Bi ∥ai∥2


+ A

1
n

n∑
i=1

1
nwi

∥ai∥2 − B

∥∥∥∥∥ 1
n

n∑
i=1

ai

∥∥∥∥∥
2

.

Theorem 10. Suppose that Assumptions 1, 2, 3, 5 hold and the samplings St ∈ S(A, B, {wi}n
i=1) and the

samplings St
i ∈ S(Ai, Bi, {wij}mi

j=1) for all i ∈ [n]. Moreover, B ≤ 1. Then Algorithm 2 has the convergence

rate E
[∥∥∇f(x̂T )

∥∥2
]

≤ 2∆0
γT , where γ ≤

(
L− +

√
1−p

p (Ll + Lg)
)−1

,

Ll := 1
n

n∑
i=1

(
A

nwi
+ (1 − B)

n

)
((Ai − Bi)L2

i,+,wi
+ BiL

2
i,±,wi

),

and
Lg := (A − B)L2

+,w + BL2
±,w.

Proof. We start with the estimation of the variance of the noise:

E
[∥∥gt+1 − ∇f(xt+1)

∥∥2
]

= (1 − p)E
[∥∥∥gt + S

({
Si

(
{∇fij(xt+1) − ∇fij(xt)}mi

j=1
)}n

i=1

)
− ∇f(xt+1)

∥∥∥2
]

= (1 − p)
∥∥∥S
({

Si

(
{∇fij(xt+1) − ∇fij(xt)}mi

j=1
)}n

i=1

)
−
(
∇f(xt+1) − ∇f(xt)

)∥∥∥2
+ (1 − p)

∥∥gt − ∇f(xt)
∥∥2

,

where we used the unbiasedness of the composition of samplings. Using Lemma 2, we have

E
[∥∥gt+1 − ∇f(xt+1)

∥∥2
]

≤ (1 − p)

 1
n

n∑
i=1

(
A

nwi
+ (1 − B)

n

)Ai

mi

mi∑
j=1

1
miwij

∥∥∇fij(xt+1) − ∇fij(xt)
∥∥2 − Bi

∥∥∇fi(xt+1) − ∇fi(xt)
∥∥2
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+A

n

n∑
i=1

1
nwi

∥∥∇fi(xt+1) − ∇fi(xt)
∥∥2 − B

∥∥∇f(xt+1) − ∇f(xt)
∥∥2
)

+ (1 − p)
∥∥gt − ∇f(xt)

∥∥2
.

Using Definitions 3, 4, 8 and 9, we get

E
[∥∥gt+1 − ∇f(xt+1)

∥∥2
]

≤ (1 − p)

 1
n

n∑
i=1

(
A

nwi
+ (1 − B)

n

)Ai − Bi

mi

mi∑
j=1

1
miwij

∥∥∇fij(xt+1) − ∇fij(xt)
∥∥2

+ Bi

 1
mi

mi∑
j=1

1
miwij

∥∥∇fij(xt+1) − ∇fij(xt)
∥∥2 −

∥∥∇fi(xt+1) − ∇fi(xt)
∥∥2


+A − B

n

n∑
i=1

1
nwi

∥∥∇fi(xt+1) − ∇fi(xt)
∥∥2

+B

(
1
n

n∑
i=1

1
nwi

∥∥∇fi(xt+1) − ∇fi(xt)
∥∥2 −

∥∥∇f(xt+1) − ∇f(xt)
∥∥2
))

+ (1 − p)
∥∥gt − ∇f(xt)

∥∥2

≤ (1 − p)
(

1
n

n∑
i=1

(
A

nwi
+ (1 − B)

n

)(
(Ai − Bi)L2

i,+,wi
+ BiL

2
i,±,wi

)
+ (A − B)L2

+,w + BL2
±,w

)∥∥xt+1 − xt
∥∥2

+ (1 − p)
∥∥gt − ∇f(xt)

∥∥2
.

From this point the proof of theorem repeats the proof of Thm 6 with

1
n

n∑
i=1

(
A

nwi
+ (1 − B)

n

)(
(Ai − Bi)L2

i,+,wi
+ BiL

2
i,±,wi

)
+ (A − B)L2

+,w + BL2
±,w

instead of
(A − B) L2

+,w + BL2
±,w.
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I Artificial Quadratic Optimization Tasks

In this section, we provide algorithms that we use to generate artificial optimization tasks for experiments.
Algorithm 3 and Algorithm 4 allow us to control the smoothness constants L± and Li, accordingly, via the
noise scales.

Algorithm 3 Generate quadratic optimization task with controlled L± (homogeneity)
1: Parameters: number nodes n, dimension d, regularizer λ, and noise scale s.
2: for i = 1, . . . , n do
3: Generate random noises νs

i = 1 + sξs
i and νb

i = sξb
i , i.i.d. ξs

i , ξb
i ∼ NormalDistribution(0, 1)

4: Take vector bi = νs
i

4 (−1 + νb
i , 0, · · · , 0) ∈ Rd

5: Take the initial tridiagonal matrix

Ai = νs
i

4


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

 ∈ Rd×d

6: end for
7: Take the mean of matrices A = 1

n

∑n
i=1 Ai

8: Find the minimum eigenvalue λmin(A)
9: for i = 1, . . . , n do

10: Update matrix Ai = Ai + (λ − λmin(A))I
11: end for
12: Take starting point x0 = (

√
d, 0, · · · , 0)

13: Output: matrices A1, · · · , An, vectors b1, · · · , bn, starting point x0

Algorithm 4 Generate quadratic optimization task with controlled Li

1: Parameters: number nodes n, dimension d, regularizer λ, and noise scale s.
2: for i = 1, . . . , n do
3: Generate random noises νs

i = 1 + sξs
i , where i.i.d. ξs

i ∼ ExponentialfDistribution(1.0)
4: Generate random noises νb

i = sξb
i , i.i.d. ξb

i ∼ NormalDistribution(0, 1)
5: Take vector bi = (− 1

4 + νb
i , 0, · · · , 0) ∈ Rd

6: Take the initial tridiagonal matrix

Ai = νs
i

4


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

 ∈ Rd×d

7: end for
8: Take starting point x0 = (

√
d, 0, · · · , 0)

9: Output: matrices A1, · · · , An, vectors b1, · · · , bn, starting point x0
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