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Abstract

Fairness in machine learning is of growing concern as more instances of biased1

model behavior are documented while their adoption continues to rise. The majority2

of studies have focused on binary classification settings, despite the fact that many3

real-world problems are inherently multi-class. This paper considers fairness4

in multi-class classification under the notion of parity of true positive rates—an5

extension of binary class equalized odds [23]—which ensures equal opportunity6

to qualified individuals regardless of their demographics. We focus on algorithm7

design and provide a post-processing method that derives fair classifiers from pre-8

trained score functions. The method is developed by analyzing the representation9

of the optimal fair classifier, and is efficient in both sample and time complexity,10

as it is implemented by linear programs on finite samples. We demonstrate its11

effectiveness at reducing disparity on benchmark datasets, particularly under large12

numbers of classes, where existing methods fall short.13

1 Introduction14

Algorithmic fairness has emerged as a topic of significant concern in the field of machine learning,15

due to the potential for models to exhibit discriminatory behavior towards historically disadvantaged16

demographics [9, 4, 6], all while their adoption continues to rise in domains including high-stakes17

areas such as criminal justice, healthcare, and finance [3, 7]. To address the concern, a variety of18

fairness criteria have been proposed (e.g., demographic parity, equalized odds) along with mitigation19

methods [10, 19, 23, 26]. On classification problems, the majority of work focuses on the binary class20

setting [2, Table 1], where one class is typically considered to be more favorable (e.g., the approval21

vs. rejection of a credit card application).22

Yet, many real-world problems are multi-class in nature. In the case of credit card applications,23

issuers may opt to assigning higher-tier interest rates to high-risk applicants rather than outright24

rejecting them, which creates opportunities to applicants who would otherwise be denied credit25

and also generates returns for the banks. Similarly, in online advertising, recruiting platforms can26

employ machine learning models to match users to relevant job postings across multiple occupation27

categories. There are evidences, however, for such systems to exhibit gender bias [8, 13, 44]; for28

instance, models that are trained to identify occupation from biography tend to show higher accuracy29

(recall) on male biographies than on their female counterparts in occupations that are historically30

male-dominated [14].31

In the example above, unfairness is manifested in a disparity of true positive rates (TPRs) across32

demographic groups A (generalizing the true positive and negative rates in binary classification),33

TPRa(Ŷ )y := P(Ŷ = y | Y = y,A = a), ∀y ∈ [k], a ∈ [m].

A classifier satisfying parity of TPRs, i.e., TPRa = TPRa′ for all a, a′, ensures that individuals with34

the same qualification (Y ) will have equal opportunity of receiving their favorable outcome (Ŷ = Y )35
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Figure 1: Feasible region of TPRs on a binary class (left) and a three-class problem (right). The
black (resp. colored) arrow indicates the utility-maximizing direction (of each group).

regardless of demographics [20], e.g., being shown job postings on recruiting platforms for which the36

user is qualified. When the classes are binary, this fairness notion recovers equalized odds [23].37

In this paper, we focus on the design of algorithm for mitigating TPR disparity and provide an efficient38

post-processing method that derives attribute-aware fair classifiers from (pre-trained) scoring models.39

Our method works on multi-class and multi-group classification problems, guarantees fairness by a40

sample complexity bound, can be implemented by linear programs, and achieves higher reductions in41

disparity compared to existing algorithms that are applicable to multi-class—a recently proposed post-42

processing method based on model projection [2], and adversarial debiasing [41], an in-processing43

method—especially when the number of classes is large.44

Organization. We introduce the problem setup and objectives in Section 2, then describe our45

post-processing method for TPR parity in Section 3, along with suboptimality analyses; in particular,46

our method yields the optimal fair classifier when applied to the Bayes optimal score function.47

Our method is instantiated for finite sample estimation in Section 4, and we also provide sample48

complexity bounds to complete the analysis. Finally, in Section 5, we compare our algorithm with49

existing methods for disparity reduction on benchmark datasets.1 A high-level summary of our results50

is provided in Section 1.1.51

1.1 Summary of Results52

One way to interpret and understand TPR parity is through visualizing the feasible regions of TPRs.53

In Fig. 1, we plot the feasible regions (achievable by probabilistic classifiers) of two groups on a54

(hypothetical) binary classification problem on the left, and those on a three-class problem on the55

right, where each axis represents the TPR of a class. Achieving optimal TPR parity amounts to56

first finding the TPR that maximizes the overall utility (e.g., accuracy) in the intersection of feasible57

regions, and subsequently an (attribute-aware) classifier attaining that target TPR on all groups. Note58

that the left figure is equivalent to the ROC curve (with a flip of the horizontal axis, because the TPR59

of class 1 equals one minus the false negative rate by treating class-1 as the negative class), which60

was used by Hardt et al. [23] for studying equalized odds. And thus, the TPR (hyper)surface plots in61

higher dimensions are a natural generalization of the ROC curve to multi-class settings.62

Step one of finding the optimal fair TPR can be formulated as a linear program when estimating from63

finite samples. For the second step, our method derives a classifier attaining the target TPR from the64

score function; in particular, it yields the optimal fair classifier when the score is Bayes optimal:65

Theorem 1.1. Let f∗
1 , · · · , f∗

m : X → ∆k denote the Bayes score function on each group, f∗
a (x) :=

E[Y | X = x,A = a], and q1, · · · , qm ∈ ∆k be arbitrary. Then under a continuity assumption (2.3),
∃β1, · · · , βm ∈ [0, 1] and λ1, · · · , λm ∈ Rk s.t. the probabilistic attribute-aware classifier

(x, a) 7→
{ arg maxy′(λa)y′ · f∗

a (x)y′ w.p. 1− βa (1a)

y w.p. βa · (qa)y , ∀y ∈ [k] (1b)

achieves the maximum utility subject to TPR parity.66

1Our code is provided in the supplemental material.
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The post-processed classifier returned by our method is a mixture of two models (weighted by67

β). Eq. (1a) returns the class with the highest likelihood after a class-wise rescaling, called a68

tilting [2], which generalizes the concept of thresholding in binary classifiers. Eq. (1b) makes random69

assignments sampled from a Multinoulli(q) distribution, which handles situations where the fair TPR70

lies in the interior of the feasible region (see Fig. 1, where the optimum is located within the interior71

of group 2 feasible region). To alleviate potential ethical concerns regarding this randomization, we72

point out that the parameter qa’s used in class sampling can be specified per-group by the practitioner73

responsibly, e.g., uniform 1/k, or ey′ with y′ being an advantaged outcome.74

Among the possibly infinitely many fair classifiers derived from the score function f , our method75

specifically seeks the simplistic representation in Eq. (1) because it can be estimated via linear76

programs from finite samples. More importantly, it immediately extrapolates to unseen examples,77

and provides good generalization performance at the rate of Õ(
√
k/n) thanks to its low function78

complexity (Theorem 4.2).79

When the score function being post-processed is not Bayes optimal, our method is still applicable, but80

the resulting classifier may not be optimal nor exactly achieve TPR parity without access to labeled81

data (the method itself only needs unlabeled data with the sensitive attribute) or additional knowledge82

of the model. But these suboptimalities are minimized if the model is calibrated (Theorem 3.5);83

this answers the question raised in [2] about the effects of base model inaccuracies on downstream84

post-processing.85

1.2 Related Work86

Fairness Critetia. The notion of TPR parity has appeared in the literature as conditional procedure87

accuracy equality [7], avoiding disparate mistreatment [39], and (multi-class) equal opportunity [14,88

29, 31] (to be distinguished from the fairness criterion with the same name in [23]). Other group89

fairness notions that extend to multi-class include (but not limited to) equalized odds [23] (of which90

TPR parity is a necessary condition), and demographic parity (DP) [10] (where Xian et al. [35]91

recently proposed an optimal post-processing method). However, DP may be less desirable than92

TPR parity in some use cases because the perfect classifier is not permitted under DP when the base93

rates differ [42]. It is worth noting that TPR parity implies accuracy parity [9]. In addition to group94

fairness, there are notions defined on the individual level [19].95

Mitigation Methods. Our method is based on post-processing [25, 23]. There are also in-processing96

methods via fair representation learning [40, 41, 43, 30] or solving zero-sum games [1, 36], and97

pre-processing methods that debias the data prior to model training [11, 44]; see [4, 12] for a survey.98

For multi-class TPR parity, the only applicable post-processing method to date, to our knowledge,99

is due to Alghamdi et al. [2] (which is the primary baseline for our method in our experiments).100

It is a general-purpose method that transforms the scores to satisfy fairness while minimizing the101

distributional divergence (e.g., KL) between the transformed scores and the original. However, the102

tradeoff between model performance and fairness is unclear as they did not relate the divergence to103

utility. Furthermore, while the authors provided a sample complexity bound for their optimization104

objective, it is not explicitly related to the violation of the fairness criteria.105

2 Preliminaries106

A k-class classification problem is defined by a joint distribution µ of input X ∈ X , demographic107

group membership A ∈ [m] := {1, · · · ,m} (a.k.a. the sensitive attribute), and class label Y ∈ [k].108

We denote the joint distribution of (X,A) by µX,A, and, the (k− 1)-dimensional probability simplex109

by ∆k := {z ∈ Rk
≥0 : ‖z‖1 = 1}.110

Let f : X ×A → ∆k be an attribute-aware (pre-trained) score function, whose outputs are probability111

vectors that estimate the class probabilities as in f(x, a)y ≈ Pµ(Y = y | X = x,A = a). We will112

write fa : X → ∆k to denote the component of f associated with group a, i.e., fa(x) ≡ f(x, a). Our113

goal is to find fair (probabilistic) post-processing maps g1, · · · , gm : ∆k → Y to derive a classifier114

(x, a) 7→ ga ◦ fa(x) that satisfies TPR parity while maximizing utility (e.g., classification accuracy).115

We allow for controllable tradeoffs between utility and fairness through the following relaxation of116

TPR parity, and call a classifier α-fair if it satisfies α-TPR parity:117
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Definition 2.1 (Approximate TPR Parity). Let α ∈ [0, 1]. A predictor Ŷ is said to satisfy α-TPR118

parity if ∆TPR(Ŷ ) ≤ α, where119

∆TPR(Ŷ ) := max
a,a′∈A

∥∥∥TPRa(Ŷ )− TPRa′(Ŷ )
∥∥∥
∞
, (2)

and TPRa(Ŷ ) := P(Ŷ | Y = y,A = a) ∈ [0, 1]k; P includes the randomness of the predictor.120

Beyond classification accuracy, we also allow for any utility functions that depend only on the TPRs:2121

Definition 2.2 (Utility). The utility function u : [k]× [k]→ R is defined for some υ ∈ Rk by122

u(ŷ, y) :=
∑
y′∈[k]

υy′ 1[y = y′, ŷ = y′].

E.g., accuracy, 1[y = ŷ], is obtained by setting υ = 1k. The term υ will appear in our analyses,123

and the significance of considering utilities of this form is that we could evaluate a classifier by a124

weighted sum of its TPRs. Define pay := Pµ(A = a, Y = y), then125

U(Ŷ ) = Eu(Ŷ , Y ) =
∑

a∈[m],y∈[k]

υypay TPRa(Ŷ )y ≡ U(TPR1(Ŷ ), · · · ,TPRm(Ŷ )). (3)

Finally, we make the following continuity assumption on the distributions of score to avoid technical126

complexities related to tie-breaking (on the atoms). This assumption has also appeared in prior work127

on fair post-processing [16, 21, 35]; it holds when the input distributions are continuous and the score128

function is injective, or can be satisfied by adding small random perturbations to the scores.129

Assumption 2.3. The conditional distribution of score, P(fa(X) | A = a), is (Lebesgue absolutely)130

continuous, ∀a ∈ [m].131

3 TPR Parity via Post-Processing132

Given a score function f : X ×A → ∆k, and access to the (unlabeled) joint distribution µX,A (i.e.,133

no estimation error), we describe a method for deriving an attribute-aware α-fair classifier while134

maximizing utility, in the form of (x, a) 7→ ga ◦ fa(x), where the ga’s are (probabilistic) fair135

post-processing maps for each group. That is, we want to solve136

max
g1,··· ,gm

U(Ŷ ) s.t. ∆TPR(Ŷ ) ≤ α where Ŷ = gA ◦ fA(X).

Although the method only returns classifiers derived from f as opposed to searching over the space of137

all classifiers h : X ×A → Y , it would yield the optimal fair classifier provided that the information138

of (A, Y ) is preserved in the output of f ; this is the case when the score function is Bayes optimal.139

3.1 Deriving Optimal Fair Classifier From Bayes Score Function140

In this section, we explain how to obtain an optimal fair classifier by deriving from the Bayes score141

function f∗, thereby providing a proof of Theorem 1.1 (omitted proof are deferred to the appendix).142

Step 1 (Finding Utility-Maximizing Fair TPRs). Let Da ⊆ [0, 1]k denote the set of feasible TPRs143

on group a achieved by probabilistic classifiers. The first step is to find utility-maximizing fair TPRs144

contained in an `∞-ball of diameter α per Definition 2.1 of α-TPR parity (left figure of Fig. 2):145

max
t1∈D1,··· ,tm∈Dm

U(t1, · · · , tm) s.t. ‖ta − ta′‖∞ ≤ α, ∀a, a′ ∈ [m]. (4)

When α = 0, this reduces to finding a single t ∈
⋂

a Da, and because each Da is convex (since146

probabilistic classifiers are allowed), it can be found with ternary search as suggested in [23]. If147

instead the ta’s are to be estimated from finite samples, then the empirical D̂a’s are described by148

polytopes and the problem can be formulated as a linear program (Section 4).149

2This includes all possible utility/loss functions in binary classification, since TPR(Ŷ )1 (true negative rate)
and TPR(Ŷ )2 (true positive rate) fully determine the 2× 2 confusion matrix.
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Figure 2: Achieving α-TPR parity on a binary class problem. First, the utility-maximizing TPRs
residing in an `∞-ball of diameter α are found (left). Then, classifiers achieving the fair TPRs are
obtained: a tilting of the scores when the TPR lies on the boundary (middle), otherwise, a mixture of
tilting and randomization (right). The simplex ∆k is always inscribed in the feasible region.

The feasible regions of TPR generally differ across groups, due to uncertainties that are inherent to150

each group in the task of interest, or to inadequate and biased collection or sourcing of data. The more151

the Da’s differ, the greater the tradeoff between fairness and utility; hence TPR parity incentivizes152

the practitioner to improve data collection and aspects of modeling that induces a balanced predictive153

capability on all groups [23].154

Because f∗(X,A) is sufficient statistic for Y , the fair TPRs we found above are always achievable155

by classifiers derived from f∗. Or more concretely,156

Proposition 3.1. Let f∗ : X → ∆k denote the Bayes score function, then D := {TPR(h) ∈ [0, 1]k |157

h : X → Y (probabilistic)} = {TPR(g ◦ f∗) ∈ [0, 1]k | g : ∆k → Y (probabilistic)}.158

Step 2 (Obtaining Fair Classifier of Desired Form). Having found the utility-maximizing fair TPR159

ta’s, the next step is to derive a classifier that attains ta on each group. This is provided by the160

following theorem:161

Theorem 3.2. Let f∗ : X → ∆k denote the Bayes score function, and q ∈ ∆k be arbitrary. Then162

under Assumption 2.3, ∀t ∈ D, there exists β ∈ [0, 1] and λ ∈ Rk s.t. TPR(h) = t, where163

h(x) =

{
arg maxy′ λy′f∗(x)y′ w.p. 1− β

y w.p. βqy , ∀y ∈ [k].

The construction uses the observation that the boundary of D, denoted by ∂D, is given by the set of164

TPRs attained by tiltings of the Bayes score:165

Proposition 3.3. Let f∗ : X → ∆k denote the Bayes score function, then h : X → Y (probabilistic)166

satisfies TPR(h) ∈ ∂D if and only if ∃λ ∈ Rk, λ 6= 0 s.t. h(x) ∈ arg maxy λyf
∗(x)y .167

Proof of Theorem 3.2. If the target TPR lies on the boundary of D, then by Proposition 3.3, it is168

achieved by a tilting of the Bayes score without any randomization (i.e., β = 0; center figure of169

Fig. 2). This holds due to Assumption 2.3, because we may break ties arbitrarily without affecting170

TPR, since the set of tied scores (finite union of (k − 2)-d subspaces) has (Lebesgue) measure zero.171

Otherwise, and generally, there must exists t′ ∈ ∂D and β ∈ [0, 1] s.t. t can be written as a linear172

combination of t = βq + (1− β)t′. This is simply because q ∈ ∆k ⊆ D, and the line connecting q173

and t must intersect ∂D at some point t′ (right figure of Fig. 2). Since the TPR of the input-agnostic174

randomization according to Multinoulli(q) equals q, and t′ is achieved by a tilting of the score per175

Proposition 3.3, their β-mixture achieves the target TPR t by linearity.176

3.2 Deriving From Any Score Function177

The post-processing method described in the previous section, which only requires unlabeled data178

(X,A), yields the optimal α-fair classifier when applied to Bayes scores f∗. Yet, in practice, there179
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Algorithm 1 Post-Process Score Function for α-TPR parity
1: Input: α ∈ [0, 1], q1, · · · , qm ∈ ∆k, score function f : X ×A → ∆k, distribution µX,A

2: D̃a := {T̃PRa(h) | h : X → Y (probabilistic)} . Eq. (5), induced TPR feasible region
3: t̃1, · · · , t̃m ← arg maxt̃1∈D̃1,··· ,t̃m∈D̃m

U(t̃1, · · · , t̃m) s.t. ‖t̃a − t̃a′‖∞ ≤ α, ∀a, a′ ∈ [m]

. utility-maximizing fair TPRs
4: for a = 1 to m do
5: Find ha, βa ∈ [0, 1] s.t. T̃PRa(ha) ∈ ∂D̃a and t̃a = (1− βa)T̃PRa(ha) + βaqa
6: Find λa ∈ Rk s.t. ha(x) ∈ arg maxy′(λa)y′ · fa(x)y′ , ∀x ∈ supp(µX

a )
7: end for
8: Return: (x, a) 7→ arg maxy′(λa)y′ · fa(x) w.p. 1− βa, and y w.p. βa · (qa)y for each y ∈ [k]

is the concern that Bayes score functions could be arbitrarily complex and are often not exactly180

learnable due to limited data or computational constraints [34].181

Nonetheless, our method is still applicable to arbitrary (approximations to the Bayes) score functions182

f : X ×A → ∆k for deriving classifiers that are approximately fair and optimal, by treating them183

as if they were Bayes optimal (Algorithm 1). Where, the only tweak we made is replacing the184

ground-truth TPRs and feasible regions (which are unknown without access to the Bayes score) by185

approximations induced by f , i.e.,186

D̃a :=
{

T̃PRa(h) ∈ [0, 1]k
∣∣∣ h : X → Y (probabilistic)

}
, (5)

where187

T̃PRa(h)y :=
1

p̃ay

∫
x∈X

fa(x)y P(h(x) = y)dµX,A(x, a), p̃ay :=

∫
x∈X

fa(x)y dµX,A(x, a).

(6)
It is not hard to show that they are equal to their ground-truth counterparts when f = f∗.188

We may control and minimize the suboptimalities of the classifier returned from Algorithm 1 by189

performing group-wise distribution calibration to the score function f (using labeled data (X,A, Y )):190

Definition 3.4 (Distribution Calibration). A score R is said to be (group-wise) distribution calibrated191

if P(Y = y | R = s) = sy , ∀s ∈ ∆k, y ∈ [k] (resp. P(Y = y | R = s,A = a) = sy , ∀a ∈ [m]).192

Distribution calibration is a multi-class generalization of the original definition of calibration for193

binary predictors [15, 32], requiring the predicted score to match the underlying class distribution194

conditioned on the score across all classes, not just the most confident one [22]. Although this195

definition is convenient to work with mathematically, it could be difficult to achieve in practice. In the196

proof of Theorem 3.5, we relax it to a recently proposed notion of decision calibration [45] (w.r.t. the197

set of all tiltings; derived from multicalibration [24]), which could be achieved in polynomial time.198

Theorem 3.5. Let f : X × A → ∆k be a score function, and h : X × A → Y the (probabilistic)199

classifier derived from f using Algorithm 1. Then under Assumption 2.3, for any group-wise calibrated200

reference score function f̄ : X ×A → ∆k,201 ∣∣U − U(h)∣∣ ≤ ∑
a∈[m],y∈[k]

3υyεay, ∆TPR(h) ≤ α+ max
a∈[m],y∈[k]

4εay
pay

,

where pay := Pµ(A = a, Y = y), υ is from the utility function in Definition 2.2, U denotes the utility202

achieved by the optimal α-fair classifier derived from the calibrated reference f̄ , and203

εay := E
[∣∣f̄a(X)y − fa(X)y

∣∣ · 1[A = a]
]

is the L1(µ) difference between f and the calibrated reference f̄ on group a and class y.204

We draw two conclusions from this result. First, by using the Bayes score function f∗ as the reference,205

it states that the suboptimality of the derived classifier when f 6= f∗ is upper bounded by the206

difference between the approximate scores and the ground-truth; this answers the question raised207

in [2] regarding the impact of base model inaccuracies. Second, if f satisfies calibration, then by208

using itself as the reference, the result guarantees that the classifier derived using Algorithm 1 exactly209

achieves the desired level of fairness, and is optimal among all fair classifiers derived from f (which210

cannot be improved without labeled data).211
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4 Finite-Sample Algorithm and Guarantees212

We instantiate the post-processing method above for TPR parity to the case where we do not have213

access to the distribution µX,A but only samples drawn from it (i.e., to perform estimation), and214

analyze the sample complexity.215

Assumption 4.1. We have n i.i.d. (unlabeled) samples of (X,A), which are independent of the score216

function f being post-processed.217

Denote the number of samples from group a by na, and the samples themselves by (xa,i)i∈[na].218

4.1 Algorithm219

We adapt Algorithm 1 to handle finite samples by replacing D̃a and U with their empirical counterparts220

(essentially calling it with the empirical distribution µ̂X,A formed by the samples as the argument),221

and implement the optimization problems on Lines 3, 5 and 6 using linear programs.222

Step 1 (Finding Utility-Maximizing Fair TPRs). The empirical induced feasible region of TPRs, D̂a,223

can be computed via evaluating the TPRs of all (probabilistic) classifiers acting on the samples—by224

representing them using na × k lookup tables (each row gives the probabilities of the random class225

assignment on the corresponding sample):226

D̂a :=
{

T̂PRa(γa)
∣∣∣ γa ∈ Rna×k

≥0 ,
∑

y∈[k](γa)i,y = 1, ∀i ∈ [na]
}
,

where227

T̂PRa(γ)y :=
1

np̂ay

∑
i∈[na]

fa(xa,i)y · (γa)i,y, p̂ay :=
1

n

∑
i∈[na]

fa(xa,i)y

(cf. Line 2 and Eqs. (5) and (6)). Note that D̂a is a polygon, as it is specified by linear constraints.228

To obtain the utility-maximizing fair TPR t̂a’s, we take the empirical maximizer subject to the α-TPR229

constraint via solving a linear program (cf. Line 3 and Eqs. (3) and (4)):230

LP1(α) : max
t̂1∈D̂1,··· ,t̂m∈D̂m

Û(t̂1, · · · , t̂m) s.t. ‖t̂a − t̂a′‖∞ ≤ α, ∀a, a′ ∈ [m],

where Û(t̂1, · · · , t̂m) :=
∑

a,y υyp̂ay(t̂a)y is the empirical utility.231

Step 2 (Obtaining Fair Classifier of Desired Form). The next step is finding a classifier that achieves232

t̃a’s on the empirical distribution, i.e., Lines 5 and 6. To implement Line 5, note that another way of233

approaching this problem is to realize that among all eligible (βa, ha)-pairs, the ha associated with234

the maximum βa value must satisfy T̃PRa(ha) ∈ ∂D̃a (otherwise, a contradiction can be reached235

using the fact that D̃a ⊆ [0, 1]k is compact; also see the right figure of Fig. 2). Combined with the236

strategy above of representing classifiers using lookup tables, we get the following linear program:237

LP2(t, q) : max
γ,β

β s.t. t = (1− β)T̂PR(γ) + βq and γ ∈ Rn×k
≥0 ,

∑
y∈[k]

γi,y = 1, ∀i ∈ [n].

Finally, on Line 6, we find a tilting λa s.t. after coordinate-wise multiplied by the scores, the argmax238

class assignment has nonzero probability according to the classifier γa found in the preceding step:239

LP3(γ) : min
λ

0 s.t. λyf(xi)y ≥ λy′f(xi)y′ ∀i ∈ [n], y, y′ ∈ [k], γi,y > 0.

The feasible set of this problem is nonempty by Proposition 3.1, because we are treating f as if it240

were the Bayes score function, and the empirical distribution µ̂X,A as the population.241

All combined, our algorithm involves solving (2m+1) linear programs, where LP1 is the dominating242

one with O(nk) variables and constraints; solving which (to near-optimality) takes, e.g., Õ(poly(nk))243

time using interior point methods [33].244
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4.2 Sample Complexity245

Thanks to the low function complexity of post-processing maps used in our algorithm to derive246

classifiers (Eq. (1)), it enjoys the following efficient sample complexity:247

Theorem 4.2. Let f : X × A → ∆k be a score function, and h : X × A → Y the (probabilistic)248

classifier derived from f using Algorithm 1 with the empirical distribution formed by samples249

from Assumption 4.1 as the argument. Then under Assumption 2.3, for any group-wise calibrated250

(Definition 3.4) reference score function f̄ : X ×A → ∆k, and n ≥ Ω(maxa,y ln(mk/δ)/pay),251

∣∣U − U(h)∣∣ ≤ O

 ∑
a∈[m],y∈[k]

υy

(√
kpay
n

ln mk

δ
+

k

n
+ εay

),

∆TPR(h) ≤ α+O

(
max

a∈[m],y∈[k]

(√
k

npay
ln mk

δ
+

k

npay
+

εay
pay

))
,

where U denotes the utility achieved by the optimal α-fair classifier derived from the calibrated252

reference f̄ , and εay := E[|f̄a(X)y − fa(X)y| · 1[A = a]].253

The bound consists of a calibration error εay as discussed in the remarks of Theorem 3.5, an estimation254

error from applying uniform convergence (the Natarajan dimension of the set of tiltings is O(k)), and255

a k/n term that comes from the disagreement over class assignments on the samples between the256

(deterministic) tilting found on Line 6 and the (probabilistic) classifier on Line 5 due to tie-breaking.257

5 Experiments258

We evaluate Algorithm 1 for reducing TPR disparity on benchmark datasets, and demonstrate its259

effectiveness compared to existing post-processing as well as in-processing bias mitigation methods.260

Datasets. The first task is income prediction, for which, we use the ACSIncome dataset [18]—an261

extension of the UCI Adult dataset [27] with much more examples (1.6 million vs. 30,162), allowing262

us to compare methods confidently. We consider a binary setting where the sensitive attribute is263

gender and the target is whether the income is over $50k, as well as a multi-group multi-class setting264

with five race categories and five income buckets. The second is text classification, of identifying265

occupations (28 in total) from biographies in the BiasBios dataset [14]; sensitive attribute is gender.266

Baselines and Setup. The main baseline is FairProjection [2]—the only post-processing algo-267

rithm applicable for multi-class TPR parity to our knowledge.3 In the binary setting, we also compare268

to RejectOption [25]. To demonstrate the deficiencies of existing methods at reducing TPR dispar-269

ity, we additionally include in-processing results using Reductions [1] and Adversarial [41].45270

On each task, we first create a pre-training split from the dataset and train a linear logistic regression271

scoring model (with isotonic calibration and five-fold cross-validation as implemented in scikit-272

learn [37, 38, 28]), then randomly split the remaining data for post-processing and testing with273

10 different seeds and aggregate the results (the pre-trained model remains the same). For in-274

processing, we use the same splits but merge the pre-training and post-processing data for training.275

On BiasBios, linear logistic regression is performed on the embeddings of the biographies computed276

by a previously fine-tuned BERT model [17] (in other words, head-tuning). Additional details277

including hyperparameters are included in the appendix.278

Results. In Fig. 3, we plot the tradeoff curves from varying the fairness tolerance (α for our279

method). Our method is consistently the most effective at minimizing TPR disparity, particularly280

under multi-class settings, where existing algorithms only manage to partially reduce ∆TPR (and281

at a greater cost to accuracy when using FairProject and RejectOption). It also outperforms282

3We use the authors’ code, where TPR parity is equivalent to the meo constraint. The results from using the
KL divergence variant is included, which are better than the cross-entropy variant in our experiments.

4Although Reductions is extended to multi-class by Yang et al. [36], an implementation was not provided.
5The implementation (with minor modifications) in the AIF360 library is used for the latter methods [5].
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Figure 3: Tradeoff curves between accuracy and ∆TPR (Eq. (2)). The base model is logistic regression
(except for Adversarial, which uses a feedforward network). Error bars indicate the standard deviation
over 10 runs with different random dataset splits. Running time is reported in the appendix.

the in-processing Reductions on binary ACSIncome, and Adversarial in terms of ∆TPR, which,283

although enjoys higher accuracies because of the use of the more expressive feedforward networks284

as the prediction model, fails to reduce TPR parity. Sharper drops in accuracies are observed when285

applying our method with small α settings, e.g., 0.001 to 0.0001. We saw this happen when the286

randomized component in Eq. (1b) is activated (i.e., β > 0), meaning that Line 3 finds a fair TPR287

that lies in the interior of the feasible region of the better-performing group in order to match the288

feasible TPR on the worse-performing one(s). Hence the drop is expected because utility is being289

sacrificed to achieve TPR parity.290

Although our method greatly reduces TPR disparity, there remains a gap to reaching ∆TPR = 0,291

especially on tasks with more classes (i.e., BiasBios, where a higher variance is also observed).292

While this could be due to miscalibration, or potentially a violation of Assumption 2.3, the main293

reason is suspected to be insufficient sample size. Recall from Theorem 4.2 that the sample complexity294

for ∆TPR scales as Õ(
√
k/npay) in the worse-case (a, y), which is itself at least Õ(

√
mk2/n).295

Thus, learning generalizable classifiers that satisfy TPR parity under more groups and classes is much296

harder in terms of data requirement (and by extension, computing resource).297

Lastly, we emphasize the necessity of group-wise calibration for achieving low ∆TPR, as the298

definition of the criterion involves conditioning on the true label (it is also reflected by the calibration299

error term εay in Theorem 4.2). In an ablation study in the appendix, a larger (minimum achievable)300

∆TPR is observed when no efforts are made to calibrate the scoring model. It is therefore necessary301

for model vendors to provide accurate uncertainty quantifications, and for practitioners building fair302

classifiers to verify and improve calibration.303

6 Conclusions and Limitations304

We described a post-processing method for reducing TPR disparity for equal opportunity in multi-class305

classification, and demonstrated its performance in comparison to existing algorithms on benchmarks306

datasets, especially when the number of classes is large. We analyzed the sample complexity of our307

method, and established its optimality under model calibration.308

The effectiveness of our method at reducing TPR disparity is largely contributed to the tailored309

analysis, although it limits our method to this fairness notion only. Some use cases may demand310

equalized odds (Ŷ ⊥ A | Y ) beyond TPR parity (1[Ŷ = Y ] ⊥ A | Y ), which is a more stringent311

criterion: TPR parity only needs to match the main diagonal of the (conditional) confusion matrix312

across groups, whereas equalized odds requires matching all k2 entries. The design of efficient313

algorithms for achieving equalized odds remains an open problem.6314

6We note that most (general-purpose) fairness algorithms, e.g., [2], are only evaluated for TPR parity but not
equalized odds.
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