Learning to Reason on Hard Problems with
Privileged On-Policy Exploration

Yuxiao Qu', Amrith Setlur!, Virginia Smith', Ruslan Salakhutdinov', Aviral Kumar'
LCarnegie Mellon University
Email: yuxiaog@andrew.cmu.edu

Abstract

Reinforcement learning (RL) has improved the reasoning abilities of large language
models (LLMs), yet state-of-the-art methods cannot use all training problems in a
training dataset. On-policy RL rarely produces even a single correct rollout on hard
problems, yielding no reward signal or learning altogether. Moreover, mixing easy
problems into the training set can detrimental as on-policy RL may derive a larger
signal to sharpen its distribution from these problems, impairing its ability to solve
harder problems reliably. While one might attempt to address this by distilling
human- or model-written solutions into models, these traces are not only expensive
and hard to write, but also serve as poor fine-tuning targets: while they produce
correct outputs, these concise paths are extremely challenging to learn from. We
introduce Privileged On-Policy Exploration (POPE), a framework that leverages
already available solutions from humans or other models to obtain a learning signal
on hard problems by using them as “privileged” information that guides explo-
ration. Concretely, POPE augments hard prompts with a minimal solution prefix as
guidance, enabling RL to obtain non-zero rewards when rolling out conditioned on
this prefix. We show that this approach allows RL to acquire behaviors that transfer
back to original problems. This process expands the set of solvable problems and
improves performance on challenging reasoning benchmarks.

1 Introduction

Reinforcement learning (RL) has substantially improved the reasoning abilities of large language
models (LLMs) in math and coding. For example, relatively small models (under 2B parameters)
trained with RL to make best use of test-time compute by running longer chains of thought (CoT)
can outperform much larger models trained without RL (Setlur et al., 2025b; Liu et al., 2025).
Concurrently, some studies also argue that RL post-training mainly amplifies capabilities already
present in the model (Yue et al., 2025; Zhao et al., 2025), though others show design choices (prompt
mixtures, token budgets, curricula) mitigate such concerns (Setlur et al., 2025b; Liu et al., 2025).

However, even the most effective RL methods fail to train on the full set of available problems,
leaving substantial performance gains untapped. This is largely because on-policy RL cannot sample
even a single rollout with a non-zero outcome reward on a sizable fraction of “hard” problems, and
thus receives no reward signal'. In many such cases, rollouts never employ the right strategy, so no
correct samples are obtained at all. Procedures such as dynamic prompt sampling (Yu et al., 2025;
Wang et al., 2025b) even explicitly filter these prompts out. As a result, RL plateaus once the easier
problems are solved. In fact, our results show that after sufficiently many easy problems yield reward,
RL simply “sharpens” its behavior on these problems, which reduces the diversity of the model’s
outputs and impairs its ability to solve new problems compared to the base model. We explain this
phenomenon through the lens of ray interference (Schaul et al., 2019), a phenomenon where on-policy
RL exhibits a bias of maximizing reward more on states where it already attains reward.

'Our analysis shows that when fine-tuning Qwen3-4B on DAPO-MATH-17K (Yu et al., 2025), the model
samples a correct rollout on <50% of prompts, given K = 32 parallel attempts at each and 16k token budget.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

Our goal in this paper is to design an approach that allows RL to overcome this interference issue and
learn on hard problems. If the base model is unable to sample any correct rollout on these problems,
how can we obtain learning signal though? A natural idea is to collect “expert” reasoning traces
from an oracle (e.g., human), either for distillation (Sessa et al., 2024; Agarwal et al., 2024a) or
directly in RL (Yan et al., 2025). Yet reasoning traces of the kind required for LLMs are prohibitively
expensive to write, and prior work finds little benefit from using available human-written data
(and we corroborate these results). Even when distillation on reasoning traces from bigger models
succeeds, gains are marginal (Yan et al., 2025) and upper bounded by the capabilities of bigger
models. Therefore, we ask: is there a less-constraining way to use available sources of privileged
information such as human-written solutions to derive learning signal on hard training problems?

Our key insight is that privileged information can effec-
tively guide an LLM’s on-policy exploration on hard prob-
lems, even when it is not useful as a training target. For
instance, consider a hard problem where the LLM repeat-
edly pursues incorrect approaches and fails within the
allocated training budget. Supplying even a short prefix
of a human-written solution can significantly increase the
likelihood of reaching the correct answer. This effect is
especially useful when the base model already has strong i ‘ 2
instruction-following capabilities, allowing it to under- FERRAE] B
stand and build upon the privileged content. Our approach, l

POPE improves
performance

pass@k (w/ privileged information)
(e}

pass@k (w/o privileged information)

Privileged On-Policy Exploration (POPE), leverages this
principle to guide exploration in RL on hard problems,
serving as an alternative to distillation, SFT, or off-policy
RL.

Concretely, for any set of hard problems, POPE first gath-
ers a human- or oracle-provided solution. It then trains a
base LLM with RL on a prompt mixture that includes both
the original hard problems and versions augmented with
partial prefix of these solutions. These partial solutions
provide just enough guidance to make it possible to sample

No learning signal (too hard)

Figure 1: Illustrating prompts as point in
the 2D-plane based on their accuracy. On
prompts with low pass@Fk but high pass@k
under privileged conditioning, POPE helps
by training on a mixture of normal and aug-
mented prompts. On easy prompts, standard
RL already sharpens the model and condi-
tioning may not help, while on prompts that
become too easy under conditioning (high
pass @k with conditioning but low without),
POPE is less effective since transfer of be-

at least one correct rollout among many attempts. Train-
ing on this mixture enables RL to sample some non-zero
reward on hard problems, though only when the partial
solution is present. Through on-policy exploration guided
by these augmented prompts, the model acquires useful be-
haviors that transfer back to the original prompts, demon-
strating generalization (Figure 1; blue). We also find that it is critical to ensure that the privileged
information provided is such that it does not make the problem substantially simpler, or else this
inhibits transfer (Figure 1; yellow). In contrast, standard on-policy exploration or RL applied after
distilling human-written solutions fails to solve new problems during training. Empirically, we find
that POPE enables models to solve hard training problems that remain unsolvable with standard RL
training by using either human solutions or language-model generated solutions. Beyond improving
pass@1 accuracy, POPE also boosts pass @k, showing that it prevents RL from collapsing into merely
sharpening the distribution on problems the model already solves.

2 POPE: Privileged On-Policy Exploration

Standard RL post-training often fails to make progress on hard problems: once easier prompts
are solved, gradients vanish on unsolved ones and training stalls. This effect, driven by vanishing
advantages and update interference, is analyzed in detail in Appendix D. To address the limitations of
on-policy exploration, we make use of privileged data (e.g., human solutions or LLM solutions) to
enable experiencing some positive reward on such problems. A natural way to exploit this data is
through distillation of oracle traces. However, this strategy can be problematic: LLMs solve hard
problems via reasoning traces, which introduces a “type mismatch” with the human or oracle data
available. Indeed, we find in our experiments, fine-tuning on oracle data naively reduces output
diversity on hard problems (Figure 7) without meaningfully improving success rates on the same
or related tasks. We therefore build an alternative approach called POPE, which utilizes two main
motivating insights in this section.

haviors does not occur. Thus, POPE uses the
smallest prefix of privileged information to
guide on-policy exploration to allow maxi-
mal transfer on hard prompts, in effect stay-
ing within the blue region in the figure.

Background and notation. For clarity, preliminaries on outcome-reward RL, pass @£k, and training
dynamics under GRPO (including the phenomenon of ray interference) are provided in Appendix B
and Appendix C. We only summarize the necessary algorithmic details here.

The POPE Algorithm. Instead of using human or oracle-written solutions as training targets, we
condition on partial prefixes of these solutions as privileged information to generate on-policy rollouts.
Formally, given an oracle solution z to a hard training problem x ~ Dy,4, we condition rollouts
on a prefix z%% of z, i.e., y ~ 7(:|x,2?). In principle, any prefix z°** could be used, but we only
need the minimal prefix that allows on-policy rollouts to obtain some non-zero reward on x, thereby
driving learning on x. We therefore choose the shortest prefix that yields non-zero reward under the
base model for every prompt x. Formally, for a given prompt x and base model 7§*¢, the minimal
privileged prefix is:

i*(x) := arg miin {z € [0, Lx] : Eypime(|x 000y [1(x,¥)] = a} , (1)

where Ly is the length of the oracle solution z for prompt x. Since i*(x) is defined per prompt, we
compute these indices in a pre-processing stage before RL training. Using this, we construct an
augmented set of hard prompts:

Dyt = {concat(x, 27) | x e Dhard} .)

POPE then trains on a dataset consisting of a 1:1 mixture of hard prompts Dy and their augmented
versions D 5. As we show, while unaugmented prompts do not yield reward early in training,
the augmented prompts do, and these gains eventually transfer back to the unaugmented prompts,
especially when the augmented prompt uses the minimal prefix (Eq. 1). This enables POPE to learn
effectively on hard prompts. Finally, we emphasize that POPE operates fully on-policy: although
privileged information guides exploration, the exploration itself is carried out by the model through
on-policy rollouts. This procedure does not utilize interventions, off-policy corrections, or off-policy
completions during RL, keeping the training procedure simple to implement yet effective at learning.

3 Experimental Evaluation

We evaluate the efficacy of POPE in providing training signal on hard problems, and how training on
such hard problems translates to test performance. We also wish to understand if POPE alleviates the
ray interference issue, and whether the design choices introduced above are crucial.

POPE implementation. To instantiate POPE, we begin by constructing a dataset of hard training
problems on which the base model fails completely. To do this, we evaluate the base model (e.g.,
Qwen3-4B) with a rollout budget of &k = 32 samples per problem. We mark a problem as hard if the
model achieves zero success rate, meaning no single rollout produces the correct final answer. For
each hard problem, we derive the minimal guidance prefix from an oracle solution that can help the
base model obtain non-zero reward. Oracle solutions are obtained either from human-written data or
from stronger models such as Gemini 2.5 Pro in our experiments. To identify candidate prefixes, we
first chunk each solution at meaningful logical points, for example, individual steps of a derivation,
applications of lemmas or theorems, or transitions between reasoning steps. Each chunk boundary
provides for a boundary of the potential prefix. We then evaluate the performance of the base model
(Qwen3-4B model in our setting) conditioned on these prefixes, checking whether at least one rollout
yields the correct answer. We use a token budget of 16K tokens for this evaluation, since this is
also the token budget that we run RL training at subsequently. The minimal privileged prefix i*(x)
(Equation 1) for a problem x is defined as the shortest prefix of the oracle solution that leads to some
non-zero success on the problem. In our experiments, we choose a threshold success rate of 0.3 over
16 rollouts conditioned on a partial oracle prefix to define this minimal prefix i*(x). In cases where
no prefix leads to success, we still select one prefix at random, ensuring every problem is paired with
at some sort of a partial solution from the oracle. While these random prefixes do not immediately
induce correct rollouts, they may still facilitate exploration and allow the model to evolve useful
behaviors during training. This process yields a dataset of hard problems paired with either minimal
or fallback prefixes, providing structured yet lightweight privileged information for exploration. In
this work, we train on 495 problems when privileged prefixes are derived from a stronger model, and
on 165 problems when they are derived from human-written solutions.

Evaluation protocol and baselines. We evaluate POPE on hard training problems using pass@#k
for k € {1,2,4, 8}, with 32 evaluation rollouts per prompt. Performance is reported on the training

set (without privileged conditioning), a held-out test set of equally hard problems, and standardized
math benchmarks (AIME2025, HMMT2025) (Balunovic et al., 2025). We compare against three
baselines: (1) Standard RL, trained on the same prompts without privileged information; (2) SFT,
where the model is fine-tuned directly on full oracle solutions; and (3) SFT+RL, where the base
model is first SFT-trained on oracle data plus model rollouts (akin to rejection fine-tuning (Zelikman
et al.,, 2022; Yuan et al., 2023)) and then further trained with RL. These comparisons establish the
value of privileged conditioning, the limits of naive SFT, and the role of on-policy exploration.

POPE with stonger LLM solutions. Figure 5 shows results when privileged information for POPE and
other methods is provided by Gemini 2.5 Pro. We do not assume access to Gemini’s reasoning traces,
only a short prefix of its final solution. In this setting, POPE consistently achieves the best pass@#k
performance on both the held-out test set of hard problems and on standardized math benchmarks such
as AIME2025 and HMMT2025. On the training set, POPE also improves pass@8, although SFT+RL
can outperform it because it leverages large-scale rejection sampling that combines oracle-provided
prefixes with model rollouts. This comparison highlights the importance of on-policy exploration
guided by privileged information as opposed to passively distilling it into a model. Overall, we
find that prefixes of solutions from a stronger LLM can substantially improve exploration on hard
problems. All reported numbers are computed with 32 rollouts.

POPE with human-written solutions. Figure 2 shows results using prefixes of human-written
solutions from Omni-MATH (Gao et al., 2024) difficulty 5-8 problems as privileged information.
Many of these training and test problems are substantially harder than those in the Gemini setting,
to the point that even strong proprietary LLMs fail on them. Nevertheless, POPE again outperforms
baselines across train, test, and benchmark evaluations. The gains are especially pronounced over
standard RL, which is unable to make progress in this regime. These findings demonstrate that POPE
can leverage even human solutions to unlock RL training on problems beyond the reach of current
LLMs. Taken together with the Gemini setting, these results illustrate the overall efficacy of POPE in
improving exploration and performance on harder problems.
Train Test AIME2025 HMMT2025

0.8
0.6 0.20

0.5
~
@® 0.4
@ 7]
0 0.3 © 0.10
a o

~ 015 0.7

0.6
0.2 0.4

pass@k
pass@k

0.1 0.5

1 8 1 8 1 8 1 8

2 4 2 4 2 4
k= (# rollouts) k = (# rollouts) k= (# rollouts)
Base RL POPE (Ours)
Figure 2: Pass@k performance of different approaches, using human solutions as the oracle on Omni-MATH.
Observe that POPE outperforms running RL without any form of privileged information, as well the base model.

These gains are observed both on the train and test sets, as well as AIME2025 and HMMT2025 benchmarks.

2 4
k = (# rollouts)

Taken together, these results demonstrate that POPE consistently improves exploration and pass@k
performance across both stronger-LLM and human-oracle settings. While our main experiments focus
on validating the effectiveness of POPE relative to RL and SFT baselines, we also conducted a range
of ablation studies to examine the impact of design choices such as prefix length, oracle data source,
and their effect on ray interference. For readability, we defer the full set of results to Appendix E,
but we summarize three key findings here: (1) using the minimal prefix yields the best performance,
while longer prefixes can actually hurt by amplifying rich-gets-richer effects; (2) directly fine-tuning
on oracle solutions degrades pass@Fk, confirming that conditioning is more effective than cloning;
and (3) POPE mitigates ray interference, steadily reducing the fraction of unsolved problems over
training rather than over-sharpening on a subset of prompts.

Conclusion. We introduce POPE: a framework for enabling reinforcement learning on hard reasoning
problems by guiding exploration with minimal oracle prefixes. We show that POPE consistently
outperforms standard RL and SFT baselines, improves pass @k on both training and held-out test
problems, and achieves state-of-the-art results on math benchmarks such as AIME 2025 and HMMT
2025, while mitigating ray interference. Looking forward, we envision extending POPE to multimodal
reasoning tasks and adaptive prefix selection strategies that further automate privileged guidance.

References

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Tielfth International Conference on Learning Representations, 2024a.
URL https://openreview.net/forum?id=3zKtagxLhW.

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos, Matthieu Geist,
and Olivier Bachem. On-policy distillation of language models: Learning from self-generated
mistakes, 2024b. URL https://arxiv.org/abs/2306.13649.

Mohammad Hossein Amani, Aryo Lotfi, Nicolas Mario Baldwin, Samy Bengio, Mehrdad Farajtabar,
Emmanuel Abbe, and Robert West. Rl for reasoning by adaptively revealing rationales, 2025. URL
https://arxiv.org/abs/2506.18110.

Ananth Balashankar, Ziteng Sun, Jonathan Berant, Jacob Eisenstein, Michael Collins, Adrian Hutter,
Jong Lee, Chirag Nagpal, Flavien Prost, Aradhana Sinha, Ananda Theertha Suresh, and Ahmad
Beirami. Infalign: Inference-aware language model alignment, 2025. URL https://arxiv.
org/abs/2412.19792.

Mislav Balunovié, Jasper Dekoninck, Ivo Petrov, Nikola Jovanovié¢, and Martin Vechev. Math-
arena: Evaluating llms on uncontaminated math competitions, February 2025. URL https:
//matharena.ai/.

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig
Boutilier, Rishabh Agarwal, Aviral Kumar, and Aleksandra Faust. Inference-aware fine-tuning for
best-of-n sampling in large language models. arXiv preprint arXiv:2412.15287, 2024.

Nicholas E. Corrado, Yuxiao Qu, John U. Balis, Adam Labiosa, and Josiah P. Hanna. Guided
data augmentation for offline reinforcement learning and imitation learning, 2024. URL https:
//arxiv.org/abs/2310.18247.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025. URL
https://arxiv.org/abs/2503.01307.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-
math: A universal olympiad level mathematic benchmark for large language models, 2024. URL
https://arxiv.org/abs/2410.07985.

Jingtong Gao, Ling Pan, Yejing Wang, Rui Zhong, Chi Lu, Qingpeng Cai, Peng Jiang, and Xi-
angyu Zhao. Navigate the unknown: Enhancing llm reasoning with intrinsic motivation guided
exploration, 2025. URL https://arxiv.org/abs/2505.17621.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
scientific problems, 2024. URL https://arxiv.org/abs/2402.14008.

Joey Hong, Anca Dragan, and Sergey Levine. Planning without search: Refining frontier llms with
offline goal-conditioned rl. arXiv preprint arXiv:2505.18098, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models,
2025. URL https://arxiv.org/abs/2505.24864.

https://openreview.net/forum?id=3zKtaqxLhW
https://arxiv.org/abs/2306.13649
https://arxiv.org/abs/2506.18110
https://arxiv.org/abs/2412.19792
https://arxiv.org/abs/2412.19792
https://matharena.ai/
https://matharena.ai/
https://arxiv.org/abs/2310.18247
https://arxiv.org/abs/2310.18247
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2505.17621
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2505.24864

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing ol-preview
with a 1.5b model by scaling rl, 2025. URL https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-01-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013:
Notion Blog.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024.

Yuxiao Qu, Anikait Singh, Yoonho Lee, Amrith Setlur, Ruslan Salakhutdinov, Chelsea Finn, and
Aviral Kumar. Learning to discover abstractions for LLM reasoning. In ICML 2025 Workshop
on Programmatic Representations for Agent Learning, 2025. URL https://openreview.net/
forum?id=zwEUOOKTS8G.

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. CoRR, abs/1904.11455, 2019. URL http://arxiv.
org/abs/1904.11455.

Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre
Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, Sertan Girgin, Piotr Stanczyk,
Andrea Michi, Danila Sinopalnikov, Sabela Ramos, Amélie Héliou, Aliaksei Severyn, Matt
Hoffman, Nikola Momchev, and Olivier Bachem. Bond: Aligning llms with best-of-n distillation,
2024. URL https://arxiv.org/abs/2407.14622.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. RI on
incorrect synthetic data scales the efficiency of 1lm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532, 2024.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or rl is suboptimal, 2025a. URL https://arxiv.org/abs/2502.12118.

Amrith Setlur, Matthew Y. R. Yang, Charlie Snell, Jeremy Greer, Ian Wu, Virginia Smith, Max
Simchowitz, and Aviral Kumar. e3: Learning to explore enables extrapolation of test-time compute
for 1llms, 2025b. URL https://arxiv.org/abs/2506.09026.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind
the gap: Examining the self-improvement capabilities of large language models. arXiv preprint
arXiv:2412.02674, 2024.

Yuda Song, Julia Kempe, and Remi Munos. Outcome-based exploration for llm reasoning, 2025.
URL https://arxiv.org/abs/2509.06941.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025a.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
Shen. Reinforcement learning for reasoning in large language models with one training example,
2025b. URL https://arxiv.org/abs/2504.20571.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
ol-like llms. arXiv preprint arXiv:2501.18585, 2025c.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance, 2025. URL https://arxiv.org/abs/2504.
14945.

https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://openreview.net/forum?id=zwEUO0KT8G
https://openreview.net/forum?id=zwEUO0KT8G
http://arxiv.org/abs/1904.11455
http://arxiv.org/abs/1904.11455
https://arxiv.org/abs/2407.14622
https://arxiv.org/abs/2502.12118
https://arxiv.org/abs/2506.09026
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2509.06941
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.14945
https://arxiv.org/abs/2504.14945

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuangi Tan, and Chang Zhou. Scaling
relationship on learning mathematical reasoning with large language models. arXiv preprint
arXiv:2308.01825, 2023.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang.
Does reinforcement learning really incentivize reasoning capacity in 1lms beyond the base model?,
2025. URL https://arxiv.org/abs/2504.13837.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476-15488, 2022.

Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
and Jingren Zhou. On-policy rl meets off-policy experts: Harmonizing supervised fine-tuning and
reinforcement learning via dynamic weighting, 2025. URL https://arxiv.org/abs/2508.
11408.

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: Rl post-training amplifies behaviors learned in pretraining, 2025. URL https:
//arxiv.org/abs/2504.07912.

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqgi Chen, and Yu Meng. The surprising
effectiveness of negative reinforcement in 1lm reasoning, 2025. URL https://arxiv.org/abs/
2506.01347.

https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2508.11408
https://arxiv.org/abs/2508.11408
https://arxiv.org/abs/2504.07912
https://arxiv.org/abs/2504.07912
https://arxiv.org/abs/2506.01347
https://arxiv.org/abs/2506.01347

Appendices

A Related Work

Our work tackles exploration on hard problems in RL-trained reasoning models when naively scaling
on-policy RL compute makes little progress. It is related to prior works on enhancing exploration
with different training objectives or those that use off-policy traces to reinforce the model being
trained and prevent the training from stalling. We briefly review these below.

RL exploration limits on hard problems. Small RL-trained models trained via RL can now
outperform much larger base models (Liu et al., 2025; Luo et al., 2025), largely by reinforcing
long chain-of-thought traces that exhibit meta-strategies and behaviors such as self-correction (Qu
et al., 2024) and reflection (Gandhi et al., 2025). Yet, without careful design, RL often sharpens the
base model’s distribution, reducing exploration diversity and leaving hard problems underexplored.
This often manifests as a degrading pass@¥k compared to the base model (Yue et al., 2025; Zhao
et al., 2025). To mitigate this drop, one line of work focuses on regularizing RL training to prevent
over-sharpening. Examples include adding exploration bonuses based on intrinsic motivation (Gao
et al., 2025), entropy (Wang et al., 2025b), count-based bonuses (Song et al., 2025), or training
objectives that directly optimize pass@n (Chow et al., 2024; Balashankar et al., 2025). While
effective at stabilizing learning, these methods remain constrained by sparse rewards, reliance on easy
problems for signal, and persistent failure on challenging tasks (He et al., 2024). A complementary
line of work (Setlur et al., 2025b) amplifies exploratory asymmetries of the base model, such as the
verification-generation gap (Setlur et al., 2025a; Song et al., 2024), to generate longer traces beyond
the base distribution. Negative gradients in RL can chain such asymmetries over iterations (Zhu et al.,
2025), but models often “under-think” (Wang et al., 2025¢), executing incorrect high-level strategies
that persist despite more rollouts. Our work tackles this by conditioning on privileged information to
guide new strategies, discover correct rollouts, and internalize them without explicit conditioning,
thereby overcoming the exploration bottleneck.

Updating LLMs with off-policy traces. When on-policy exploration struggles due to sharpening
or over-thinking, several works propose supervising the RL policy on human- or oracle-provided
traces (Lightman et al., 2023; Corrado et al., 2024). However, for methods that rely on traces from a
teacher model, the gains are inherently bounded by teacher capacity (Agarwal et al., 2024b). Moreover,
learning from such traces typically requires additional techniques such as reward shaping (Yan et al.,
2025), entropy control (Wang et al., 20252), and extensive hyperparameter tuning Zhang et al. (2025).
A more fundamental limitation is that off-policy reasoning traces are simply not available for many
hard problems: although human-written solutions exist for nearly any RL training prompt and can be
rephrased into more effective formats, producing long chains of thought that align with how models
actually reason is much more difficult. As we show in our experiments, learning from off-policy data
under such type mismatch often leads to a collapse in the diversity of responses sampled by the model.
An approach that avoids using off-policy data as training targets is therefore preferable, and our
method falls into this category. Related directions include conditioning on subgoals or plans (Hong
et al., 2025), or providing abstractions (Qu et al., 2025), but our approach is substantially simpler
since it directly conditions on a prefix of an oracle solution. The work most closely related to ours is
training with on-policy exploration on adaptively revealed solutions (Amani et al., 2025). However,
unlike us, this work focuses on non-reasoning didactic domains where short responses suffice and
exploration is easier. A key aspect of our motivation leverages the parameterization of reasoning
traces and their strong instruction-following capabilities, which are absent from this work.

B Preliminaries and Notation

We situate this paper in the domain of RL post-training of large languagge models (LLMs) on math
problems. For any given problem x ~ p and a rollout y ~ 7y(- | x) attempting to solve this problem,
we define a binary outcome reward r(x,y) € {0,1} indicating correctness of the final answer
produced by the rollouts. Analogous to work studying RL with 0/1 rewards, we assume that the
rollout y represents the final answer in a \boxed{} block. We study several measures of performance,
including the pass@#k metric, given byL pass@k = Pr[Jyy, ..., yx ~ mo(- | x) st r(z,y;) = 1],
which measures the probability that at least one of k independent attempts at the problem succeeds.
This metric captures the role of parallel exploration during training and governs whether a batch can
yield any positive signal for GRPO (Shao et al., 2024) or any other Monte-Carlo rollout based policy
optimization algorithm for LLMs. We also use pass@F as an evaluation metric to understand the

optimization behavior of RL on the base LLM, especially in regard to interference and sharpening
effects as we will see in the next section. Most RL algorithms use the policy gradient:

VoI (0) = Eyr, [r(x,¥) Vo log mo(y | x)] . 3)

which reinforces rollouts that end in a correct final answer. This process is also called outcome-reward
RL. In practice, some of the most-commonly used RL algorithms such as GRPO, uses a reference
policy moyq for sampling and normalize rewards into advantages before utilizing them in the policy
gradient: A;(x,y;) =r(x,y;) — %ZLI r(x,y;), so that updates depend on deviations of reward
from the batch mean. This normalized structure makes RL brittle on hard problems. If all n rollouts
fail on a given problem x (r(x,y;) = 0), then the advantage for all samples vanishes, A; = 0, and
the gradient update is exactly zero on x. Thus when pass@k =~ 0, training stalls: GRPO cannot
generate signal, even with large batch sizes or extended iterations. As we discuss in Section C, this
creates a feedback loop where the model sharpens on easy problems but halts learning on hard ones.

C Ray Interference in RL Post-Training

To motivate our approach, we begin by studying the dynamics of RL training. When training with
RL, we often observe that average rewards improve steadily on the training dataset. These rewards
are computed by averaging over multiple rollouts for each problem (Shao et al., 2024), which means
a higher average reward can arise either from producing more correct rollouts on an easy problem
or from producing at least one correct rollout per problem. A natural hypothesis is that the policy
first learns to solve the easier problems in the mixture within a few RL updates, generating multiple
correct rollouts per problem. One might then expect that longer training would eventually lead
to success on the harder problems as well. However, we find that this does not occur. As shown
in Figure 3, a typical RL training run first reduces the fraction of problems unsolved by the base
model, but once some problems are solved, the percentage of fully solved problems increases (see
step 100 in Figure 3, right), while the model’s ability to solve previously unsolved problems drops.
In fact, after step 150, even some prob- o Uncovable % perfectly Solvable

lems that were solvable by the base 092 0.05
model before become unsolvable by 050
the RL-trained model (the “% unsolv-
able problems” increases in Figure 3). 2

" 0.88

em
o
@
=3
o
o
&

Training continues to make progress £ Z:: 002
on fully solving a different subset of & 001
) 0.80
problems, but this pattern, represen- e
0.00

tative of a typical RL fine-tuning run,
highlights that once RL trains mod-
els to solve some easy prompts, fur-

0 25 50 100 125 0 25 50 75 100 125

Steﬁ Step
. . . LT Figure 3: Solvable/unsolvable problems in a typical RL run. Left:
ther training actively inhibits progress Percentage of problems a model fails to solve within 16 rollouts (%
on other prompts. The most natural ypglyable) first decreases, suggesting the model initially learns to
explanation is that this stems from go]ye new problems, but later increases, indicating that the model
a form of update interference across has lost its ability to solve solve problems it previously could. Right:
prompts, known as ray interference in Percentage of problems the model solves perfectly (% Perfectly
the RL literature (Schaul et al., 2019), Solvable) steadily increases, suggesting that gains in reward come
as we discuss below. mainly from distribution sharpening rather than solving truly new
. . problems. Moreover, as the model learns to perfectly solve some
Ray interference: why learning from problems, it loses its ability to solve others.
hard problems get harder during RL.

Typical RL algorithms for post-training LLMs explore on-policy: for each prompt in the batch, we
sample n parallel rollouts from the current policy and use them to compute a policy gradient update. If
at least one rollout solves the problem but not all of them succeed, the update reinforces the subset of
correct rollouts. If none of the n rollouts succeed, or if all of them succeed, then no update is applied
on that prompt. Exploration is therefore wasteful when the model cannot sample any correct trace
on a hard problem across the n parallel attempts. However, as soon as the policy begins to reliably
solve easier problems, their successful rollouts dominate the reward signal. Because all prompts
share the same model weights, gradient updates that improve easy problems can inadvertently reduce
the probability of exploring useful directions on harder ones since the gradient on easy problems
encourages the model to hone in on the right answers and “sharpen” its probability distribution. Over
time, this creates a “rich-gets-richer” dynamic: prompts with some correct rollouts get reinforced

further (Figure 3, Right), while prompts with no successes become increasingly unsolvable. This
corroborates pass@n declining in RL from prior work, despite more rollouts (Yue et al., 2025).

Takeaways: Ray interference progressively hurts exploration on hard problems

* As RL starts solving some problems, its ability to solve other problems degrades.

 This manifests as a U-shaped trend in the percentage of unsolved problems during training,
and a rich-gets-richer effect where prompts get disproportionately improved upon in RL.

D Motivating Intuitions Behind POPE

Base vs POPE Base vs Standard RL
1) Conditioning guides better exploration when the

base model exhibits strong instruction-following ca- o

pabilities. Our first main motivating intuition inform- : o V.
ing the design of POPE is that an effective way to use -

privileged information that also avoids distillation is
to condition the base model on the prefix of an ora-
cle solution along with the prompt for training. The
system prompt then asks the model to complete the
solution after carefully analyzing the provided partial
oracle solution. This process reduces the difficulty of
the problem for the base model in many ways. For

18.8% ualEe

50.0%

59.4%

Both Fail
Finetuned Only

Both Solve
Base Only

Figure 4: Fraction of problems solved by POPE
and standard RL (evaluated without conditioning
on privileged information) compared to the base

instance, some partial solutions might already tackle
a subproblem, leaving a fewer number of subprob-
lems to be solved for the model’s rollout (Figure 9);
some other partial solutions may verbalize a plan to

model, normalized over all problems where condi-
tioning the base model on privileged information
yields at least one successful rollout. POPE solves
more problems than standard RL, showing that

conditioning on privileged information enables it
to transfer successful rollouts obtained with con-
ditioning on these training problems to the setting
when no conditioning is provided.

tackle the problem, which keeps the model on track
(Figure 10). In summary, prefixes of oracle solutions
can provide useful privileged information for reduc-
ing problem complexity, and address the issue with
cloning target solutions. Given a base model with strong instruction- following abilities, conditioning
in this way allows the model to sample correct traces by following the information provided by
the partial oracle solution (Figure 9) or by tackling a simpler version of the problem that remains
unsolved after the partial solution is provided. As a result, the model can obtain non-zero reward on
augmented versions of otherwise unsolvable hard problems. Our approach, POPE prescribes training
on versions of problems augmented with partial attempts, as we discuss below.

2) Training on augmented and normal prompts transfers to successful rollouts on unaugmented
prompts. While the above mechanism allows us to obtain reward on augmented versions of hard
prompts, it is not obvious whether training on these prompts with partial solutions leads to effective
transfer to the original unaugmented prompts. Our second motivation is that when models use
a reasoning format that encloses computation within “think” blocks and reiterates the problem
statement (and the privileged information in the case of augmented prompts; see Figure 9), training
on augmented prompts should often suffice to induce non-zero success on the original problems
without privileged guidance. We attribute this to the conditional next-token distributions reinforced
early on during training on augmented prompts: reasoning traces on augmented prompts rephrase
the problem and reproduce the privileged information, and get reinforced if they experience reward.
When the model is presented with unaugmented prompts, it first rephrases the problem statement, and
the conditional next-token distributions learned on augmented prompts then help fill in the missing
privileged content and guide the remainder of the solution. In effect, learning to solve the augmented
prompt also teaches the model how to approach the unaugmented version through a form of a “gluing
mechanism”, inherent to reasoning parameterizations. We present an example rollout illustrating
this mechanism later in Figure 10. Quantitatively, Figure 4 shows the fraction of problems solved
by POPE, standard RL, and the base model without conditioning, out of all problems solvable by the
base model when given privileged information. Training on both augmented and normal prompts
enables POPE to solve more of these problems compared to RL without requiring conditioning, which
shows that training on a mixture of prompts transfers to unaugmented prompts.

10

Train Test AIME2025 HMMT2025
0.35

0.30 0.20 0.6

4@30‘25 ~ 015 ~ x 05
©0.20 9 Qo6 @
a 2 0.10 2 a
gois g 2 304

0.10 0.05

0.05 0.4
0.00

8 1

1 8 1 8 1

k:z(# roIIo:ts) k :2(# rollojts)
Base SFT RL SFT + RL POPE (Ours)

Figure 5: Pass@Fk performance of different approaches, using Gemini 2.5 Pro as the oracle. Importantly, we

do not assume access to Gemini’s reasoning traces, only a prefix of the final solution as privileged information.

POPE achieves the best pass @k performance overall on both the i.i.d. held-out test set of hard problems and the

standardized AIME 2025/HMMT 2025 benchmarks. On the training set, POPE also improves pass @8, although

SFT+RL (yellow) outperforms it. This is expected since SFT+RL leverages large-scale rejection sampling to

obtain correct traces by combining oracle-provided prefixes with base LLM rollouts conditioned on them.

2 4 2 4
k = (# rollouts) k = (# rollouts)

Train Test AIME2025 HMMT2025
035 08
0.30 020 06
5 025 x 015 5 07 -~
Qo020 e @ §os
8 0.15 © 010 8 0.6 B
Q Q o Q

0.10 0.05
0.05 0.5
0.00 0.3
8 1 8 1

1 8 1 8

I<=2(# rollo:ts) k=2(# rollo:ts)
Base No Prefix Longer Prefix Random Prefix POPE (Ours)
Figure 6: Ablation on the amount of privileged information used for conditioning. POPE with minimal
prefixes achieves the best performance across train, test, and AIME/HMMT benchmarks. Random prefixes
perform comparably on train and AIME 2025 but lag on test and HMMT 2025. Providing longer prefixes is
detrimental, as it exacerbates the rich-gets-richer effect and slows progress compared to standard RL.

E Ablation Studies

Next, we present a series of ablation experiments for POPE to better understand the role of different
design choices in our approach and in the baselines. We focus on three key questions: (1) How does
the amount of privileged information influence the efficacy of POPE? (3) How do different sources of
privileged information, such as a stronger language model (Gemini 2.5 Pro in our case) and human
data, compare in their effectiveness? (3) To what extent does POPE address the ray interference issue
outlined in Figure 3 with standard RL? and (4) Does POPE enable transfer of strategies learned under
privileged guidance to the original prompt without guidance? We address the first three questions
below and provide a qualitative example for answering (4).

2 4 2 4
k = (# rollouts) k = (# rollouts)

1) Amount of privileged information. To answer the first question, we ablated POPE by varying the
amount of privileged information used for conditioning. Specifically, we compared POPE against:
a) a longer prefix, where the first /4 of the oracle solution was provided for every problem, and b)
a random prefix, where a randomly sampled prefix of the oracle solution was used as privileged
information. As shown in Figure 6, using the minimal prefix prescribed by POPE performs best across
the train set, test set, and the AIME/HMMT benchmarks. The random prefix strategy generally
performs second best, roughly matching POPE on the train set and AIME 2025, but falling behind
on the test set and HMMT 2025. In contrast, providing excessive privileged information through
the longer prefix was detrimental: the percentage of unsolved problems decreased no faster than in
standard RL without any privileged information. We suspect this is because longer prefixes exacerbate
the rich-gets-richer problem: by making some problems substantially easier by revealing a longer
prefix than what is needed to attain a particular accuracy under the base model, this strategy can
induce a disparate distribution over prompt difficulty in the training set.

2) Comparing different sources of oracle data. We next compare the efficacy of different types
of oracle data when used only for supervised fine-tuning (SFT). For this experiment, we fine-tune
the base model on three sources: a) human-written solutions, b) language model generated solutions
from Gemini, and ¢) reasoning traces generated by prompting the base model with a prefix of the
Gemini solution (the same setup used in our SFT+RL comparison). As shown in Figure 7, SFT with
approach c¢), which clones reasoning traces largely obtained through rejection sampling from the base
model, outperforms cloning either human or Gemini solutions. However, we also find that in many
cases the base model itself achieves higher performance than any SFT variant, particularly on the
train set, the test set, and at larger k values for AIME and HMMT. This result is consistent with prior

11

Train Test AIME2025 HMMT2025

0.25 05
0.25
0.20 06 0.4
~ ~ 0.20 ~ ~ s
Qo1s ® 15 ®o4 ©
4 4 4 4
2 0.10 S 0.10 8 T 02
0.2
0.05 0.05 01
0.00 0.0 0.0
1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
k = (# rollouts) k = (# rollouts) k = (# rollouts) k = (# rollouts)
Base Gemini Solution Human Solution Guidance

Figure 7: Comparison of different sources of oracle data as training target. Cloning reasoning traces generated
from the base model itself generated by running rejection sampling on the prompt augmented with privileged
prefixes outperforms cloning human or Gemini solutions. However, the base model often performs better than
most SFT variants, especially on train, test, and at larger k& for AIME and HMMT. This shows that directly using
oracle solutions as training targets can degrade pass@k performance.

% Unsolvable (Gemini) % Perfectly Solvable (Gemini) % Unsolvable (Human) % Perfectly Solvable (Human)
0.05
0.9 0.06

0 0.04 08

IS 0.04

2 0.03 0.6

I 0.8

9 0.02 0.02

o 0.01 0.4

Q2 0.7 .

& 0.00
0.00 0.2

0 50 100 0 50 100 0 50 100 0 50 100
Step Step Step Step
— RL POPE (Ours)

Figure 8: Assessing ray interference with POPE. We plot the percentage of unsolved and perfectly solved
problems over the course of training, evaluated without privileged information. Naive RL exhibits the same
failure mode as in Figure 9: it initially solves new problems but soon over-sharpens on a subset of prompts, and
eventually even unlearns problems solved earlier in training. In contrast, POPE steadily reduces the fraction of
unsolved problems and avoids excessive sharpening, thereby mitigating ray interference.

observations in synthetic data (Setlur et al., 2024) and reinforces our motivation: directly using oracle
solutions as training targets is not effective, since it often reduces pass @k performance.

3) Assessing ray interference with POPE. Finally, we assess the extent of ray interference under
POPE by plotting the percentage of unsolved and perfectly solved problems over the course of training
in Figure 8, analogous to Figure 3. Although training uses a mixture of augmented and unaugmented
prompts, evaluation is performed without any privileged information. As shown in the figure, naive
RL fine-tuning follows the same failure mode as in Figure 3: the model initially learns to solve new
problems, but soon begins to sharpen on a subset of prompts where it consistently produces correct
rollouts, while progress on other problems stalls. In fact, as training goes on, the model unlearns
certain problems that it could solve earlier in training. In contrast, POPE steadily reduces the fraction
of unsolved problems throughout training and avoids excessive sharpening (perfectly solved problems
is lower for POPE), thereby addressing the challenge of ray interference.

12

,,--I Prompt augmented with partial solution I--\

You are given a problem and a partial solution.

Your task is to carefully study the partial response, identify what reasoning or
steps are already provided, and then complete the solution from where it left
off. Ensure your continuation is logically consistent and leads to a complete
and correct final answer. Show your reasoning step-by-step and clearly
present the final answer using LaTeX-style \boxed{} notation.

Problem: For each positive integer n, there is a circle around the origin
with radius n. Rainbow Dash starts off somewhere on the plane, but not
on a circle. She takes off in some direction in a straight path. She moves
\frac(\sart{5}}{5)$ units before crossing a circle, then \sqrt{5}$ units, then
\frac(3 \sqrt{5}}{5)$ units. What distance will she travel before she crosses
another circle?

Partial Response: Let the circles be C_n for $n=1, 2, 3, \dots$, with
radius n and centered at the origin. The equation of C_n is
$xA2+yA2=nA28. Let Rainbow Dash's starting point be P_0 and her
direction of travel be a unit vector \vec{u}. Her path is a line $L(t) = P_0 +
twvec{u}$, where $t \ge 08 s the distance traveled from P_0. A crossing
occurs at a distance $t§ when the point SL(Y$ is on a circle C_n. The
squared distance from the origin to $L®)$ is S|L(H)|"2 = |P_0 + twec{u}}2 =
[P_0|A2 + 2¢(P_0 \cdot \vec{u}) + tA2|\vec(u}l|A28. Let SR_0A2 = [P_0]A2$ be
the initial squared distance from the origin. Let $c = P_0 \cdot \vec{u}$.
Since $|\vec{u}=1$, we have the condition for crossing C_n: $tA2 + 2ct +
R_0A2 = nA2§.

Continue solving the problem, starting from where the partial response ends.
Make sure your final answer is written as: \boxed{\ext{/Answer)}

F Behavior of Base model v.s. model finetuned with POPE

Here we provide example generated by Qwen3-4B base model on a hard training problem

<think> Okay, 50 | need to figure out how far Rainbow Dash will travel before she crosses another circle after those first three
distances. Let me start by understanding the problem. We have circles around the origin with radii n for each positive integer n.
Rainbow Dash starts somewhere not on a circle, so her starting point is not on any of these circles. She then moves in a
straight line in some direction. The distances she travels before crossing each circle are given as sqrt(5)/5, sqrt(5), and
3°sqrt(5)/5 units. | need to find the next distance before she crosses another circle. First, maybe | should think about the path
she's taking. Since she's moving in a straight line, her path is a straight line from her starting point. Each time she crosses a
circle, that means she's moving from one radius to the next. The distance between consecutive circles depends on the
direction she's moving relative to the origin. Let me recall that if you have a straight line moving away from the origin, the
distance between consecutive circles (i.e., between radius n and n+1) is 1 unit. But if she's moving at an angle, the distance
between crossings might be different. Wait, but the problem says she starts not on a circle, so maybe her path is not passing
through the origin? Or maybe it is? Wait, if she starts not on a circle, but moves in a straight line, maybe her path is not passing
through the origin. But the circles are centered at the origin \n\nSo, the distance between crossings of consecutive circles
depends on the angle of her path relative to the origin. If her path is straight, then the distance between crossings of two....

’

——

y——— --I Base model solution with guidance

<think> Okay, 50 | need to figure out the distance Rainbow Dash willtravel before crossing another circle. Let me start by
understanding the problem again. We have circles centered at the origin with radii n for each positive integer n. Rainbow
Dash starts somewhere not on any circle, so her starting point isn't on any of these circles. She moves in a straight line in some
direction. The distances she travels between crossings are given: first sqrt(5)/5 units, then sqrt(5), then 3sqrt(5)/5 units. | need
to find the next distance before she crosses another circle. The partial solution has already set up equations for when she
crosses a circle. The key equation is t2 + 2ct + Ry? = n2, where t is the distance traveled, c is the dot product of her
starting position vector with her direction vector (which is a unit vector), and Ry? is the squared distance from the
origin to her starting point. So, each time she crosses a circle, the value of t (distance traveled) satisfies this quadratic
equation for some n. The roots of this quadratic equation correspond to the points where her path intersects the circle C_n.
Since she's moving in a straight line, she will cross each circle twice, but since she starts not on any circle, the first crossing
would be the first time she reaches a circle, then the next crossing would be the next one, and so on. But the problem says she
crosses circles at intervals of sqrt(5)/5, sqrt(5), 3sqrt(5)/5, and we need the next one. Wait, but the problem says she moves

sart(5)/5 units before crossing a circle....

N\, / ’
Figure 9: An example of rollout generated by Qwen3-4B base model on a hard training problem when
conditioning and not conditioning on partial oracle solution (guidance). Observe that the rollout with guidance
not only refers back to the solution, but it recalls the partial solution in its reasoning, restating many of the facts,
and continues the solution from there. This confirms the motivation behind the design of POPE.

Here we provide example rollouts from a model fine-tuned with POPE.

,,-[Prompt augmented with partial solution]--\
1
1

You are given a problem and a partial solution.

Your task is to carefully study the partial response, identify what reasoning or
steps are already provided, and then complete the solution from where it left
off. Ensure your continuation is logically consistent and leads to a complete
and correct final answer. Show your reasoning step-by-step and clearly
present the final answer using LaTeX-style "\boxed{}" notation.

Problem:
How many real numbers x satisfy the equation% log; x = sin (5mx)?

Partial Response:

Let the given equation be $f(x) = g(x)$, where $f(x) = \frac{1}{5Nog_2 x$ and
$g(x) =\sin(5\pi x)$. First, let's determine the domain of possible solutions.
The domain of $f(x) = \frac{1{5Nog_2 x$ is $x>0$. The range of $g(x) =
\sin(5\pi x)$ is $[-1, 1]$. For a solution to exist, $f(x)$ must be in the range of
$g(x)$. So, we must have $-1 \le \frac{1{5)\og_2 x \le 1$. This inequality is
equivalent to $-5 \le \log_2 x \le 5$. Exponentiating with base 2, we get $2/-
5}\le x \le 2/5$, which is $\frac{1432} \le x \le 32%. So, we only need to
search for solutions in the interval $[1/32, 32]$. We can split the analysis into
two main intervals: $(0, 1]$ and $(1, 32]$.

Continue solving the problem, starting from where the partial response ends.
Make sure your final answer is written as: \boxed{\text{Answer}}

L U e ——— 4

\

N T

__l POPE model with oracle guidance |.

-

\

<think> Okay, let me try to figure out how to solve this equation: (1/5) log,x
=sin(5mx). The partial response already set up the domain and split it into
two intervals, (0,1] and (1,32]. | need to check both of these intervals and
count the number of real solutions. First, | remember that the sine function
oscillates between -1 and 1. Since we already have the domain restricted to
between 1/32 and 32, we need to consider how the logarithmic function
behaves in those intervals.\n\nLet me think about the function f(x) = (1/5)
logyx. For x in (0,1], log,x is negative or zero. Since x>0, when x is in (0,1),
log,x is negative, and when x is 1, log.x is 0. So, multiplying by 1/5, f(x) will be
between -1/5 and 0 in that interval. Wait, but the partial response said that the
equation requires f(x) to be between -1 and 1.

S o

o
| T ———

,--[POPE model without oracle guidance |-=.
1

<think> Okay, so | need to figure out how many real numbers x satisfy the
equation (1/5) log base 2 of x equals sin(5mx). Hmm, let me start by
understanding what each side of the equation represents.\n\nFirst, the left-
hand side is (1/5) log,x. That means it's a logarithmic function scaled by 1/5.
The logarithm is only defined for x > 0, so that restricts the domain to positive
real numbers so the left side is 1/5. When x=1/2, log,(1/2) is -1, so left
side is -1/5.\n\nNow, the right side is sin(5tx), which oscillates between -1
and 1. So, if we multiply both sides by 5, the equation becomes log,x = 5
sin(5nx). Therefore, since log,x can be any real number (as x is positive), but 5
sin(5mx) is between -5 and 5. However, since log,x must be between -5 and 5
for the equation to have solutions. Therefore, we can find the range of x where
log,x is between -5 and 5. Let me solve that:\n\nlog,x = -5 => x = 2/\{-5} =
1/32.\n\nlog,x < 5 => x < 2A5 = 32.\n\nSo, the equation can only have
solutions for x in the interval [1/32, 32]. But wait, but log,x i

= e e
| Y —————

Figure 10: Example rollouts from a model fine-tuned with POPE, shown with and without conditioning on a
partial oracle solution. In both cases the model adopts a similar strategy: when guidance is provided it follows
the partial solution, and when guidance is absent it independently proposes the same strategy. This illustrates at
least some form of knowledge sharing across augmented and unaugmented versions of the prompts.

13

G Training hyperparameters

G.1 Hyperparameters for SFT

For POPE and RL runs, we utilize the TRL codebase. The base models are directly loaded from

Hugging Face: Qwen3-4B

Hyperparameter | Values
learning_rate 1.0e-5
num_train_epochs 3
batch_size 128
gradient_checkpointing | True
max_seq_length 16384
bfl6 True
num_gpus 8
warmup ratio 0.1

Table 1: Hyperparameters used for POPE

G.2 Hyperparameters for RL

We utilize the verl codebase to run GRPO. We use Qwen3-4B as the base model for training.

Hyperparameter \ Values
max_prompt_length 2048
max_response_length | 16384
clip_ratio_low 0.2
clip_ratio_high 0.35
train_batch_size 32
learning_rate 1.0e-6
kl_loss_coef 0.001
temperature 0.8
critic_-warmup 0
total_training_steps 300
num-gpus 16

Table 2: Hyperparameters used for POPE & RL

14

https://github.com/huggingface/trl
https://huggingface.co/Qwen/Qwen3-4B
https://github.com/volcengine/verl
https://huggingface.co/Qwen/Qwen3-4B

H Prompts

We use the following prompt to guide the model in solving a problem with a partial solution.

Prompt for Solving with Partial Solution

You are given a problem and a partial solution. Your task is to carefully

study the partial response, identify what reasoning or steps are already
provided, and then complete the solution from where it left off. Ensure
your continuation is logically consistent and leads to a complete and correct
final answer. **xImportant**: Show your reasoning step-by-step, and clearly

present the final answer using LaTeX-style \boxed{} notation.

Problem: <Problem>
Partial Response: <Partial Response>

Continue solving the problem, starting from where the partial response ends.

Make sure your final answer is written as: < Answer >

I Examples

Here we provide an example from the Omni-MATH dataset with a human solution.

Question from Omni-MATH

Let k> 2 be an integer. Find the smallest integer n > k+1 with the property
that there exists a set of n distinct real numbers such that each of its
elements can be written as a sum of k other distinct elements of the set.

Human Solution

Let kK > 2 be an integer. We need to find the smallest integer m > k + 1 such
that there exists a set S of n distinct real numbers, where each element of

S can be expressed as a sum of k other distinct elements of S.

To solve this problem, we consider the construction of such a set S.

1. **Understanding the Problem:**

- For each element s € S, we need k distinct elements from S \ {s} that sum up

to s.

2. **Minimum Size Construction:*x*

- We start by proving that with n = k 4+ 4, such a set can indeed be
constructed.

- Consider a construction where:

- Choose k+ 1 elements as the base set: {ai1,a2,...,0k+1}-

- Introduce an additional four elements: {b1,bo,bs,ba}.
- We construct our set S as:

S ={ai,a2,...,ak41,b1,b2,b3,b4}

3. *xIllustrating the Construction:*x*

- Arrange the elements such that:

- Each a; is expressed as the sum of any k of the other a;’s and some b’s if
necessary.

- Each b; can be expressed using a combination of a’s and other b’s.

4. xxVerification:*x*

- By choosing specific numbers for each b;, we ensure that each number in the
constructed set can indeed be expressed as a sum of k distinct others.

- For example, by choosing values and testing that the sum condition holds, we
verify that each possibility works, fulfilling the problem’s conditions.

5. *xConclusion:*x*

- Testing smaller n for valid configurations will fail due to insufficient
numbers to formulate each possible sum using k distinct numbers.

15

- Therefore, the smallest n for which such a configuration is possible indeed
turns out to be n=k+4.
Thus, the smallest integer m such that a set S with the given conditions can

be constructed is:

Here we provide an example from the DAPO dataset with a solution generated by gemini-2.5-pro.

Question from DAPO

Find the smallest natural number n such that the expression n> — n + 11 has
exactly four prime factors, which may not be distinct.

Solution generated by Gemini

Let the given expression be f(n) =n’—n+1l. We are looking for the smallest
natural number n such that f(n) has exactly four prime factors, including
multiplicity. This means Q(f(n)) =4, where Q(k) is the total number of prime
factors of k.

Let’s analyze the expression f(n) = n(n — 1) + 11. Since n(n — 1) is always
an even number, f(n) is always odd. So, 2 cannot be a prime factor of f(n).
Let’s check for other small prime factors: - Modulo 3: n(n = 1) can be

0x(-1) =0,1x0=0,0or2x1=2. Son?—n+11 = n(n—1)+ 2 (mod 3)
canbe 0+2 =2, 042 = 2, 0r 24+2 =4 = 1. So f(n) is never divisible
by 3. - Modulo 5: n(n — 1) + 11 = n(n — 1) + 1 (mod5). n(n — 1) can be
0,2,6=1,12=2,20=0. So n(n—1)+1 (mod 5) can be 1,2,3. So f(n) is never
divisible by 5. - Modulo 7: n(n—1)+11=n(n—1)+4 (mod 7). n(n—1) can be
0,2,6,12=5,20=6,30=2,42=0. So n(n—1)+4 (mod 7) can be 4,6,10 = 3,9 = 2.
So f(n) is never divisible by 7. - Modulo 11: f(n) = n?® —n+ 11 = n(n — 1)
(mod 11). f(n) is divisible by 11 if and only if n(n —1) =0 (mod 11). Since
11 is prime, this occurs when n =0 (mod 11) or n =1 (mod 11).

So, the smallest possible prime factor of f(n) is 11. We want f(n) to be

a product of four primes, pip2p3ps. To find the smallest m, we should look
for the smallest possible value of f(n). The function f(n) = n? —n + 11 is
increasing for n > 1. So smaller values of n give smaller values of f(n).

The smallest number that is a product of four primes, where each prime is at
least 11, is 11*. Let’s see if f(n) can be equal to 11*. 11* = 14641. We
need to solve n? —n + 11 = 14641 for a natural number n. n’? —n — 14630 = 0.

. . —(=1)+/(=1)2-4(1)(—146: /1158520
Using the quadratic formula, n (CDEVL 12)(1)4(1)(14630) _ 1k L

71j“28521. For n to be an integer, 58521 must be a perfect square. Let’s

estimate /58521. 2007 = 40000, 250% = 62500. 240% = 57600. 2417 = (240+1)% =
57600 + 480 + 1 = 58081. 2422 = (240 + 2)® = 57600 + 960 + 4 = 58564. Since
241% < 58521 < 242%, 58521 is not a perfect square. Thus, there is no integer
n for which f(n)=11%.

Let’s find the next smallest number composed of four prime factors, each at
least 11. The candidates for the smallest such numbers are 11% = 14641,
11° x 13 = 1331 x 13 = 17303, 11°> x 13> = 121 x 169 = 20449, etc. The
smallest is 114, which we’ve ruled out. The next smallest is 113 X 13.
Let’s check if f(n) can be equal to 11° x 13 = 17303. We need to solve

n? —n 4+ 11 = 17303. n®> — n — 17292 = 0. Using the quadratic formula,

n = = 1_4(;)(_17292) = 11@ = li‘/ggw. For n to be an integer, 69169
must be a perfect square. Let’s estimate v/69169. 200% = 40000, 300% = 90000.
260% = 67600. The last digit is 9, so the root could end in 3 or 7.

Let’s try 263% = (260 + 3)% = 67600 + 2 x 3 x 260 + 9 = 67600 + 1560 + 9 = 69169. So,
69169 is a perfect square, and its square root is 263. Then n = 172263. This
gives two possible integer values for n: ni = 1+T%3 = 2%4 = 132. 1_72265 =
% = —131. Since we are looking for a natural number n, we have n = 132.

For n = 132, f(132) = 132% — 132 + 11 = 17424 — 132 + 11 = 17292 + 11 = 17303.

ng =

And 17303 = 112 x 13. The prime factors are 11, 11, 11, 13. There are exactly
four prime factors. So, n =132 is a candidate.

To be sure that n = 132 is the smallest such natural number, we need to
confirm that no smaller n results in a four-prime-factor number. The
function f(n) is increasing forn > 1. So for anyn < 132, f(n) <
f(132) = 17303. If there were a smaller ng < 132 such that f(ng) has four
prime factors, then f(no) would have to be a number smaller than 17303 with
four prime factors, each being at least 11. The smallest such number is

11* = 14641. We have already shown that f(n) cannot be 14641. The next
smallest such number is 11° x 13 = 17303, but this value is not smaller than
17303. Any other combination of four primes (e.g., 117 x 13% = 20449) will be
larger. Therefore, there is no value of f(n) with four prime factors smaller
than 17303. This means that no n < 132 can produce a value of f(n) with four
prime factors. Thus, the smallest natural number n is 132.

Final check: For n = 132, f(132) = 132% —132+11 = 17303. Prime factorization
of 17303: 17303 =11 x 1573 1573 =11 x 143 143 =11x13 So f(132) =11x11x11x
13 =113 x 13. This number has 3+ 1 =4 prime factors.

17

	Introduction
	POPE: Privileged On-Policy Exploration
	Experimental Evaluation
	Related Work
	Preliminaries and Notation
	Ray Interference in RL Post-Training
	Motivating Intuitions Behind POPE
	Ablation Studies
	Behavior of Base model v.s. model finetuned with POPE
	Training hyperparameters
	Hyperparameters for SFT
	Hyperparameters for RL

	Prompts
	Examples

