
Learning to Reason on Hard Problems with Privileged On-Policy Exploration

Yuxiao Qu¹, Amrith Setlur¹, Virginia Smith¹, Ruslan Salakhutdinov¹, Aviral Kumar¹

¹Carnegie Mellon University

Email: yuxiaoq@andrew.cmu.edu

Abstract

Reinforcement learning (RL) has improved the reasoning abilities of large language models (LLMs), yet state-of-the-art methods cannot use all training problems in a training dataset. On-policy RL rarely produces even a single correct rollout on hard problems, yielding no reward signal or learning altogether. Moreover, mixing easy problems into the training set can detrimental as on-policy RL may derive a larger signal to sharpen its distribution from these problems, impairing its ability to solve harder problems reliably. While one might attempt to address this by distilling human- or model-written solutions into models, these traces are not only expensive and hard to write, but also serve as poor fine-tuning targets: while they produce correct outputs, these concise paths are extremely challenging to learn from. We introduce **Privileged On-Policy Exploration** (POPE), a framework that leverages already available solutions from humans or other models to obtain a learning signal on hard problems by using them as “privileged” information that guides exploration. Concretely, POPE augments hard prompts with a minimal solution prefix as guidance, enabling RL to obtain non-zero rewards when rolling out conditioned on this prefix. We show that this approach allows RL to acquire behaviors that transfer back to original problems. This process expands the set of solvable problems and improves performance on challenging reasoning benchmarks.

1 Introduction

Reinforcement learning (RL) has substantially improved the reasoning abilities of large language models (LLMs) in math and coding. For example, relatively small models (under 2B parameters) trained with RL to make best use of test-time compute by running longer chains of thought (CoT) can outperform much larger models trained without RL (Setlur et al., 2025b; Liu et al., 2025). Concurrently, some studies also argue that RL post-training mainly amplifies capabilities already present in the model (Yue et al., 2025; Zhao et al., 2025), though others show design choices (prompt mixtures, token budgets, curricula) mitigate such concerns (Setlur et al., 2025b; Liu et al., 2025).

However, even the most effective RL methods fail to train on the full set of available problems, leaving substantial performance gains untapped. This is largely because on-policy RL cannot sample even a single rollout with a non-zero outcome reward on a sizable fraction of “hard” problems, and thus receives no reward signal¹. In many such cases, rollouts never employ the right strategy, so no correct samples are obtained at all. Procedures such as dynamic prompt sampling (Yu et al., 2025; Wang et al., 2025b) even explicitly filter these prompts out. As a result, RL plateaus once the easier problems are solved. In fact, our results show that after sufficiently many easy problems yield reward, RL simply “sharpens” its behavior on these problems, which reduces the diversity of the model’s outputs and impairs its ability to solve new problems compared to the base model. We explain this phenomenon through the lens of ray interference (Schaul et al., 2019), a phenomenon where on-policy RL exhibits a bias of maximizing reward more on states where it already attains reward.

¹Our analysis shows that when fine-tuning Qwen3-4B on DAPO-MATH-17K (Yu et al., 2025), the model samples a correct rollout on <50% of prompts, given $K = 32$ parallel attempts at each and 16k token budget.

Our goal in this paper is to design an approach that allows RL to overcome this interference issue and learn on hard problems. If the base model is unable to sample any correct rollout on these problems, how can we obtain learning signal though? A natural idea is to collect “expert” reasoning traces from an oracle (e.g., human), either for distillation (Sessa et al., 2024; Agarwal et al., 2024a) or directly in RL (Yan et al., 2025). Yet reasoning traces of the kind required for LLMs are prohibitively expensive to write, and prior work finds little benefit from using available human-written data (and we corroborate these results). Even when distillation on reasoning traces from bigger models succeeds, gains are marginal (Yan et al., 2025) and upper bounded by the capabilities of bigger models. Therefore, we ask: is there a less-constraining way to use available sources of privileged information such as human-written solutions to derive learning signal on hard training problems?

Our key insight is that privileged information can effectively guide an LLM’s *on-policy* exploration on hard problems, even when it is not useful as a training target. For instance, consider a hard problem where the LLM repeatedly pursues incorrect approaches and fails within the allocated training budget. Supplying even a short prefix of a human-written solution can significantly increase the likelihood of reaching the correct answer. This effect is especially useful when the base model already has strong instruction-following capabilities, allowing it to understand and build upon the privileged content. Our approach, **Privileged On-Policy Exploration** (POPE), leverages this principle to guide exploration in RL on hard problems, serving as an alternative to distillation, SFT, or off-policy RL.

Concretely, for any set of hard problems, POPE first gathers a human- or oracle-provided solution. It then trains a base LLM with RL on a prompt mixture that includes both the original hard problems and versions augmented with partial prefix of these solutions. These partial solutions provide just enough guidance to make it possible to sample at least *one* correct rollout among many attempts. Training on this mixture enables RL to sample some non-zero reward on hard problems, though only when the partial solution is present. Through on-policy exploration guided by these augmented prompts, the model acquires useful behaviors that transfer back to the original prompts, demonstrating generalization (Figure 1; blue). We also find that it is critical to ensure that the privileged information provided is such that it does not make the problem substantially simpler, or else this inhibits transfer (Figure 1; yellow). In contrast, standard on-policy exploration or RL applied after distilling human-written solutions fails to solve new problems during training. Empirically, we find that POPE enables models to solve hard training problems that remain unsolvable with standard RL training by using either human solutions or language-model generated solutions. Beyond improving pass@1 accuracy, POPE also boosts pass@k, showing that it prevents RL from collapsing into merely sharpening the distribution on problems the model already solves.

2 POPE: Privileged On-Policy Exploration

Standard RL post-training often fails to make progress on hard problems: once easier prompts are solved, gradients vanish on unsolved ones and training stalls. This effect, driven by vanishing advantages and update interference, is analyzed in detail in Appendix D. To address the limitations of on-policy exploration, we make use of privileged data (e.g., human solutions or LLM solutions) to enable experiencing some positive reward on such problems. A natural way to exploit this data is through distillation of oracle traces. However, this strategy can be problematic: LLMs solve hard problems via reasoning traces, which introduces a “type mismatch” with the human or oracle data available. Indeed, we find in our experiments, fine-tuning on oracle data naively reduces output diversity on hard problems (Figure 7) without meaningfully improving success rates on the same or related tasks. We therefore build an alternative approach called POPE, which utilizes two main motivating insights in this section.

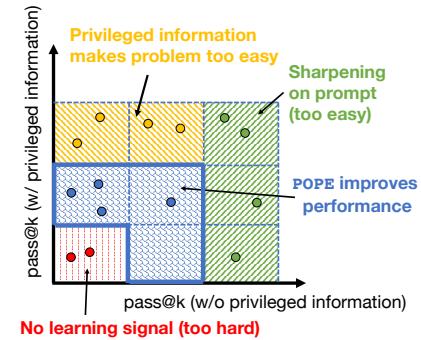


Figure 1: *Illustrating prompts as point in the 2D-plane based on their accuracy.* On prompts with low pass@k but high pass@k under privileged conditioning, POPE helps by training on a mixture of normal and augmented prompts. On easy prompts, standard RL already sharpens the model and conditioning may not help, while on prompts that become too easy under conditioning (high pass@k with conditioning but low without), POPE is less effective since transfer of behaviors does not occur. Thus, POPE uses the smallest prefix of privileged information to guide on-policy exploration to allow maximal transfer on hard prompts, in effect staying within the blue region in the figure.

Background and notation. For clarity, preliminaries on outcome-reward RL, pass@ k , and training dynamics under GRPO (including the phenomenon of ray interference) are provided in Appendix B and Appendix C. We only summarize the necessary algorithmic details here.

The POPE Algorithm. Instead of using human or oracle-written solutions as training targets, we condition on partial prefixes of these solutions as privileged information to generate on-policy rollouts. Formally, given an oracle solution \mathbf{z} to a hard training problem $\mathbf{x} \sim \mathcal{D}_{\text{hard}}$, we condition rollouts on a prefix $\mathbf{z}^{0:i}$ of \mathbf{z} , i.e., $\mathbf{y} \sim \pi(\cdot | \mathbf{x}, \mathbf{z}^{0:i})$. In principle, any prefix $\mathbf{z}^{0:i}$ could be used, but we only need the minimal prefix that allows on-policy rollouts to obtain *some* non-zero reward on \mathbf{x} , thereby driving learning on \mathbf{x} . We therefore choose the shortest prefix that yields non-zero reward under the base model for every prompt \mathbf{x} . Formally, for a given prompt \mathbf{x} and base model $\pi_{\theta}^{\text{base}}$, the minimal privileged prefix is:

$$i^*(\mathbf{x}) := \arg \min_i \left\{ i \in [0, L_{\mathbf{x}}] : \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}^{\text{base}}(\cdot | \mathbf{x}, \mathbf{z}^{0:i})} [r(\mathbf{x}, \mathbf{y})] \geq \alpha \right\}, \quad (1)$$

where $L_{\mathbf{x}}$ is the length of the oracle solution \mathbf{z} for prompt \mathbf{x} . Since $i^*(\mathbf{x})$ is defined per prompt, we compute these indices in a pre-processing stage before RL training. Using this, we construct an augmented set of hard prompts:

$$\mathcal{D}_{\text{hard}}^{\text{aug}} := \left\{ \text{concat}(\mathbf{x}, \mathbf{z}^{0:i^*(\mathbf{x})}) \mid \mathbf{x} \in \mathcal{D}_{\text{hard}} \right\}. \quad (2)$$

POPE then trains on a dataset consisting of a 1:1 mixture of hard prompts $\mathcal{D}_{\text{hard}}$ and their augmented versions $\mathcal{D}_{\text{hard}}^{\text{aug}}$. As we show, while unaugmented prompts do not yield reward early in training, the augmented prompts do, and these gains eventually transfer back to the unaugmented prompts, especially when the augmented prompt uses the minimal prefix (Eq. 1). This enables POPE to learn effectively on hard prompts. Finally, we emphasize that POPE operates fully on-policy: although privileged information guides exploration, the exploration itself is carried out by the model through on-policy rollouts. This procedure does not utilize interventions, off-policy corrections, or off-policy completions during RL, keeping the training procedure simple to implement yet effective at learning.

3 Experimental Evaluation

We evaluate the efficacy of POPE in providing training signal on hard problems, and how training on such hard problems translates to test performance. We also wish to understand if POPE alleviates the ray interference issue, and whether the design choices introduced above are crucial.

POPE implementation. To instantiate POPE, we begin by constructing a dataset of hard training problems on which the base model fails completely. To do this, we evaluate the base model (e.g., Qwen3-4B) with a rollout budget of $k = 32$ samples per problem. We mark a problem as hard if the model achieves zero success rate, meaning no single rollout produces the correct final answer. For each hard problem, we derive the minimal guidance prefix from an oracle solution that can help the base model obtain non-zero reward. Oracle solutions are obtained either from human-written data or from stronger models such as Gemini 2.5 Pro in our experiments. To identify candidate prefixes, we first chunk each solution at meaningful logical points, for example, individual steps of a derivation, applications of lemmas or theorems, or transitions between reasoning steps. Each chunk boundary provides for a boundary of the potential prefix. We then evaluate the performance of the base model (Qwen3-4B model in our setting) conditioned on these prefixes, checking whether at least one rollout yields the correct answer. We use a token budget of 16K tokens for this evaluation, since this is also the token budget that we run RL training at subsequently. The minimal privileged prefix $i^*(\mathbf{x})$ (Equation 1) for a problem \mathbf{x} is defined as the shortest prefix of the oracle solution that leads to some non-zero success on the problem. In our experiments, we choose a threshold success rate of 0.3 over 16 rollouts conditioned on a partial oracle prefix to define this minimal prefix $i^*(\mathbf{x})$. In cases where no prefix leads to success, we still select one prefix at random, ensuring every problem is paired with at some sort of a partial solution from the oracle. While these random prefixes do not immediately induce correct rollouts, they may still facilitate exploration and allow the model to evolve useful behaviors during training. This process yields a dataset of hard problems paired with either minimal or fallback prefixes, providing structured yet lightweight privileged information for exploration. In this work, we train on 495 problems when privileged prefixes are derived from a stronger model, and on 165 problems when they are derived from human-written solutions.

Evaluation protocol and baselines. We evaluate POPE on hard training problems using pass@ k for $k \in \{1, 2, 4, 8\}$, with 32 evaluation rollouts per prompt. Performance is reported on the training

set (without privileged conditioning), a held-out test set of equally hard problems, and standardized math benchmarks (AIME2025, HMMT2025) (Balunović et al., 2025). We compare against three baselines: (1) **Standard RL**, trained on the same prompts without privileged information; (2) **SFT**, where the model is fine-tuned directly on full oracle solutions; and (3) **SFT+RL**, where the base model is first SFT-trained on oracle data plus model rollouts (akin to rejection fine-tuning (Zelikman et al., 2022; Yuan et al., 2023)) and then further trained with RL. These comparisons establish the value of privileged conditioning, the limits of naive SFT, and the role of on-policy exploration.

POPE with stronger LLM solutions. Figure 5 shows results when privileged information for POPE and other methods is provided by Gemini 2.5 Pro. We do not assume access to Gemini’s reasoning traces, only a short prefix of its final solution. In this setting, POPE consistently achieves the best pass@ k performance on both the held-out test set of hard problems and on standardized math benchmarks such as AIME2025 and HMMT2025. On the training set, POPE also improves pass@8, although SFT+RL can outperform it because it leverages large-scale rejection sampling that combines oracle-provided prefixes with model rollouts. This comparison highlights the importance of on-policy exploration guided by privileged information as opposed to passively distilling it into a model. Overall, we find that prefixes of solutions from a stronger LLM can substantially improve exploration on hard problems. All reported numbers are computed with 32 rollouts.

POPE with human-written solutions. Figure 2 shows results using prefixes of human-written solutions from Omni-MATH (Gao et al., 2024) difficulty 5–8 problems as privileged information. Many of these training and test problems are substantially harder than those in the Gemini setting, to the point that even strong proprietary LLMs fail on them. Nevertheless, POPE again outperforms baselines across train, test, and benchmark evaluations. The gains are especially pronounced over standard RL, which is unable to make progress in this regime. These findings demonstrate that POPE can leverage even human solutions to unlock RL training on problems beyond the reach of current LLMs. Taken together with the Gemini setting, these results illustrate the overall efficacy of POPE in improving exploration and performance on harder problems.

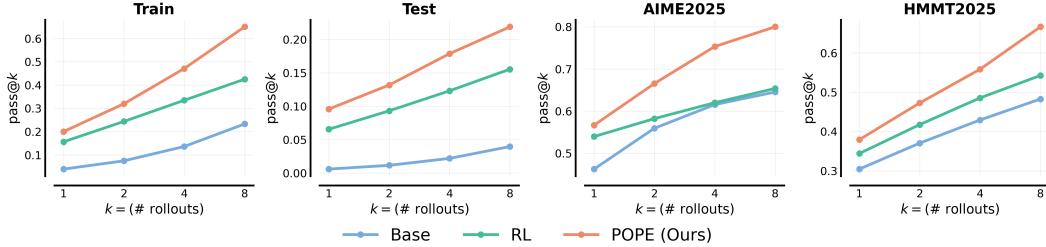


Figure 2: **Pass@ k performance of different approaches**, using human solutions as the oracle on Omni-MATH. Observe that POPE outperforms running RL without any form of privileged information, as well the base model. These gains are observed both on the train and test sets, as well as AIME2025 and HMMT2025 benchmarks.

Taken together, these results demonstrate that POPE consistently improves exploration and pass@ k performance across both stronger-LLM and human-oracle settings. While our main experiments focus on validating the effectiveness of POPE relative to RL and SFT baselines, we also conducted a range of ablation studies to examine the impact of design choices such as prefix length, oracle data source, and their effect on ray interference. For readability, we defer the full set of results to Appendix E, but we summarize three key findings here: (1) using the minimal prefix yields the best performance, while longer prefixes can actually hurt by amplifying rich-gets-richer effects; (2) directly fine-tuning on oracle solutions degrades pass@ k , confirming that conditioning is more effective than cloning; and (3) POPE mitigates ray interference, steadily reducing the fraction of unsolved problems over training rather than over-sharpening on a subset of prompts.

Conclusion. We introduce POPE: a framework for enabling reinforcement learning on hard reasoning problems by guiding exploration with minimal oracle prefixes. We show that POPE consistently outperforms standard RL and SFT baselines, improves pass@ k on both training and held-out test problems, and achieves state-of-the-art results on math benchmarks such as AIME 2025 and HMMT 2025, while mitigating ray interference. Looking forward, we envision extending POPE to multimodal reasoning tasks and adaptive prefix selection strategies that further automate privileged guidance.

References

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-generated mistakes. In *The Twelfth International Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=3zKtaqxLhW>.

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-generated mistakes, 2024b. URL <https://arxiv.org/abs/2306.13649>.

Mohammad Hossein Amani, Aryo Lotfi, Nicolas Mario Baldwin, Samy Bengio, Mehrdad Farajtabar, Emmanuel Abbe, and Robert West. Rl for reasoning by adaptively revealing rationales, 2025. URL <https://arxiv.org/abs/2506.18110>.

Ananth Balashankar, Ziteng Sun, Jonathan Berant, Jacob Eisenstein, Michael Collins, Adrian Hutter, Jong Lee, Chirag Nagpal, Flavien Prost, Aradhana Sinha, Ananda Theertha Suresh, and Ahmad Beirami. Infalign: Inference-aware language model alignment, 2025. URL <https://arxiv.org/abs/2412.19792>.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena: Evaluating llms on uncontaminated math competitions, February 2025. URL <https://matharena.ai/>.

Yinlam Chow, Guy Tennenholz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig Boutilier, Rishabh Agarwal, Aviral Kumar, and Aleksandra Faust. Inference-aware fine-tuning for best-of-n sampling in large language models. *arXiv preprint arXiv:2412.15287*, 2024.

Nicholas E. Corrado, Yuxiao Qu, John U. Balis, Adam Labiosa, and Josiah P. Hanna. Guided data augmentation for offline reinforcement learning and imitation learning, 2024. URL <https://arxiv.org/abs/2310.18247>.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025. URL <https://arxiv.org/abs/2503.01307>.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan, Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omnimath: A universal olympiad level mathematic benchmark for large language models, 2024. URL <https://arxiv.org/abs/2410.07985>.

Jingtong Gao, Ling Pan, Yejing Wang, Rui Zhong, Chi Lu, Qingpeng Cai, Peng Jiang, and Xiangyu Zhao. Navigate the unknown: Enhancing llm reasoning with intrinsic motivation guided exploration, 2025. URL <https://arxiv.org/abs/2505.17621>.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems, 2024. URL <https://arxiv.org/abs/2402.14008>.

Joey Hong, Anca Dragan, and Sergey Levine. Planning without search: Refining frontier llms with offline goal-conditioned rl. *arXiv preprint arXiv:2505.18098*, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step, 2023.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong. Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models, 2025. URL <https://arxiv.org/abs/2505.24864>.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview with a 1.5b model by scaling rl, 2025. URL <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-01-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a> Notion Blog.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching language model agents how to self-improve. *arXiv preprint arXiv:2407.18219*, 2024.

Yuxiao Qu, Anikait Singh, Yoonho Lee, Amrith Setlur, Ruslan Salakhutdinov, Chelsea Finn, and Aviral Kumar. Learning to discover abstractions for LLM reasoning. In *ICML 2025 Workshop on Programmatic Representations for Agent Learning*, 2025. URL <https://openreview.net/forum?id=zwEU00KT8G>.

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of plateaus in deep reinforcement learning. *CoRR*, abs/1904.11455, 2019. URL <http://arxiv.org/abs/1904.11455>.

Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, Sertan Girgin, Piotr Stanczyk, Andrea Michi, Danila Sinopalnikov, Sabela Ramos, Amélie Héliou, Aliaksei Severyn, Matt Hoffman, Nikola Momchev, and Olivier Bachem. Bond: Aligning llms with best-of-n distillation, 2024. URL <https://arxiv.org/abs/2407.14622>.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. *arXiv preprint arXiv:2406.14532*, 2024.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute without verification or rl is suboptimal, 2025a. URL <https://arxiv.org/abs/2502.12118>.

Amrith Setlur, Matthew Y. R. Yang, Charlie Snell, Jeremy Greer, Ian Wu, Virginia Smith, Max Simchowitz, and Aviral Kumar. e3: Learning to explore enables extrapolation of test-time compute for llms, 2025b. URL <https://arxiv.org/abs/2506.09026>.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Huawei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind the gap: Examining the self-improvement capabilities of large language models. *arXiv preprint arXiv:2412.02674*, 2024.

Yuda Song, Julia Kempe, and Remi Munos. Outcome-based exploration for llm reasoning, 2025. URL <https://arxiv.org/abs/2509.06941>.

Shenzi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen, Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025a.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong Shen. Reinforcement learning for reasoning in large language models with one training example, 2025b. URL <https://arxiv.org/abs/2504.20571>.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu, Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of o1-like llms. *arXiv preprint arXiv:2501.18585*, 2025c.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang. Learning to reason under off-policy guidance, 2025. URL <https://arxiv.org/abs/2504.14945>.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint arXiv:2503.14476*, 2025.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. Scaling relationship on learning mathematical reasoning with large language models. *arXiv preprint arXiv:2308.01825*, 2023.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?, 2025. URL <https://arxiv.org/abs/2504.13837>.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

Wenhai Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding, and Jingren Zhou. On-policy rl meets off-policy experts: Harmonizing supervised fine-tuning and reinforcement learning via dynamic weighting, 2025. URL <https://arxiv.org/abs/2508.11408>.

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach. Echo chamber: RL post-training amplifies behaviors learned in pretraining, 2025. URL <https://arxiv.org/abs/2504.07912>.

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising effectiveness of negative reinforcement in llm reasoning, 2025. URL <https://arxiv.org/abs/2506.01347>.

Appendices

A Related Work

Our work tackles exploration on hard problems in RL-trained reasoning models when naïvely scaling on-policy RL compute makes little progress. It is related to prior works on enhancing exploration with different training objectives or those that use off-policy traces to reinforce the model being trained and prevent the training from stalling. We briefly review these below.

RL exploration limits on hard problems. Small RL-trained models trained via RL can now outperform much larger base models (Liu et al., 2025; Luo et al., 2025), largely by reinforcing long chain-of-thought traces that exhibit meta-strategies and behaviors such as self-correction (Qu et al., 2024) and reflection (Gandhi et al., 2025). Yet, without careful design, RL often *sharpens* the base model’s distribution, reducing exploration diversity and leaving hard problems underexplored. This often manifests as a degrading pass@ k compared to the base model (Yue et al., 2025; Zhao et al., 2025). To mitigate this drop, one line of work focuses on regularizing RL training to prevent over-sharpening. Examples include adding exploration bonuses based on intrinsic motivation (Gao et al., 2025), entropy (Wang et al., 2025b), count-based bonuses (Song et al., 2025), or training objectives that directly optimize pass@ n (Chow et al., 2024; Balashankar et al., 2025). While effective at stabilizing learning, these methods remain constrained by sparse rewards, reliance on easy problems for signal, and persistent failure on challenging tasks (He et al., 2024). A complementary line of work (Setlur et al., 2025b) amplifies exploratory asymmetries of the base model, such as the verification-generation gap (Setlur et al., 2025a; Song et al., 2024), to generate longer traces beyond the base distribution. Negative gradients in RL can chain such asymmetries over iterations (Zhu et al., 2025), but models often “under-think” (Wang et al., 2025c), executing incorrect high-level strategies that persist despite more rollouts. Our work tackles this by conditioning on privileged information to guide new strategies, discover correct rollouts, and internalize them without explicit conditioning, thereby overcoming the exploration bottleneck.

Updating LLMs with off-policy traces. When on-policy exploration struggles due to sharpening or over-thinking, several works propose supervising the RL policy on human- or oracle-provided traces (Lightman et al., 2023; Corrado et al., 2024). However, for methods that rely on traces from a teacher model, the gains are inherently bounded by teacher capacity (Agarwal et al., 2024b). Moreover, learning from such traces typically requires additional techniques such as reward shaping (Yan et al., 2025), entropy control (Wang et al., 2025a), and extensive hyperparameter tuning Zhang et al. (2025). A more fundamental limitation is that off-policy reasoning traces are simply not available for many hard problems: although human-written solutions exist for nearly any RL training prompt and can be rephrased into more effective formats, producing long chains of thought that align with how models actually reason is much more difficult. As we show in our experiments, learning from off-policy data under such type mismatch often leads to a collapse in the diversity of responses sampled by the model. An approach that avoids using off-policy data as training targets is therefore preferable, and our method falls into this category. Related directions include conditioning on subgoals or plans (Hong et al., 2025), or providing abstractions (Qu et al., 2025), but our approach is substantially simpler since it directly conditions on a prefix of an oracle solution. The work most closely related to ours is training with on-policy exploration on adaptively revealed solutions (Amani et al., 2025). However, unlike us, this work focuses on non-reasoning didactic domains where short responses suffice and exploration is easier. A key aspect of our motivation leverages the parameterization of reasoning traces and their strong instruction-following capabilities, which are absent from this work.

B Preliminaries and Notation

We situate this paper in the domain of RL post-training of large language models (LLMs) on math problems. For any given problem $\mathbf{x} \sim \rho$ and a rollout $\mathbf{y} \sim \pi_\theta(\cdot | \mathbf{x})$ attempting to solve this problem, we define a *binary outcome reward* $r(\mathbf{x}, \mathbf{y}) \in \{0, 1\}$ indicating correctness of the final answer produced by the rollouts. Analogous to work studying RL with 0/1 rewards, we assume that the rollout \mathbf{y} represents the final answer in a \boxed{} block. We study several measures of performance, including the pass@ k metric, given by $\text{pass}@k = \Pr[\exists y_1, \dots, y_k \sim \pi_\theta(\cdot | \mathbf{x}) \text{ s.t. } r(\mathbf{x}, y_i) = 1]$, which measures the probability that at least one of k independent attempts at the problem succeeds. This metric captures the role of parallel exploration during training and governs whether a batch can yield any positive signal for GRPO (Shao et al., 2024) or any other Monte-Carlo rollout based policy optimization algorithm for LLMs. We also use pass@ k as an evaluation metric to understand the

optimization behavior of RL on the base LLM, especially in regard to interference and sharpening effects as we will see in the next section. Most RL algorithms use the *policy gradient*:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{y \sim \pi_{\theta}} [r(\mathbf{x}, \mathbf{y}) \nabla_{\theta} \log \pi_{\theta}(\mathbf{y} \mid \mathbf{x})]. \quad (3)$$

which reinforces rollouts that end in a correct final answer. This process is also called outcome-reward RL. In practice, some of the most-commonly used RL algorithms such as GRPO, uses a reference policy π_{old} for sampling and normalize rewards into *advantages* before utilizing them in the policy gradient: $A_i(\mathbf{x}, \mathbf{y}_i) = r(\mathbf{x}, \mathbf{y}_i) - \frac{1}{n} \sum_{j=1}^n r(\mathbf{x}, \mathbf{y}_j)$, so that updates depend on deviations of reward from the batch mean. This normalized structure makes RL brittle on hard problems. If all n rollouts fail on a given problem \mathbf{x} ($r(\mathbf{x}, \mathbf{y}_i) = 0$), then the advantage for all samples vanishes, $A_i = 0$, and the gradient update is exactly zero on \mathbf{x} . Thus when $\text{pass}@k \approx 0$, training stalls: GRPO cannot generate signal, even with large batch sizes or extended iterations. As we discuss in Section C, this creates a feedback loop where the model sharpens on easy problems but halts learning on hard ones.

C Ray Interference in RL Post-Training

To motivate our approach, we begin by studying the dynamics of RL training. When training with RL, we often observe that average rewards improve steadily on the training dataset. These rewards are computed by averaging over multiple rollouts for each problem (Shao et al., 2024), which means a higher average reward can arise either from producing more correct rollouts on an easy problem or from producing at least one correct rollout per problem. A natural hypothesis is that the policy first learns to solve the easier problems in the mixture within a few RL updates, generating multiple correct rollouts per problem. One might then expect that longer training would eventually lead to success on the harder problems as well. However, we find that this does not occur. As shown in Figure 3, a typical RL training run first reduces the fraction of problems unsolved by the base model, but once some problems are solved, the percentage of fully solved problems increases (see step 100 in Figure 3, right), while the model’s ability to solve previously unsolved problems drops. In fact, after step 150, even some problems that were solvable by the base model before become unsolvable by the RL-trained model (the “% unsolvable problems” increases in Figure 3). Training continues to make progress on fully solving a different subset of problems, but this pattern, representative of a typical RL fine-tuning run, highlights that once RL trains models to solve some easy prompts, further training actively inhibits progress on other prompts. The most natural explanation is that this stems from a form of update interference across prompts, known as ray interference in the RL literature (Schaul et al., 2019), as we discuss below.

Ray interference: why learning from hard problems get harder during RL

Typical RL algorithms for post-training LLMs explore on-policy: for each prompt in the batch, we sample n parallel rollouts from the current policy and use them to compute a policy gradient update. If at least one rollout solves the problem but not all of them succeed, the update reinforces the subset of correct rollouts. If none of the n rollouts succeed, or if all of them succeed, then no update is applied on that prompt. Exploration is therefore wasteful when the model cannot sample any correct trace on a hard problem across the n parallel attempts. However, as soon as the policy begins to reliably solve easier problems, their successful rollouts dominate the reward signal. Because all prompts share the same model weights, gradient updates that improve easy problems can inadvertently reduce the probability of exploring useful directions on harder ones since the gradient on easy problems encourages the model to hone in on the right answers and “sharpen” its probability distribution. Over time, this creates a “rich-gets-richer” dynamic: prompts with some correct rollouts get reinforced

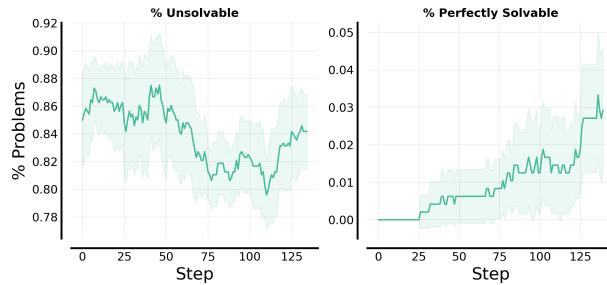


Figure 3: **Solvable/unsolvable problems in a typical RL run.** **Left:** Percentage of problems model fails to solve within 16 rollouts (% Unsolvable) first decreases, suggesting the model initially learns to solve new problems, but later increases, indicating that the model has lost its ability to solve problems it previously could. **Right:** Percentage of problems the model solves perfectly (% Perfectly Solvable) steadily increases, suggesting that gains in reward come mainly from distribution sharpening rather than solving truly new problems. Moreover, as the model learns to perfectly solve some problems, it loses its ability to solve others.

further (Figure 3, Right), while prompts with no successes become increasingly unsolvable. This corroborates $\text{pass}@n$ declining in RL from prior work, despite more rollouts (Yue et al., 2025).

Takeaways: Ray interference progressively hurts exploration on hard problems

- As RL starts solving some problems, its ability to solve other problems degrades.
- This manifests as a U-shaped trend in the percentage of unsolved problems during training, and a rich-gets-richer effect where prompts get disproportionately improved upon in RL.

D Motivating Intuitions Behind POPE

1) Conditioning guides better exploration when the base model exhibits strong instruction-following capabilities. Our first main motivating intuition informing the design of POPE is that an effective way to use privileged information that also avoids distillation is to condition the base model on the prefix of an oracle solution along with the prompt for training. The system prompt then asks the model to complete the solution after carefully analyzing the provided partial oracle solution. This process reduces the difficulty of the problem for the base model in many ways. For instance, some partial solutions might already tackle a *subproblem*, leaving a fewer number of subproblems to be solved for the model’s rollout (Figure 9); some other partial solutions may verbalize a plan to tackle the problem, which keeps the model on track (Figure 10). In summary, prefixes of oracle solutions can provide useful privileged information for reducing problem complexity, and address the issue with cloning target solutions. Given a base model with strong instruction-following abilities, conditioning in this way allows the model to sample correct traces by following the information provided by the partial oracle solution (Figure 9) or by tackling a simpler version of the problem that remains unsolved after the partial solution is provided. As a result, the model can obtain non-zero reward on augmented versions of otherwise unsolvable hard problems. Our approach, POPE prescribes training on versions of problems augmented with partial attempts, as we discuss below.

2) Training on augmented and normal prompts transfers to successful rollouts on unaugmented prompts. While the above mechanism allows us to obtain reward on augmented versions of hard prompts, it is not obvious whether training on these prompts with partial solutions leads to effective *transfer* to the original unaugmented prompts. Our second motivation is that when models use a reasoning format that encloses computation within “think” blocks and reiterates the problem statement (and the privileged information in the case of augmented prompts; see Figure 9), training on augmented prompts should often suffice to induce non-zero success on the original problems without privileged guidance. We attribute this to the conditional next-token distributions reinforced early on during training on augmented prompts: reasoning traces on augmented prompts rephrase the problem and reproduce the privileged information, and get reinforced if they experience reward. When the model is presented with unaugmented prompts, it first rephrases the problem statement, and the conditional next-token distributions learned on augmented prompts then help fill in the missing privileged content and guide the remainder of the solution. In effect, learning to solve the augmented prompt also teaches the model how to approach the unaugmented version through a form of a “gluing mechanism”, inherent to reasoning parameterizations. We present an example rollout illustrating this mechanism later in Figure 10. Quantitatively, Figure 4 shows the fraction of problems solved by POPE, standard RL, and the base model without conditioning, out of all problems solvable by the base model when given privileged information. Training on both augmented and normal prompts enables POPE to solve more of these problems compared to RL without requiring conditioning, which shows that training on a mixture of prompts transfers to unaugmented prompts.

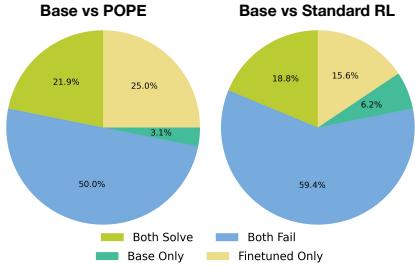


Figure 4: *Fraction of problems solved by POPE and standard RL* (evaluated without conditioning on privileged information) compared to the base model, normalized over all problems where conditioning the base model on privileged information yields at least one successful rollout. POPE solves more problems than standard RL, showing that conditioning on privileged information enables it to transfer successful rollouts obtained with conditioning on these training problems to the setting when no conditioning is provided.

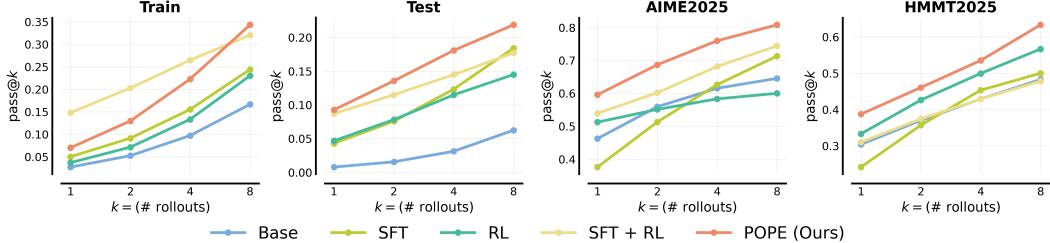


Figure 5: **Pass@ k performance of different approaches**, using Gemini 2.5 Pro as the oracle. Importantly, we do not assume access to Gemini’s reasoning traces, only a prefix of the final solution as privileged information. POPE achieves the best pass@ k performance overall on both the i.i.d. held-out test set of hard problems and the standardized AIME 2025/HMMT 2025 benchmarks. On the training set, POPE also improves pass@8, although SFT+RL (yellow) outperforms it. This is expected since SFT+RL leverages large-scale rejection sampling to obtain correct traces by combining oracle-provided prefixes with base LLM rollouts conditioned on them.

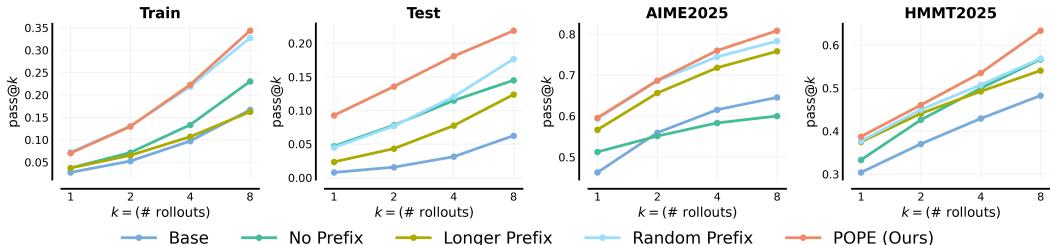


Figure 6: **Ablation on the amount of privileged information used for conditioning**. POPE with minimal prefixes achieves the best performance across train, test, and AIME/HMMT benchmarks. Random prefixes perform comparably on train and AIME 2025 but lag on test and HMMT 2025. Providing longer prefixes is detrimental, as it exacerbates the rich-gets-richer effect and slows progress compared to standard RL.

E Ablation Studies

Next, we present a series of ablation experiments for POPE to better understand the role of different design choices in our approach and in the baselines. We focus on three key questions: **(1)** How does the amount of privileged information influence the efficacy of POPE? **(3)** How do different sources of privileged information, such as a stronger language model (Gemini 2.5 Pro in our case) and human data, compare in their effectiveness? **(3)** To what extent does POPE address the ray interference issue outlined in Figure 3 with standard RL? and **(4)** Does POPE enable transfer of strategies learned under privileged guidance to the original prompt without guidance? We address the first three questions below and provide a qualitative example for answering **(4)**.

1) Amount of privileged information. To answer the first question, we ablated POPE by varying the amount of privileged information used for conditioning. Specifically, we compared POPE against: **a)** a *longer prefix*, where the first $1/4$ of the oracle solution was provided for every problem, and **b)** a *random prefix*, where a randomly sampled prefix of the oracle solution was used as privileged information. As shown in Figure 6, using the minimal prefix prescribed by POPE performs best across the train set, test set, and the AIME/HMMT benchmarks. The random prefix strategy generally performs second best, roughly matching POPE on the train set and AIME 2025, but falling behind on the test set and HMMT 2025. In contrast, providing excessive privileged information through the longer prefix was detrimental: the percentage of unsolved problems decreased no faster than in standard RL without any privileged information. We suspect this is because longer prefixes exacerbate the rich-gets-richer problem: by making some problems substantially easier by revealing a longer prefix than what is needed to attain a particular accuracy under the base model, this strategy can induce a disparate distribution over prompt difficulty in the training set.

2) Comparing different sources of oracle data. We next compare the efficacy of different types of oracle data when used only for supervised fine-tuning (SFT). For this experiment, we fine-tune the base model on three sources: **a)** human-written solutions, **b)** language model generated solutions from Gemini, and **c)** reasoning traces generated by prompting the base model with a prefix of the Gemini solution (the same setup used in our SFT+RL comparison). As shown in Figure 7, SFT with approach **c)**, which clones reasoning traces largely obtained through rejection sampling from the base model, outperforms cloning either human or Gemini solutions. However, we also find that in many cases the base model itself achieves higher performance than any SFT variant, particularly on the train set, the test set, and at larger k values for AIME and HMMT. This result is consistent with prior

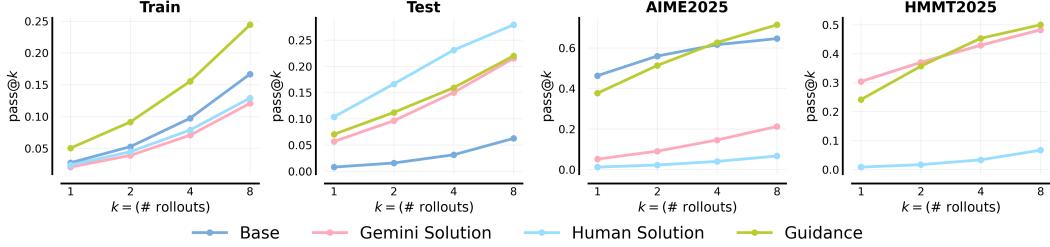


Figure 7: **Comparison of different sources of oracle data as training target.** Cloning reasoning traces generated from the base model itself generated by running rejection sampling on the prompt augmented with privileged prefixes outperforms cloning human or Gemini solutions. However, the base model often performs better than most SFT variants, especially on train, test, and at larger k for AIME and HMMT. This shows that directly using oracle solutions as training targets can degrade pass@ k performance.

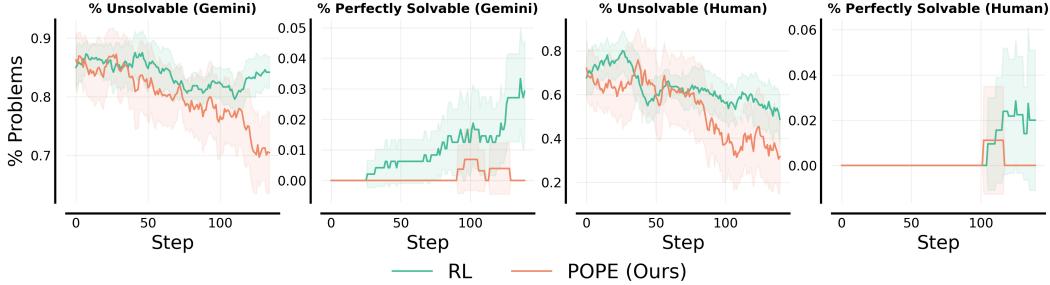


Figure 8: **Assessing ray interference with POPE.** We plot the percentage of unsolved and perfectly solved problems over the course of training, evaluated without privileged information. Naïve RL exhibits the same failure mode as in Figure 9: it initially solves new problems but soon over-sharpenes on a subset of prompts, and eventually even unlearns problems solved earlier in training. In contrast, POPE steadily reduces the fraction of unsolved problems and avoids excessive sharpening, thereby mitigating ray interference.

observations in synthetic data (Setlur et al., 2024) and reinforces our motivation: directly using oracle solutions as training targets is not effective, since it often reduces pass@ k performance.

3) Assessing ray interference with POPE. Finally, we assess the extent of ray interference under POPE by plotting the percentage of unsolved and perfectly solved problems over the course of training in Figure 8, analogous to Figure 3. Although training uses a mixture of augmented and unaugmented prompts, evaluation is performed without any privileged information. As shown in the figure, naïve RL fine-tuning follows the same failure mode as in Figure 3: the model initially learns to solve new problems, but soon begins to sharpen on a subset of prompts where it consistently produces correct rollouts, while progress on other problems stalls. In fact, as training goes on, the model unlearns certain problems that it could solve earlier in training. In contrast, POPE steadily reduces the fraction of unsolved problems throughout training and avoids excessive sharpening (perfectly solved problems is lower for POPE), thereby addressing the challenge of ray interference.

F Behavior of Base model v.s. model finetuned with POPE

Here we provide example generated by Qwen3-4B base model on a hard training problem

Prompt augmented with partial solution

You are given a problem and a partial solution.

Your task is to carefully study the partial response, identify what reasoning or steps are already provided, and then complete the solution from where it left off. Ensure your continuation is logically consistent and leads to a complete and correct final answer. Show your reasoning step-by-step and clearly present the final answer using LaTeX-style ‘boxed’ notation.

Problem: For each positive integer n , there is a circle around the origin with radius n . Rainbow Dash starts off somewhere on the plane, but not on a circle. She takes off in some direction in a straight path. She moves $\frac{1}{\sqrt{5}}\sqrt{5}$ units before crossing a circle, then $\sqrt{5}$ units, then $\frac{3}{\sqrt{5}}\sqrt{5}$ units. What distance will she travel before she crosses another circle?

Partial Response: Let the circles be S_n for $n=1, 2, 3, \dots$, with radius n and centered at the origin. The equation of S_n is $S_n^2 + y^2 = n^2$. Let Rainbow Dash's starting point be P_0 , and her direction of travel be a unit vector \vec{v} . Her path is a line $S(t) = P_0 + t\vec{v}$, where $t \geq 0$ is the distance traveled from P_0 . A crossing occurs at a distance t when the point $S(t)$ is on a circle S_n . The squared distance from the origin to $S(t)$ is $|P_0 + t\vec{v}|^2 = |P_0|^2 + 2t\vec{v} \cdot \vec{v} + t^2|\vec{v}|^2 = 25t^2$. Let $R_n = \sqrt{n^2 - |P_0|^2}$ be the initial squared distance from the origin. Let $S_n = P_0 + R_n \vec{v}$. Since $|\vec{v}|^2 = 1$, we have the condition for crossing S_n : $t^2 + 2ct + R_n^2 = n^2$.

Continue solving the problem, starting from where the partial response ends. Make sure your final answer is written as: `{boxed{[text]}}{Answer}`

Base model solution without guidance

*<think> Okay, so I need to figure out how far Rainbow Dash will travel before she crosses another circle. We have circles around the origin with radii n for each positive integer n . Rainbow Dash starts somewhere not on a circle, so her starting point is not on any of these circles. She then moves in a straight line in some direction. The distances she travels before crossing each circle are given as $\frac{1}{\sqrt{5}}\sqrt{5}$, $\sqrt{5}$, and $\frac{3}{\sqrt{5}}\sqrt{5}$ units. I need to find the total distance before she crosses another circle. First, maybe I should think about the path she's taking. She's taking a straight path, so her path is a straight line starting from the origin. Each time she crosses a circle, that means she's moving from one radius to the next. The distance between consecutive circles depends on the direction she's moving relative to the origin. Let me recall that if you have a straight line moving away from the origin, the distance between consecutive circles (i.e., between radius n and $n+1$) is 1 unit. But if she's moving at an angle, the distance between crossings might be different. Wait, but the problem says she starts not on a circle, so maybe her path is not passing through the origin? Or maybe it is? Wait, if she starts not on a circle, but moves in a straight line, maybe her path is not passing through the origin. But the circles are centered at the origin. *Wait*, the distance between crossings of consecutive circles depends on the angle of her path relative to the origin. If her path is straight, then the distance between crossings of two...*

Base model solution with guidance

*<think> Okay, so I need to figure out the distance Rainbow Dash will travel before crossing another circle. **Let me start by understanding the problem again.** We have circles centered at the origin with radii n for each positive integer n . Rainbow Dash starts somewhere not on any circle, so her starting point isn't on any of these circles. She moves in a straight line in some direction. The distances she travels before crossings are given: first $\frac{1}{\sqrt{5}}\sqrt{5}$ units, then $\sqrt{5}$ units, then $\frac{3}{\sqrt{5}}\sqrt{5}$ units. I need to find the total distance before she crosses another circle. **The partial response already set up the domain and split it into two intervals, (0,1) and (1,32). I need to check both of these intervals and count the number of real solutions.** First, I remember that the sine function oscillates between -1 and 1. Since we already have the domain restricted to between 1/32 and 32, we need to consider how the logarithmic function behaves in those intervals.
Let me think about the function $f(x) = (1/5) \log_2 x$. For $x \in (0,1]$, $\log_2 x$ is negative or zero. Since $x > 0$, when x is in $(0,1)$, $\log_2 x$ is negative, and when x is 1, $\log_2 x$ is 0. So, multiplying by 1/5, $f(x)$ will be between -1/5 and 0 in that interval. Wait, but the partial response said that the equation requires $f(x)$ to be between -1 and 1.*

Figure 9: *An example of rollout generated by Qwen3-4B base model on a hard training problem* when conditioning and not conditioning on partial oracle solution (guidance). Observe that the rollout with guidance not only refers back to the solution, but it recalls the partial solution in its reasoning, restating many of the facts, and continues the solution from there. This confirms the motivation behind the design of POPE.

Here we provide example rollouts from a model fine-tuned with POPE.

Prompt augmented with partial solution

You are given a problem and a partial solution.

Your task is to carefully study the partial response, identify what reasoning or steps are already provided, and then complete the solution from where it left off. Ensure your continuation is logically consistent and leads to a complete and correct final answer. Show your reasoning step-by-step and clearly present the final answer using LaTeX-style ‘boxed’ notation.

Problem: How many real numbers x satisfy the equation $\frac{1}{5} \log_2 x = \sin(5\pi x)$?

Partial Response: Let the given equation be $f(x) = g(x)$, where $f(x) = \frac{1}{5} \log_2 x$ and $g(x) = \sin(5\pi x)$. First, let's determine the domain of possible solutions. The domain of $f(x)$ is $x > 0$. The range of $g(x) = \sin(5\pi x)$ is $[-1, 1]$. For a solution to exist, $f(x)$ must be in the range of $g(x)$. So, we must have $0 < \frac{1}{5} \log_2 x \leq 1$. This inequality is equivalent to $0 < \log_2 x \leq 5$. For a solution to exist, $\log_2 x$ must be in the range of $f(x)$, which is $(-\infty, 2^5]$. So, we only need to search for solutions in the interval $[1/32, 32]$. We can split the analysis into two main intervals: $[0, 1]$ and $[1, 32]$.

Continue solving the problem, starting from where the partial response ends. Make sure your final answer is written as: `{boxed{[text]}}{Answer}`

POPE model with oracle guidance

*<think> Okay, let me try to figure out how to solve this equation: $(1/5) \log_2 x = \sin(5\pi x)$. The partial response already set up the domain and split it into two intervals, $(0,1)$ and $(1,32)$. I need to check both of these intervals and count the number of real solutions. First, I remember that the sine function oscillates between -1 and 1. Since we already have the domain restricted to between 1/32 and 32, we need to consider how the logarithmic function behaves in those intervals.
Let me think about the function $f(x) = (1/5) \log_2 x$. For $x \in (0,1]$, $\log_2 x$ is negative or zero. Since $x > 0$, when x is in $(0,1)$, $\log_2 x$ is negative, and when x is 1, $\log_2 x$ is 0. So, multiplying by 1/5, $f(x)$ will be between -1/5 and 0 in that interval. Wait, but the partial response said that the equation requires $f(x)$ to be between -1 and 1.*

POPE model without oracle guidance

*<think> Okay, so I need to figure out how many real numbers x satisfy the equation $(1/5) \log_2 x = \sin(5\pi x)$. Hmm, let me start by understanding what each side of the equation represents.
First, the left-hand side is $(1/5) \log_2 x$. That means it's a logarithmic function scaled by 1/5. The logarithm is only defined for $x > 0$, so that restricts the domain to positive real numbers so the left side is $(1/5) \log_2 x$, which oscillates between -1 and 1. So, if we multiply both sides by 5, the equation becomes $\log_2 x = 5 \sin(5\pi x)$. Therefore, since $\log_2 x$ can be any real number (as x is positive), but $5 \sin(5\pi x)$ is between -5 and 5. However, since $\log_2 x$ must be between -5 and 5 for the equation to have solutions. Therefore, we can find the range of x where $\log_2 x$ is between -5 and 5. Let me solve that:
 $\log_2 x = 5 \sin(5\pi x) \Rightarrow x = 2^{\log_2 x} = 2^{\sin(5\pi x)}$. Now, we can find the range of x where $\sin(5\pi x) \in [-1, 1]$. So, the equation can only have solutions for x in the interval $[1/32, 32]$. But wait, but $\log_2 x$ is*

Figure 10: *Example rollouts from a model fine-tuned with POPE*, shown with and without conditioning on a partial oracle solution. In both cases the model adopts a similar strategy: when guidance is provided it follows the partial solution, and when guidance is absent it independently proposes the same strategy. This illustrates at least some form of knowledge sharing across augmented and unaugmented versions of the prompts.

G Training hyperparameters

G.1 Hyperparameters for SFT

For POPE and RL runs, we utilize the [TRL](#) codebase. The base models are directly loaded from Hugging Face: [Qwen3-4B](#)

Hyperparameter	Values
learning_rate	1.0e-5
num_train_epochs	3
batch_size	128
gradient_checkpointing	True
max_seq_length	16384
bf16	True
num_gpus	8
warmup_ratio	0.1

Table 1: Hyperparameters used for POPE

G.2 Hyperparameters for RL

We utilize the [verl](#) codebase to run GRPO. We use [Qwen3-4B](#) as the base model for training.

Hyperparameter	Values
max_prompt_length	2048
max_response_length	16384
clip_ratio_low	0.2
clip_ratio_high	0.35
train_batch_size	32
learning_rate	1.0e-6
kl_loss_coef	0.001
temperature	0.8
critic_warmup	0
total_training_steps	300
num_gpus	16

Table 2: Hyperparameters used for POPE & RL

H Prompts

We use the following prompt to guide the model in solving a problem with a partial solution.

Prompt for Solving with Partial Solution

You are given a problem and a partial solution. Your task is to carefully study the partial response, identify what reasoning or steps are already provided, and then complete the solution from where it left off. Ensure your continuation is logically consistent and leads to a complete and correct final answer. **Important**: Show your reasoning step-by-step, and clearly present the final answer using LaTeX-style `\boxed{}` notation.

Problem: <Problem>

Partial Response: <Partial Response>

Continue solving the problem, starting from where the partial response ends.

Make sure your final answer is written as: <Answer>

I Examples

Here we provide an example from the Omni-MATH dataset with a human solution.

Question from Omni-MATH

Let $k \geq 2$ be an integer. Find the smallest integer $n \geq k+1$ with the property that there exists a set of n distinct real numbers such that each of its elements can be written as a sum of k other distinct elements of the set.

Human Solution

Let $k \geq 2$ be an integer. We need to find the smallest integer $n \geq k+1$ such that there exists a set S of n distinct real numbers, where each element of S can be expressed as a sum of k other distinct elements of S .

To solve this problem, we consider the construction of such a set S .

1. **Understanding the Problem:**

- For each element $s \in S$, we need k distinct elements from $S \setminus \{s\}$ that sum up to s .

2. **Minimum Size Construction:**

- We start by proving that with $n = k + 4$, such a set can indeed be constructed.

- Consider a construction where:

- Choose $k+1$ elements as the base set: $\{a_1, a_2, \dots, a_{k+1}\}$.

- Introduce an additional four elements: $\{b_1, b_2, b_3, b_4\}$.

- We construct our set S as:

$$S = \{a_1, a_2, \dots, a_{k+1}, b_1, b_2, b_3, b_4\}$$

3. **Illustrating the Construction:**

- Arrange the elements such that:

- Each a_i is expressed as the sum of any k of the other a_j 's and some b 's if necessary.

- Each b_i can be expressed using a combination of a 's and other b 's.

4. **Verification:**

- By choosing specific numbers for each b_i , we ensure that each number in the constructed set can indeed be expressed as a sum of k distinct others.

- For example, by choosing values and testing that the sum condition holds, we verify that each possibility works, fulfilling the problem's conditions.

5. **Conclusion:**

- Testing smaller n for valid configurations will fail due to insufficient numbers to formulate each possible sum using k distinct numbers.

- Therefore, the smallest n for which such a configuration is possible indeed turns out to be $n = k + 4$.

Thus, the smallest integer n such that a set S with the given conditions can be constructed is: $k + 4$

Here we provide an example from the DAPO dataset with a solution generated by gemini-2.5-pro.

Question from DAPO

Find the smallest natural number n such that the expression $n^2 - n + 11$ has exactly four prime factors, which may not be distinct.

Solution generated by Gemini

Let the given expression be $f(n) = n^2 - n + 11$. We are looking for the smallest natural number n such that $f(n)$ has exactly four prime factors, including multiplicity. This means $\Omega(f(n)) = 4$, where $\Omega(k)$ is the total number of prime factors of k .

Let's analyze the expression $f(n) = n(n - 1) + 11$. Since $n(n - 1)$ is always an even number, $f(n)$ is always odd. So, 2 cannot be a prime factor of $f(n)$.

Let's check for other small prime factors: - Modulo 3: $n(n - 1)$ can be $0 \times (-1) \equiv 0$, $1 \times 0 \equiv 0$, or $2 \times 1 \equiv 2$. So $n^2 - n + 11 \equiv n(n - 1) + 2 \pmod{3}$ can be $0 + 2 = 2$, $0 + 2 = 2$, or $2 + 2 = 4 \equiv 1$. So $f(n)$ is never divisible by 3. - Modulo 5: $n(n - 1) + 11 \equiv n(n - 1) + 1 \pmod{5}$. $n(n - 1)$ can be $0, 2, 6 \equiv 1, 12 \equiv 2, 20 \equiv 0$. So $n(n - 1) + 1 \pmod{5}$ can be 1, 2, 3. So $f(n)$ is never divisible by 5. - Modulo 7: $n(n - 1) + 11 \equiv n(n - 1) + 4 \pmod{7}$. $n(n - 1)$ can be $0, 2, 6, 12 \equiv 5, 20 \equiv 6, 30 \equiv 2, 42 \equiv 0$. So $n(n - 1) + 4 \pmod{7}$ can be 4, 6, 10 $\equiv 3, 9 \equiv 2$. So $f(n)$ is never divisible by 7. - Modulo 11: $f(n) = n^2 - n + 11 \equiv n(n - 1) \pmod{11}$. $f(n)$ is divisible by 11 if and only if $n(n - 1) \equiv 0 \pmod{11}$. Since 11 is prime, this occurs when $n \equiv 0 \pmod{11}$ or $n \equiv 1 \pmod{11}$.

So, the smallest possible prime factor of $f(n)$ is 11. We want $f(n)$ to be a product of four primes, $p_1 p_2 p_3 p_4$. To find the smallest n , we should look for the smallest possible value of $f(n)$. The function $f(n) = n^2 - n + 11$ is increasing for $n \geq 1$. So smaller values of n give smaller values of $f(n)$.

The smallest number that is a product of four primes, where each prime is at least 11, is 11^4 . Let's see if $f(n)$ can be equal to 11^4 . $11^4 = 14641$. We need to solve $n^2 - n + 11 = 14641$ for a natural number n . $n^2 - n - 14630 = 0$.

Using the quadratic formula, $n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-14630)}}{2(1)} = \frac{1 \pm \sqrt{1+58520}}{2} = \frac{1 \pm \sqrt{58521}}{2}$. For n to be an integer, 58521 must be a perfect square. Let's estimate $\sqrt{58521}$. $200^2 = 40000$, $250^2 = 62500$. $240^2 = 57600$. $241^2 = (240 + 1)^2 = 57600 + 480 + 1 = 58081$. $242^2 = (240 + 2)^2 = 57600 + 960 + 4 = 58564$. Since $241^2 < 58521 < 242^2$, 58521 is not a perfect square. Thus, there is no integer n for which $f(n) = 11^4$.

Let's find the next smallest number composed of four prime factors, each at least 11. The candidates for the smallest such numbers are $11^4 = 14641$, $11^3 \times 13 = 1331 \times 13 = 17303$, $11^2 \times 13^2 = 121 \times 169 = 20449$, etc. The smallest is 11^4 , which we've ruled out. The next smallest is $11^3 \times 13$. Let's check if $f(n)$ can be equal to $11^3 \times 13 = 17303$. We need to solve $n^2 - n + 11 = 17303$. $n^2 - n - 17292 = 0$. Using the quadratic formula, $n = \frac{1 \pm \sqrt{1-4(1)(-17292)}}{2} = \frac{1 \pm \sqrt{1+69168}}{2} = \frac{1 \pm \sqrt{69169}}{2}$. For n to be an integer, 69169 must be a perfect square. Let's estimate $\sqrt{69169}$. $200^2 = 40000$, $300^2 = 90000$. $260^2 = 67600$. The last digit is 9, so the root could end in 3 or 7.

Let's try $263^2 = (260 + 3)^2 = 67600 + 2 \times 3 \times 260 + 9 = 67600 + 1560 + 9 = 69169$. So, 69169 is a perfect square, and its square root is 263. Then $n = \frac{1+263}{2}$. This gives two possible integer values for n : $n_1 = \frac{1+263}{2} = \frac{264}{2} = 132$. $n_2 = \frac{1-263}{2} = \frac{-262}{2} = -131$. Since we are looking for a natural number n , we have $n = 132$.

For $n = 132$, $f(132) = 132^2 - 132 + 11 = 17424 - 132 + 11 = 17292 + 11 = 17303$.

And $17303 = 11^3 \times 13$. The prime factors are 11, 11, 11, 13. There are exactly four prime factors. So, $n = 132$ is a candidate.

To be sure that $n = 132$ is the smallest such natural number, we need to confirm that no smaller n results in a four-prime-factor number. The function $f(n)$ is increasing for $n \geq 1$. So for any $n < 132$, $f(n) < f(132) = 17303$. If there were a smaller $n_0 < 132$ such that $f(n_0)$ has four prime factors, then $f(n_0)$ would have to be a number smaller than 17303 with four prime factors, each being at least 11. The smallest such number is $11^4 = 14641$. We have already shown that $f(n)$ cannot be 14641. The next smallest such number is $11^3 \times 13 = 17303$, but this value is not smaller than 17303. Any other combination of four primes (e.g., $11^2 \times 13^2 = 20449$) will be larger. Therefore, there is no value of $f(n)$ with four prime factors smaller than 17303. This means that no $n < 132$ can produce a value of $f(n)$ with four prime factors. Thus, the smallest natural number n is 132.

Final check: For $n = 132$, $f(132) = 132^2 - 132 + 11 = 17303$. Prime factorization of 17303: $17303 = 11 \times 1573$ $1573 = 11 \times 143$ $143 = 11 \times 13$ So $f(132) = 11 \times 11 \times 11 \times 13 = 11^3 \times 13$. This number has $3 + 1 = 4$ prime factors.