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ABSTRACT

In general, the core technology used in imaged document comparison is based
on Optical Character Recognition (OCR). However, the main drawbacks of using
OCR for document comparison are that most users have to pick relevant language
models for each document. Moreover, a multilingual document needs a multilin-
gual OCR model, or a hybrid model has poor recognition performance. To over-
come such drawbacks, we propose common Text image Change Detection (TCD)
model for multilingual documents that utilize the unit-level text image-to-image
comparison instead of text recognition. Our model generates the change segmen-
tation maps in both directions from source to target and target to source. Further-
more, we propose to use the correlation between multi-scale attention features,
which mitigates pre-processing of text image position and scale alignment. We
created test data from printed and scanned documents in different languages and
added public datasets such as Distorted document images (DDI-100), and Docu-
ment binarization dataset (LRDE DBD). Finally, we compare the performance of
our model with state-of-the-art semantic segmentation and change detection (CD)
models, and also with OCR models. Experimental results on benchmarks demon-
strate that our model outperforms other semantic segmentation models relatively
by a good margin and meets the similar performance that of OCR methods.

1 INTRODUCTION

With the development of computer vision (CV), numerous documents in analog format have been
transformed into a digital format that is computer-recognizable. Due to this evolution, various tech-
niques to digitize analog documents such as paper documents have been suggested. Early OCR
methods used pattern matching by comparing standard character templates for character recogni-
tion (TAUSCHEK, 1935; Schantz, 1982; Mori et al., 1992). Recently, with Deep Learning (DL)
advancements (Krizhevsky et al., 2017; Simonyan & Zisserman, 2014; Girshick et al., 2014), DL
techniques have been applied to various CV applications such as image classification, detection, and
segmentation for improving performance. Image recognition got big evolution with an application
of DL techniques, and at the same time. OCR also has shown dramatic improvement while various
research with DL (Breuel et al., 2013; Anil et al., 2015; Lee & Osindero, 2016).

OCR has been used in the wide field including invoice, banking, legal, and digitization of paper doc-
uments because of their performance improvement (Stoliński & Bieniecki, 2011; Singh et al., 2012).
Some tasks can be performed using OCR only, however, the technologies related to documents such
as scanned documents comparison (Andreeva et al., 2020), or forgery detection (Ahmed & Shafait,
2014; Sirajudeen & Anitha, 2020) is consist of various techniques like layout analysis, or document
de-skewing (Cai et al., 2021; Xu et al., 2020). Recently, with the advent of Transformer (Vaswani
et al., 2017), various document analysis techniques using transformer are still in progress.

With vigorous research in document analysis (Huang et al., 2022; Fang et al., 2021), this served as a
momentum for document comparison technology to be released as off-the-shelf software in the field
of research. Most of the released off-the-shelf imaged document comparison software are based
on OCR (Tafti et al., 2016). Most document comparison technologies combine processes such as
pre-processing, structural analysis, text detection, and various post-processing for the performance
of their core technology, OCR. In the end, when it comes to comparing OCR-based documents, the
key is the performance of the OCR. It looks like a good performance in typically, but recognition
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often fails for a variety of other reasons, including background noise, or some characters similar to
numbers In particular, as the number of languages to be recognized increases, it is very difficult to
maintain OCR performance consistently.

Meanwhile, the development of technologies such as the internet, logistics, and transportation have
made society more global, resulting in more international transactions and contracts (Mukherjee,
2008; Bookbinder & Matuk, 2009). If the languages used by the contracting parties are different,
the contract is generally written using both languages. Recognizing more than one language is a
burden for OCR in itself. In particular, OCR-based document comparison technology shows limita-
tions in situations such as recognizing languages with no information given in advance or untrained
languages.

We overcome this limitation using image change detection without recognition. Our model com-
pares directly between text area images instead of text recognition. Each text image comparison
checks the differences in targets based on the source text area and also in opposite direction, it
makes to know the difference between source for target and target for source.

We can summarize our contribution as follows:

• To our best knowledge, we first propose a text image-based two-way change detection
model, which is a method independent of the text language.

• We use a correlation marginalization process based on the surroundings feature, so our
model doesn’t need any pre-processing.

• We present a new text image change detection test dataset where our algorithm shows the
state-of-the-art performance and the component-wise effectiveness is analyzed through the
ablation studies.

2 RELATED WORK

Text comparison is usually split into two subtasks: text detection and text segmentation. In our
proposed method, we use semantic segmentation to perform image-to-image comparisons instead
of text recognition. In this way, in document comparison, the core technology is the ability to
detect the difference between two documents, such as recognizing or comparing two text images. In
practice, document comparison is often preceded or followed by a variety of technologies, such as
noise removal and document layout analysis, that are added to improve the performance of the core
technology. We give a brief overview of relevant works below.

2.1 TEXT DETECTION

Text detection is performed as a first step in the series of processes that understand contents like
text in images. The early approach was a heuristic way of using computer vision such as connected
component or sliding window (Epshtein et al., 2010; Lee et al., 2011). Since then, the success of
early deep learning models (Krizhevsky et al., 2017), and the proven effectiveness of convolutional
neural networks (CNN) for object detection (Redmon et al., 2016; Ren et al., 2015), more recent
approaches utilize detection model in text detection (Huang et al., 2019; Zhong et al., 2019). In
the context of scanning or capturing documents, Jung et al. (2021) utilized a modified 2D Gaussian
score map with a rectangular shape to make it robust to noise in scanned documents. Considering the
various text shapes, Wang et al. (2019) proposed a network that separates overlapping text regions by
applying pixel aggregation, which borrows the concept of clusters, and Zhu et al. (2021) introduced
to represent text contours in the frequency domain, especially for highly-curved shapes. Liao et al.
(2020; 2022) proposed a method to integrate the binarization process, one of the important post-
processing in segmentation, into the segmentation network to effectively binarize text regions for
real-time text detection.

2.2 TEXT RECOGNITION

Once the text has been detected through the previous steps, the text area is cropped and fed into
the recognition model in order to recognize the letters at the position. Text recognition has also
been studied for a long time, paired with text detection (Lin et al., 2020). Similar to text detection,
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early text recognition approaches also have used CV and early machine learning techniques (Sarfraz
et al., 2003; Smith, 2007), But recent research has mostly used neural networks. Graves et al. (2006)
proposed Connectionist temporal classification (CTC) that decodes features using recurrent neural
networks (RNN), This is particularly useful for problems where the length of the input sequence
can vary. To borrow this idea, Yao et al. (2014); Shi et al. (2016) propose to use CNN and RNN
to encode the sequence features using CTC for character alignment. Plus, Li et al. (2022) proposed
a lightweight model using CTC and attention. On the other hand, As an approach to language-
independent recognition, Huang et al. (2021) proposed that an applied Language Prediction Network
(LPN), can recognize all languages with one weight.

2.3 SEMANTIC SEGMENTATION

Semantic segmentation is a computer vision technique that involves dividing an image into multiple
regions, where each segment corresponds to a specific object or part of the image. It has applications
in many fields, including self-driving cars, medical imaging, and augmented reality. Deep learning
techniques, such as CNN, also have been used extensively for semantic segmentation tasks in recent
years. One of the early deep learning models for semantic segmentation is the Fully convolutional
network (FCN) (Long et al., 2015). Another popular architecture for semantic segmentation is the U-
Net (Ronneberger et al., 2015). U-Net is an encoder-decoder architecture that uses skip connections
to fuse features from different resolution levels. More recently, He et al. (2017) and Chen et al.
(2018) have shown state-of-the-art results in many benchmarks. Mask R-CNN extends Faster R-
CNN (Ren et al., 2015) object detection framework by adding a branch for predicting a binary mask
for each detected object. Following the great success of transformers (Vaswani et al., 2017), Xie
et al. (2021) proposed Segformer a simple and efficient segmentation model using transformers.
Segmentation is also frequently used as change detection, It can segment images into pixels either
changed or not. There are various approaches to change detection, recently, the transformer-based
approaches also show the best performance such as Chen et al. (2021; 2023).

3 PROPOSED METHOD

Document text image change detection aims to detect changed text locations such as changed, added,
or deleted. In a typical document comparison process, for finding some changed area, document
comparison extracts texts from both source and target document images, recognizes them, and com-
pares each other. Our proposed method merges recognition and comparison into text unit change
detection. Overall, our proposed model aims to compare text area image pair from source and target
document is same or different at a character level. We design our problem as a 2-way semantic
segmentation model, from source to target and vice versa. In this section, we present the overall
architecture of our model and key modules such as the marginalized multi-scale feature correlation
map.

3.1 OVERALL ARCHITECTURE

Our proposed architecture is shown in Figure 1, it is based on Encoder-Decoder (Badrinarayanan
et al., 2017). We aim to compare the two input images, so we feed them into an Encoder that
shares the same weights. It is similar to Siamese network (Chopra et al., 2005; Koch et al., 2015)
architecture. We use Resnet (He et al., 2016) as a backbone in the Encoder module. Text unit images
contain small characters such as subscripts, punctuation, etc. So we extract multi-level features from
the backbone, and with Lin et al. (2017) for preserving small characters that are easily ignored by
the conv layer. In the image comparison, it is important to match the scale or alignment between
images. However, in the Encoder, we use cross and cross-self attention to enhance image features
and focus meaningful locations in feature space. In addition, we also use the correlation between
feature maps, so our model doesn’t need any pre-processing such as alignment.

After encoding the source and target images, each feature is fed to Decoder. Decoder generates the
change segmentation map from each encoded feature. Unlike Encoders, Decoder has two parallel
modules for each one of the images. The model consists only of Conv layers without fully connected
blocks, so images of various sizes can be used. Decoder also uses features from the backbone and
enhances lower resolution segmentation map using cross and cross-self attention.
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Figure 1: Proposed Text image Change Detection Model Architecture.

3.2 BACKBONE NETWORK

Given pair of input images Is and It of size (H,W ), our Resnet with FPN network produces 3
multi-scale feature pyramid map pairs of sizes (H/2,W/2), (H/4,W/4), and (H/8,W/8) for each
image named as F s

1 , F
s
2 , F

s
3 and F t

1 , F
t
2 , F

t
3 . Our backbone is based on the network proposed in

Cheng et al. (2017) which is based on Resnet, and we use only up to the 3rd bottleneck layer.
ResNet backbone output is passed through the FPN to improve the feature maps further. The FPN
network has 3 multi-scale feature maps with output channel sizes are 64,64 and 512 respectively.

3.3 POSITIONAL ENCODING AND MULTI-SCALE FEATURE MAP ATTENTION

Taking inspiration from Dosovitskiy et al. (2020), We use the 2D extension of the standard positional
encoding in Transformers following Carion et al. (2020) and Sun et al. (2021). We only add them to
the FPN output feature map F3 only because of the small spatial information at deep features. By
adding the position encoding to feature map F3, the transformed features will become distinctive
enough following position, which is crucial to the ability of feature matching.

Transformers and Attention extend to vision research, It made vision transformers networks (Ra-
machandran et al., 2019; Zhang et al., 2019) the latest trend in computer vision. Inspired by Chen
et al. (2023), Sun et al. (2021), after feature extraction, we use the cross and self-cross attention
Transformer modules, with the attention learning module to enhance feature representation by fo-
cusing on meaningful features. The attention is based on the vision transformer concept and uses
convolution modules to extract Query, Key, and Values. The attention map is calculated according
to Equation 1.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

We apply feature map attention on both F2 and F3 scale feature maps. In each scale, the feature map
performs cross-attention and self-attention corresponding to the feature map, for example, cross-
attention is first applied to the F s

2 and then self-attention is applied to itself. The same is true for F t
2 ,

F s
3 , and F t

3 are applied attention in the same way.

3.4 CORRELATION MAP AND MARGINALIZATION

Hyper correlation concept was introduced in Min et al. (2021) to compute 4-D correlation across
multi-scale feature maps for few-shot segmentation. We use a similar concept and introduce a mod-
ule in our model that constructs a 4-D correlation map from cosine similarity after feature extraction.
4D correlation map between two feature maps F s

l , F
t
l for l=2,3 at pixel positions i,j and m,n are con-

structed using the cosine similarity as follows:
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Figure 2: 4-D Cross correlation
and marginalization.
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Figure 3: Cross and Cross-Self Attention: Correlation map atten-
tion process using lower level feature map.

CosCosCos(FFF s(i, j),FFF t(m,n)) = ReLUReLUReLU(
FFF s(i, j) ·FFF t(m,n)

||FFF s(i, j)|| · ||FFF t(m,n)|| ) (2)

By assuming in text matching scenario the position of correspondence point within the neighboured
of the queried point. Because in a comparison between text images, the target image may be rotated,
blurred, or have white space or noise, but the same character is present in a similar position in
both the source and the target. Instead of calculating a full dense 4-D correlation map, we just
restrict the matching to neighboured points to the queried feature point. The neighboured is defined
as [−Kv,Kv] and [−Kh,Kh] in both vertical and horizontal directions. We calculate the sparse
correlation with a pre-defined range instead of the full correlation map which saves our computation
time. Correlation map marginalization is the process of converting a 4-D correlation tensor into two
3-D correlation tensors.

As shown in Figure 2, we calculate the neighboured correlation map in the defined size of (2∗Kv+
1), (2 ∗ Kh + 1) in each spatial pixel position of the feature map, and convert it into Cc channel
marginalized 3-D correlation tensor Cst from feature maps Fs to Ft. The process is the same for
computing marginalized correlation from feature maps Ft to Fs by interchanging and the result is
Cts. The channel size of marginalized correlation map is Cc = (2 ∗Kv + 1) ∗ (2 ∗Kh + 1). The
algorithm for computing Cc channel marginalized correlation maps using cosine similarity is given
in Algorithm 1 under Appendix A.1.

3.5 CORRELATION MAP CROSS AND CROSS-SELF ATTENTION

In addition to the feature map cross and cross-self attention and taking advantage of the attention
in 3.3, we apply cross and cross-self attention mechanism on marginalized lower resolution cor-
relation maps from the lower scales. Before applying the attention mechanism, the marginalized
correlation maps Cs

2 , Cs
3 and Ct

2, Ct
3 from the two levels are Deconvolution and up-sampled to the

size of (H/2,W/2) by shared Deconvolution and Up-sample layers. The up-sampled correlation
maps Cs

2 , Cs
3 and Ct

2, Ct
3 are each independently performed attention process with the top-level

feature maps F s
1 , F

t
1 . The attention process using transformer attention is shown in Figure 1, and

3. The Cf channel feature map F1 is used as the Key and Value for Attention. In order to match
the channel size between Cc channel query correlation map and encoded feature map F1, the feature
map is squeezed using Conv Block2 generate new Key Kf and Value Vf and then attention is ap-
plied. Finally the input feature map and queried feature map Af ∗Vf are merged using Conv Block3
and added to the input feature.

As a next step, cross-self attention is applied to the input correlation map using the following similar
process as cross attention but the query and key features are from the cross-attention output as shown
in Figure 3. The same process is applied on all 4 correlation feature maps using the respective image
F1 encoded feature.
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3.6 SEGMENTATION MAP

Finally, the correlation feature maps from the attention module in each decoder module merged using
the convolution process. The segmentation maps are generated using convolutions upsampling by
a factor of 2 and applied Sigmoid activation at the end. The decoder part consists of 2 parallel
decoder modules for each image Is and It. The output of the decoder Sst, Sts are two-way semantic
segmentation change maps from Is to It and from It to Is.

3.7 LOSS FUNCTION

Is and It are the source image and target image respectively, the segmentation loss function is the
combination of Dice Loss Ld and Binary Cross-Entropy (BCE) loss Lbce as given in equations as
follows:

Lst(Is, It) = Ld(Sst, Gst) + Lbce(Sst, Gst) (3)

Lts(It, Is) = Ld(Sts, Gts) + Lbce(Sts, Gts) (4)

where Sst is s to t predicted segmentation map and Gst is s to t ground truth segmentation map. For
each pixel position i, yi and pi are ground truth and prediction at the pixel respectively, Dice Loss
Ld and Binary Cross-Entropy (BCE) loss Lbce are given in equations as follows:

Ld = 1− 2 ∗ yi ∗ pi + τ

yi + pi + τ
, τ = 1 (5)

Lbce = −(yi log(pi) + (1− yi) log(1− pi)) (6)

Our model has two segmentation maps so the total segmentation loss is average of both of them and
the overall loss function is as follows:

Lseg = 0.5 ∗ Lst(Is, It) + 0.5 ∗ Lts(It, Is) (7)

3.8 TRAINING WITH SYNTHETIC DATA

Our TCD model inputs are the pair of unit text images and the ground truth is the changed area.
Our model training data is generated by a synthetic image generator using a text corpus from En-
glish, Korean, Chinese, Numbers, and special characters. Each sample data consists of pair of
images along with the ground truth change area. As we designed TCD as two-way segmentation,
our ground truth consists of bidirectional segmentation maps. We assume the purpose of our model
is to compare contract documents, it is typically compared between machine-readable documents
and scanned documents. Therefore, the source image is generated using fixed background and the
target image is generated using a random background by considering scan document image quality.
In Figure 5 under Appendix A.2, we show some of the samples of our data generator.

From the samples, it can be observed that the segmentation map is a pseudo segmentation map of
rectangular shape based on the width and height of the character in the image which is set to 1 if the
particular position changed or 0. The data generator is designed in such a way that it can generate
data with fixed heights and various widths of images to support dynamic widths of the unit sizes
instead of fixing it. For batch training, create uniformly sized data by padding background pixels
to the right side of text images in the training phase. Source and target images are generated by
considering various real document changes while scanning, such as random text position, random
character spacing, and random character positioning. Plus, to simulate various scanning and pictur-
ing quality distortions of images, we applied various augmentations such as bleed-through, blurring,
noise, scaling, underline, over-line, cross-line, and rotations on the synthetic images. In each batch
of data, we make sure the data is balanced so each batch consists of the same and changed data pairs.
The same pair is generated using the same text corpus, while the change data pair is generated by
randomly modifying some characters at random positions.
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4 EXPERIMENTS AND RESULTS

We validate the contribution of our model with several experiments. For benchmarking, we created
unit image pair dataset in various different languages. In the benchmark results, we provide com-
parisons for each language, as well as for the entire evaluation dataset. We also prove the utility of
each of the modules we proposed through ablation studies.

4.1 TEST DATASET

As per the research literature, there are no open public datasets available on text image change
detection for document comparison. So, we created new dataset for text image change detection.
In the following subsections, we discuss in detail about different dataset prepared and used to study
our model performance.

We prepared two kinds of datasets to evaluate the performance of segmentation and OCR sepa-
rately. They are used, to benchmark with semantic segmentation, CD models, and OCR methods
respectively. The segmentation test dataset is prepared from actually printed and scanned pair words
from documents written in different languages such as English, Korean, Russian, and Chinese. The
units are cropped at character using DUET (Jung et al., 2021) unit detector. These cropped units
are merged randomly to make concatenated text images and created synthetic segmentation change
ground truth similar way like training dataset. The same and diff pairs are generated using position
in the full image and text ground truth. The dataset consists of totally 80k pairs, 10k same pair and
10k different pair from each of the 4 languages. The composition of the segmentation dataset is
shown in Table 4 under Appendix A.3.

In addition, OCR test dataset is prepared from the public datasets DDI-100, LRDE-DBD plus our
data created by printing and scanning the documents. DDI-100 consists of English, Russian, and
Digits text, LRDE consists of French text, and our dataset is in Korean, and Chinese text. The
dataset is prepared from paired images with the same content from the original and distorted or
scanned using OCR ground truth. The text units are cropped from each document image using
ground truth detection and text. Then, the dataset is grouped using OCR ground truth, and then
the same and different pairs of datasets are created using text similarity. The different pair data are
picked randomly that have a maximum of 4 character changes and a maximum length difference of
1. The composition of the OCR dataset is shown in Table 5 under Appendix A.3.

4.2 TRAIN AND TEST METHODOLOGY

We set the height of training data is fixed and set as 32. We use 3-scale feature maps and the channel
sizes in each scale after FPN is size 64, 64, and 512. The neighboured value Kv,Kh for correlation
marginalization is set 2,4 and 1,2 for scale H/4 and H/8 features accordingly. Plus, segmentation
loss value is scaled by a constant 10 during training. We train our model for 200 epochs from scratch
with a batch size of 8. Finally, we evaluate our model performance on the test dataset.

To evaluate segmentation test dataset performance for benchmarking and ablation study, we use
similar performance measures like other semantic segmentation and CD models such as precision,
recall, F1 score, IoU, and overall accuracy. We include both the same and diff pair datasets in
the evaluation dataset as the measures consider overall data pixel level performance. In addition,
to evaluate OCR test data, we use image-level classification performance scores of the same and
different pairs. By using the classification confusion matrix we calculate precision, recall, F1 score,
and Accuracy for all the OCR benchmarking models.

4.3 BENCHMARK RESULTS

To check the performance capabilities of our model, we selected well-known or SoTA semantic
segmentation and CD models such as U-Net (Ronneberger et al., 2015), SegFormer (Xie et al.,
2021), BIT-CD (Chen et al., 2021), SARAS-Net (Chen et al., 2023), and OCR methods like Tesseract
OCR (Smith, 2007), Multiplex OCR (Huang et al., 2021), PPOcr v3 (Li et al., 2022). In general,
semantic segmentation and CD models are not trained on text datasets, for a fair comparison, we
retrain them using our synthetic training data generator similar way to our model for 200 epochs
each with default settings. We evaluate all the models with metrics discussed in the test methodology
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Table 1: Quantitative average results of seg-
mentation benchmark.

Model Pre. Rec. IoU F1. OA.

U-Net 64.0 65.7 64.6 47.8 84.8
SegFormer-B5 60.9 81.0 69.5 53.2 84.9
BIT-CD 63.9 72.1 67.6 51.2 85.4
SARAS-Net 62.1 70.5 65.9 49.2 84.6
TCD (ours) 63.7 81.4 71.5 55.6 86.3

Table 2: Quantitative average results of OCR
benchmark.

Model Pre. Rec. F1. Acc.

Tesseract OCR 90.1 99.9 93.2 88.7
Multiplex OCR 70.7 96.6 80.7 71.5
PPOcr v3 95.6 99.8 97.5 97.1
TCD (ours) 99.5 99.2 99.4 99.2
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Figure 4: Qualitative results of different segmentation models on paired source and target input unit
images the. Output segmentation of our model is the maximum of two way segmentation maps.

subsection. In order to evaluate OCR models, we used available public pre-trained models for each
language.

Table 1 illustrates performance comparison with SoTA segmentation and CD methods on 4 language
segmentation datasets, respectively. Clearly, our model outperforms all SoTA methods on average
on language datasets with 2 points in F1 score and IOU and 1 point in accuracy. And, also TCD
maintains similar performance across all 4 language datasets as shown in Table 6 under Appendix
A.3. To visualize the prediction results, the results of different methods on the above 4 language
datasets are shown in Figure 4. The top rows show all the changed text scenarios and the bottom
rows show the same text scenarios. In the figure white color is changed text area and the black color
is the same text area. Even though our model generates two segmentation maps, here we just show
the maximum result of two outputs to compare with benchmark single output models. The actual
source and target pair inputs are not the same size, so before inference of each model result, the
input’s height is resized and width right padded to make them the same size. From the prediction
results, it can be observed that TCD generates a segmentation map sharper, less noisy, and close to
the ground truth for different cases of text changes and text change positions, other methods fail in
some cases to detect real changes. For the same text image input pairs, all other methods generate
noisy and false positive change maps.

Similarly, Table 2 illustrates performance comparison with SoTA OCR on of 5 languages and digits
average. We classify text pair images as either the same or changed. Our model output two way
segmentation maps are merged into one map and then the input text image pair classified as same
if the number of change pixels all are 0 otherwise different. From Table 7 under Appendix A.3
OCR results tend to have a dependency on language. In particular, most methods results are good
including Digits and English, but in some cases like Russian, the performance is slightly worse.
Most of the OCRs methods still show good results, but for each language OCR needs its own weight.
Although we have not mentioned it in detail here, the OCR recognition itself is often wrong, because
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Table 3: Ablation study results to show the effect of each module (all language average) on segmen-
tation dataset.

Model/Module CM FA CA TW Pre. Rec. F1 IoU OA

TCD v1 X X X ✓ 62.8 70.4 66.3 49.7 84.8
TCD v2 ✓ X X ✓ 62.2 80.3 70.1 54.0 85.4
TCD v3 ✓ ✓ X ✓ 62.7 76.9 69.1 52.8 85.4
TCD v4 ✓ X ✓ ✓ 65.1 75.7 69.9 53.8 86.3
TCD v5 ✓ ✓ ✓ X 64.9 76.9 70.3 54.3 86.3
Ours ✓ ✓ ✓ ✓ 63.7 81.4 71.5 55.6 86.3

of the reason diff pair recall is relatively high, but the precision of predicting the same pair as same
is relatively low. The multiplex OCR uses only one weight, but the performance varies greatly
depending on the language. On the other hand, our model shows high performance regardless of
language.

4.4 ABLATION STUDY

We performed an ablation study of different modules in our TCD model using a segmentation bench-
mark dataset. The modules we studied are correlation and marginalization (CM), encoder feature
map attention (FA), decoder correlation map attention (CA), and one-way (OW) vs two-way (TW)
segmentation maps. We also compared with a model by removing all the modules specified above
and by replacing the CM module with Conv layers which is a basic model. So we study the perfor-
mance of each module by adding or removing it in a progressive manner.

Correlation and marginalization (CM) To study the effect of the CM module, we first trained
TCD v1 by replacing CM with basic Conv layers and TCD v1, TCD v2 are trained for 200 epochs
each. Then they are evaluated on the segmentation dataset, from Table 3 it can be observed that by
adding CM module recall, F1, IoU, and OA are improved by 10, 4, 6, and 1 percent respectively.
The ablation study shows that a correlation map of features can extract good meaningful information
for change detection instead of using a simple feature map.

Cross and cross/self-attention (FA or CA) Feature cross and cross self-attention modules (FA)
are applied across the source and target to improve the feature map enhancing the features useful
for the change detection and scale changes between two images. Correlation cross and cross self-
attention (CA) modules are applied to the lower resolution correlation map to improve the change
segmentation map. From Table 3 TCD v3, TCD v4 rows, it can be observed that they have an effect
on precision and overall accuracy even though there is degradation in recall.

Two-Way segmentation train (TW) We trained TCD v5 with only a one-way segmentation map
like other semantic segmentation models by taking the maximum of two-way model output, training
with single segmentation map loss instead of TCD two way loss. By Comparing the performance
between TCD v5 and ours from Table 3, Our model precision decreased slightly but other metrics
are improved. The main purpose of document comparison is to find modified words or areas. Our
model two way segmentation result is useful to analyze not only simple changes but also how they
changed from each others point of view.

5 CONCLUSION

In this paper, we propose the TCD model which is vital block for imaged document comparison in
various languages. Our model is language-independent because we adopt image comparison instead
of text recognition. TCD model architecture is designed with multi-scale features and correlation
marginalized maps for text image change detection at a small unit level of the document. Proposed
model is robust to various changes in the text unit image and doesn’t require any preprocessing such
as text alignment or scale alignment. In addition, we use a correlation map with feature map, cross,
and cross-self transformer-based attention for improved change segmentation. From the experimen-
tal results, we show that our model is well generalized for multilingual documents irrespective of the
language. And also our model works well for other language documents which are not in training
text corpus. From the benchmarking results, our model outperformed other semantic segmentation
models on average by a good margin and performed similar to OCR methods that use a model for
each language.
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A APPENDIX

A.1 CORRELATION MAP AND MARGINALIZATION

Algorithm 1 Correlation and Marginalized Correlation map
1: Input: Assume F s

l , F
t
l source and target feature maps at same scale for l=2,3

2: Normalize source and target feature maps along the channel dimension
3: Pad source and target feature maps by Kh,Kv in horizontal and vertical direction on both sides

results in F s′

l , F t′

l
4: Initialize a empty correlation map Cst, Cts of size CcxHlxWl

5: Let Kw = (2 ∗Kh + 1), Kh = (2 ∗Kv + 1)
6: Let i = 1, j = 1
7: while i <= Kw do
8: while h <= Kh do
9: t1 = (F t′

l [i : i+H, j : j +W ] ∗ F s
l )

10: t2 = (F s′

l [i : i+H, j : j +W ] ∗ F t
l )

11: Cst[i ∗Kw + j, :, :]=Σct1
12: Cts[i ∗Kw + j, :, :]=Σct2
13: end while
14: end while
15: Output: Marginalized feature correlation map Cst, Cts for each multi-scale feature map set

F s
l , F

t
l

A.2 SYNTHETIC TRAIN AND VALID DATASET

We made a corpus dataset of a total of 10000 words that consist of English, Korean, Chinese, Num-
bers, and special characters. Training data source image is made from a text corpus and modified
characters are picked randomly from other corpus text. All data is created as a pair of source images
and a matching target change map image. In each batch of images, the same and change pairs are
equally generated for data balancing. Similarly, we used another 5000 text corpus data for gen-
erating validation dataset, which is used for selecting the best model. The best model is selected
based on validation Intersection Over Union (IOU) of the segmentation. The sample data is shown
in Figure 5.

(a) (b) (c) (d)

Figure 5: Sample results of synthetic training data : (a) source, (b) target, (c) segmentation ground
truth from source to target, (d) segmentation ground truth from target to source.
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Table 4: Segmentation dataset taxonomy, where Same is same pair and Diff is different (change)
text image pair.

Language English Russian Korean Chinese

Same 10000 10000 10000 10000
Diff 10000 10000 10000 10000
Total 20000 20000 20000 20000

Table 5: OCR dataset taxonomy, where Same is same pair and Diff is different (change) text image
pair.

Language English Russian French Korean Chinese Digits

Same 50002 47462 19234 49998 17538 11167
Diff 49998 52538 30766 39772 32462 38833
Total 100000 100000 50000 50000 50000 50000

A.3 BENCHMARK DATASET AND RESULTS

Table 6 and Table 7 show the different benchmark models detailed performance across different lan-
guage datasets for both segmentation and OCR datasets. Each metric is evaluated on each language
data individually and then averaged across the languages.

Table 6: Quantitative results of segmentation benchmark for different languages and its average.

Language English Korean Chinese
Model Pre. Rec. F1 IoU OA Pre. Rec. F1 IoU OA Pre. Rec. F1 IoU OA

U-Net (Ronneberger et al., 2015) 65.8 54.5 59.6 42.5 83.2 63.1 71.8 67.2 50.6 85.6 63.5 67.8 65.5 48.7 84.5
SegFormer-B5 (Xie et al., 2021) 61.2 82.7 70.3 54.2 84.1 61.1 83.5 70.6 54.5 85.7 62.1 78.0 69.2 52.9 84.9
BIT-CD (Chen et al., 2021) 62.8 77.5 69.4 53.1 84.4 64.4 73.9 68.8 52.4 86.3 62.9 61.1 62.0 44.9 83.8
SARAS-Net (Chen et al., 2023) 62.5 79.7 70.0 53.9 84.5 62.3 70.4 66.1 49.3 85.2 62.0 65.9 63.9 46.9 83.8
TCD(ours) 64.1 81.3 71.7 55.9 85.4 63.2 84.2 72.2 56.5 86.7 63.3 76.5 69.3 53.0 85.3

Language Russian Avg.
Model Pre. Rec. F1 IoU OA Pre. Rec. F1 IoU OA

U-Net (Ronneberger et al., 2015) 63.6 68.7 66.0 49.3 85.7 64.0 65.7 64.6 47.8 84.8
SegFormer-B5 (Xie et al., 2021) 59.1 79.7 67.9 51.4 84.8 60.9 81.0 69.5 53.2 84.9
BIT-CD (Chen et al., 2021) 65.6 75.8 70.3 54.3 87.1 63.9 72.1 67.6 51.2 85.4
SARAS-Net (Chen et al., 2023) 61.8 66.0 63.8 46.8 84.9 62.1 70.5 65.9 49.2 84.6
TCD (ours) 64.2 83.6 72.6 57.0 87.3 63.7 81.4 71.5 55.6 86.3

Table 7: Quantitative results of OCR benchmark for different languages and its average.

Language English Korean Chinese Russian
Method Pre. Rec. F1 Acc Pre. Rec. F1 Acc Pre. Rec. F1 Acc Pre. Rec. F1 Acc

Tesseract OCR (Smith, 2007) 87.7 99.9 93.4 92.9 97.8 100.0 98.9 98.2 84.2 100.0 91.4 89.7 89.7 99.8 94.5 93.9
Multiplex OCR (Huang et al., 2021) 56.2 98.3 71.5 60.9 84.6 95.7 89.8 82.7 75.4 87.2 80.9 73.2 55.6 98.0 70.9 57.8
PPOcr v3 (Li et al., 2022) 99.3 100.0 99.6 99.6 99.5 99.9 99.7 99.5 99.0 100.0 99.5 99.3 79.8 99.4 88.5 86.5
TCD (ours) 99.4 99.5 99.4 99.4 100.0 99.4 99.7 99.5 99.7 99.9 99.8 99.7 99.4 99.4 99.4 99.4

Language French Digits Avg.
Method Pre. Rec. F1 Acc Pre. Rec. F1 Acc Pre. Rec. F1 Acc

Tesseract OCR (Smith, 2007) 94.2 99.7 96.8 96.0 87.3 99.9 93.2 88.7 90.1 99.9 93.2 88.7
Multiplex OCR (Huang et al., 2021) 65.5 98.5 78.7 67.1 87.1 98.3 92.3 87.3 70.7 96.6 80.7 71.5
PPOcr v3 (Li et al., 2022) 96.4 99.6 98.0 97.5 99.8 100.0 99.9 99.9 95.6 99.8 97.5 97.1
TCD (ours) 98.9 97.4 98.1 97.7 99.7 99.8 99.7 99.6 99.5 99.2 99.4 99.2
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