Published in Transactions on Machine Learning Research (12/2022)

PolyViT: Co-training Vision Transformers on Images, Videos
and Audio

Valerii Likhosherstov*! vl304@Qcam.ac.uk
University of Cambridge

Anurag Arnab* aarnab@google.com
Google Research

Krzysztof Choromanski kchoro@google.com
Google Research

Mario Lucic lucic@google.com
Google Research

Yi Tay yitay@google.com
Google Research

Adrian Weller aw665Qcam.ac.uk
University of Cambridge € The Alan Turing Institute

Mostafa Dehghani* dehghani@google.com
Google Research

Reviewed on OpenReview: |https: //openreview. net/ forum? id=zKknqZeUCLO

Abstract

Can we train a single transformer model capable of processing multiple modalities and
datasets, whilst sharing almost all of its learnable parameters? We present PolyViT, a
model trained on images, audio and video to answer this question. PolyViT consists of
a single transformer backbone, modality-specific tokenizers and task-specific output heads.
By co-training on different tasks of a single modality, we are able to achieve significant
accuracy improvements on 5 standard video- and audio-classification datasets. Furthermore,
co-training PolyViT on multiple modalities and tasks leads to a parameter-efficient model
which generalizes across multiple domains. In particular, our multi-modal PolyViT trained
on 9 datasets across 3 modalities uses 8.3 times fewer parameters and outperforms a state-of-
the-art single-task baseline on 2 of these datasets, whilst achieving competitive performance
on the others. Finally, this simple and practical approach necessitates less hyperparameter
tuning as the per-task hyperparameters can be readily reused. To facilitate further research,
we have released code at https://github.com/google-research /scenic.

1 Introduction

Transformers (Vaswani et al.| [2017) are a flexible family of neural sequence-to-sequence models. While they
were originally designed for natural language processing, they have recently been adapted to a range of
perception tasks, such as classification of images (Dosovitskiy et al. 2021), video (Arnab et al, [2021)) and
audio (Gong et al.| 2021)). Despite recent advances across different domains and tasks, current state-of-the-art
methods train a separate model with different model parameters for each task at hand.

*Equal contribution.
fThe work was done during author’s internship at Google.

https://openreview.net/forum?id=zKnqZeUCLO
https://github.com/google-research/scenic/tree/main/scenic/projects/polyvit

Published in Transactions on Machine Learning Research (12/2022)

PolyViT Encoder

Task #2
Input

Task #2
Head

Task #3
Head

,444,/’ Task #4
Head

i Task #5
Head

Task #3
Input

Task #4 + .
Input

Task #5
Input

L# Jake Jouwoysuel]

Z# Joke Jowiosuel |
4 JoAe] Jswioysuel |

Task #7
Head

0~ 8
Audio Tokenizer

Task #7
Input

Figure 1: Overview of PolyViT. Our model is capable of performing multiple tasks spanning different modal-
ities, and processes a single task at a time. The architecture consists of a transformer encoder shared among
all tasks, modality-specific input tokenizers and task-specific output heads.

In this work, we present a simple yet effective method of training a single, unified model (Fig.[1]) that achieves
competitive, or state-of-the-art results for image-, video-, and audio-classification. We go beyond using a
common architecture for different modalities (Jaegle et al., 2021), as we also share model parameters across
tasks and modalities, thus enabling potential synergies. Our approach is motivated both technically, by the
fact that transformers are generic architectures that can operate on any modality that can be tokenized, and
intuitively, since human perception is inherently multimodal and performed by a single brain.

Our main technique is co-training: training a single model on multiple classification tasks (across potentially
multiple modalities) simultaneously. We consider various settings, and simultaneously solve as many as 9
different image-, video- and audio-classification tasks. Our model is capable of performing multiple tasks,
but performs a single task at a time for a given input (see Fig. [1)).

Although similar techniques have been explored in computer vision (Maninis et al) [2019) and natural
language processing (Raffel et al.,|2019), to our knowledge, this is the first approach using multiple modalities
and achieving state-of-the-art performance.

The proposed co-training approach has several benefits: It is parameter-efficient as we share the transformer
parameters for each of the n tasks of interest, approximately reducing the number of parameters by a
factor of n. This has practical advantages when deploying models on computationally constrained devices
(such as smartphones) with limited memory which may not otherwise be able to fit the weights of n different
models (Iandola et al.l |2017; Dehghani et al. 2021al). Moreover, maintaining a single model for multiple tasks
simplifies model deployment and online updates (Iandola et al., |[2017)). Furthermore, co-training on tasks of
the same modality leads to accuracy improvements on each individual task whilst also linearly decreasing
total parameters. In particular, we achieve significant improvements on video and audio classification across
5 different datasets. This is facilitated by our observation that co-training has a regularizing effect, that
improves performance on smaller datasets that large transformer models would otherwise overfit on. In
addition, when we extend co-training to multiple tasks and modalities, we observe that our accuracy is still
competitive with the state-of-the-art whilst being even more parameter-efficient — our model trained on 9
datasets uses 8.3 times fewer parameters whilst having at most a 1.2% accuracy drop compared to state-
of-the-art single-task baselines. Finally, linear probing experiments show that this multi-task, multi-modal
model is able to learn representations that generalize across multiple tasks and domains. Once again, this
has practical advantages when deploying models, as it shows that we can add new capabilities to the model
by simply training an additional linear classifier.

In addition to all the benefits outlined above, our co-training setup is simple and practical to implement.
It does not require hyperparameter tuning for each combination of co-training datasets, as we can readily

Published in Transactions on Machine Learning Research (12/2022)

adapt the settings of standard, single-task training. In addition, co-training does not increase the overall
training cost either, as the total number of training steps does not exceed that of the sum of each single-task
baseline.

2 Related Work

Our model is related to multi-task learning and transformer models, which we discuss below.

Multi-task learning Multi-task learning aims to develop models that can address multiple tasks whilst
sharing parameters and computation between them [1997). In computer vision, multiple papers
have developed models which predict multiple outputs (for example semantic segmentation and surface
normals), given a single input image (Eigen & Fergus| [2015; Kokkinos|, [2017; |Zhang et al.} 2014). Numerous
works have also observed that although multi-task models are more versatile, their accuracies are lower
than single-task models, and this accuracy deficit increases with the number of tasks, or by simultaneously
performing unrelated tasks (Kokkinos, 2017} [Zamir et all [2018} [McCann et al [2018). Moreover, jointly
training a network to simultaneously perform multiple tasks has typically required careful calibration of the
individual tasks, to ensure that none of the task-specific losses dominates another. Methods to mitigate

this include gradient-normalization (Chen et al. 2018) and -surgery (Yu et all 2020) and adaptive loss
weights (Sener & Koltun, 2018 Kendall et al., [2018) and curriculums (Guo et al., 2018) among others.

Our work differs in that although our network is capable of performing multiple tasks, it performs one task
at a time for a given input. Note that this setting is also more suited to the case of handling multiple
input modalities. Such an approach was also taken by (Maninis et al., 2019) who named it “single-tasking
of multiple tasks” in the context of computer vision. However, in natural language processing (NLP),
this setting is still referred to as “multi-task learning” (Collobert & Weston, 2008). Furthermore, our co-
training strategy is simple, and alternates between performing SGD for batches of separate tasks. For
high-capacity transformer models, we find that co-training on multiple datasets simultaneously helps to
regularize the model on a dataset that it would otherwise overfit on, thus achieving accuracy improvements
from co-training. Previous works have improved performance on additional tasks only by introducing extra
task-specific parameters (Misra et al.l [2016; Houlsby et al.l |2019)) which are typically conditioned on the
input (Rebuffi et all [2017; Maninis et al., 2019).

We also note that similar co-training setups to our work have been explored in NLP. A recent paradigm in
NLP has been to reduce different tasks to a common, unified framework (Raffel et al. 2019; Brown et all
[2020; [McCann et all 2018). This common interface allows co-training a single model to perform multiple
tasks, as it effectively involves concatenating multiple datasets together (Raffel et al.l 2019 [Khashabi et al.|
[2020} [Tay et al.l [2020)).

Although the majority of previous multi-task learning works have considered only a single modality, (Kaiser|
presented an early effort on multi-modal models. Their propose a heterogeneous model consisted
of convolutional layers to process images, and attention and mixture-of-experts layers to model text. This
work, however, did not analyse how to co-train these different tasks and modalities as our paper. Most
recently, proposed using multi-task learning as the mean for transfer learning and showed that co-training
upstream and downstream tasks, we can improve the transfer results compared to traditional pretraining-
finetuning as sequential processes.

Most recently, |Arnab et al. (2022) proposed using multi-task learning as a means for transfer learning and
demonstrated that by co-training upstream and downstream tasks, the transfer results can be improved
compared to traditional pretraining-finetuning as sequential processes.

Transformer models Our model, motivated by (Dosovitskiy et al) [2021), can readily handle diverse
modalities, as transformers operate on any sequence of tokens. Relevant to us, Perceiver (Jaegle et al.| 2021))
and Perceiver-IO (Jaegle et al., |2022)) is a transformer architecture that can process different modalities.
Instead of tokenizing images or audio spectrograms with non-overlapping patches like (Dosovitskiy et al.
[2021)) and (Gong et al.,|2021)) respectively, (Jaegle et al.,|2021)) operate directly on the raw input by projecting
it into a smaller, latent set of tokens using cross-attention. Although this architecture is capable of processing

Published in Transactions on Machine Learning Research (12/2022)

different modalities, the authors train separate networks with separate parameters for each task. Therefore,
they do not consider co-training scenarios like our work. MBT (Nagrani et al., [2021)), on the other hand,
proposes a transformer model to fuse different modalities (for example audio and rgb frames of videos) to
solve a single task. Once again, separate model parameters are used for each task.

UniT (Hu & Singhl [2021)) co-train a transformer-based model, but specifically for vision-and-language tasks.
The authors use an encoder-decoder architecture (Vaswani et al., 2017), where only the decoder is shared
among different tasks, and the encoder is specialized for each modality. In particular, the visual encoder
is DeTR (Carion et all [2020) and the text encoder is BERT (Devlin et all |2019), and each component is
pretrained separately. In contrast to our work, they do not consider scenarios where the entire transformer
backbone is shared among different tasks, nor do they thoroughly analyze how to co-train multiple tasks
and modalities like our work. Furthermore, their approach does not outperform single-task baselines as
our work does. Other papers concentrating on multi-task learning of vision-and-language tasks include (Lu
et al., 2019; [Li et al., 2020; [Lu et al., 2020). On a separate track, (Bain et al.| [2021)) use a single transformer
encoder to process both images and videos for video-text retrieval. However, their model is still trained
on a single dataset and task, and the authors process images with the transformer as part of a complex,
curriculum-learning strategy. This is in contrast with our work which simultaneously trains a model for
multiple tasks across different modalities.

Additionally, we note that transformers have been used to process multiple modalities (Akbari et al., [2021}
Lee et al., 2021]) for cross-modal self-supervised learning (Alayrac et al., [2020; Miech et al., 2020). (Lee et al.
2021) train a transformer on top of visual and audio features obtained from convolutional networks. And
to make model training computationally feasible, they perform low-rank approximations of the parameter
matrices (Sainath et all [2013; [Yang et al., |2015)) to reduce the total number of model parameters. These
approaches are thus complementary to our work which shares almost all parameters in the model among
different tasks.

Finally, we note that a concurrent work, Unified-IO (Lu et al., 2022) proposes a sequence-to-sequence model
which can can perform various vision and language tasks with the same model. Although this work can
handle a wide range of tasks, it is however, not competitive with the state-of-the-art as our approach.

3 Preliminaries

We define a modality as the type of input processed by the network. In this work, we consider images,
audio, and video (specifically, the sequence of image frames in a video) as three separate modalities. We
perform classification as it is a fundamental problem whose solutions are often extended to more complex
ones (Girshick et al.,|2014; [He et al., 2017)). By task, we refer to a pair of input modality and a set of classes
from which one or multiple classes are to be selected for a given input. Each task corresponds directly to a
dataset, for example, ImageNet-1K (Deng et al., 2009) for image classification or Kinetics 400 (Kay et al.,
2017) for video classification.

3.1 Vision Transformers and extensions

The Vision Transformer (ViT, (Dosovitskiy et al.l 2021)) is a transformer-based architecture for image
classification that closely follows|Vaswani et al.| (2017). In contrast to language which is intuitively tokenized
into words, ViT extracts tokens from the input image, x™¢ € RE*XWx3 by gplitting it into N = |H/h] x
|W/w| non-overlapping patches, xi,...,xy € R'®X3 Fach patch, x;, is then projected into a token
z; € R? by a linear operator E, z; = Ex; (input embedding operator). All tokens are then concatenated into
a sequence, which is also prepended with a learnable class token z., € R?. Learnable positional embeddings
p € RWHDXd are also added to this sequence as the transformer is otherwise permutation invariant. We
denote this tokenization process as

720 = [chs Ex; ... EXN} + p. (1)

Note that the linear operator E can also be seen as a 2D convolution with kernel of size h x w and strides
(h,w). The sequence of tokens, z, is then processed by a transformer encoder, consisting of L layers. Each

Published in Transactions on Machine Learning Research (12/2022)

layer, ¢, is applied sequentially, and performs the transformations,
y' = MSA (LN (z71)) + 2! (2)
z' = MLP (LN (y%)) + vy, (3)

where MSA denotes multi-head self-attention (Vaswani et all 2017)), MLP is a neural network with a single
hidden layer and a GeLU nonlinearity (Hendrycks & Gimpell 2016)), and LN denotes layer normalization
(Ba et al., 2016)).

For a C-class classification problem, the class logits produced by the model are obtained by applying an

output linear head on the encoded classification token, ZCLIS, as

Woutzfls + bout S RC7 (4)

where W,; € RE*% and by, € R are the linear head’s learnable parameters.

Extensions of ViT to audio and video The Audio Spectrogram Transformer (AST) (Gong et al. |2021))
follows the same architecture as ViT, with the only difference that its inputs are log-mel spectrograms.
Spectrograms are image-like, time-frequency representations of audio, and can be tokenized like images.
Moreover, the best AST model was initialized from ViT models pretrained on large image datasets.

Video Vision Transformers (ViViT) (Arnab et al. 2021) are an extension of ViT to video. The authors
proposed four model variants, and we consider the unfactorized one (Model 1 in (Arnab et al., [2021)). This
model differs from ViT in the input tokenization process, which it extends from 2D image patches to 3D
spatio-temporal “tubelets”. Namely, a video input x'® € RFXHXWX3 ig plit into N = |F/f| x |H/h] x
|W/w| non-overlapping tubelets x1,...,xy € R *"*wx3 Following ViT, a linear operator EV', which can
be interpreted as a 3D convolution, projects {x;} into a sequence of tokens {z; = EV"x; € R?}, and repeats

computations (1j4).

Initialization Finally, note that ViT, ViViT and AST all achieve their highest performance when pre-
trained on a large-scale dataset such as ImageNet-21K (Deng et al., [2009) or JET (Sun et al. 2017). More
specifically, ViT was initially pretrained on ImageNet-21K or JFT, and then finetuned at higher resolution
on target datasets such as ImageNet-1K. ViViT and AST also initialize their models from large-scale, image-
pretrained models (Abnar et all [2021)). In all of these cases, the positional embeddings, p, which depend
on the sequence length N (and thus the input resolution), are interpolated from the pretrained model to
the finetuned model. Furthermore, the 3D embedding projection of ViViT, EV'® is initialized from the 2D
projection of ViT, E™M¢ (Arnab et al.| [2021)).

The similarities between ViT, ViViT and AST allow us to construct a multi-modal model with a shared
transformer encoder, and separate input tokenizers as described next.

inference

4 Co-training ViT on images, audio and video

4.1 PolyViT architecture

PolyViT is a single architecture that is capable of processing inputs from multiple modalities. As shown
in Fig. [[] we share a transformer encoder among different tasks and modalities, enabling up to a linear
reduction in parameters with the number of tasks. Note that PolyViT with L layers acts like an L-layer ViT
when processing images, an L-layer AST when processing audio, and an L-layer unfactorized ViViT when
processing video. While capable of handling multiple modalities, it performs one task from one modality in
a given forward pass.

IMG VID AUD

As shown in Fig. PolyViT employs modality-specific class tokens, zL/S, zY/>, z2°, input embedding
operators, EM¢ EYI? EA" and positional embeddings p™¢, p¥'®, p*"?. This allows the network to encode
modality-specific information that can be leveraged by the subsequent, shared transformer backbone. It also

accounts for the fact that the number of tokens per modality may vary.

Published in Transactions on Machine Learning Research (12/2022)

A separate output linear head (Eq.) is then used for each task with the following learnable weights:

W = W9 ¢ ROXA 1, = b9 ¢ R (5)
where mod € {IMG, VID, AUD} is a modality, j € {1,...,7™°%} is a task index in the set of tasks for that
modality, 77°¢ is the number of tasks for that modality and C} is the number of classes for that task. Note
that the output heads are the only task-specific parameters. The input embedding operators, positional
embeddings and class tokens are shared by all tasks within a modality.

To increase model capacity when co-training on a large number of tasks and modalities simultaneously,
we can optionally include Lg,gqp: > 0 modality-specific transformer layers (which we denote as modality-
adaptor layers). These transformer layers are applied directly after tokenization. In this case, there are
Lshared = L — Lggdapt layers which are shared among all modalities and tasks. We can think of this case as
using a shallower transformer encoder, but a deeper subnetwork to extract tokens from each modality.

As almost all computation and parameters within our architecture are within the L layers of the transformer
encoder, if there are n tasks, we reduce the total number of parameters by a factor of approximately n when
Lshareq = L. This is in comparison to standard, single-task training. Note that the overall inference time
does not change, as PolyViT still performs one task per forward pass.

4.2 Co-training procedure

We optimize all PolyViT model parameters, 6, simultaneously across all the tasks that we are co-training
with first-order gradient-based optimizers such as stochastic gradient descent (SGD). For brevity, we will
refer to each iteration of one of these optimizers as an “SGD step” below. There are a myriad of design
choices on how to construct training batches, compute gradients, and tune the training hyperparameters.

In all cases, we construct our training minibatches using examples from a single task. This design choice
allows us to evaluate gradients and perform a parameter update using the same training hyperparameters
(e.g., learning rate, batch size, and momentum) as a conventional single-task baseline. As a result, we can
perform co-training on multiple tasks without any additional hyperparameter tuning compared to the single-
task baseline (Dosovitskiy et al.l [2021; |Gong et al., [2021; |Arnab et al. [2021)), making co-training simple to
perform in practice, and alleviating the need to perform large hyperparameter sweeps in order to achieve
competitive accuracy. Note that without this property, we would need to tune training hyperparameters on
the product set of all co-training datasets, which would be computationally infeasible. Constructing mini-
batches from a single task (where each example has the same number of tokens) has further computational
advantages on GPU- or TPU-accelerators, as tokens do not need to be padded to a maximum sequence
length.

During co-training, for each SGD step, we sample a task (dataset), then sample a minibatch from that task,
evaluate a gradient and then perform a parameter update. An important consideration is the order in which
we sample tasks and whether we accumulate gradients over different minibatches and tasks. We describe
several task sampling schedules below and in Fig. @ We first denote U; as the number of SGD steps for the
single-task baseline that the original authors reported for their best model, where j € {1,...,T} indexes the
task and T' = T™C¢ 4 TAVP 1 TVIP {5 the total number of tasks. Furthermore, we define U as the total number
of SGD steps during co-training.

Task-by-task In this schedule, the first U;; SGD steps are performed with task ji, the next Uj, steps
using task jo and so on, where [j1, ..., jr| is a random task order.

Alternating This deterministic schedule alternates between tasks in a fixed, repeating order. Concretely,
we perform a single SGD step for each task in sequence before repeating the same order. We set U = Z?:l U;
which implies U/T training steps per task.

Uniform task sampling This is a stochastic version of the schedule above, where the task for each SGD
step is sampled from a uniform distribution, with probability 1/7. We implement it such that the number

Published in Transactions on Machine Learning Research (12/2022)

Task #1

UUU Task-by-task

ANGD
(6 |
~N

Task #2 555
mUUU Alternating E HH
A58 %3 Weighted task 32
VY (C [

Accumulating 555
vUU gradients L L L | E

Figure 2: Task sampling schedules. Each element within a task corresponds to the number of training steps
performed for that task by the baseline model.

of training steps for task j is exactly U/T, by randomly permuting an array with U elements, where U/T
elements correspond to each task.

Weighted task sampling In this stochastic schedule, we sample each task with a weight proportional to
the number of training steps in the single-task baseline. Therefore, U = Z]A/il U;, and the sampling weight
for task j is U;/U. We implement this schedule as above, to ensure that we perform exactly U; steps for
task j.

Accumulating gradients For T tasks, we perform a forward and backward pass on a minibatch for each
task, summing the gradients over each task. We then perform a single parameter update with the average
of the accumulated gradients, thus effectively using a larger batch size encompassing all the tasks being
co-trained. Here, we set U = (Zjll U;)/T.

4.3 Initialization of PolyViT

As described in Sec. 3] ViT, ViViT and AST models are initialized from models pretrained on ImageNet-
21K or JFT before being finetuned for the task of interest. In our experiments, we also finetune from a ViT
model pretrained on ImageNet-21K, and follow the initialization methods for the positional embeddings,

p, and input embeddings, E, for each modality as described in [Dosovitskiy et al.| (2021) and |Arnab et al.
(2021)).

When we use modality-adaptor layers, that is Lygap: > 0, the first Lyqqp: layers for each modality are
initialized with the same first Lqgqp: layers from the pretrained ViT model. These parameters are however
allowed to change from each other during training. Similarly, shared PolyViT layers are initialized from the
last Lgpareq transformer encoder layers from the pretrained ViT model. Note that the output linear heads
are all initialized randomly.

Published in Transactions on Machine Learning Research (12/2022)

Table 1: The effect of the task sampling schedule on co-training performance on multiple modalities and
tasks. The highest accuracy is shown in bold, the second-highest is underlined. The “Weighted” task
sampling method consistently achieves the highest accuracy for 8 out of 9 tasks, and second-highest on the

remainder. Results are on the validation set. Color bar: () ()-
Image Video Audio
Schedule Iml1K C100 C10 Pets R45 K400 MiT MiniAS VGG
Task-by-task 0.3 0.8 11.7 1.9 2.0 0.3 0.3 1.6 37.2

Accumulated =~ 88.1 90.0 98.8 94.0 96.1 58.0 22.5 22.9 27.3
Alternating 86.0 89.4 99.2 94.0 95.8 69.7 30.0 31.4 44.6
Uniform 85.8 89.3 98.6 946 96.1 68.8 29.3 30.6 44.1
Weighted 86.9 90.4 99.3 96.5 97.0 T71.6 32.5 33.5 49.2

5 Experiments

5.1 Experimental Setup

We train PolyViT simultaneously on 9 diverse classification tasks spanning the image, video, and audio
modalities. Note that datasets and tasks have a one-to-one correspondence. We chose this setup of 9
tasks, as the datasets include a large variation in domain and training set sizes. Furthermore, the single-
task baseline training hyperparameters vary substantially between the tasks. Consequently, we believe this
presents a challenging co-training setup.

When co-training for image classification, we use ImageNet-1K, CIFAR-10 and -100, Oxford-IIIT Pets, and
RESISC45. For video, we use Kinetics 400 and Moments in Time, and for audio, AudioSet and VGGSound.
Exhaustive details of these datasets are in Appendix As in Nagrani et al.| (2021), we evaluate on the
whole AudioSet validation set, but use a smaller balanced subset referred to Mini-AudioSet (MiniAS) for
initial experiments. We then use a larger, balanced subset of 500 000 examples (referred to AS-500k) for
our state-of-the-art comparisons following |[Nagrani et al.| (2021]). We follow standard evaluation protocols for
each task, reporting classification accuracy (%) for all tasks except AudioSet, where we report mean average
precision (mAP) as it is a multilabel dataset.

We set the training hyperparameters for these tasks (and those of the single-task baselines) using the values
reported by [Dosovitskiy et al. (2021) for image tasks, [Arnab et al.| (2021)) for video tasks and [Nagrani et al.
(2021)) for audio tasks (detailed in Appendix [A]). Note that the “audio-only” model of Nagrani et al.| (2021,
which we use as our baseline, is identical to AST |Gong et al.| (2021)), and we choose it since the authors have
evaluated on more datasets.

We perform experiments with two standard transformer encoder configurations: Base (number of layers,
L = 12, hidden dimension d = 768, attention heads h = 12) and Large (L = 24, d = 1024, h = 16)
following Devlin et al. (2019); Dosovitskiy et al.| (2021). As in |Dosovitskiy et al.| (2021), we initialize our
PolyViT model and baselines with ViT pretrained on ImageNet-21K. We refer to this initialized model
as ViT-Im21K. PolyViT is implemented in Scenic (Dehghani et all [2021b]) and the code for training and
evaluation of the model is available at [attps://github.com/google-research /scenic}

5.2 Selecting the best task sampling schedule for co-training

We begin by analyzing the effect of the different task sampling schedules listed in Sec. We use the
full, aforementioned 9-task set-up with PolyViT-Base and all encoder layers shared (Lspared = L = 12,
Ladapt = 0)

As shown in Tab. [I] the “Task-by-task” schedule performs poorly, and only achieves decent performance on
one task, as it suffers from catastrophic forgetting (Frenchl [1999). The “Accumulated” sampling strategy
requires using a single learning rate for all tasks (since the accumulated gradient over all tasks is used for

Published in Transactions on Machine Learning Research (12/2022)

Table 2: Co-training with PolyViT-Base. As indicated by the “#Models” column, some rows correspond to
multiple trained models. In this case, we report the total number of parameters across all models. PolyViT
co-trained on a single-modality outperforms single-task baselines in most cases, whereas PolyViT co-trained
on multiple modalities achieves competitive performance with a large reduction in parameters (test set

results). Color bar: () (). Further details in Appendix
Image Video Audio
Model #Models #Params ImlK C100 Cl10 Pets R45 K400 MiT MiniAS VGG
ViT-Im21K Linear probe 1 93M 80.7 76.2 91.7 91.8 81.7 64.0 25.5 11.3 15.7
Single-task baseline 9 773M 83.1 92.0 99.0 945 96.7 T78.7 33.8 29.3 51.7
PolyViT, 1 modality 3 263M 84.3 93.3 99.1 95.1 964 80.2 36.5 36.7 51.6
PolyViT, Ladapt = 0 1 93M 83.1 91.2 99.0 95.0 96.7 775 33.2 32.3 50.6
PolyViT, Ladapt = L/2 1 178M 82.8 91.5 99.0 95.0 96.6 79.4 35.3 33.1 51.5

performing a parameter update). As we used a learning rate of 0.03, which is the learning rate used by the
image tasks, and significantly lower than the learning rates for the video and audio tasks of the baselines
(details in Appendix E[), this method only performs well on image datasets. The “Alternating”, “Uniform”
and “Weighted” strategies perform the best, showing that task-specific learning rates, and switching between
gradient-updates for different tasks is crucial for accuracy.

In particular, the “Weighted” sampling method performs the best, achieving the highest accuracies on 8 of
the 9 tasks (and second-highest on the remainder), motivating us to use it for all subsequent experiments. We
postulate that this is the case, because unlike the “Uniform” and “Alternating” strategies, the “Weighted”
strategy performs a different number of update steps for each task. For example, small datasets with a
lower number of training steps in their baseline training configurations are sampled less frequently, which
can help to mitigate overfitting. An example is the Pets task, that is only sampled for 500 iterations, out of
the 417 000 total steps, or just 0.11% of the SGD updates. Another advantage of the “Weighted” strategy
is that it performs the same number of steps per task as a single-task baseline. Therefore, it uses the same
computational resources during training as 9 separate, single-task baselines. Our experiment also shows that
if we do not have training hyperparameters for a new task, we can simply tune them separately in the single-
task setting, and then reuse them for co-training. This approach requires significantly less computation than
tuning training hyperparameters directly in the co-training setup.

5.3 Co-training with PolyViT

Table [2| presents approaches for training models to solve 9 different tasks across the image, video and audio
modalities. We consider two variants of PolyViT: The first is PolyViT for a single modality, where we
co-train three separate PolyViT models on all the tasks from either the image, video or audio modalities.
The second is the multi-modal PolyViT scenario where we co-train on all nine tasks across three modalities.
Here, we set Lagap: to 0 and L/2 respectively to understand the effect of the number of modality-adaptor
and shared layers.

Baselines. We compare PolyViT to the following two baselines, which illustrate two alternatives to co-
training.

Single-task baseline The first baseline is to train 9 separate single-task models for each dataset, either ViT,
ViViT or AST depending on the modality. This results in accuracies comparable to the state-of-the-art on
the respective datasets, but also the largest number of total parameters.

ViT-Im21K Linear probe baseline The second baseline is to use a ViT model initialized on ImageNet-21K
(ViT-Im21K) and to “freeze” the encoder of the network and train only the linear output heads (Eq. for
each task. Positional embeddings, p, and input embeddings, E are initialized following the methods used by
ViT, ViViT or AST as described in Sec. This baseline has the same number of parameters as PolyViT
with Lygape = 0. We choose a model pretrained on ImageNet-21K (Im21K) as this is the largest, publicly
available image dataset that we are aware of.

Published in Transactions on Machine Learning Research (12/2022)

Table 3: Linear probing of PolyViT and single-task baselines. Similar to the protocol for evaluating self-
supervised representation learning, we train only a linear classifier on top of a “frozen” transformer encoder.
Note how PolyViT co-trained on all tasks transfers well to all other datasets and modalities. Models trained
on audio do not transfer well to images and video, and vice versa. All models are pretrained on ImageNet-

21K, and then optionally finetuned on downstream datasets. Color bar: () ().
Image Video Audio
= S Q = i
= o) = E = ™
—_ A > o o

5 5 E & & S g 0 3 g S
Model Finetuning &} 155} A A M a9 &3] 19} x4 = 4
ViT-Im21K pretrained - 88.9 75.7 41.0 72.1 46.9 80.2 10.0 17.8 66.6 4.9 10.8
ViT ImageNet-1K = 91.0 79.3 456 71.9 52.5 80.7 12.2 18.5 67.9 5.3 12.0
PolyViT Image tasks 90.7 80.0 452 72.5 53.8 81.2 12.1 17.9 67.9 5.3 11.9
ViVviT MiT 85.2 73.8 43.0 69.9 54.9 81.7 14.9 26.3 74.2 5.1 11.9
PolyViT Video tasks 89.2 775 45.9 711 53.5 83.8 17.2 279 79.7 5.3 12.2
AST VGGSound 29.0 7.6 29.8 347 451 79.5 2.9 4.6 10.6 9.7 21.7
PolyViT Audio tasks 38.8 14.7 314 40.1 43.2 78.4 3.0 5.8 145 10.3 22.0
PolyViT Ladapt =0 All 91.0 78.2 45.8 71.8 52.3 81.9 16.8 27.9 7.8 9.6 20.6
PolyViT Ladapt=1L/2 All 90.7 7.8 45.1 72.1 52.5 82.3 18.0 28.7 794 9.9 21.1

Discussion. Table [2| shows that PolyViT trained on a single modality achieves the highest performance
on 7 of the 9 datasets. On the remaining two, the accuracy difference is negligible, as it is at most 0.3%.
Moreover, the total number of parameters is 3 times less than the single-task baselines. Single-modality
co-training improves accuracy the most on the smaller datasets within the modality (Kinetics 400 in video,
Mini-AudioSet for audio, and CIFAR-100 for images; full dataset details in Appendix. This suggests that
co-training acts as a regularizer, as noted by |Caruana, (1997)), that facilitates learning on smaller datasets
where high-capacity models would otherwise overfit.

Multi-modal PolyViT (final two rows) achieves competitive performance whilst using substantially fewer
parameters. In particular, PolyViT with all transformer encoder layers shared between modalities (Lggapt =
0) is within 1.2% of the single-task baselines across all datasets whilst using 8.3 times fewer parameters.
This model also comprehensively outperforms the ViT-Im21K Linear probe baseline which has the same
number of parameters. Sharing half the transformer layers between modalities (Lggaps = L/2) increases
model capacity, and the model improves upon the corresponding single-task baseline on 4 datasets, whilst
being at most 0.5% worse on the others. The total number of parameters is still reduced by a factor of 4.3
compared to the single-task baselines.

Our results are consistent when using the Large model backbone as shown in Appendix [C

5.4 Evaluating learned representations with linear probes

We now evaluate the feature representations learned by PolyViT by simply appending and training only a
new linear head (Eq. for a new task. This evaluation therefore follows the experimental setting commonly
used in self-supervised learning to evaluate the quality of learned representations (Chen et al.l |2020; Grill
et al., 2020). Note that the new task can come from any one of the three modalities that PolyViT is trained
on, since the modality-adaptor layers (if present) are modality-specific rather than task-specific.

In particular, we evaluate on a number of new image, audio and video datasets as detailed in Appendix
For image classification, we include Caltech101, SUN397, DmLab, DTD, Kitti Distance and PatchCamelyon,
which are datasets from the Visual Task Adaptation Benchmark (Zhai et al.,|2019)) not in our co-training set.
For video classification, we also include Epic Kitchens, Something-Something v2 and Kinetics 600. Finally,
for audio classification, we use the audio versions of Moments in Time and Kinetics 400.

10

Published in Transactions on Machine Learning Research (12/2022)

Table 4: Comparison to MBT [Nagrani et al.| (2021)), the current published state-of-the-art using the same
protocols. The second and third rows show that MBT, when first trained on AudioSet and then finetuned
on VGGSound, and vice-versa, does not perform as well as PolyViT, showing that the regularizing benefits
of co-training are not simply because the co-trained model has access to more data.

VGGSound AudioSet

Model #Models #Params Top1l Top 5 mAP
MBT (audio-only) 2 172M 52.3 78.1 44.3
MBT: AS500k — VGGSound 1 87TM 54.4 81.4 34.2
MBT: VGGSound — AS500k 1 87TM 22.1 43.5 44.4
PolyViT 1 87TM 55.1 80.4 44.5

Models and baselines. We use PolyViT-Base and take linear probes of all the PolyViT models from
Sec. i.e. three single-modality models and two multi-modal models trained on all tasks with Lqgap: = 0
and Lggepr = L/2 respectively. Our baseline models are those not performing co-training. Namely, we use
ViT trained only on ImageNet-21K (ViT-Im21K) as a baseline, followed by ViT, ViViT and AST initialized
from ViT-Im21K and finetuned on ImageNet, Moments in Time and VGGSound respectively (since these
are the largest datasets for each respective modality).

Discussion. Table [3| shows how PolyViT trained on multiple modalities learns cross-modal feature repre-
sentations that perform well on all 11 linear evaluation tasks across three different modalities (last two rows).
This holds even when all the layers of the PolyViT transformer layer are shared, and thus the total number of
parameters is roughly equal to a single-task model. PolyViT where the first half of the transformer encoder
layers are modality-specific (final row), has more parameters and in general performs better. Furthermore,
for the Epic Kitchens (video), Something-Something v2 (video) and Caltech 101 (image) datasets, multi-
modal PolyViT transfers better than single-modality baselines. Table [3] thus demonstrates how co-training
on multiple modalities facilitates learning powerful, transferable feature representations that can be used on
multiple downstream tasks.

Models trained on only a single modality, as expected, do not in general learn feature representations that
transfer well to other modalities. In particular, models trained on audio tasks do not transfer at all to
images and videos, and vice versa. Models trained on video, however, still perform well on images, with
video-trained models performing the best on the DmLab, PCAM and KITTI-Distance datasets. We believe
this is due to the commonalities between the image and video modalities. Observe that in the majority of
cases, single-modality PolyViT models perform better on linear probing than the corresponding single-task
baselines, especially for video and audio.

5.5 Improving accuracy with single-modality co-training

Motivated by the performance of single-modality co-training in Tab. 2] we perform larger-scale co-training
experiments with this method on audio and video classification. Tables [] and [f] show that we achieve
significant improvements in both of these domains whilst also using substantially fewer parameteters.

Audio classification. We compare to the current state-of-the-art using audio information only, MBT (Na-
grani et all 2021)), using the same Base backbone, training on the balanced AS-500k subset, and other
experimental settings as the authors (Nagrani et al., 2021)). As shown in Tab. |4} we surpass the state-of-the-
art on both datasets (AudioSet and VGGSound), whilst using about half the total parameters. We observe
larger improvements (2.8%) on VGGSound, the smaller dataset. This is line with our findings from Sec.
and shows that co-training has a regularizing effect that reduces overfitting and improves performance the
most on smaller datasets.

The second and third rows of Tab. [4] also show that training MBT on AudioSet and then finetuning on
VGGSound, or vice versa, produces worse results than our co-training method. This shows that the regu-

11

Published in Transactions on Machine Learning Research (12/2022)

Table 5: Comparison to ViVIT (Arnab et al., [2021) using the same experimental settings as |Arnab et al.
(2021). K400 and K600 denote Kinetics-400 and -600 respectively. MiT denotes the Moments in Time
dataset.

K400 K600 MiT
Model #Models #Params Topl Topb Topl Topb5 Topl Topb
ViViT 3 913M 80.6 94.7 82.5 95.6 38.0 64.9
PolyViT 1 308M 82.4 95.0 82.9 95.5 38.6 65.5

larization benefits of co-training are not solely from having access to more data than single-task baselines.
As expected, finetuning MBT on the target dataset causes accuracy to degrade on the original dataset.

Video classification. We co-train PolyViT-Large with a smaller tubelet size (and hence greater number of
tokens) of 2 x 16 x 16 on Kinetics-400, -600 and Moments in Time. We compare to ViViT (Arnab et al.;[2021)
which a leading approach on this task, and directly comparable to our work as it uses the same architecture,
initialization and number of tokens. As shown in Tab. |5 we surpass ViViT on all three datasets. Once again,
the largest improvement of 1.8% is on Kinetics 400, which is also the smallest dataset, as co-training has a
regularizing effect. Moreover, by co-training on three datasets, we reduce the total number of parameters
required by almost three compared to separately trained ViViT models. Appendix [E] compares our models
to other previous works on these audio and video datasets.

6 Conclusion and Future Work

By co-training PolyViT on a single modality, we have achieved signficant accuracy improvements on three
video and two audio datasets, while reducing the total number of parameters linearly compared to single-
task models. PolyViT co-trained on multiple modalities is even more parameter-efficient, still competitive
with the state-of-the-art, and learns feature representations that generalize across multiple modalities. This
enables us to learn new tasks by simply learning an additional output head. Co-training is simple and
practical, as we do not need to tune hyperparameters on the joint space of all datasets, but can simply
re-use training hyperparameters from single-task models. Moreover, we can achieve accuracy improvements
from training for the same number of total steps. Currently we do not co-train on large-scale upstream
datasets such as ImageNet-21K (Deng et al., [2009) and C4 (Raffel et al., [2019), and we do not handle the
text modality either. We aim to explore this, and co-training with the text modality, in future work. An
initial exploration of this idea is in Appendix [F] Besides, we have only considered classification tasks, and
not more complex tasks like object detection or captioning, and aim to explore this direction, e.g. bringing
OWL-VIT (Minderer et al.,|2022) to the ensemble of PoyViT, in future work.

Broader Impact

Our work presents a method for performing image-, audio- and video-classification with a single parameter-
efficient model. Classification of perceptual data (images, audio and video) is a general technology with a
wide range of potential applications. While we are unaware of all potential applications, it is important to
be aware that each application has its own merits and societal implications depending on the intentions of
the individuals building and using the system. We also note that training datasets contain biases that may
render models trained on them unsuitable for certain applications. It is possible that people use classification
models (intentionally or not) to make decisions that impact different groups in society differently.

12

Published in Transactions on Machine Learning Research (12/2022)

References

Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and Hanie Sedghi. Exploring the limits of large scale
pre-training. arXiv preprint arXiv:2110.02095, 2021.

Hassan Akbari, Linagzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Boqing Gong.
Vatt: Transformers for multimodal self-supervised learning from raw video, audio and text. In ICCYV,
2021.

Jean-Baptiste Alayrac, Adria Recasens, Rosalia Schneider, Relja Arandjelovi¢, Jason Ramapuram, Jeffrey
De Fauw, Lucas Smaira, Sander Dieleman, and Andrew Zisserman. Self-supervised multimodal versatile
networks. In NeurIPS, 2020.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lucic, and Cordelia Schmid. Vivit: A
video vision transformer. In ICCV, 2021.

Anurag Arnab, Xuehan Xiong, Alexey Gritsenko, Rob Romijnders, Josip Djolonga, Mostafa Dehghani, Chen
Sun, Mario Lu¢i¢, and Cordelia Schmid. Beyond transfer learning: Co-finetuning for action localisation.
arXi preprint arXiv:2207.03807, 2022.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Max Bain, Arsha Nagrani, Giill Varol, and Andrew Zisserman. Frozen in time: A joint video and image
encoder for end-to-end retrieval. In ICCV, 2021.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
In arXiv preprint arXiv:2005.14165, 2020.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.

Rich Caruana. Multitask learning. Machine learning, 1997.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In ICML, 2020.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient normaliza-
tion for adaptive loss balancing in deep multitask networks. In ICML, 2018.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In ICML, 2008.

Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish Vaswani, and Yi Tay. The efficiency misnomer.
arXiv preprint arXiv:2110.12894, 2021a.

Mostafa Dehghani, Alexey Gritsenko, Anurag Arnab, Matthias Minderer, and Yi Tay. Scenic: A JAX library
for computer vision research and beyond. arXiv preprint arXiv:2110.11403, 2021b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In NAACL, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

13

Published in Transactions on Machine Learning Research (12/2022)

David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels with a common multi-
scale convolutional architecture. In ICCV, 2015.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 1999.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In CVPR, 2014.

Yuan Gong, Yu-An Chung, and James Glass. AST: Audio Spectrogram Transformer. In Proc. Interspeech,
2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap
your own latent: A new approach to self-supervised learning. In NeurIPS, 2020.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task prioritization for
multitask learning. In ECCV, 2018.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In ICCV, 2017.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error
linear units. arXiv preprint arXiv:1606.08415, 2016.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In /CML, 2019.

Ronghang Hu and Amanpreet Singh. Unit: Multimodal multitask learning with a unified transformer. In
1CCV, 2021.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic
depth. In ECCV, 2016.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. In ICLR, 2017.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira. Per-
ceiver: General perception with iterative attention. In arXiv preprint arXiv:2103.03206, 2021.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin ITonescu, David Ding,
Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A general architecture
for structured inputs & outputs. In ICLR, 2022.

Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, and Jakob
Uszkoreit. One model to learn them all. In arXiv preprint arXiv:1706.05137, 2017.

Will Kay, Jodo Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio
Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The kinetics
human action video dataset. arXiv preprint arXiv:1705.06950, 2017.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics. In CVPR, 2018.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. Unifiedqa: Crossing format boundaries with a single qa system. arXiv preprint
arXiv:2005.00700, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521-3526, 2017.

14

Published in Transactions on Machine Learning Research (12/2022)

Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural
networks. In NeurIPS, 2017.

Tasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level
vision using diverse datasets and limited memory. In CVPR, 2017.

Sangho Lee, Youngjae Yu, Gunhee Kim, Thomas Breuel, Jan Kautz, and Yale Song. Parameter efficient
multimodal transformers for video representation learning. In ICLR, 2021.

Gen Li, Nan Duan, Yuejian Fang, Ming Gong, and Daxin Jiang. Unicoder-vl: A universal encoder for vision
and language by cross-modal pre-training. In AAAI 2020.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. In NeurIPS, 2019.

Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi Parikh, and Stefan Lee. 12-in-1: Multi-task vision
and language representation learning. In CVPR, 2020.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi. Unified-io: A
unified model for vision, language, and multi-modal tasks. In arXiv preprint arXiv:2206.08916, 2022.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multiple tasks.
In CVPR, 2019.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language decathlon:
Multitask learning as question answering. arXiv preprint arXiv:1806.08750, 2018.

Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman.
End-to-end learning of visual representations from uncurated instructional videos. In CVPR, 2020.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Doso-
vitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Simple open-
vocabulary object detection with vision transformers. arXiv preprint arXiv:2205.06230, 2022.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for multi-task
learning. In CVPR, 2016.

Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen, Cordelia Schmid, and Chen Sun. Attention
bottlenecks for multimodal fusion. In NeurIPS, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yangi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv preprint arXiv:1910.10683, 2019.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with residual
adapters. In NeurIPS, 2017.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-rank
matrix factorization for deep neural network training with high-dimensional output targets. In ICASSP,
2013.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In NeurIPS, 2018.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effectiveness
of data in deep learning era. ICCV, 2017.

Yi Tay, Zhe Zhao, Dara Bahri, Donald Metzler, and Da-Cheng Juan. Hypergrid transformers: Towards a
single model for multiple tasks. In ICLR, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, . ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

15

Published in Transactions on Machine Learning Research (12/2022)

Zichao Yang, Marcin Moczulski, Misha Denil, Nando De Freitas, Alex Smola, Le Song, and Ziyu Wang.
Deep fried convnets. In ICCV, 2015.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient
surgery for multi-task learning. In NeurIPS, 2020.

Amir R. Zamir, Alexander Sax, William Shen, Leonidas J. Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In CVPR, 2018.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip
Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A large-scale study of repre-
sentation learning with the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial landmark detection by deep multi-
task learning. In ECCV, 2014.

16

Published in Transactions on Machine Learning Research (12/2022)

Appendix

Appendix [A] contains additional details about our experimental settings, providing more information to
Section 5.1 of the main paper. Appendix [B| provides more details for the experiments in Section 5.2 of the
main paper. Appendix [C| shows further experimental details and results corresponding to Section 5.3 of
the main paper. Appendix [D] provides additional details about the experiments in Section 5.4 of the paper.
Finally. Appendix [E]provides additional experimental details and results corresponding to Section 5.5 of the
main paper.

A Experimental set-up: additional details

Task details and input dimensions. See Tables[6and [7] For each task, the number of linear warmup
steps is set as reported in (Dosovitskiy et al. 2021} |Arnab et all 2021} [Nagrani et al., [2021). When co-
training, we simply use the sum of all warmup steps for each co-trained task. We use a single momentum
state when co-training, i.e. we don’t maintain separate momentum states for each task or modality. Similar
to [Dosovitskiy et al.| (2021]), we select the best learning rate on a set {0.03,0.1,0.3} using the validation
score. For video and audio datasets, we reuse learning rates reported in |Arnab et al. (2021) and |[Nagrani
et al.[(2021) respectively. As in (Arnab et al.;|2021; Nagrani et al., [2021)), we use zero initialization for output
head kernels W,,;. For image datasets, on a single-task evaluation, we find that the LeCun normal W,
initializer [Klambauer et al. (2017) works best. For all tasks, we perform gradient clipping with a maximum
gradient norm of 1, as this was also used by (Dosovitskiy et al., 2021; |Arnab et al., |2021; Nagrani et al.)
2021)).

For the “ViT-Im21K linear probe” baseline, we use the same training procedure as for single-task baselines,
with the difference that 1) only the head parameters are updated and 2) on image tasks, we run separate
learning rate grid searches on the set {0.03,0.1,0.3}.

Train, validation and test splits. Similarly to [Dosovitskiy et al.| (2021)), we take 2% of CIFAR 10/100
train sets for validation, 10% of Pets train set for validation and 1% of ImageNet-1k train set for validation.
We use standard test sets for these datasets. For RESISC45, we use 20% of the train set for validation and
20% for testing. We use standard train, validation and test sets for video and audio tasks.

Augmentation and regularization. We don’t use augmentation for image tasks. We do video and audio
preprocessing and augmentation as done in |Arnab et al.| (2021); Nagrani et al.| (2021) respectively. For audio
tasks, as in (Nagrani et all |2021), we use Mixup (Zhang et al., 2017)) with & = 0.3 and stochastic depth
regularization (Huang et all 2016) with p = 0.3. Stochastic depth is applied along both audio adaptor and
shared layers.

B Selecting the best task sampling schedule: additional experimental details

For the accumulating schedule, we set learning rate to the smallest value across tasks (0.03). We draw a
random task order for the Task-by-task schedule, which is as follows: C100 — MiT — K400 — MiniAS —
VGG — Pets — C10 — Im1K — R45.

C Co-training with PolyViT: additional experimental details and results

Evaluation on video and audio tasks. To get test performance on video and audio tasks, we perform
multiple-crop evaluation as described in [Arnab et al. (2021); Nagrani et al.| (2021) for videos and audio
respectively.

Results for the Large configuration. See Table |8l Since [Nagrani et al.| (2021) don’t report results on

a Large configuration, for audio tasks we do an additional hyperparameter tuning for single-task baselines
on validation sets. As a result, we use Mixup « = 0.5,0.7 for MiniAS and VGGSound respectively. Also, we

17

Published in Transactions on Machine Learning Research (12/2022)

Table 6: Experimental set-up: tasks and their properties. For image tasks, the indicated learning rates
are obtained by a grid search over {0.03,0.1,0.3} on single-task baselines using the validation set accuracy.
These values are used for single-task baselines and for PolyViT variants.

Abbre- Moda- Clas- Train Train Learning ~ Warmup Wout

Dataset
viation lity ses size steps rate steps nit
CIFAR 100 C100 Image 100 50.0K 10K 0.03 500 LeCun
normal
CIFAR 10 C10 TImage 10 50.0K 10K 0.03 500 LeCun
normal
Oxford-TIIT Pets Image 37 3.68K 500 0.03 100 LeCun
Pets normal
RESISC45 R45 Image 45 315K 2.5K 0.1 200 LeCun
normal
ImageNet-1k ImlK TImage 1000 1.28M 20K 0.03 500 LeCun
normal

100.7K

Kinetics 400 K400 Video 400 215K 0.1 2.5 epochs Zeros

(30 epochs)

Momentsin = ypp yigeo 339 7o1x | L23OK 025 2.5epochs Zeros
Time (10 epochs)
. 15.9K
Mini-Audioset MiniAS Audio 527 20.4K 0.5 2.5 epochs Zeros
(50 epochs)
135K

VGGSound VGG Audio 309 172K 0.5 2.5 epochs Zeros

(50 epochs)

Table 7: Input dimensions for different modalities. Sequence length is computed as 1+[(T'/t)x|(H/h) x (W /w)
(one class token and patch tokens). Note that for shared transformer layers, we reuse the same parameters
for sequences of different lengths.

. Input size, Patch size, Sequence .
Modality [Tx|H x W [tx]h x w length Batch size
Image (pretraining) 224 x 224 16 x 16 197 4096
Image 384 x 384 16 x 16 577 512
Video 32 %224 x 224 4x16 x 16 1569 64
Audio (spectrogram) 800 x 128 16 x 16 401 64

use 30 epochs for MiniAS instead of 50 for the Base model. In addition, we run separate learning rate grid
searches for all image tasks, separately for single-task baselines and ViT-Im21K linear probes. We apply all
mentioned hyperparameter changes, obtained for the single-task baselines, to all PolyViT runs. In all other
aspects, Large set-up is the same as Base.

D Linear probes: additional experimental details

Task details. See Table 0] For linear probes, we use the same input dimensions as reported in Table
For image tasks, we reuse the number of train and warmup steps from the RESISC45 task (Table @) For
video and audio tasks, we used hyperparameters reported in (Arnab et al., 2021)) and (Nagrani et al., [2021)
respectively, with the difference that we only optimize output head parameters during training. As for the
co-training setup, we use multiple-crop evaluation on video and audio tasks.

Train, validation and test splits. For image tasks, we use 2% of the train set as a validation set and
standard test sets. We use standard train, validation and test sets for video and audio tasks.

18

Published in Transactions on Machine Learning Research (12/2022)

Table 8: Co-training with PolyViT, Large model configuration. Test accuracy (%) and mAP (for MiniAS,
%) are reported. As indicated by the “# models” column, some rows correspond to multiple models, then

the total number of parameters is computed across all models. Color bar: () ().
Image Video Audio
Model #Models #Params C100 C10 Pets R45 ImlK K400 MiT MiniAS VGG
ViT-Im21k Linear probe 1 312M 844 956 91.8 892 826 67.7 268 128 191
Single-task baseline 9 3033M 93.3 99.2 948 97.3 85.1 T79.6 37.1 30.0 51.8
PolyViT, 1 modality 3 917M 93.9 994 955 969 851 80.6 38.8 37.9 507
PolyViT, Lagapt = 0 1 312M 914 99.0 947 96.8 826 789 358 33.3 49.9
PolyViT, Ladape = L/2 1 615M 911 991 950 97.0 828 81.0 377 341 504

Converting patch and positional embeddings for cross-modal probes. In order to take linear
probes of image-only models (ViT and PolyViT trained on images) on audio tasks (and vice versa), we
leave patch embeddings as they are and 2D-interpolate positional embeddings to the correct resolution.
When taking linear probes of video-only models on image or audio tasks, in order to obtain 16 x 16 patch
embeddings, we take a sum along the first (frame) axis of 3D video patch embeddings of shape 4 x 16 x 16.
In order to adapt positional embeddings, we take a mean value of positional embeddings for each frame, and
then 2D-interpolate the result to the correct resolution. When taking linear probes of image- or audio-only
models on video tasks, we repeat 2D patch embeddings along the frame axis in order to obtain 3D patch
embeddings. We also 2D-interpolate positional embeddings to the frame resolution and repeat them for each
frame.

Augmentation and regularization. We don’t use augmentation for image tasks. We do video and audio
preprocessing and augmentation as done in (Arnab et al., [2021} [Nagrani et al.| 2021) respectively. As in
(Arnab et al.l [2021), we use Mixup (Zhang et al |[2017) with a = 0.3 for the S-S v2 task.

Table 9: Tasks used for linear probes. Indicated learning rate grid search is done for all models using
validation set performance.

Dataset Abbre- Moda- Train Learning Warmup Wout

(task) viation lity steps rate steps init
Grid search, LeCun
Caltech101 C-ch101 Image 2.5K {0.03,0.1,0.3} 200 normal
_ Grid search, LeCun
SUN397 SUN397 Image 2.5K {0.03,0.1,0.3} 200 normal
Grid search, LeCun
Dmlab Dmlab Image 2.5K {0.03,0.1,0.3} 200 normal
Grid search, LeCun
DTD DTD Image 2.5K {0.03,0.1,0.3} 200 normal
. Grid search, LeCun
KITTI Distance KITTI Image 2.5K {0.03,0.1,0.3} 200 normal
Grid search, LeCun
PatchCamelyon PCAM Image 2.5K {0.03,0.1,0.3} 200 normal
Epic Kitchens Epic K. Video 30 epochs 0.5 2.5 epochs Zeros
Something-Something v2 S-Sv2 Video 35 epochs 0.4 2.5 epochs Zeros
Kinetics 600 K600 Video 30 epochs 0.1 2.5 epochs Zeros
Moments in Time (audio) MiT-A Audio 10 epochs 0.5 2.5 epochs Zeros
Kinetics 400 (audio) K400-A Audio 30 epochs 0.5 2.5 epochs Zeros

19

Published in Transactions on Machine Learning Research (12/2022)

Table 10: Extended comparison to ViViT (Arnab et al.| |2021). The second row shows a ViVIT model,
initialized from ImageNet-21K, and then finetuned on Moments in Time, Kinetics 600 and then Kinetics 400.
This model has seen the same amount of training data as PolyViT, yet does not perform as well as PolyViT,
showing that the improvements from co-training are not solely because PolyViT has access to more training
data.

K400 K600 MiT
Model #Models #Params Top1l Topb5 Topl Topb5 Topl Topbh
ViviT 3 913M 80.6 94.7 82.5 95.6 38.0 64.9
ViViT: MiT — K600 — K400 1 308M 81.3 94.5 78.8 94.0 27.3 52.0
PolyViT 1 308M 82.4 95.0 82.9 95.5 38.6 65.5

E State-of-the-art performance on one modality: additional experimental details
and results

Additional results on video datasets Table contains an extended comparison to ViViT (Arnab
et al.l 2021)), compared to Table 5 of the main paper. The second row (“ViVIT: MiT — K600 — K400”)
shows our results when we train a ViViT model, by first finetuning an ImageNet-21K initialized model on
Moments in Time, then Kinetics 600, and then finally Kinetics 400. This model has seen the same amount
of training data as PolyViT, but performs worse on Kinetics 400 than PolyViT (PolyViT achieves 82.4, and
ViViT achieves 81.3). This ViViT model, does however, still outperform a ViViT model finetuned solely on
Kinetics 400 from ImageNet-21K initialization (first row). This result, like Table 4 of the main paper for
audio, shows that the benefits of co-training are not only because the co-trained PolyViT model has access
to more data.

For our additional baseline, (“ViViT: MiT — K600 — K400”), we retain the output linear head for each
class. Consequently, the accuracy for MiT and Kinetics 600 degrades as the model is trained on Kinetics 400.
Note that Kinetics 600 is a superset of Kinetics 400, which is why the overall accuracy drop on Kinetics 600
is low. Furthermore, note that the goal of this paper is not to consider the “continual learning” (Kirkpatrick
et al.,|2017)) problem, which aims to train a model on a new dataset, without losing performance on previous
datasets the model was trained on.

Detailed experimental settings For the PolyViT experiment on the video modality, we reuse hyper-
parameters reported in |[Arnab et al| (2021) for Kinetics 400/600 and Moments in Time. See Table [12] for
the dataset details and exact hyperparameters used during the experiment. These hyperparameters coincide
with those reported in Table [6] for Kinetics 400 and Moments in Time and in Table [9] for Kinetics 600. The
only difference is that we use a more granular 3D patch size (2 x 16 x 16) and Large model configuration.

For the audio experiment, similarly, we reuse all hyperparameters reported in [Nagrani et al. (2021) for
AS-500k and VGGSound experiments (audio-only). See Table [13| for the dataset details and exact hyper-
parameters used for the experiment. These hyperparameters almost coincide with those reported in Table
[0 with a change MiniAS — AS-500k. The only exception is that we use 30 epochs and Mixup a = 0.5 for
AS-500k.

F Upstream co-training of image and text

This section presents an initial experiment of “upstream” pre-training of image classification on JFT (Sun
et al.l|2017) and BERT-pretraining on Wikibooks (Devlin et al.,|2019)). Here, we train a Poly ViT-Base model
from random initialisation. In contrast to the experiments of the main paper which finetuned ImageNet-21K
pretrained checkpoints, we cannot use pretrained models here due to the vast domain differences between
the image and text modalities.

For JFT classification and BERT pretraining, we follow the experimental hyperparameters and protocols of
the original authors (Dosovitskiy et al., [2021}; Devlin et al.| 2019)).

20

Published in Transactions on Machine Learning Research (12/2022)

Table 11: “Upstream finetuning” on JFT image classfication and BERT text-pretraining. Note that models
are trained from random initialisation.

Image (JFT) Text (Wikibooks)
Accuracy MLM Accuracy Next Sentence Prediction
ViT-Base 48.0 - -
BERT-Base - 72.8 99.0
PolyViT-Base 50.0 70.9 97.9

As shown in Table compared to a single-task baseline, PolyViT improves slightly on JFT classification,
but degrades marginally on text classification metrics.

Note that in this experiment, we have not evaluated the representations learned by the network, for example,
by finetuning on dowstrean tasks. We leave this, and further effors on “upstream co-training” for future work.

Table 12: Set-up for the co-training on videos. Train steps and warmup steps are summed to get the number
of train and warmup steps during co-training as we use the “Weighted” task sampling method.

Moda- Clas- Train Train Batch Learning Warmup W,
Dataset
lity ses size steps size rate steps init
s . 101K
Kinetics 400 Video 400 215K 64 0.1 2.5 epochs Zeros
(30 epochs)
o . 170K
Kinetics 600 Video 600 363K 64 0.1 2.5 epochs Zeros
(30 epochs)
Momentsin 40 339 7o1x 12308 64 0.25 2.5epochs Zeros

Time (10 epochs)

Table 13: Set-up for the co-training on audio. Train steps and warmup steps are summed to get the number
of train and warmup steps during co-training as we use the “Weighted” task sampling method.

Moda- Clas- Train Train . Batch Learning Warmup W
Dataset . . Mixu . -
lity ses size steps size rate steps nit
. 239K
AS-500k Audio 527 509K 0.5 64 0.5 2.5 epochs Zeros
(30 epochs)
VGGSound Audio 309 172K 135K 0.3 64 0.5 2.5 epochs Zeros

(50 epochs)

21

	Introduction
	Related Work
	Preliminaries
	Vision Transformers and extensions

	Co-training ViT on images, audio and video
	PolyViT architecture
	Co-training procedure
	Initialization of PolyViT

	Experiments
	Experimental Setup
	Selecting the best task sampling schedule for co-training
	Co-training with PolyViT
	Evaluating learned representations with linear probes
	Improving accuracy with single-modality co-training

	Conclusion and Future Work
	Experimental set-up: additional details
	Selecting the best task sampling schedule: additional experimental details
	Co-training with PolyViT: additional experimental details and results
	Linear probes: additional experimental details
	State-of-the-art performance on one modality: additional experimental details and results
	Upstream co-training of image and text

