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Abstract

In this work, we introduce a computationally efficient method that allows Sparse
Autoencoders (SAEs) to automatically detect interpretable directions within the
latent space of diffusion models. We show that intervening on a single neuron in
SAE representation space at a single diffusion time step leads to meaningful feature
changes in model output. This marks a step toward applying techniques from
mechanistic interpretability to controlling the outputs of diffusion models, further
ensuring the safety of their generations. As such, we establish a connection between
safety/interpretability methods from language modelling and image generative
modelling.

1 Introduction

Diffusion models excel in myriad applications, including text-to-image synthesis, image-to-image
translation, inverse problems, super-resolution, and image editing [1–5]. Despite significant advances
in diffusion model capabilities, studies on model interpretability have yet to systematically understand
how internal activations relate to specific outputs [6]. Such understanding is crucial for precise
control over outputs, as it may mitigate safety risks like generating offensive or fraudulent images,
imitating artists without consent, and perpetuating societal biases [7–10]. Conversely, progress has
been made toward producing safer language models via a systematic understanding of their internal
representations [11–13]. This has been achieved through a set of techniques collectively called
mechanistic interpretability, which aim to reverse-engineer internal processes within neural networks
[14–17].

By understanding the internals of neural networks through reverse engineering their internals, we
can identify the neurons responsible for specific tasks, allowing for intervention and modification
of activations when they might lead to unsafe outputs, thus improving safety. Researchers have
identified sets of neurons within language models involved in model behaviour such as the induction
task, indirect object identification, the greater than task, vision-language integration and grokking
[12, 14, 15, 18, 19]. Inspired by these results, the present work seeks to repurpose these methods for
diffusion models to provide a step toward steering their outputs toward safer generations.

Reverse engineering neural network internals requires decomposing models into discrete components
representing distinct features. The most natural choice is a single neuron. However, neurons may
activate in response to many disjoint features [13, 20, 21]. This property is called polysemanticity,
and it has been posited by Elhage et al. [21] to occur because of superposition, where neural networks
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Figure 1: The H-Space Autoencoder. We take a pre-trained latent diffusion model, ϵ(t)Θ (zt) and split
it into its downward, υθ1(zt) and upward υθ2(zt) paths. We train our autoencoder (Wη, Wψ), to
reconstruct representations, ht = υθ1(zt) which are output by the downward path. Once trained,
we can intervene on specific features by altering components of our Autoencoder representation to
produce interpretable modifications to images.

learn more features than they have dimensions within a given layer. This implies that the learned
basis, corresponding to distinct features, forms an overcomplete set of non-orthogonal vectors. The
number of learned features would equal the layer’s dimension if they were orthogonal.

Each neural network activation vector typically contains only a subset of features; for example,
representations that correspond to an image of a dog will probably not contain features that relate to
images of houses. To explain this phenomenon, the superposition hypothesis posits that activations
are sparse linear combinations of distinct feature vectors. If so, it may be possible to reverse-engineer
model features by finding vectors that reproduce neural network representations when sparsely
combined. This is the motivation behind Sparse Autoencoders (SAEs), which build on the field of
sparse dictionary learning by using neural networks to learn these feature vectors [13, 22, 23].

In this work, we extend the SAE framework to diffusion models. In particular, we examine H-Space,
which is the intermediate latent space at the bottleneck of the U-Net architecture of diffusion models.
Several works have highlighted its usefulness for representation learning in diffusion models [6,
24–30]. We show that we can find features that produce interpretable changes to model outputs when
modified by learning vectors that, when sparsely combined, reproduce H-Space representations. We
obtain these interpretable changes by modifying a single neuron in SAE representation space at a
single timestep of diffusion model denoising. As such, our work is a step toward locating which
neurons within diffusion models correspond to specific outputs, ensuring greater control and safety.

We have three main contributions. (1) We introduce the Channel-Aware SAE, which allows for SAEs
to be applied to H-Space in a computationally efficient manner. (2) We introduce the first application
of Sparse Autoencoders to the internal representations of a state-of-the-art Diffusion model. (3)
We demonstrate that we learn image representations which are more robust and richer than existing
methods.

2 Background

2.1 Diffusion Models

Denoising diffusion probabilistic models (DDPMs) are hierarchical latent variable models, where our
latent variables, x1, ...,xT are time-dependent and share the same dimension as our data x0 ∼ q(x0).
To learn our data distribution, q(x0), we express the joint distribution over all latents as a Markov
chain, starting at a prior distribution p(xT ) = N (xT ; 0, I) and ending at our model distribution
pΘ(x0).

pΘ(x0:T ) := p(xT )

T∏
t=1

p
(t)
Θ (xt−1|xt) (1)
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Figure 2: Results from interventining on HSpace Autoencoder representations. Modifying a
single neuron in HSoace-SAE space at a single timestep leads to localized feature changes. ∆ denotes
the number of neurons that change before and after our intervention. The total size of H-Space is
81920 dimensions.

This joint distribution, pΘ(x0:T ), is known as the reverse process. It allows us to recover the
probability of our data pΘ(x0) by approximating pΘ(x0) =

∫
pΘ(x0:T )dx1:T . Our approximate

posterior, q(x1:T |x0), is referred to as the forward process. The forward process iteratively corrupts
our data through the addition of Gaussian noise, which simulates a diffusion process. It is pre-defined
as another Markov chain of the form:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

Where β1, ..., βT are scalar values that control the variance at each time step, t. As such, DDPMs
are a two-step procedure, our data x0 ∼ q(x0) is corrupted by the forward diffusion process,
q(x1:T |x0), and then denoised by the reverse process pΘ(x0:T ) to obtain our original density. At
time t, the approximate posterior is another Gaussian, q(xt|x0) = N (

√
αtx0, (1 − αt)I), where

αt =
∏t
s=1(1− βs). Thus, via reparameterisation, the noised image at time t can be expressed as

xt =
√
αtx0 +

√
1− αtϵ where ϵ ∼ N (0, I). This allows us to simplify our objective by learning a

model, ϵ(t)Θ (xt) (typically a U-Net), which predicts the sampled noise, ϵ, based on xt and t. We may
also condition this model, on auxiliary information, c, such as a text prompt relating to our image x0.
This admits the following objective:

L :=

T∑
t=1

Ex0∼q(x0),ϵt∼N (0,I)

[
∥ϵ(t)Θ (

√
αtx0 +

√
1− αtϵt, c)− ϵt∥22

]
(3)

To obtain samples from our model distribution, pΘ(x0), we start at our final noise latent p(xT ) and
iteratively obtain pΘ(xt−1|xt), using the following generative process:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

(t)
Θ (xt, c)√

αt

)
︸ ︷︷ ︸

predicted x0

+
√
1− αt−1 − σ2

t ϵ
(t)
Θ (xt, c)︸ ︷︷ ︸

direction pointing to xt

+ σtϵt︸︷︷︸
random noise

(4)

Where ϵt ∼ N (0, I). By setting σt =
√

1−αt−1

1−αt

√
1−αt

αt−1
for all t, we obtain the original stochastic

DDPM generative process.

2.1.1 Denoising Diffusion Implicit Models

By setting σt = 0 for all t, the generative process becomes deterministic and transforms into a deep
diffusion implicit model (DDIM). This is important, as it also allows for a deterministic mapping
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Algorithm 1 Training
1: repeat
2: x ∼ q(X )
3: t = 0.7T
4: z0 = E(x0)
5: zt = ΩΘ(z0, t)

6: ht = υ
(t)
θ1

(zt, t), c)

7: α = ReLU(Wη[ht, ζ(ρ, µ)] + be)
8: ĥt = Dropρ,µ(Wψα+ bd)
9: Do Gradient Descent Step on

10: ∇η,ψ∥ĥt − ht∥22 + λ∥αi∥1
11: until converged

Algorithm 2 Interventions
1: x ∼ q(X )
2: t = 0.7T
3: z0 = E(x0)
4: zt = ΩΘ(z0, t)
5: α = ReLU(Wη[ht, ζ(ρ, µ)] + be)
6: Do Intervention
7: α̃ = [α1, α2, . . . , α̃i, . . . , αn]
8: where α̃i = αiκ
9: h̃t = Dropρ,µ(Wψα̃+ bd)

10: z̃0 = (pΘ(υθ2(h̃t, c)|z̃t)
11: x̃ = D(z̃0)

from x0 to xT if we re-arrange equation 4 for xt and assume that ϵ(t)Θ (xt, c) ≈ ϵ
(t−1)
Θ (xt−1, c).

This is known as DDIM inversion, and it fixes both our noise latents, as well as neural network
representations through the forward and backward processes. This means we can investigate how
their representations change under intervention without them changing by themselves, which aids
representation learning. We denote DDIM inversion with ΩΘ(x0, t, c).

2.1.2 Latent Diffusion Models

Latent diffusion models extend diffusion models into the latent space of an image autoencoder, with
encoder E(x) : X → Z and decoder D(z) : Z → X . As such, the distribution that we approximate
becomes q(z) as opposed to q(x). We use a latent diffusion model in the present work, and the
notation henceforth reflects this.

2.2 H-Space

Diffusion model researchers have begun exploring the intermediate latent space, known as H-Space, at
the bottleneck of the U-Net architecture used by ϵ(t)Θ (zt, c) [6, 24–30]. Kwon et al. (2022) [24] showed
that modifying activations within H-Space at specific timesteps, followed by continued denoising,
enables isolated and interpretable changes to images. Importantly, the authors demonstrated that H-
Space activations have three notable properties. First, they are robust to noise perturbations. Second,
they are linear, allowing smooth interpolation between H-Space activations to create gradual changes
in a concept. Third, they are consistent across images, enabling the use of the same H-Space direction
to edit the same concept in different images. Given these properties and the reduced dimensionality
compared to image-space, several works have developed H-Space modification frameworks for
interpretable and isolated image editing [6, 24–30]. This makes H-Space a natural choice for the
present work.

3 Method

We seek to learn a set of L vectors {wi}Li=1, that reproduce H-Space activations when used in sparse
linear combinations, such that each vector, wi represents a distinct feature. We first decompose our
noise prediction U-Net into its constituent parts:

ϵ
(t)
Θ (zt, c) = υ

(t)
θ1

(zt, c) ◦ υ(t)
θ2

(ht, c) where Θ = {θ1, θ2} (5)

Where υ
(t)
θ1

(zt, c) is the downward path of the U-Net, υ(t)
θ2

(ht, c) is its upward path and ht is the
H-Space representation of a given noisy latent zt, which is output by vθ1(zt).

3.1 The Channel-Aware SAE

In general, to learn our feature vectors {wi}Li=1 we may train an SAE with encoder weights Wη

and decoder weights Wψ. By placing an L1 penalty on our encoded, ht, we obtain α = Wηht,
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Table 1: Accuracy Scores on CelebA test set. The columns denote the training dataset (CELEB-A
and FFHQ Dataset).

Training Datasets

Method CelebA (Acc) ↑ FFHQ (Acc) ↑ Authors
H-Space SAEs (Ours) 0.80 0.80 -
DiTi 0.78 0.79 Yu et al. (2022) [31]
PDAE 0.79 0.79 Zhang et al. (2022) [32]
Diff-AE 0.77 0.79 Preechakul et al. (2022) [33]
pSp-GAN 0.78 0.78 Richardson et al. (2020) [34]
β-TCVAE 0.68 0.70 Chen et al. (2018) [35]

such that ∥α∥0 ≪ L and α ∈ RL. Our reconstruction of H-Space, ĥt, is then a sparse linear
combination of the columns of our decoder: ĥt =

∑L
i αiwi where α = [α1, α2, ..., αL], and

Wψ = [w1,w2, ...,wL]. As such, we obtain our feature vectors {wi}Li=1. However, training SAEs
directly on H-Space is computationally intensive. This is because U-Nets are convolutional neural
networks, so ht ∈ RM×K×K where M is the channel dimension, M > 1000 and K is a small
number (e.g. 8). Let D = MKK ≈ 104. Since SAEs expand the dimension of D, if we set the
number of features L = 2D, we need 2 × 108 parameters for the encoder and decoder each. To
alleviate this problem we introduce the Channel-Aware SAE by defining:

h̄t,i = [ht,i, ρ, µ] i = 1, ...,M where ht,i ∈ RK×K (6)

Where ρ and µ are scalar outputs of a neural network ζγ : R2 → R2 that models the channel dimension
and the index of the image in the dataset corresponding to ht,i. We then treat all h̄t,i ∈ RK×K

as individual data points instead of directly modelling M × K × K dimensional H-Space. This
allows us to drastically reduce the computational cost of SAEs in H-Space, as instead of requiring
around 2× 108 parameters for both the encoder and decoder, we require approximately 2× 102 since
typically K < 10. The use of ζγ : R2 → R2 also allows this to be done flexibly.

3.2 Architecture and Training

As mentioned above we trained SAEs with a sparsity term, as such reconstructions of H-Space take
the form:

ĥt = Dropρ,µ(Wψα+ bd), where α = ReLU(Wηh̄t + be) (7)

Where be and bd are bias terms for the encoder and decoder, respectively, and Dropρ,µ denotes that
we drop the last two dimensions corresponding to the channel dimension and image index. Our
training objective takes the form:

L =
1

N

N∑
i=1

∥ĥt,i − ht,i∥22 + λ∥αi∥1 (8)

Where N is the size of the training set. Algorithm 1 shows the full training procedure.

3.3 Thresholding

Following training, we use thresholding to ensure that our features are used sparsely when recon-
structing H-space. For a given ht, we compute its SAE representation A = [α1,α2, ...,αM ]T where
M is the channel dimension of ht. We then compute:

Ā = [TopK(α1),TopK(α2), ...,TopK(αM )]T (9)

Where TopK(·) returns the highest k values. We then define τ = min(Ā) and set all values of the
original matrix A to 0 if they are below τ . Taking the minimum of Ā represents a trade-off between
sparsity and data reconstruction ability.
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Table 2: Evaluation Metrics for Different Methods on CELEBA, CELEBA-HQ, and FFHQ
Datasets. Metrics include explained variance (EV), cosine similarity, mean squared error (MSE), and
mean absolute error (MAE).

CELEBA CELEBA-HQ FFHQ

EV ↑ Cosine ↑ MSE ↓ MAE ↓ EV ↑ Cosine ↑ MSE ↓ MAE ↓ EV ↑ Cosine ↑ MSE ↓ MAE ↓
H-Space SAE (Ours) 0.90 0.95 1.81 1.07 0.90 0.95 1.73 1.04 0.89 0.95 1.85 1.08
PCA 0.54 0.83 6.04 1.91 0.57 0.84 5.75 1.86 0.54 0.83 6.08 1.91
β-VAE (16 dim) -3.5 0.42 15.8 3.1 -3.4 0.43 14.3 2.9 -3.4 0.39 16.2 3.1
β-VAE (512 dim) -3.2 0.43 15.6 3.0 -3.1 0.47 13.7 2.8 -3.1 0.43 15.6 3.0
Random - 0.01 7.60×105 6.70×102 - 0.01 6.39×105 6.12×102 - 0.01 7.60×105 6.70×102

3.4 Interventions on H-Space

3.4.1 From Image Space to SAE Space

To evaluate the concepts that our features, {wi}Li=1, correspond to, we perform interventions on
H-Space and observe how our intervention modifies the original image. To achieve this, we need to
transition from image-space to SAE Space, by following a four-step procedure. 1) We encode an
image x with E(x) to obtain our latent z0. 2) We then run z0 through DDIM Inversion, ΩΘ(z0, t, c),
to obtain zt our noisy latent. 3) We then transition into H-Space by placing zt through the downward
path of our U-Net υθ1(zt, c) and append the channel dimension along with the image index to obtain
h̄t. 4) Finally, we transition into SAE space by running h̄t through our SAE encoder to obtain α.

We may then intervene on H-Space. By modifying a single αk ∈ α, we up weight the feature
wk because ĥt = Dropρ,µ(

∑L
k αkwk + bd). Generally, we scale an embedded component αk to

produce our modified SAE representation α̃, such that:

α̃ = [α1, α2, . . . , α̃k, . . . , αL] where α̃k = αkκ κ ∈ R (10)

3.4.2 From SAE Space back to Image Space

To observe the effect of our intervention we must return from SAE-space back to image-space by
following a three-step procedure. 1) We place α̃ through the SAE decoder and reconstruct H-Space
by computing h̃t =. 2) We then run h̃t through the upward path of the U-Net υθ2(h̃t, t, c) to obtain
z̃t. 3) Finally, z̃t is run through the forward process, pΘ(z̃0|z̃t:1) to obtain our modified z̃0, which is
decoded with D(z̃0) to obtain our modified image x̃.

To infer which concept wk corresponds to, we then observe the change between our original image x
and the modified image x̃. To infer which neurons within H-Space correspond to these features, we
take the difference between the original ht and the modified h̃t Note that this occurs at a single time
step in the denoising process and modifies a single SAE latent vector component.

For our experiments, we chose t = 0.7 where T = 1000 = total denoising steps because previous
work has shown that it is early enough in denoising to change concepts effectively but late enough
that the concept changes are robust [6, 28]. Algorithm 2 shows the algorithm in full. Note that fully
flattened A still has approximately 1000× 8× 8 dimensions.

4 Experiments

4.1 Datasets

We applied our H-Space SAEs to three publicly available datasets: Celebrity Faces Attributes
(CELEB-A), consisting of 200,000 images each labelled with 40 binary attributes [36]; CELEBA-HQ,
the higher resolution variant of CELEB-A, comprising 30,000 images [37] and Flickr-Faces-HQ
(FFHQ), which includes 70,000 images of faces from the image website Flickr [38].

4.2 Training Set-up

We used Stable Diffusion 2.1, [39] as our pre-trained latent diffusion model. The dimension of
H-Space in this model is 1280× 8× 8, so h̄t,i was 66 dimensional. We chose a hidden size of 512
for α when training on CELEB-A and FFHQ, and a hidden size of 256 for CELEBA-HQ and AFHQ.
Our hardware consisted of 2 Nvidia A100s, and an Nvidia RTX 4090.
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Figure 3: Counterfactual Consistency Experiment results.

4.3 Quantitative Assessment

4.3.1 4.3.1 Linear probes

To assess the quality of the representations produced by our method, we followed a similar protocol to
Yue et al. (2024) [31]. We trained one SAE on H-Space representations from the CELEBA train split
and another SAE on the FFHQ dataset. Once these SAEs were obtained, we trained linear probes
to classify the 40 binary facial attributes based on SAE representations of the CELEBA training set.
We then evaluated our linear models on the CELEBA test set. Our baselines fell into two categories:
i) traditional unsupervised representation learning techniques (β-TCVAE [35] and pSp-GAN [34]),
and ii) diffusion-based methods (DiffAE [33], PDAE [32] and DiTi [31]). To ensure the input
to the probes were of the same dimension, we used the 512-dimensional variants of the baseline
methods. For our SAEs we took the top 512 components from, our flattened out representations,
A = [α1,α2, ...,αM ].

4.3.2 Reconstruction

We also evaluated our SAEs’ ability to perform out-of-distribution generalization by assessing their
ability to reconstruct H-Space representations on unseen data. We trained SAEs on the CELEBA
train set, CELEBA-HQ, and FFHQ. We then evaluated the performance of these models on the
CELEBA test set. The metrics used for evaluation were explained variance, mean squared error, mean
absolute error, and cosine similarity. We compared our model’s results to the following baselines:
two non-linear baselines (β-VAE-512 dimensional and β-VAE 16 dimensional), a linear baseline:
principal component analysis (PCA), a random baseline: 2 normally distributed matrices were for the
encoder and decoder respectively, which were then used to reconstruct H-Space representations.

4.4 Qualitative Assessment

To qualitatively assess our method, we take the top 10 components from our flattened out SAE
representations and intervene on their values. Additionally, we demonstrate the results of interpolating
between different images in SAE space. We also conduct a counterfactual consistency experiment,
where we modify a particular feature within an image, and then change it back to see if other features
change, the baseline we compare to is text based image editing. Finally, to mechanistically interpret
our SAE representations, we analyze which dimensions in SAE space typically have the highest
activation values on CELEBA-HQ. We then examine which class examples maximally activate these
top k activations.

4.5 Results

4.5.1 Representation Learning Capacity

Table 1 compares the CELEBA test set accuracy achieved by linear probes trained on our SAEs
representations to both conventional and diffusion-based unsupervised representation learning meth-
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ods. We achieve competitive accuracy scores with the state-of-the-art diffusion based representation
learning methods, with a marginal performance gain; this demonstrates the high quality of the repre-
sentations that our SAEs produce. As expected, β-VAE performs poorly with high-resolution facial
data, as it was developed to work on lower resolution synthetic datasets.

Table 2 displays how our method compares to both linear (PCA) and non-linear (β-VAE) dimension-
ality reduction techniques, on the task of reconstructing unseen data. We significantly outperform
all baselines across all metrics, demonstrating the capacity of our SAEs to effectively capture the
variance within H-Space representations.

After using our thresholding technique, we achieve an average of 95 % sparsity of activations (only
5% of SAE representations are active) within SAE space across SAEs trained on all datasets. Despite
this, we still outperform our baselines, which suggests that we recover features that recover our
H-Space activations when sparsely combined. As expected, the 512 latent dimensional network
generally outperforms the 16-dimensional variant.

4.6 Concept Intervention

Figure 2 displays images where we intervene on one of the top 10 components within SAE space.
After scaling a single one of these components we observe interpretable image edits. We also denote
the number of neurons which changed within H-Space before and after intervention. For example, in
the image in the top left of the figure 2 after scaling component 57512 of A by 750 we can observe
that the mouth closes.

Approximately, 3683 (0.009%) of neurons changed within H-Space before and after the intervention,
and this demonstrates how localization of the changes made by our method.

4.6.1 Counterfactual Consistency

For an intervention on a concept to be localized, it must be invertible, meaning the operation causing
the change can be reversed to nullify the effect. We demonstrate that our SAEs recover this property
in Figure 3. For example, in the top right corner of the figure, we scale component 1678 by 1000
and see a modification to the individual’s age. To reverse the modification, we compute the SAE
representation of the modified image and divide component 1678 by 1000. This demonstrates the
invertibility of the features learnt by our SAEs which speaks to the robustness of the representations
learnt.

5 Discussion, Limitations and Future Work

In this work, we presented the H-Space SAE. This technique shows promise as a tool for enhancing
the safety of image-generative models by improving control and interpretability in diffusion models.
By intervening on a single SAE component at a single diffusion timestep, we obtain interpretable
changes to image generations. This enables targeted interventions that may be used to prevent unsafe
or biased content generation, such as offensive images or deep fakes.

We also introduced the Channel-Aware SAE in order to drastically increase the computational
efficiency of SAEs applied to diffusion models. Such fine-grained and computationally efficient
control could be crucial in real-time AI systems to ensure ethical outputs and reduce risks of misuse,
contributing to safer deployment of generative models. Notably, this work establishes a connection
between safety techniques used in language modelling and image-generative modelling. An increase
in cross-modality safety techniques may lead to a deeper understanding of how neural networks
work more fundamentally, which, in turn, may lead to greater control over the model outputs of both
modalities.

A limitation of the current work is that the specific neurons responsible for particular outputs in
the diffusion models have not been systematically identified, unlike the mechanistic interpretability
applied to language models to locate circuits. Future work should employ the present method to
identify how changes in SAE space map onto specific neurons within the diffusion model.

Additionally, we only examined feature manipulation at a single diffusion time step. Future work
should explore the effects of interventions across multiple timesteps, which could provide a more
comprehensive understanding of how features evolve throughout the diffusion process and enable
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finer control over outputs. Expanding on these areas could significantly improve the precision and
scope of this technique in both interpretability and practical application.

6 Related Work

Recent efforts to explore and manipulate H-Space representations in diffusion models have led to
various advancements. Kwon et al. (2022) were the first to modify H-Space activations, inspiring
techniques like Epstein et al. (2023), who used self-guidance for meaningful representation extraction,
and Jeong et al. (2023), who injected content into H-Space using text prompts. Similar approaches
by Haas et al. (2023) have also been proposed, all relying on supervisory signals to control model
behavior [25, 28, 30]. In contrast, the present method automatically identifies interpretable directions
without external guidance.

Additionally, Yong et al. (2023) applied the pullback metric from Riemannian geometry to decompose
H-Space, enabling the discovery of interpretable features [6]. However, their approach induced large-
scale changes, whereas the present method focuses on localized, precise interventions. Other related
work includes the language modelling SAE literature [13, 22, 40]. For example Cunningham et al.
(2023) [40] demonstrate that SAEs can disentangle complex data, uncovering interpretable neurons in
language models, which parallels efforts in diffusion models to identify and control specific features.

7 Potential Negative Societal Impact

While our method enhances control over diffusion model outputs, it may also facilitate misuse in
sensitive applications. For instance, targeted modifications could be exploited for unethical purposes,
such as deepfake creation, image alteration without consent, or propagating harmful stereotypes.
Additionally, increased accessibility to such manipulation tools may raise privacy concerns and
exacerbate bias if applied without adequate safeguards. Proactively addressing these risks through
ethical guidelines and safeguards is essential to prevent potential harm and misuse.
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