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Abstract

Antibody design, a crucial task with significant
implications across various disciplines such as
therapeutics and biology, presents considerable
challenges due to its intricate nature. In this pa-
per, we tackle antigen-specific antibody sequence-
structure co-design as an optimization problem to-
wards specific preferences, considering both ratio-
nality and functionality. Leveraging a pre-trained
conditional diffusion model that jointly models
sequences and structures of antibodies with equiv-
ariant neural networks, we propose direct energy-
based preference optimization to guide the gener-
ation of antibodies with both rational structures
and considerable binding affinities to given anti-
gens. Our method involves fine-tuning the pre-
trained diffusion model using a residue-level de-
composed energy preference. Additionally, we
employ gradient surgery to address conflicts be-
tween various types of energy, such as attraction
and repulsion. Experiments on RAbD benchmark
show that our approach effectively optimizes the
energy of generated antibodies and achieves state-
of-the-art performance in designing high-quality
antibodies with low total energy and high binding
affinity simultaneously, demonstrating the superi-
ority of our approach.

1 Introduction

Antibodies, vital proteins with an inherent Y-shaped struc-
ture in the immune system, are produced in response to an
immunological challenge. Their primary function is to dis-
cern and neutralize specific pathogens, typically referred to
as antigens, with a significant degree of specificity (Murphy
& Weaver, 2016). The specificity mainly comes from the
Complementarity Determining Regions (CDRs), which ac-
counts for most binding affinity to specific antigens (Jones
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Figure 1. The third CDR in the heavy chain, CDR-H3 (colored
in yellow), of real antibody (left) and synthetic antibody (right)
designed by MEAN (Kong et al., 2023a) for a given antigen (PDB
ID: 4cmbh). The rest parts of antibodies except CDR-H3 are colored
in blue. The antigens are colored in gray. We use red (resp. black)
dotted lines to represent clashes between a CDR-H3 atom and
a framework/antigen atom (resp. another CDR-H3 atom). We
consider a clash occurs when the overlap of the van der Waals radii
of two atoms exceeds 0.6A.

et al., 1986; Ewert et al., 2004; Xu & Davis, 2000; Akbar
et al., 2021). Hence, the design of CDRs is a crucial step
in developing potent therapeutic antibodies, which plays an
important role in drug discovery.

Traditional in silico antibody design methods rely on sam-
pling or searching protein sequences over a large search
space to optimize the physical and chemical energy, which
is inefficient and easily trapped in bad local minima (Adolf-
Bryfogle et al., 2018; Lapidoth et al., 2015; Warszawski
et al., 2019). Recently, deep generative models have been
employed to model protein sequences in nature for anti-
body design (Alley et al., 2019; Ferruz et al., 2022). Fol-
lowing the fundamental biological principle that structure
determines function numerous efforts have been focused on
antibody sequence-structure co-design (Jin et al., 2022b;a;
Luo et al., 2022; Kong et al., 2023a;b; Martinkus et al.,
2023), which demonstrate superiority over sequence design-
based methods. However, the main evaluation metrics in the
aforementioned works are amino acid recovery (AAR) and
root mean square deviation (RMSD) between the generated
antibody and the real one. This is controversial because
AAR is susceptible to manipulation and does not precisely
gauge the quality of the generated antibody sequence. Mean-
while, RMSD does not involve side chains, which are vital
for antigen-antibody interaction. Besides, it is biologically
plausible that a specific antigen can potentially bind with
multiple efficacious antibodies (Victora & Nussenzweig,



2012; Dong et al., 2021). This motivates us to examine the
generated structures and sequences of antibodies through the
lens of energy, which reflects the rationality of the designed
antibodies and their binding affinity to the target antigens.
We have noted that nearly all antibody sequence-structure
co-design methods struggle to produce antibodies with low
energy. This suggests the presence of irrational structures
and inadequate binding affinity in antibodies designed by
these methods (see Fig. 1). We attribute this incapability
to the insufficient model training caused by a scarcity of
high-quality data.
To tackle the above challenges and bridge the gap between
in silico antibody sequence-structure co-design methods and
the intrinsic need for drug discovery, we formulate the anti-
body design task as an antibody optimization problem with
a focus on better rationality and functionality. Inspired by
direct preference optimization (DPO, Rafailov et al., 2023)
and self-play fine-tuning techniques (Chen et al., 2024) that
achieve huge success in the alignment of large language
models (LLMs), we proposed a direct energy-based pref-
erence optimization method named ABDPO for antibody
optimization. More specifically, we first pre-train a con-
ditional diffusion model on real antigen-antibody datasets,
which simultaneously captures sequences and structures of
complementarity-determining regions (CDR) in antibodies
with equivariant neural networks. We then progressively
fine-tune this model using synthetic antibodies generated by
the model itself given an antigen with energy-based prefer-
ence. This preference is defined at a fine-grained residue
level, which promotes the effectiveness and efficiency of the
optimization process. To fulfill the requirement of various
optimization objectives, we decompose the energy into mul-
tiple types so that we can incorporate prior knowledge and
mitigate the interference between conflicting objectives (e.g.,
repulsion and attraction energy) to guide the optimization
process. Fine-tuning with self-synthesized energy-based
antibody preference data represents a revolutionary solution
to address the limitation of scarce high-quality real-world
data, a significant challenge in this domain. We highlight
our main contributions as follows:

o We tackle the antibody sequence-structure co-design prob-
lem through the lens of energy from the perspectives of
both rationality and functionality.

e We propose direct residue-level energy-based preference
optimization to fine-tune diffusion models for designing
antibodies with rational structures and high binding affin-
ity to specific antigens.

e We introduce energy decomposition and conflict mitiga-
tion techniques to enhance the effectiveness and efficiency
of the optimization process.

o Experiments show ABDPO’s effectiveness in generating
antibodies with energies resembling natural antibodies
and generality in optimizing multiple preferences.

2 Related Work

Antibody Design. The application of deep learning to an-
tibody design can be traced back to at least (Liu et al.,
2020; Saka et al., 2021; Akbar et al., 2022). In recent years,
sequence-structure co-design of antibodies has attracted in-
creasing attention. Jin et al. (2022b) proposed to simultane-
ously design sequences and structures of CDRs in an autore-
gressive way and iteratively refine the designed structures.
Jin et al. (2022a) further utilized the epitope and focused
on designing CDR-H3 with a hierarchical message passing
equivariant network. Kong et al. (2023a) incorporated anti-
gens and the light chains of antibodies as conditions and
designed CDRs with E(3)-equivariant graph networks via a
progressive full-shot scheme. Luo et al. (2022) proposed a
diffusion model that takes residue types, atom coordinates
and side-chain orientations into consideration to generate
antigen-specific CDRs. Kong et al. (2023b) focused on
epitope-binding CDR-H3 design and modelled full-atom
geometry. Recently, Martinkus et al. (2023) proposed Ab-
Diffuser, a novel diffusion model for antibody design, that
incorporates more domain knowledge and physics-based
constraints and also enables side-chain generation. Besides,
Wu & Li (2023); Gao et al. (2023) and Zheng et al. (2023)
introduced pre-trained protein language model to antibody
design. Distinct from the above works, our method places a
stronger emphasis on designing and optimizing antibodies
with low energy and high binding affinity.

Alignment of Generative Models. Solely maximizing the
likelihood of training data does not always lead to a model
that satisfies users’ preferences. Recently, many efforts
have been made on the alignment of the generative models
to human preferences. Reinforcement learning has been
introduced to learning from human/Al feedback to large
language models, such as RLHF (Ouyang et al., 2022) and
RLAIF (Lee et al., 2023). Typically, RLHF consists of
three phases: supervised fine-tuning, reward modeling, and
RL fine-tuning. Similar ideas have also been introduced
to text-to-image generation, such as DDPO (Black et al.,
2023), DPOK (Fan et al., 2023) and DiffAC (Zhou et al.,
2024). They view the generative processes of diffusion
models as a multi-step Markov Decision Process (MDP)
and apply policy gradient for fine-tuning. Rafailov et al.
(2023) proposed direct preference optimization (DPO) to di-
rectly fine-tune language models on preference data, which
matches RLHF in performance. Recently, DPO has been
introduced to text-to-image generation (Wallace et al., 2023;
Anonymous, 2023). Notably, in the aforementioned works,
models pre-trained with large-scale datasets have already
shown strong performance, in which case alignment fur-
ther increases users’ satisfaction. In contrast, in our work,
the model pre-trained with limited real-world antibody data
is insufficient in performance. Therefore, preference opti-
mization in our case is primarily used to help the model
understand the essence of nature and meet the requirement



of antibody design.
3 Method

In this section, we present ABDPO, a direct energy-based
preference optimization method for designing antibodies
with reasonable rationality and functionality (Fig. 2). We
first define the antibody generation task and introduce the
diffusion model for this task in Sec. 3.1. Then we introduce
residue-level preference optimization for fine-tuning the
diffusion model and analyze its advantages in effectiveness
and efficiency in Sec. 3.2. Finally, in Sec. 3.3, we introduce
the energy decomposition and describe how to mitigate the
conflicts when optimizing multiple types of energy.

3.1 Preliminaries

We focus on designing CDR-H3 of the antibody given anti-
gen structure as CDR-H3 contributes the most to the di-
versity and specificity of antibodies (Xu & Davis, 2000;
Akbar et al., 2021) and the rest part of the antibody in-
cluding the frameworks and other CDRs. Following Luo
et al. (2022), each amino acid is represented by its type
s; € {ACDEFGHIKLMNPQRSTVWY}, C,, coordinate
x; € R3, and frame orientation O; € SO(3) (Kofinas et al.,
2021), where ¢ = 1,..., N and N is the number of the
amino acids in the protein complex. We assume the CDR-
H3 to be generated has m amino acids, which can be denoted
by R = {(sj,x;,0;)[j =n+1,...,n+m}, where n+ 1
is the index of the first residue in CDR-H3 sequence. The
rest part of the antigen-antibody complex can be denoted by
P ={(si,x;,0))[i € {1,....,N}\{n +1,--- ,n+m}}.
The antibody generation task can be then formulated as
modeling the conditional distribution P(R|P).

Denoising Diffusion Probabilistic Model (DDPM, Ho et al.,
2020) have been introduced to antibody generation by Luo
et al. (2022). This approach consists of a forward diffusion
process and a reverse generative process. The diffusion
process gradually injects noises into data as follows:
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where (sg, xj , OO) are the noisy free amino acid at time
step 0 with 1ndex J» and (s%,x%, O%) are the noisy amino
acid at time step t. 1(-) is the one-hot operation. {3*}1_;
is the noise schedule for the diffusion process (Ho et al.,
2020), and we define a* = [['_,(1—p7)and B¢ = 1—a'
K is the number of amino acid types. Here, C(-), N(-), and
ZGso@)(+) are categorical distribution, Gaussian distribution
on R3, and isotropic Gaussian distribution on SO(3) (Leach
et al., 2022) respectively. ScaleRot scales the rotation
angle with fixed rotation axis to modify the rotation matrix
(Gallier & Xu, 2003).

Correspondingly, the reverse generative process learns to
recover data by iterative denoising. The denoising process

q(x|x7)
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p(R!HRY, P) from time step ¢ to time step ¢ — 1 is defined

as follows:
p(si R, P) = C(si 1 fa, (RY, P)[4]), (1)
(xR, P) = N(XH fo, (R, P)G), BT),  (2)
p(O YR, P) = IGso (fo, (RL, P, BY),  (3)

where R = {s;,x;,0;}]. +m | is the noisy sequence and
structure of CDR-H3 at time step ¢, fo,, fo.,, fo, are param-
eterized by SE(3)-equivariant neural networks (Jing et al.,
2021; Jumper et al., 2021). f(-)[4] denotes the output that
corresponds to the j-th amino acid. The training objec-
tive of the reverse generative process is to minimize the
Kullback-Leibler (KL) divergence between the variational
distribution p and the posterior distribution g as follows:
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With some algebra, we can simplify the above objective and
derive the reconstruction loss at time step ¢ as follows:
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where R! ~ ¢(R}|R°) and R® ~ P(R|P), and || - || is
the matrix Frobenius norm. Note that as Luo et al. (2022)
mentioned, Eqs. (1) and (3) are an empirical perturbation-
denosing process instead of a rigorous one. Thus the termi-
nology KL-divergence may not be proper for orientation O.
Nevertheless, we can still approximately derive an empirical
reconstruction loss for orientation O as above that works in
practice. The overall loss is L ~ E, yq1,71[LL + Lk + Lj).
After optimizing this loss, we can start with the noises from
the prior distribution and then apply the reverse process to
generate antibodies.
3.2 Direct Energy-based Preference Optimization
Only the antibodies with considerable sequence-structure
rationality and binding affinity can be used as effective
therapeutic candidates. Fortunately, these two properties
can be estimated by biophysical energy. Thus, we introduce
direct energy-based preference optimization to fine-tune the
pre-trained diffusion models for antibody design.
Inspired by RLHF (Ouyang et al., 2022), we can fine-tune
the pre-trained model to maximize the reward as:

max ERorpy [T(RO)} — Dk (pe (RO) Hpref(RO)) )
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Figure 2. Overview of ABDPO. This process can be summarized as: (a) Generate antibodies with the pre-trained diffusion model; (b)
Evaluate the multiple types of residue-level energy and construct preference data; (¢) Compute the losses for energy-based preference
optimization and mitigate the conflicts between losses of multiple types of energy; (d) Update the diffusion model.

where pg (resp. prer) is the distribution induced by the model
being fine-tuned (resp. the fixed pre-trained model), 5 is a
hyperparameter that controls the KL divergence regulariza-
tion, and r(-) is the reward function. The optimal solution
to the above objective takes the form:

1 1
Po~ (RO) = Epref(Ro) exp (ET(RO)> .
Following Rafailov et al. (2023), we turn to the DPO objec-
tive as follows:

Lppo=—Er9 rg [ loga (Bsgn(R?, R3) [

ﬁff(gz%)) “loe ﬁzf(gz%))] ﬂ

where o (-) is sigmoid and sgn(RY, RY) indicate the prefer-
ence over RY and RY. We use “~" to denote the pref-
erence. Specifically, sgn(RY,R9) = 1 (resp. —1) if
RY = RY (resp. RS < RY) in which case we call RY
(resp. RY) the “winning” sample and RY (resp. RY)
the “losing” sample, and sgn(RY,R9) = 0 if they tie.
RY and RY are a pair of data sampled from the Bradley-
Terry (BT, Bradley & Terry, 1952) model with reward r(-),
ie, p(RY = RY) = a(r(RY) — r(RY)). Please refer to
Appendix C for more detailed derivations.

Due to the intractable pg(R°), following Wallace et al.
(2023), we introduce latent variables R"7 and utilize the
evidence lower bound optimization (ELBO). In particular,
Lppo can be modified as follows:

log

Lppo-pittusion = _ER?7R3 {log o (ﬁER%:Tﬂz%:T [

iif(%% o8 iff%m )} 7
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where R{™" ~ pg(RiT|RY) and RyT ~ pe(R5T[R3).
Following Wallace et al. (2023), we can utilize Jensen’s
inequality and convexity of function — log o to derive the
following upper bound of Lppo-piffusion:

Lppo-piffusion = _EtR‘l’,Rg,(Ri’l,Rﬁ),('fl?l,RE) |:

logo (ﬁngn(R?, Rg) [

po(RI'IRY) | pemé-lmé)m
Pret(RYHRY) Pret(REHRE) )L

where t ~ U(0,T), (RI"',RY) and (RYH,RY) are
sampled from reverse generative process of R{ and RY,
respectively, i.e., (RI1RY) ~ po(RETH RYRY) and
(RE,RE) ~ pa(RY ™, RYIRY).

In our case, the antibodies with low energy are desired.
Thus, we define the reward 7(-) as —&(-)/T, where £()
is the energy function and 7 is the temperature. Different
from the text-to-image generation where the (latent) reward
is assigned to a complete image instead of a pixel (Wallace
et al., 2023), we know more fine-grained credit assignment.
Specifically, it is known that £(R°) = Y75 | £(R°[j)),
i.e., the energy of an antibody is the summation of the en-
ergy of its amino acids (Alford et al., 2017). Thus the
preference can be measured at the residue level instead of
the entire CDR level. Besides, we have log pg(R!~!|R!) =
Z;LL?L log pe(R!~1[j]|R?), which is a common assump-
tion of diffusion models. Thus we can derive a residue-level
DPO-Diffusion loss:

Liesiaue-pPO-Diffusion = —E4 2o =0 (rt=1 rt) (rL1 RY) [

log.o (ﬁszmlsgnm? 1 RSL) [
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Thus, by Jensen’s inequality and the convexity of —log o,

we can further derive Liesigue-DPO-Diffusion, Which is an upper
bound of Liesidue-DPO-Diffusion:

Liesidue-DPO-Diffusion = _Et,R?,Rg,(R{fl,Rﬁ),(Réfl,’Ré) |:

S ogo (ﬁngn(R? 1, RAL) [

po(Ri™[71IRY) po (R '[71IRY)

8 (RTTIRY) Pref(Rél[j]lRé)D]'

— log

The gradients of LDPO—Diffusion and Lresidue—DPO—Diffusion w.r.t
the parameters @ can be written as:

V6 Lopo-Diffusion = —BTE, ro R, (R'* RY),(RLRY) [
Sy sen(RY, RY)-o (7(RY) — 7(RY) (
Vo log po (R} [j]IR) Vo log po(RE[j]IRY) ) |,
and
V 6 Liesidue-DPO-Diffusion = —BTE, go o (! RE),(RL RY) [
S asen(RY1j], RYL)-o (F(RY[) — #(RIL) (
Vo log po (R} [j]IR}) Vo log po (R [i]IRY) )|

where 7(-) = log(pe(-)/pret()), which can be viewed as
the estimated reward by current policy pg.

We can see that VQEDPO_Diffusion actually reweight
Ve logpe(R!7Lj]|RY) with the estimated reward of the
complete antibody while vgzresjdue_DPo_Diffusion does this
with the estimated reward of the amino acid itself. In this
case, Vg .Z/DPO_Diffusion will increase (resp. decrease) the like-
lihood of all amino acids of the “winning” sample (resp.
“losing”) at the same rate, which may mislead the optimiza-
tion direction. In contrast, ngresidue_[)})o_])iffusion does not
have this issue and can fully utilize the residue-level signals
from estimated reward to effectively optimize antibodies.
We further approximate the objective Eresidue_DPO_Diffusion by
sampling from the forward diffusion process ¢ instead of the
reverse generative process pg to achieve diffusion-like effi-
cient training. With further replacing log z% with — log p% +
log Pt which is exactly =D 1.(q|[pe) + D 1. (q]|prer) when
taking expectation with respect to g, we can derive the final
loss for fine-tuning the diffusion model as follows:

— n+m
Lawopo=—E; mo g (i1 »Y). (RS RY) [Zj:nHlOg U(

—Bngn(R(f [j],Rg [7])- {D%L,l (qllpe)lJ] *Df(L,l (qllpref) [7]
~ i »(allpe) ] + Do > allpre) 11} - ®)

where RY, RY ~ po(R), (RI™1, RY) and (RE™L, RY) are
sampled from forward diffusion process of RY and RS,
respectively, which can be much more efficient than the
reverse generative process that involves hundreds of model
forward estimation. Here we use D; ; (¢/lpe)[j] to denote
Di (¢(RY[j]/R' ™, RO)|pa(RY[j]|R®)). Similar for
Dir1(@llpen) 5], Dy o(allpe)[s]. and Dy 5(qlprer)[].
These KL divergence can be estimated as in Egs. (5) to (7).
3.3 Energy Decomposition and Conflict Mitigation
The energy usually consists of different types, such as at-
traction and repulsion. Empirically, direct optimization
on single energy will lead to some undesired “shortcuts”.
Specifically, in some cases, repulsion dominates the energy
of the antibody so the model will push antibodies as far
from the antigen as possible to decrease the repulsion dur-
ing optimization, and finally fall into a bad local minima.
This effectively reduces the repulsion, but also completely
eliminates the attraction between antibodies and antigens,
which seriously impairs the functionality of the antibody.
This motivates us to explicitly express the energy with sev-
eral distinct terms and then control the optimization process
towards our preference.

Inspired by Yu et al. (2020), we utilize “gradient surgery’
to alleviate interference between different types of energy
during energy preference optimization. More specifically,
we have £(-) = 21‘;1 wyEy(+), where V' is the number of
types of energy, and w,, is a constant weight for the v-th kind
of energy. For each type of energy &,(-), we compute its
corresponding energy preference gradient Vg L,, as Eq. (8),
and then alter the gradient by projecting it onto the normal
plane of the other gradients (in a random order) if they have
conflicts. This process works as follows:

il

min (VoL VgL,,0)
VoL

VGLU — VGLT) - VOLu; (9)

where v € {1,...,V}and u = Shuffle(l,...,V).
4 Experiments

4.1 Experimental Setup

Dataset Curation. To pre-train the diffusion model
for antibody generation, we use the Structural Anti-
body Database (SAbDab, Dunbar et al., 2014) under
IMGT (Lefranc et al., 2003) scheme as the dataset. We
collected antigen-antibody complexes with both heavy and
light chains and protein antigens and discarded the dupli-
cate data with the same CDR-L3 and CDR-H3 sequence.
The remaining complexes are used to cluster via MM-
seqs2 (Steinegger & Soding, 2017) with 40% sequence
similarity as the threshold based on the CDR-H3 sequence
of each complex. We then select the clusters that do not
contain complexes in RAbD benchmark (Adolf-Bryfogle



et al., 2018) and split the complexes into training and val-
idation sets with a ratio of 9:1 (1786 and 193 complexes
respectively). Specifically, the validation set is composed of
clusters that only contain one complex. The test set consists
of 55 eligible complexes from the RAbD benchmark (details
in Appendix D.2).

For the synthetic data used in ABDPO fine-tuning, 10,112
samples are randomly sampled for each antigen-antibody
complex in the test set using the aforementioned pre-trained
diffusion model. Then, we use pyRosetta (Chaudhury et al.,
2010) to apply the side-chain packing for these samples.
Preference Definition. To apply ABDPO, we need to build
the preference dataset and construct the “winning” and “los-
ing” pair. The accurate relationship between preferences
based on in silico with wet-lab experimental results is a
scientific issue that remains unresolved, with a wide range
of opinions. ABDPQ’s solution to this open question is to
provide a generic framework that allows for arbitrary defi-
nitions and combinations of preferences to satisfy various
requirements in antibody design.

To demonstrate the effectiveness of ABDPO, we define the
preferences as lower total energy and lower binding energy.
The two energies are defined on residue level, specifically,
(1) Rescpr Fhrotar 18 the total energy of each residue within
the designed CDR, and is used to represent the overall ratio-
nality of the corresponding residue; (2) Rescpr-Ag AG is
the interaction energy between each designed CDR residue
and the target antigen, representing the functionality of the
corresponding residue. Rescpr-Ag AG is further decom-
posed into (2.1) Rescpr-Ag Eponrep, the sum of the interac-
tion energies except repulsion between the designed CDR
residue and the antigen, and (2.2) Rescpr-Ag Egep, the re-
pulsion energy between the design CDR residue and the
antigen.

As a generic framework, ABDPO also supports non-energy-
based preferences. To verify this, we demonstrate an ad-
vanced version named ABDPO+. ABDPO+ incorporates
two additional preferences: pseudo log-likelihood (pLL)
from AntiBERTy (Ruffolo et al., 2021) and the percent of
hydrophobicity residues (PHR). Different from the previ-
ously mentioned energy-based preferences, pLL and PHR
are defined on the whole CDR level. For pLL, a higher
value is considered better and is designated as “winning”,
conversely; for PHR, a lower value is preferable.
Baselines. We compare our model with various repre-
sentative antibody sequence-structure co-design baselines.
HERN (Jin et al., 2022a) designs sequences of antibod-
ies autoregressively with the iterative refinement of struc-
tures; MEAN (Kong et al., 2023a) generates sequences
and structures of antibodies via a progress full-shot scheme;
dyMEAN (Kong et al., 2023b) designs antibodies sequences
and structures with full-atom modeling; DiffAb (Luo et al.,
2022) models antibody distributions with a diffusion model

that considers the amino acid type, C,, positions and side-
chain orientations, which is a more rigorous generative
model than the above baselines. The side-chain atoms are
packed by pyRosetta. For dyMEAN, we (1) provide the
ground-truth framework structure as input like other meth-
ods, (2) only use its generated backbones and pack the
side-chain atoms by pyRosetta for a more fair comparison.
Evaluation. Following the previous studies, we prelimi-
narily evaluate the generated sequence and structure with
AAR and Ca RMSD. Besides, we carry out a series of more
reasonable metrics. We utilize the preferences aforemen-
tioned to evaluate the designed antibodies from multiple
perspectives, but at the whole CDR level. Specifically, (1)
CDR Eiya, the total energy of the designed CDR, is uti-
lized to evaluate the rationality by aggregating all Rescpr
Eoa of residues within the CDR; (2) CDR-Ag AG de-
notes the difference in total energy between the bound state
and the unbound state of the CDR and antigen, which is
calculated to evaluate the functionality. PHR and pLL re-
main the same definition as above. All methods are able
to generate multiple antibodies for a specific antigen (a
randomized version of MEAN, rand-MEAN, is used here).
We employ each method to design 192 antibodies for each
complex, and we report the mean metrics across all 55
complexes. We further report the number of successfully
designed antibody-antigen complexes, Ngyccess, t0 evaluate
their rationality and functionality comprehensively. The de-
sign for an antibody-antigen complex is considered as “suc-
cessful” when at least one generated sample holds energies
close to or lower than the natural one, i.e., for both of the
two energy types, Eeenerated < Enatural + std( pheomplexesy

natural

4.2 Main Results

We report the evaluation metrics in Tab. 1. As the results
show, ABDPO performs significantly superior to other an-
tibody sequence-structure co-design methods in the two
energy-based metrics, CDR Eio, and CDR-Ag AG, while
maintaining the AAR and RMSD. With the two additional
preferences, ABDPO+ avoids the expense of the increased
PHR while achieving better performance than DiffAb in
remaining metrics (even surpassing DiffAb in AAR). This
demonstrates the effectiveness and compatibility of ABDPO
in terms of optimizing multi-objectives simultaneously. We
have also provided the detailed evaluation results for each
complex in Appendix E.2.

We do not consider AAR and RMSD as the main reference
evaluation metrics as their inadequacy (refer to Appendix A
for more details). With the new evaluation methods, issues
that used to be hidden by AAR and RMSD are exposed. It
is observed that structural clashes can not be avoided com-
pletely in any method, resulting in the high energy values
of generated antibodies, even for ABDPO and ABDPO+.
The structural clashes between CDR and the antigen finally
lead to the unreasonable high CDR-Ag AG. However, the



Table 1. Summary of AAR, RMSD, CDR Eii, CDR-Ag AG (kcal/mol), pLL, PHR, and Nyccess Of antibodies designed by our model

and baselines. ({) / (1) denotes a smaller / larger number is better.

Methods AAR (1) RMSD () CDR Ejota (1) CDR-Ag AG (1) pLL (1) PHR (1) Niuccess (1)
HERN 32.38% 9.18 10887.77 2095.88 -2.02  40.46% 0
MEAN 36.20% 1.69 7162.65 1041.43 -1.79  30.62% 0
dyMEAN  40.04% 1.82 3782.67 1730.06 -1.82  43.72% 0
DiffAb 34.92% 1.92 1729.51 1297.25 210 41.27% 0
ABDPO 31.25% 1.98 629.44 307.56 -2.18  69.67% 9
ABDPO+ 36.27% 2.01 1106.48 637.62 -2.00 4421% 5
\
W A B \
) ‘ ,," ‘
rence : AVPDPDAFDI  AbDPO : ASGGGVGLDV ence :AﬁWAGDY AbDPO : ARWDGAY :ARDTVMGGMDV  AbDPO : ARDGWNGGMDV

CDR E,,,,; : 43.3580 CDR E,,,,; : 37.4347
CDR-Ag AG : —5.4726 CDR-Ag AG : — 8.5296

CDR E,,,; : 19.9645

CDR-Ag AG: —2.6240 CDR-Ag AG : — 6.0688

CDR E,,,; : 18.5370 CDR E,,,, : 68.2698

CDR-Ag AG : —7.2134

CDR E,,,; : 28.0716
CDR-Ag AG : —8.7351

Figure 3. Visualization of reference antibodies in RAbD and antibodies designed by ABDPO given specific antigens (PDB ID: 1liqd (left),
lic7 (middle), and 2dd8 (right)). The unit of energy annotated is kcal/mol and omitted here for brevity.

primary goal in antibody design is to generate at least one
effective antibody. Given the complexity of protein interac-
tions, it is not plausible that every generated antibody will
yield effectiveness. Therefore, Ngyccess 1S @ more valuable
metric. ABDPO and ABDPO+ are the only two to achieve
successful cases, with 9 and 5 successful cases out of 55
complexes, respectively. Following this concept, we also
rank the designed antibodies for each complex by a uni-
form strategy (see Appendix D.3), calculate the metrics of
the highest-ranked design for each complex, and report the
mean metrics across the 55 complexes (see Appendix E.1).
Notably, ABDPO is the only method that achieves CDR-Ag
AG lower than 0.

We also visualize three cases (PDB ID: liqd, lic7, and
2dd8) in Fig. 3. It is shown that ABDPO can design CDRs
with both fewer clashes and proper relative spatial positions
towards the antigens, and even better energy performance
than that of natural antibodies.

We conduct another two experiments to demonstrate further
the generality of ABDPO: (1) directly incorporate auxil-
iary training losses for those properties of which gradients
are computable; (2) introduce energy minimization before
energy calculation, which is more in line with the real work-
flow. ABDPO shows consistent performance and demon-
strates its generality. Please refer to Appendix F for related
details.

4.3 Ablation Studies

Our approach comprises three main novel designs, including
residue-level direct energy-based preference optimization,
energy decomposition, and conflict mitigation by gradient
surgery. Thus we perform comprehensive ablation studies
to verify our hypothesis on the effects of each respective
design component. Here we take the experiment on one com-
plex (PDB ID: 1al4) as the example. Here, we apply more
fine-tuning steps and additionally introduce Fyonrep (aggre-
gation of Rescpr-Ag Eponrep Within the designed CDR),
ERep (aggregation of Rescpr-Ag ERep) for a more obvious
and detailed comparison. More cases of ablation studies can
be found in Appendix G.

Effects of Residue-level Energy Preference Optimization.
We hypothesize that residue-level DPO leads to more ex-
plicit and intuitive gradients that can promote effectiveness
and efficiency compared with the vanilla DPO (Wallace
et al., 2023) as the analysis in Sec. 3.2. To validate this, we
compare ABDPO with its counterpart with the CDR-level
preference instead of residue-level. As Fig. 4 shows, regard-
ing the counterpart (blue dashed line), the changes in all
metrics are not obvious, while almost all metrics rapidly
converge to an ideal state in ABDPO (red line). This demon-
strated the effects of residue-level energy preference in im-
proving the optimization efficiency.

Effects of Energy Decomposition. In generated antibodies,
the huge repulsion caused by clashes accounts for the major-
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Figure 4. Changes of median CDR FEia, Enonreps ERrep, and CDR-Ag AG (kcal/mol) over-optimization steps, shaded to indicate

interquartile range (from 25-th percentile to 75-th percentile).

ity of the two types of energy. This prevents us from using
the AG as an optimization objective directly as the model is
allowed to minimize repulsion by keeping antibodies away
from antigens, quickly reducing the energies. To verify this,
we compared ABDPO with a version that directly optimize
AG. As shown in Fig. 4, without energy decomposition
( ), both Ege, and Eyonrep quickly dimin-
ish to 0, indicating that there is no interaction between the
generated antibodies and antigens. Conversely, ABDPO
(red line) can minimize ERep to 0 while maintaining Eponrep,
which means the interactions are preserved.

Effects of Gradient Surgery. To show the effectiveness
of gradient surgery in mitigating conflicts when optimizing
multiple objectives, we compare ABDPO and its counter-
part without gradient surgery. As Fig. 4 shows, the counter-
part (purple dashed line) can only slightly optimize CDR-Ag
Eronrep but incurs strong repulsion (i.e., ERrep), learning to
irrational structures. ABDPO (red line) can converge to a
state where CDR FEjo and Ege, achieve a conspicuously
low point, suggesting the generated sequences and struc-
tures are stable, and Eyonrep is still significantly less than
zero, showing that considerable binding affinity is kept.
Comparison with Supervised Fine-tuning. Supervised
Fine-tuning (SFT) can be an alternative way of generating
antibodies with lower energy. For SFT, we first select the
top 10% high-quality samples from ABDPO training data
on a complex (PDB ID: 1al4). We fine-tune the diffusion
model under the same settings as ABDPO. Results in Tab. 2
show that SFT only marginally surpasses the pre-trained
diffusion model, and ABDPO performs significantly supe-
rior to SFT. We attribute the performance of ABDPO to
the preference optimization scheme and the fine-grained
residue-level energy rather than the entire CDR.

Table 2. Comparison of ABDPO and supervised fine-tuning (SFT)
on lal4.

CDR-Ag AG (1)

CDR Etotal (J/)
Methods ‘ Avg. Med. Avg. Med.
DiffAb 131420  1133.36 | 534.21 248.28
DiffAbgpr 1053.82 869.37 374.27 144.25
ABDPO 336.02 226.25 88.64 0.10

5 Conclusions

In this work, we rethink antibody sequence-structure co-
design through the lens of energy and propose ABDPO
for designing antibodies meeting multi-objectives like ratio-
nality and functionality. The introduction of direct energy-
based preference optimization along with energy decom-
position and conflict mitigation by gradient surgery shows
promising results in generating antibodies with low energy
and high binding affinity. With ABDPO, existing comput-
ing software and domain knowledge can be easily combined
with deep learning techniques, jointly facilitating the devel-
opment of antibody design. Limitations and future work are
discussed in Appendix H.

Impact Statements

Our work on antibody design can be used in developing
potent therapeutic antibodies and accelerate the research
process of drug discovery. Our method may be adapted
to other scenarios of computer-aided design, such as small
molecule design, material design, and chip design. It is also
needed to ensure the responsible use of our method and
refrain from using it for harmful purposes.
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A Motivation for Choosing Energy as Evaluation

There are many inadequacies in using AAR and RMSD as the main evaluation metrics in Al-based antibody design.
Antibody design is a typical function-oriented protein design task, necessitating a more fine-grained measure of discrepancy
compared to general protein design tasks. Especially when the part of the antibody to be designed and evaluated, CDR-H3,
is usually shorter, more precise evaluation becomes particularly important.
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Figure 5. A: Tyr (Y) and Phe (F) differ by only one oxygen atom. In contrast, there is a substantial difference between Gly (G) and Trp
(W). Gly lacks a side chain, whereas Trp possesses the largest side chain of all amino acids. B: the visualization of the frequency of
occurrence of each amino acid at various positions in RAbD CDR-H3 sequences. The sequences are initially aligned using MAFFT
(Katoh & Standley, 2013) and subsequently visualized with WebLogo (Crooks et al., 2004). The width of each column corresponds to the
frequency of occurrence at that position.

For AAR, there are two main limitations in measuring the similarity between the generated sequence and the reference
sequence. The first limitation is located in measuring the difference in different incorrect recoveries. Among the 20 common
amino acids, some have high similarity between them, such as Tyr and Phe, while others have significant differences, such
as Gly and Trp (Fig. 5A). When an amino acid in CDR is erroneously recovered to different amino acids, their impact will
also vary. However, AAR does not differentiate between these different types of errors, only identifying them as “incorrect”.
A further, more serious issue is that AAR is easily hacked. Although the CDR region is often considered hypervariable, a
mild conservatism in sequence still exists (Fig. 5B), which allows the model to obtain satisfactory AAR using a simple
but incorrect way - directly generating the amino acids with the highest probability of occurrence at each position, while
ignoring the condition of the given antigen which is extremely harmful to the specificity of antibodies. We made a simple
attempt by simply counting the amino acids with the highest frequency of occurrence at various positions in all samples in
SAbDab, and then composing them into a CDR-H3 sequence, which looks roughly like “ARD + rand(Y, G)* + FDY”,
achieving an AAR of 38.77% on the RAbD dataset.

CDR-AG Enonkep CDR-Ag Epep
100 250
whole residue whole residue
sidechain sidechain
80 200
w 60 - + 150
g from whole residue avg: -14.46 g
) from whole residue med:|-12.86 IS
© 40 © 100
from whole residue avg: 12.79
from whole residue med:6.32

20 50
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Figure 6. The distribution of CDR-Ag Eyonrep (left) and CDR-Ag Ege, (right) formed by the whole CDR atoms (colored in red) and solely
by CDR side-chain atoms (colored in blue) among SAbDab dataset.

While RMSD fails to measure the discrepancies on side-chain atoms, in general, the calculation of RMSD focuses on the
alpha carbon atom or the four backbone atoms due to their stable existence in any type of amino acid and thus ignores the
side-chain atoms. However, side-chain atoms in the CDR region are extremely important as they contribute to most of the
interactions between the CDR and the antigen. Our analyses on the SAbDab dataset also prove the importance of the side
chain in CDR-Antigen interaction in terms of energy. As shown in Fig. 6, the distribution of energies formed by the whole
residues in CDR is colored in red while the distribution of energies formed only by side-chain atoms of CDR is colored in
blue. The interaction energy formed by side-chain atoms accounts for the vast majority of the total interaction energy in
both types of energy.

The above reasons have led us to abandon AAR and RMSD as learning objectives and evaluation metrics, and instead
use energy as our goal. Energy can simultaneously consider the relationship between structure and sequence, distinguish
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different generation results in more detail, and importantly, reflect the rationality and functionality of antibodies in a more
fundamental way. Despite the various shortcomings of AAR and RMSD, we have demonstrated that the antibodies generated
by ABDPO achieve lower AAR and comparable RMSD compared to those generated by other methods . However, in
practice, ABDPO-generated antibodies exhibit distinct binding patterns to antigens, differing from reference antibodies,
and demonstrate significantly better energy performance than those produced by other methods. This further highlights the
inadequacies of using AAR and RMSD as evaluation metrics in antibody design tasks, exposing their vulnerability to being
“hacked”.

B Energy Calculation

In ABDPO, we conduct the calculation on Rescpr Eioral at residue level, and a more fine-grained calculation on the two
functionality-associated energies at the sub-residue level. We use Rosetta to calculate all types of energies in this paper.
We denote the residue with the index i in the antibody-antigen complex as A;, then A3¢ and A% represent the side chain
and backbone of the residue respectively.

For the energies in the proposed preference, we describe the function for energies of a Single residue as ES, and ES;q; is
the sum of all types of energy with the default weight in REF15 (Alford et al., 2017). The function for interaction energies
between Paired residues is described as EP, which consists of six different energy types: EPppond, EPays EPrep, EPgo1, EPglec,
and EPjy.

Following the settings previously mentioned in Sec. 3.1, the indices of residues within the CDR-H3 range from n + 1 to
n + m, and the indices of residues within the antigen range from g + 1 to g + k. Then, for the CDR residue with the index
7, the three types of energy are defined as:

Rescpr Fyy = ESu (4;), (10)
' gtk
Rescor-Ag By = 3 (EPe(Ajc, A3°) 4 EP (A%, A’;b)), (11)
1=g+1 e€{hbond,att,sol,elec,lk }
) g+k
Rescor-Ag By = 3 (EPrep(A§C7 AS°) 4 EPygp(AS€, AV)
i=g+1
+2 X EPyep(A, A5) + 2 x EPyp(A%, A?b)>. (12)

It can be observed from Egs. (11) and (12) that the two functionality-associated energies, namely Rescpr-Ag Enonrep and
Rescpr-Ag Erep, which collectively describe the interaction energy between CDR and the antigen, are computed at the
level of side-chain and backbone. Rescpr-Ag Enonrep is only calculated on the interactions caused by the side-chain atoms
in the CDR-H3 region, while Rescpr-Ag Frep assigns a greater cost to the repulsions caused by the backbone atoms in the
CDR-H3 region. This modification is carried out according to the fact that the side-chain atoms contribute the vast majority
of energy to the interaction between CDR-H3 and antigens (Fig. 6), and E,qrep €xhibits a benefit in interactions, while
ERep could be regarded as a cost.

The fine-grained calculation of Rescpr-Ag FEnonrep and Rescpr-Ag ERrep is indispensable. Without the fine-grained
calculation, the model tends to generate poly-G CDR-H3 sequences, such as “GGGGGGGGGGG” for any given antigen
and the rest of the antibody. The most likely reason for this is that G, Glycine, can maximize the reduction of clashes and
gain satisfactory CDR Ej,, and Rescpr-Ag ERrep as it doesn’t contain side chain and simultaneously form a weak attraction
to the antigen solely relying on its backbone atoms.

We emphasize that the two functionality-associated energies, Rescpr-Ag Enonrep and Rescpr-Ag Erep are calculated
exclusively at the sub-residue level when serving as the determination of preference in guiding the direct energy-based
preference optimization process. However, when these energies are used as evaluation metrics, they are calculated at the
residue level, in which the greater cost to the repulsions attributed to the backbone atoms is negated.

C Theoretical Justification

In this section, we show the detailed mathematical derivations of formulas in Sec. 3.2. Although many of them are similar to
Rafailov et al. (2023), we still present them in detail for the sake of completeness. Besides, we will also present the details
of preference data generation.

First, we will show the derivation of the optimal solution of the KL-constrained reward-maximization objective, i.e.,
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maxp, Egonp, [1(R°)] — BDk1(pe(R°)||pret(R?)) as follows:

maxERoNpe[ 7(R°)] — BDkL(pe(R°)||pret(RY))
pe(R°)
= max ERorpe [T { pref(RO):|
1 0
= InlIl]ERONpe { 5T(R )}
pe(RO)

= mlnERoNpe {log T ) — log Z}

Zpref(RO) exp ( (RO)

where Z is the partition function that does not involve the model being trained, i.e., pg. And we can define

PR = (RO exp (5r(RY).

With this, we can now arrive at

: pe(R)
n;‘lan ERo~pe [log (RO —log Z

= n;in ERompy [Dkw(pellp*)] + Z
[’

Since Z does not depend on pg, we can directly drop it. According to Gibb’s inequality that KL-divergence is minimized at
0 if and only if the two distributions are identical. Hence we arrive at the optimum as follows:

o (RY) =" (RY) = Zpus(R®)exp (5r(R")). (13)

Z

Then we will show that the objective that maximizes likelihood on preference data sampled from p(R{ = RY) =
o(r(RY) — r(RY)), which is exactly Lppo, leads to the same optimal solution. For this, we need to express the pre-defined
reward r(-) with the optimal policy p*:

P*(R°)
r(R°) = Blog ref(R0)+Z

The we plugin the expression of 7(-) into p(RY = RI) = o(r(R?) — r(RY)) as follows:

p(RY = RY) = o(r(RY) — r(R3))

P*(RY) P*(R3) >
=o| Blo — pBlo ,
(ﬂ & prefR(l)) ﬂ & pref(R(Q))
where Z is canceled out. For brevity, we use the following notation for brevity:
RY) pe(R3)
R0>-R0:a< log 2R _ 5y, 2.
p@( 1 2) ﬁ g pref(R?) IB g pref(Rg)

With this, we have
min Lppo = min —Erg rg.p(r-rype(RY = Ra)
o o
= max Ego rgp(ry-rype(RI = R)
— 0 0 0 0
Again with Gibb’s inequality, we can easily identify that pg(R{ = RY) = p(RY = RY) achieves the minimum. Thus

p*(RY) = £prer(RY) exp ( (RO)> is also the optimal solution of Lppo.
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D Implementation Details

D.1 Model Details

The architecture of the diffusion model used in our method is the same as Luo et al. (2022). The input of the model is the
perturbed CDR-H3 and its surrounding context, i.e., 128 nearest residues of the antigen or the antibody framework around
the residues of CDR-H3. The input is composed of single residue embeddings and pairwise embeddings. The single residue
embedding encodes the information of its amino acid types, torsional angles, and 3D coordinates of all heavy atoms. The
pairwise embedding encodes the Euclidean distances and dihedral angles between the two residues. The sizes of the single
residue feature and the residue-pair features are 1285 and 64, respectively Then the features are processed by Multiple Layer
Perceptrons (MLPs). The number of layers is 6. The size of the hidden state in the layers is 128. The output of the model is
the predicted categorical distribution of amino acid types, C,, coordinates, and a so(3) vector for the rotation matrix.

The number of diffusion steps is 100. We use the cosine 5 schedule with s = 0.01 suggested in Ho et al. (2020) for amino
acid types, C, coordinates, and orientations.

D.2 Training Details

Pre-training. Following Luo et al. (2022), the diffusion model is first trained via the gradient descent method
Adam (Kingma & Ba, 2014) with init_learning.rate=le-4, betas=(0.9,0.999), batch_size=16, and
clip_gradient_norm=100. During the training phase, the weight of rotation loss, position loss, and sequence loss are
each set to 1.0. We also schedule to decay the learning rate multiplied by a factor of 0.8 and a minimum learning rate of
5e — 6. The learning rate is decayed if there is no improvement for the validation loss in 10 evaluations. The evaluation
is performed for every 1000 training steps. We trained the model on one NVIDIA A100 80G GPU and it could converge
within 30 hours and 200k steps.

Test set. The original RAbD dataset contains 60 antibody-antigen complexes. In this study, we hope all the complex
consists of an antibody heavy chain and a light chain, and at least one protein antigen chain. In practice, 2ghw and 3uzq
lack light chains, while 3h3b lacks heavy chains. 5d96 was excluded because of the incorrect chain ID information in
rabd_summary.jsonl', where heavy chain J and light chain I do not bind to antigen chain A. As for 4etq, we actually
conducted the training (CDR F3=70.55, CDR-Ag AG=-4.57), but HERN reported an error when running for this complex,
so we did not report it.

Pair data construction. In terms of the construction of “winning” and “losing” data pair, we did not pre-define “prefered”
and “non-prefered” datasets but rather constructed a unified data pool. During each training step, the paired data used for
DPO training is randomly sampled from the data pool. Although their energies and properties have been pre-calculated,
the “winning” and “losing” labels are determined in real time. In practice, we used several labels, involving three different
preferences related to energy and two preferences related to non-energy-based properties. The “winning” and “losing” labels
among these preferences are not necessarily consistent. Therefore, the loss for each type of energy/preference is calculated
separately and then aggregated with different weights to update the entire model. Moreover, as the training progresses, we
continuously sample new data, calculate their energy, add them to the data pool, and discard some of the older post-added
data simultaneously to ensure that the data stays in sync with the policy.

Fine-tuning. For ABDPO fine-tuning, the pre-trained diffusion model is further fine-tuned via the gradient descent method
Adam with init_learning_rate=le-5,betas=(0.9,0.999),and clip_gradient_norm=100. The batch
size is 48. More specifically, in a batch, there are 48 pairs of preference data. We do not use a decay learning rate and do
not use weight decay in the fine-tuning process. And we use 5 = 0.01 and 0.005 in Eq. (8). We use the hyperparameter
search space as follows. As for the three energies introduced in Sec. 4.1, we use 8:8:2 to reweight them (i.e., Rescpr
Eiotal, Rescpr-Ag Enonreps and Rescpr-Ag Erep), and reweight pLL and PHR in ABDPO+ to 1. In practice, different
antibody-antigen complexes prefer different hyperparameters. For a fair comparison with baselines, we do not carefully
picked the optimal hyperparameter for each complex but use a uniform hyperparameter. We fine-tune the pre-trained
diffusion model on four NVIDIA A800 40G GPUs for 1,800 steps for each antigen, separately.

D.3 Ranking Strategy

To rank the numerous generated antibodies with multiple energy labels, we applied a simple ranking strategy based on
single energy metrics. The CDR FE, and the CDR-Ag AG of each antibody are ranked independently. Then, a composite
ranking score for each antibody is defined as the sum of its CDR FEji, rank and CDR-Ag AG rank (for ABDPO+, PHR
and pLL are also involved). Finally, the antibodies are ranked according to these composite scores. We acknowledge that
this ranking strategy has several limitations. For instance:

1. Equal weights are assigned to all energy types and properties, despite them having differing importance in reality.

"https://github.com/THUNLP-MT/MEAN/blob/main/summaries/rabd_summary. jsonl
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2. The distribution patterns of different energy types and properties can vary, with these distributions usually being
non-uniform. This could result in scenarios where minor numerical differences in the top-ranking CDR-Ag AG values
coincide with larger differences in CDR Eiy,, potentially leading to the selection of samples with suboptimal CDR
Etotal-

However, addressing these issues would require extensive and in-depth exploration of antibody binding mechanisms and
energy calculation methodologies. We chose this straightforward, yet impartial, ranking strategy for two key reasons:

1. The primary goal of this work is to reformulate the antibody design task as an energy-focused optimization problem
and propose a feasible implementation, rather than to delve into the mechanisms of antibody-antigen binding;

2. Our approach is designed to avoid introducing statistical biases or preferences based on potentially erroneous prior
knowledge or favoritism towards particular antibody design methods.

E More Evaluation Results

E.1 Evaluation Results for Ranked Top-1 Design
In Tab. 1, we have reported the average results of all antibodies designed by our method and other baselines. Here we
provide the evaluation results for the ranked top-1 design in Tab. 3 (refer to the ranking strategy in Appendix D.3).

Table 3. Average performance of top-1 designs of 55 complexes designed by baselines and our model.

Methods CDR Ei (J) CDR-Ag AG (/) PHR(]) pLL(1) AAR(1) RMSD (})

RAbD 5.25 -13.04  45.78% -2.20  100.00% 0.00
HERN 8495.56 1296.22  48.18% -2.01 33.29% 9.21
MEAN 3867.47 207.99  36.91% -1.72 35.18% 1.70
dyMEAN 2987.93 128397  46.27% -1.79  40.74% 1.81
DiffAb 381.82 58.84  49.19% -2.03  37.99% 1.62
ABDPO 68.51 496 69.97% 215 32.92% 1.58
ABDPO+ 332.10 29.27  32.81% -1.54  39.55% 1.67

E.2 Detailed Evaluation Results for each Complex

In Tab. 4 and Tab. 5, we list the CDR Fy,, CDR-Ag AG, PHR and pLL of the reference antibody in RAbD and the
average/ranked top-1 antibodies designed by HERN, MEAN, dyMEAN, DiffAb, ABDPO, and ABDPO+ for each complex
in the test set separately. In Tab. 5, we highlight the energy values of the designed complexes that surpass the natural one in
terms of two energies simultaneously with bold text.
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Figure 7. Left: the distribution of peptide bond length within CDR-H3 in the SAbDab dataset; Right: the kernel density estimation (KDE)
function fit on the natural peptide bond length distribution.

F Arbitrary Preferences

F.1 Incorporating Auxiliary Loss

A predominant advantage of the ABDPO is its unique capacity to seamlessly integrate traditional bioinformatics, computa-
tional biology, and computational chemistry tools — those incapable of directly computing gradients — into the training
regimen of Al models. This integration significantly broadens the ABDPO’s applicability and versatility in antibody design.
However, it is pertinent to acknowledge the existence of antibody energies/properties for which gradient calculations are
feasible. Indeed, fundamental geometric characteristics, such as bond lengths, angles, and torsion angles, alongside more
intricate properties predicted by deep-learning models, are gradient-computable. These gradient-computable features offer
an explicit direction for optimization, potentially enhancing the effectiveness and efficiency of the model optimization
process.

In light of this, we initiated another experiment aimed at exploring ABDPQO’s compatibility with traditional gradient-based
losses, extending beyond the DPO loss. Specifically, we propose a special version based on ABDPO+, ABDPO++, which
incorporates an auxiliary loss about peptide bond length. As a covalent bond, the variation range of peptide bond lengths
is very limited, and thus we can consider the length of peptide bonds to be a fixed value and then utilize an MSE loss to
directly penalize the unreasonable peptide bond length in generated antibodies.

In practice, we consider the ground truth peptide bond length to be 1.3310 (the average length of peptide bonds within
CDR-H3 in SAbDab, the distribution could be seen in Fig. 7 left) and apply the auxiliary loss only when the sampled t is
near 0 (¢ ; 15 in this experiment while 7" is 100), and the weight is set to 0.25. The peptide bond length is calculated based
on the predicted (s?, x?, O?) which is denoised with one step from (s}, x%, O%), then an MSE loss of peptide bond length
can be calculated. Finally, this auxiliary loss, together with various DPO losses, updates the model through the conflict
mitigation mentioned in Sec. 3.3.

Table 6. Summary of CDR Eia, CDR-Ag AG (kcal/mol), pLL, PHR, C-Nycore, AAR, and RMSD of reference antibodies and antibodies
designed by ABDPOW/O and baselines in the experiment involves auxiliary loss. (}) / (1) denotes a smaller / larger number is better.

Methods ~ CDR Eioa () CDR-Ag AG | pLL (1) PHR(]) C-Nioe (1) AAR(T) RMSD (})

HERN 10887.77 2095.88 -2.02 40.46% 0.12  32.38% 9.18
MEAN 7162.65 1041.43 -1.79  36.20% 1.68  36.30% 1.69
dyMEAN 3782.67 1730.06 -1.82 43.72% 2.08 40.04% 1.82
DiffAb 1729.51 1297.25 -2.10 41.27% 385 34.92% 1.92
ABDPO 629.44 307.56 -2.18  69.67% 255 31.25% 1.98
ABDPO+ 1106.48 637.62 -2.00  44.21% 295 3627% 2.01
ABDPO++ 1349.39 747.89 -1.99  44.46% 451 36.30% 1.95

To evaluate the consistency of generated antibodies’ peptide bond length to the natural antibodies, we fit a Kernel Density
Estimation function using the length of peptide bonds found within the CDR-H3 region of natural antibodies (shown in
Fig. 7 right), then the density of the generated peptide bond length, C-Ng.qre, is used to represent the consistency. We report
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the average experiment result in Tab. 6. It can be observed that ABDPO++ significantly optimized the length of the peptide
bond, achieving the best C-Nore Of 4.51, while maintaining the optimization to the other 4 preferences. The experimental
result demonstrates the compatibility of AbDPO with traditional gradient-based losses, indicating that AbDPO has a wider
scope in actual application.

F.2 Incorporating Energy Minimization

Energy minimization is indispensable in the standard protein design protocol and is typically applied to the raw co-crystal
structure and the generated structure. Most existing Al-based antibody design methods have not undergone similar operations,
but to verify the performance of ABDPO in a more realistic workflow environment, we have also proposed another version
based on ABDPO+ that integrates energy minimization, ABDPOW/O.

For the minimization of the raw co-crystal structure, we compared the performance of baseline methods trained with and
without minimized co-crystal structure but observed no significant difference. A possible reason for this is that most of
the methods do not generate the side chain and thus are not sensitive to energy minimization, which mainly optimizes the
side-chain conformation. Thus we follow the previous studies, and directly use raw co-crystal structure to train the baseline
models and the pre-trained model in ABDPO.

We carry out minimization during the evaluation phase and apply the minimization to the generated antibodies before
energy calculation. Therefore, the preference dataset used in ABDPOW/O is built upon the minimized energy. The energy
minimization process consists of two parts, peptide bond length rectification and loop refinement. We first set the length
of the peptide bond to 1.3310, the average length of the peptide bonds within CDR-H3 in the SAbDab dataset. Then we use
LoopMover_Refine_CCD from pyRosetta to refine the structure of the designed CDR loop. To reduce time consumption
in loop refinement, we set the outer_cycles to 1 and max_inner_cycles to 10 (a bigger number of cycles will lead to better
energy performance undoubtedly, but also makes the time consumption uncontrollable).

Another modification of ABDPOW/O compared to ABDPO+ is that the decomposition of Rescpr-Ag AG into Rescpr-Ag
Eronrep and Rescpr-Ag Egep is canceled. Energy decomposition is indispensable in the main experiment because of the
huge repulsion, and is not necessary in this experiment as the repulsion would be diminished by the post-minimization
process.

Table 7. Summary of CDR Eioa1, CDR-Ag AG (kcal/mol), PHR, and pLL of reference antibodies and antibodies designed by ABDPOwW/O
and baselines in the experiment involves energy minimization. (}.) / (1) denotes a smaller / larger number is better.

Methods CDR Eoa () CDR-Ag AG () PHR(]) pLL (1)

RAbBD -0.6699 -10.2772 0.4578  -2.2046
HERN 2765.5834 0.8332 41.41% -2.0409
MEAN 1162.0961 0.0508 30.63% -1.7936
dyMEAN 611.1203 -2.051  43.73% -1.8187
DiffAb 82.6216 -0.2734  38.58% -2.0963
ABDPOW/O 69.8181 -3.0007 36.71% -2.0251

In Tab. 7, we report the average values of the evaluation metrics for all the generated antibodies in this experiment. Given
that the peptide bond length has been rectified, measuring the C-N score is deemed unnecessary in this context. It can be
observed that the post-minimization eliminates most of the clashes between the designed antibodies and the corresponding
antigens, making CDR-Ag AG fall within a reasonable range of value. ABDPOW/O still achieves the best performance in
the two energy-based metrics, CDR FEiy, and CDR-Ag AG, and surpasses DiffAb in all metrics. This experiment proves
(1) the effectiveness of ABDPO in a more realistic setting, and (2) the ability of ABDPO to optimize the energies/properties
not directly calculated from the generated antibodies. The values of the two sequence-related metrics, PHR and pLL, for the
baseline methods slightly differ from those in Tab. 1. This discrepancy arises because we imposed a maximum processing
time during the loop refinement phase, leading to the exclusion of samples whose refinement was incomplete within the
allocated time.

G Extended Ablation Studies

Due to the massive training cost in the RAbD benchmark, we investigate the effectiveness and necessity of each proposed
component on five representative antigens, whose PDB IDs are 1al4, 2dd8, 3cx5, 4ki5, and Smes. From the results in Fig. 8,
it is clear that ABDPO can significantly boost the overall performance of ablation cases. Note that moving averages are
applied to smooth out the curves to help in identifying trends, including Fig. 4. We present observations and constructive
insights of the three proposed components as follows:

1. The residue-level DPO is vital for training stability specifically for CDR Ey, . As aforementioned in Section 3.2, the
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residue-level DPO implicitly provides fine-grained and rational gradients. In contrast, vanilla DPO (without residue-
level DPO) may impose unexpected gradients on stable residues, which incurs the adverse direction of optimization.
According to each energy curve in Figure 8, we observe that residue-level DPO surpasses vanilla DPO by at least one
energy term.

2. Without Energy Decomposition, all five cases appear undesired “shortcuts” aforementioned in Section 3.3. We observe
that the energy of CDR E,, exhibits a slight performance improvement over the ABDPO after the values of attraction
and repulsion reach zero. We suppose that is the result of the combined effects of low attraction and repulsion. Because
the generated CDR-H3 is far away from the antigen in this case, the model can concentrate on refining CDR E\y,
without the interference of attraction and repulsion.

3. The Gradient Surgery can keep a balance between attraction and repulsion. We can see the curves of Epongrep are
consistently showing a decline, while the curves of Ege, are showing an increase. This observation verifies that ABDPO
without Gradient Surgery is unable to optimize Eponrep and Erep simultaneously. Additionally, the increase in attraction
significantly impacts the repulsion, causing the repulsion to fluctuate markedly.

H Limitations and Future Work

Diffusion Process of Orientations. As Luo et al. (2022) stated and we have mentioned in Sec. 3.1, Eq. (1) is not a rigorious
diffusion process. Thus the loss in Eq. (7) cannot be rigorously derived from the KL-divergence in Eq. (4), though they
share the idea of reconstructing the ground truth data by prediction. However, due to the easy implementation and fair
comparison with the generative baseline, i.e., DiffAb (Luo et al., 2022), we adopt Eq. (7) in the ABDPO loss in Eq. (8). In
practice, we empirically find that it works well. FrameDiff (Yim et al., 2023), a protein backbone generation model, adopts
a noising process and a rotation loss that are well compatible with the theory of score-based generative models (also known
as diffusion models). In the future, we modify the diffusion process of orientations as Yim et al. (2023) for potential further
improvement.

Energy Estimation. In this work, we utilize Rosetta/pyRosetta to calculate energy, although it is already one of the
most authoritative energy simulation software programs and widely used in protein design and structure prediction , the
final energy value is still difficult to perfectly match the actual experimental results. In fact, any computational energy
simulation software, whether it is based on force field methods such as OpenMM (Eastman et al., 2017) or statistical
methods like the Miyazawa-Jernigan potential (Miyazawa & Jernigan, 1985), will exhibit certain biases and cannot fully
simulate reality. Sometimes there is a significant difference between the energy calculated by the software and the results
observed experimentally. One possible reason is that theoretical calculations often rely on the designed sequence and
structure of antibodies; meanwhile, in actual experiments, the actual folding of the CDR region into the designed structure
can be difficult, which leads to significant discrepancies in theoretical calculations. An in vitro experiment is the only way to
verify the effectiveness of the designed antibodies. However, due to the significant amount of time consumed by in vitro
experiments and considering that the main goal of our work is to propose a novel view of antibody design, we did not
perform the in vitro experiment.

Future Work on Preference Definition. The preferences used in ABDPO determine the tendency of antibody generation,
and we will strive to continue exploring the definition of preference to more closely align the antibody design process with
the real-world environment of antibody activity. Further, we aim to synchronize the preference with the outcomes of in
vitro experiments and expect that our method will ultimately generate effective antibodies in real-world applications. The
exploration of preference can be divided into two aspects: enhancing existing preferences and integrating new components
or energies.

1. The improvement to current preference: (1) performing more fine-grained calculations on the current three types of
energy, such as decomposing CDR E,, into interactions between the CDR and the rest of the antibody, interactions
within the CDR, and energy at the single amino acid level; (2) exploring the varying importance of preferences for
antibodies and determining the relative weights of each preference during the optimization and ranking of generated
antibodies.

2. The incorporation of new components or energies is intended to address additional challenges in antibody engineering,
focusing on aspects such as antibody stability, solubility, immunogenicity, and expression level. Additionally, we
consider integrating components that target antibody specificity.
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Figure 8. Changes of median CDR Ejgi, CDR-Ag Enonrep, CDR-Ag Egep, and CDR-Ag AG (kcal/mol) over-optimization steps, shaded
to indicate interquartile range (from 25-th percentile to 75-th percentile). The rows represent PDB 1al4, 2dd8, 3cx5, 4ki5, and Smes

respectively, in a top-down order.

22



