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ABSTRACT

Current end-to-end autonomous driving methods resort to unifying modular de-
signs for various tasks (e.g. perception, prediction and planning). Although op-
timized in a planning-oriented spirit with a fully differentiable framework, ex-
isting end-to-end driving systems without ego-centric designs still suffer from
unsatisfactory performance and inferior efficiency, owing to the rasterized scene
representation learning and redundant information transmission. In this paper,
we revisit the human driving behavior and propose an ego-centric fully sparse
paradigm, named DiFSD, for end-to-end self-driving. Specifically, DiFSD mainly
consists of sparse perception, hierarchical interaction and iterative motion planner.
The sparse perception module performs detection, tracking and online mapping
based on sparse representation of the driving scene. The hierarchical interaction
module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from
coarse to fine, benefiting from an additional geometric prior. As for the iterative
motion planner, both selected interactive agents and ego-vehicle are considered
for joint motion prediction, where the output multi-modal ego-trajectories are op-
timized in an iterative fashion. Besides, both position-level motion diffusion and
trajectory-level planning denoising are introduced for uncertainty modeling, thus
facilitating the training stability and convergence of the whole framework. Exten-
sive experiments conducted on nuScenes dataset demonstrate the superior plan-
ning performance and great efficiency of DiFSD, which significantly reduces the
average L2 error by 66% and collision rate by 77% than UniAD while achieves
8.2× faster running efficiency.

1 INTRODUCTION

Autonomous driving has experienced notable progress in recent years. Traditional driving systems
are commonly decoupled into several standalone tasks, e.g. perception, prediction and planning.
However, heavily relying on hand-crafted post-processing, the well-established modular systems
suffer from information loss and error accumulation across sequential modules. Recently, end-to-
end paradigm integrates all tasks into a unified model for planning-oriented optimization, showcas-
ing great potential in pushing the limit of autonomous driving performance.

Literally, existing end-to-end models Hu et al. (2023); Ye et al. (2023); Jiang et al. (2023); Sun et al.
(2024) designed for reliable trajectory planning can be classified into two mainstreams as summa-
rized in Fig. 1(a) and (b). The dense BEV-Centric paradigm Hu et al. (2023); Ye et al. (2023) per-
forms perception, prediction and planning consecutively upon the shared BEV (Bird’s Eye View)
features, which are computationally expensive leading to inferior efficiency. The sparse Query-
Centric paradigm Sun et al. (2024) utilizes sparse representation to achieve scene understanding and
joint motion planning, thus improving the overall efficiency. However, object-intensive motion pre-
diction inevitably causes computational redundancy and violates the driving habits of human drivers,
who usually only concentrate on the Closest In-Path Vehicle / Stationary (CIPV / CIPS) which are
more likely to affect the driving intention and trajectory planning of ego-vehicle. Meanwhile, exces-
sive interaction with irrelevant agents will be conversely adverse to the ego-planning. Therefore, the
planning performance remains unsatisfactory in both planning safety, comfort and personification.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(b) Sparse Query-Centric paradigm.

(c) Fully sparse Ego-Centric paradigm.

(a) Dense BEV-Centric paradigm.
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Figure 1: The comparison of different end-to-end
paradigms. (a) The dense BEV-Centric paradigm. (b)
The sparse Query-Centric paradigm. (c) The proposed
fully sparse Ego-Centric paradigm.

To this end, we propose DiFSD, an
Ego-Centric fully sparse paradigm as
shown in Fig. 1(c). Specifically, DiFSD
mainly consists of sparse perception, hi-
erarchical interaction and iterative mo-
tion planner. In the sparse perception
module, multi-scale image features ex-
tracted from visual encoder are adopted
for object detection, tracking and on-
line mapping simultaneously in a sparse
manner. Then the hierarchical inter-
action performs ego-centric and object-
centric dual interaction to select the
CIPV / CIPS with the help of an ad-
ditional geometric prior. Thus the in-
teractive queries can be selected grad-
ually from coarse to fine. As for the
motion planner, the mutual information
between sparse interactive queries and
ego-query is considered for motion pre-
diction in a joint decoder, which is ne-
glected in previous methods Hu et al.
(2023); Jiang et al. (2023) but is essen-
tial especially in the scenarios like inter-
sections. To ensure the planning ratio-
nality and selection accuracy of interac-
tive queries, the iterative planning opti-

mization is further applied to the multi-modal proposal ego-trajectories, through continually updat-
ing the reference line and ego-query. Moreover, both position-level motion diffusion and trajectory-
level planning denoising are introduced for stable training and fast convergence. It can not only
model the uncertain positions of interactive agents for motion prediction, but also enhance the qual-
ity of trajectory refinement with arbitrary offsets. With above elaborate designs, DiFSD exhibits
the great potential of fully sparse paradigm for end-to-end autonomous driving, which significantly
reduces the average L2 error by 66% and collision rate by 77% than UniAD Hu et al. (2023) re-
spectively. Notably, our DiFSD-S achieves 8.2× faster running efficiency as well. In sum, the main
contributions of our work are as follows:

• We propose an ego-centric Fully Sparse paradigm for end-to-end self-Driving, named as
DiFSD, without any computationally intensive dense scene representation learning and
redundant environmental modeling, which is proven to be effective and efficient for path
planning of ego-vehicle.

• We introduce a geometric prior through intention-guided attention, where the Closest In-
Path Vehicle / Stationary (CIPV / CIPS) are gradually picked out through ego-centric
cross attention and selection. Besides, both position-level diffusion of interactive agents
and trajectory-level denoising of ego-vehicle are adopted for uncertainty modeling of mo-
tion planning respectively.

• Extensive experiments are conducted on the famous nuScenes Caesar et al. (2020) dataset
for planning performance evaluation, which demonstrate the superiority and prominent
efficiency of our DiFSD method, revealing the great potential of the proposed ego-centric
fully sparse paradigm.

2 RELATED WORK

2.1 END-TO-END PERCEPTION

Recent years witness remarkable progress achieved in multi-view 3D detection, which mainly build
elaborate designs upon the dense BEV (Bird’s Eye View) or sparse query features. To generate BEV
features, LSS Philion & Fidler (2020) lifts 2D image features to 3D space using depth estimation
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results, which are then splatted into BEV plane. Follow-up works apply such operation to perform
view transform for 3D detection task, and have made significant improvement in both detection
performance Huang et al. (2021); Huang & Huang (2022a); Li et al. (2023); Han et al. (2024) and
efficiency Liu et al. (2023d); Huang & Huang (2022b). Differently, some works Li et al. (2022b);
Yang et al. (2023); Huang et al. (2023) project a series of predefined BEV queries in 3D space to the
image domain for feature sampling. As for the sparse fashion, current methods Wang et al. (2022);
Liu et al. (2022; 2023c;a); Lin et al. (2023) adopt a set of sparse queries to integrate spatial-temporal
aggregations from multi-view image feature sequence for iterative anchor refinement, where the
advanced queries adopted in Liu et al. (2023a); Lin et al. (2023) contain both explicit geometric
anchors and implicit semantic features.

Besides, Multi-Object Tracking (MOT) across multi-cameras is also required for downstream tasks.
Traditional algorithms Wang et al. (2023); Yin et al. (2021); Weng et al. (2020) resort to “tracking-
by-detection” paradigm, which relies on hand-crafted data association between the tracked trajec-
tories and new-coming perceived objects. Recent works Zeng et al. (2022); Zhang et al. (2023);
Yu et al. (2023); Meinhardt et al. (2022); Sun et al. (2012) seek to explore the joint detection and
tracking methods by introducing track queries to detect the unique instances continuously and con-
sistently. Sparse4Dv3 Lin et al. (2023) proposes an advanced 3D detector which takes full advantage
of spatial-temporal information to propagate temporal instances for identity reserving, thus achiev-
ing superior end-to-end performance without additional tracking designs.

2.2 ONLINE MAPPING

Maps could provide important static scenario information to ensure driving safety. Current works Li
et al. (2022a); Liu et al. (2023b); Liao et al. (2022); Yuan et al. (2024) manage to construct online
maps with on-board sensors, instead of using HD-Map which is labor intensive and expensive.
HDMapNet Li et al. (2022a) achieves this aim through BEV semantic segmentation and heuristic
post-processing to generate map instances. VectorMapNet Liu et al. (2023b) introduces a two-stage
auto-regressive transformer to refine map elements consecutively. MapTR Liao et al. (2022) regards
map elements as a set of points with equivalent permutations, while StreamMapNet Yuan et al.
(2024) adopts a temporal fusion strategy to enhance the performance. However, all of them reply
on dense BEV features for online map construction, which is computationally intensive and not
extensible to the sparse manner.

2.3 END-TO-END MOTION PREDICTION

Motion prediction of surrounding agents in an end-to-end fashion can relieve the accumulative error
between standalone models. FaF Luo et al. (2018) predicts both current and future bounding boxes
from images using a single convolution network. IntentNet Casas et al. (2018) attempts to reason
high-level behavior and long-term trajectories simultaneously. PnPNet Liang et al. (2020) aggre-
gate trajectory-level features for motion prediction through an online tracking module. ViP3D Gu
et al. (2023) takes images and HD-Map as input, and adopts agent queries to conduct tracking and
prediction. PIP Jiang et al. (2022) further proposes to replace HD-Map with local vectorized map.

2.4 END-TO-END PLANNING

End-to-end planning paradigm either unites modules of perception and prediction Hu et al. (2023);
Jiang et al. (2023); Zhang et al. (2024); Ye et al. (2023), or adopts a direct optimization on planning
without intermediate tasks Codevilla et al. (2018; 2019); Prakash et al. (2021), which lack inter-
pretability and are hard to optimize. Recently, UniAD Hu et al. (2023) presents a planning-oriented
model which integrates various tasks in the dense BEV-Centric paradigm, achieving convincing
performance. VAD Jiang et al. (2023) learns vectorized scene representations and improves plan-
ning safety with explicit constraints. GraphAD Zhang et al. (2024) constructs the interaction scene
graph to model both dynamic and static relations. SparseDrive Sun et al. (2024) introduces the
sparse perception module for parallel motion planner. However, using straightforward designs and
exhaustive modeling without ego-centric interaction, will inevitably lead to unsatisfactory planning
performance and inferior efficiency.
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Figure 2: Overview of our proposed framework. DiFSD first extracts multi-scale image features
from multi-view images using an off-the-shelf visual encoder, then perceives both dynamic and
static elements in a sparse manner. The Ego-Env hierarchical interaction module is presented to
select the interactive queries from coarse to fine using three different driving commands of ego
queries, which are leveraged for joint motion planner through iterative refinement. An additional
geometric prior is introduced for high-quality query ranking through intention-guided attention.
Besides, both position-level agent diffusion and trajectory-level ego-vehicle denoising are conducted
for uncertainty modeling of the end-to-end driving system.

3 OUR APPROACH

3.1 OVERVIEW

The overall framework of DiFSD is illustrated in Fig. 2, which deals with the end-to-end planning
task in an ego-centric fully sparse paradigm. Specifically, DiFSD mainly consists of four parts:
visual encoder, sparse perception, hierarchical interaction and iterative motion planner. First, the
visual encoder extracts multi-scale spatial features from given multi-view images. Then the sparse
perception takes the encoded features as input to perform detection, tracking and online mapping si-
multaneously. In the hierarchical interaction module, the ego query equipped with a geometric prior
is introduced to pick out the interactive queries through ego-centric cross attention and hierarchical
selection. In the iterative motion planner, both interactive agents and ego-vehicle are considered for
joint motion prediction, then the predicted multi-modal ego-trajectories are further optimized itera-
tively. Meanwhile, both position-level diffusion of interactive agents and trajectory-level denoising
of ego-vehicle are conducted for uncertainty modeling of motion and planning tasks respectively.

3.2 PROBLEM FORMULATION

Given multi-view camera image sequence can be denoted as S = {It ∈ RN×3×H×W }Tt=T−k,
where N is the number of camera views and k indicates the temporal length till current timestep T
respectively. Annotation of input S for end-to-end planning is composed by a set of future waypoints
of the ego-vehicle ψ = {ϕ = (xt, yt)}

Tp

t=1, where Tp = 3s is the planning time horizon, and (xt,
yt) is the BEV location transformed to the ego-vehicle coordinate system at current timestep T .
Meanwhile, driving command as well as ego-status is also provided. Annotation set ψ is used
during training. During prediction, the planned trajectory of ego-vehicle should fit the annotation ψ
with minimum L2 errors and collision rate with surrounding agents.

3.3 SPARSE PERCEPTION

After extracting the multi-view visual features F from sensor images using the visual encoder He
et al. (2016), sparse perception method proposed in Lin et al. (2023) is extended to perform detec-
tion, tracking and online mapping simultaneously based on a group of sparse queries, removing the
dependence of dense BEV representations widely used in Hu et al. (2023); Jiang et al. (2023).
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Detection and Tracking. Following the previous sparse perception methods Liu et al. (2023a);
Lin et al. (2023), surrounding agents can be represented by a group of instance features Fa ∈
RNa×C and anchor boxes Ba ∈ RNa×11 respectively. And each anchor box is denoted as
{x, y, z, ln(w), ln(h), ln(l), sin(θ), con(θ), vx, vy, vz}, which contains location, dimension, yaw
angle as well as velocity respectively. Taking the visual features F , instance features Fa and an-
chor boxes Ba as input, Ndec decoders are adopted to consecutively refine the anchor boxes and
update the instance features through deformable aggregation of sample features projected from key
points of the anchor box Ba. The updated instance features are adopted to predict the classification
scores and box offsets respectively. Temporal instance denoising is introduced to improve model
stability. As for tracking, following the ID assignment process in Lin et al. (2023), the temporal in-
stances across frames used for advanced detection can be also served as track queries, which remain
consistent with unique IDs.

Online Mapping. Similarly, we adopt an additional detection branch of same structure for online
mapping. Differently, the geometric anchor of each static map element is denoted as Np points.
Therefore, surrounding maps can be represented by a group of map instance features Fm ∈ RNm×C

and anchor polylines Bm ∈ RNm×Np×2.

3.4 EGO-ENV HIERARCHICAL INTERACTION

After perceiving the dynamic and static elements existing in the driving scenario in a sparse manner,
we continue to perform hierarchical interaction between the ego-vehicle and surrounding agent /
map instances. As shown in Fig. 2, the hierarchical interaction module mainly consists of three parts:
Ego-Env Dual Interaction, Intention-guided Geometric Attention and Coarse-to-Fine Selection.

Ego-Env Dual Interaction. As shown in Fig. 3, a learnable embedding Fe ∈ R1×C is randomly
initialized to serve as ego query, along with an ego anchor box Be ∈ R1×11 together to repre-
sent the ego-vehicle. Both ego-centric cross attention with surrounding objects Fo ∈ RNo×C and
object-centric self attention are conducted consecutively to capture the mutual information compre-
hensively. During the attention calculation process, we adopt the decouple attention mechanism
proposed in Lin et al. (2023) to combine positional embedding and query feature in a concatenated
manner instead of an additive approach, which can effectively retain both semantic and geometric
clues for interaction modeling.

Intention-Guided Geometric Attention. To enhance the accuracy and explainability of query rank-
ing to facilitate selection, we introduce an ego-centric geometric prior additionally. As shown in
Fig. 2, the intention-guided attention module is adopted to assess the importance of surrounding
agent and map queries, which mainly consists of three steps: Response Map Learning, Reference
Line Generation and Interactive Score Fusion.

Specifically, we use four MLPs to encode the ego-intention respectively, including velocity, acceler-
ation, angular velocity and driving command. And then we concatenate these embeddings to obtain
ego-intention features Ie ∈ R1×C , which are further concatenated with the position embeddings
Fp ∈ RH×W×C of a group of pre-defined locations P ∈ RH×W×2 to cover densely distributed
grid cells in the BEV plane. The position of each grid cell is represented as p = (x, y). Finally,
the concatenated geometric features are fed to a single SE Hu et al. (2018) block to learn response
map Mr ∈ RH×W×1, which is supervised by the normalized minimum distance from p to the ego
future waypoints. The motivation is that the Closest In-Path Vehicle / Stationary are prone to affect
the ego-intention, and vice versa.

With the predicted response map Mr, we first generate the reference line through row-wise thresh-
olding, which are further used to generate the normalized distance map Md (See Fig. 2). Then we
can obtain the geometric score Sgeo for each surrounding query by referring to the Md. The rea-
son why we don’t get the geometric score from Mr directly is that the imbalanced distribution of
ego-intention and future waypoints may lead to the inferior quality of Mr.

Finally, as shown in Fig. 4, we perform interactive score fusion through multiplying the attention,
geometric and classification scores during the ego-centric cross attention:

Sinter = Softmax(Fe ⊙ FT
o /

√
dk)︸ ︷︷ ︸

Sattn∈RN×1

·Sgeo · Scls, (1)
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where the distance-prior is weighted with the attention score Sattn for both interaction and selection.
⊙ is inner product, · is dot product, and dk is the channel dimension.

Coarse-to-Fine Selection. To capture the interaction information from coarse to fine, we stack M
dual-interaction layers in a cascaded manner, where a top-K operation is appended between each
two consecutive layers, thus the interactive objects can be gradually selected for latter prediction
and planning usages. We claim that only a few interactive objects need to be considered for motion
prediction, which are enough yet efficient for ego-centric path planning, instead of all detected
agents existing in the driving scene.

3.5 ITERATIVE MOTION PLANNER

As shown in Fig. 2, the iterative motion planner is designed to conduct motion prediction for both
interactive agents and ego-vehicle, and then optimize the proposal ego-trajectory with both safety
and kinematic constrains iteratively.

Joint Motion Prediction. With regard to the trajectory prediction, both surrounding agents and ego-
vehicle are adopted for motion modeling in a joint decoder, unlike previous works Hu et al. (2023);
Ye et al. (2023); Jiang et al. (2023) which neglect the crucial interactions between near agents and
ego-vehicle when making motion predictions, especially in the common scenarios like intersections.
Another difference is that only the interactive objects Fio (CIPV) sparsely selected in the former
module are considered, instead of all detected agents in the driving scene which maybe irrelevant
to the ego-vehicle planning. As for the joint motion decoder, we prepare three copies of ego query
F

′

e to indicate different driving intentions (i.e., turn left, turn right and keep forward), which are
combined with Fio to conduct agent-level self attention and agent-map cross attention respectively.
And then we concatenate these output attended features to predict multi-modal trajectories τa ∈
RNa×Ka×Ta×2, τe ∈ RNe×Ke×Te×2 and classification scores Sa ∈ RNa×Ka , Se ∈ RNe×Ke for
both agents and ego-vehicle, where Ne = 3 is the number of driving command for planning, Ka =
Ke = 6 are the mode number, Ta = Te = 6 are the future timestamps.

Planning Optimization. With the predicted multi-intention and multi-modal trajectories of ego-
vehicle, we can select the most probable proposal trajectory with the input driving command and
classification score Se. As shown in Fig. 3(b), ego-agent, ego-map and ego-navigator cross at-
tentions are conducted consecutively for planning optimization, where the offsets for each future
waypoint are predicted upon the proposal trajectory respectively with several planning constraints
proposed in Jiang et al. (2023) to ensure safety.

Iterative Refinement. To further promote the stability and performance of the whole end-to-end
system, an additional iterative refinement strategy is proposed to continuously update the reference
line and distance map Md with refined ego trajectory as illustrated in Fig. 2, thus ensuring the
interaction quality and selection accuracy of interactive queries.
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3.6 UNCERTAINTY DENOISING

Due to the planning-oriented modular design, output uncertainty from each individual module will
be inevitably introduced and passed through to the downstream tasks, leading to inferior and fragile
system. Under this circumstance, we propose a two-level uncertainty modeling strategy to further
stabilize the whole framework. On one hand, position-level diffusion process is performed on
ground-truth boxes of interactive agents Bi ∈ RK×11 for additional trajectory prediction of noisy
agents Bn = Bi +∆Bpos ∈ RG×K×11 equipped with G groups of random noises following uni-
form distributions. ∆Bpos locates within two different ranges of {−s, s} and {−2s,−s}∪{s, 2s} to
indicate positives and negatives respectively, where s indicates the noise scale. This process aims to
promote the stability of motion forecasting for interactive agents with uncertain detected positions,
scales and velocities. On the other hand, trajectory-level denoising process is also introduced
for robust offset prediction of proposal trajectory of ego-vehicle in the planning optimization stage.
Different from the position diffusion of detection or motion query described above, we apply the
random noise to trajectory offsets of ego-vehicle ∆Btraj ∈ RG×Te×2, where s depends on the Final
Displacement (FD) of ground-truth ego future trajectory.

3.7 END-TO-END LEARNING

Multi-stage Training. To facilitate the model convergence and training performance, we divide the
training process into two stages. In stage-1, the sparse perception, hierarchical interaction and joint
motion prediction tasks are trained from scratch to learn sparse scene representation, interaction and
motion capability respectively. Note that no selection operation is adopted in stage-1, namely all
detected agents are considered for motion forecasting to make full use of annotations. In stage-2,
the geometric attention module and the iterative planning optimizer are added to train jointly for
overall optimization with uncertainty modeling.

Loss Functions. The overall optimization function mainly includes five tasks, where each task can
be optimized with both classification and regression losses. The overall loss function for end-to-end
training can be formulated as:

L = Ldet + Lmap + Linteract +

N∑
i=1

(Li
motion + Li

plan), (2)

where Linteract is a combination of binary classification loss and L2 regression loss to learn geo-
metric score, where the positive (interactive) samples are denoted as grid cells with geometric score
Sgeo ≥ 0.9 (within 3m for each future waypoint). An additional regression loss is included in Lplan

for ego status prediction, instead of directly using it as input to the planner as Hu et al. (2023);
Ye et al. (2023); Jiang et al. (2023), which will lead to information leakage as proven in Li et al.
(2024). Meanwhile, vectorized planning constrains identified in Jiang et al. (2023) such as collision,
overstepping and direction are also included in Lplan for regularization. N is the number of motion
planning stages.

4 EXPERIMENTS

4.1 DATASETS AND SETUP

Our experiments are conducted on the challenging public nuScenes Caesar et al. (2020) dataset,
which contains 1000 driving scenes lasting 20 seconds respectively. Over 1.4M 3D bounding boxes
of 23 categories are provided in total, which are annotated at 2Hz. Following the conventions Hu
et al. (2023); Jiang et al. (2023), Collision Rate (%) and L2 Displacement Error (DE) (m) are adopted
to measure the open-loop planning performance. Besides, to study the effect of various perception
encoders, we evaluate the 3D object detection and online mapping results using mAP and NDS
metrics respectively.

4.2 IMPLEMENTATION DETAILS

DiFSD plans a 3s future trajectory of ego-vehicle with 2s history information as input. Our DiFSD
has two variants, namely DiFSD-B and DiFSD-S. As for DiFSD-S, both sparse perception version

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Open-loop planning evaluation results on the nuScenes val dataset. ∗ denotes multi-
modality fusion method. † indicates evaluation with official checkpoint. ‡ indicates using evaluation
protocol proposed in Zhai et al. (2023); Li et al. (2024).

Method Backbone L2 (m) ↓ Collision (%) ↓ Latency (ms) ↓ FPS ↑1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3 EfficientNet-b4 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71 628.3 1.6
FusionAD∗ R101+SECOND - - - 0.81 0.02 0.08 0.27 0.12 - -
UniAD ResNet101-DCN 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31 555.6 1.8
VAD ResNet50 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22 224.3 4.5
SparseDrive-S † ResNet50 0.30 0.58 0.95 0.61 0.47 0.47 0.69 0.54 111.1 9.0

DiFSD-S (Dense) ResNet50 0.16 0.33 0.59 0.35 0.00 0.04 0.18 0.07 67.7 14.8

UniAD‡ ResNet101-DCN 0.45 0.70 1.04 0.73 0.62 0.58 0.63 0.61 555.6 1.8
VAD ‡ ResNet50 0.41 0.70 1.05 0.72 0.03 0.19 0.43 0.21 224.3 4.5
SparseDrive-S ‡ ResNet50 0.30 0.58 0.95 0.61 0.01 0.05 0.23 0.10 111.1 9.0
SparseDrive-B ‡ ResNet101 0.29 0.55 0.91 0.58 0.01 0.02 0.13 0.06 137.0 7.3

DiFSD-S (Dense)‡ ResNet50 0.16 0.33 0.59 0.35 0.03 0.07 0.21 0.10 67.7 14.8
DiFSD-S (Sparse)‡ ResNet50 0.15 0.31 0.56 0.33 0.00 0.06 0.19 0.08 93.7 10.7
DiFSD-B (Sparse)‡ ResNet101 0.15 0.30 0.54 0.32 0.00 0.04 0.15 0.06 119.6 8.4

Table 2: Comparison of perception results (3D detection and online mapping) of state-of-the-art
perception or end-to-end methods on nuScenes val dataset. †: Reproduced with official checkpoint.
∗ indicates to use pre-trained weights from the nuImage dataset.

Method Backbone Sparse mAP ↑ NDS ↑
BEVFormer Li et al. (2022b) ResNet101-DCN ✗ 41.6 51.7
Sparse4Dv3 Lin et al. (2023) ResNet101∗ ✓ 53.7 62.3

UniAD Hu et al. (2023) ResNet101-DCN ✗ 38.0 49.8
VAD† Jiang et al. (2023) ResNet50 ✗ 27.3 39.7
SparseDrive-S Sun et al. (2024) ResNet50 ✓ 41.8 52.5
SparseDrive-B Sun et al. (2024) ResNet101* ✓ 49.6 58.8

DiFSD-S ResNet50 ✗ 32.8 45.8
DiFSD-S ResNet50 ✓ 41.0 52.8
DiFSD-B ResNet101* ✓ 49.6 58.9

(a) 3D detection results.

Method APped ↑ APdivider ↑ APboundary ↑ mAP ↑
VectorMapNet Liu et al. (2023b) 36.1 47.3 39.3 40.9
MapTR Liao et al. (2022) 56.2 59.8 60.1 58.7

VAD† Jiang et al. (2023) 40.6 51.5 50.6 47.6
SparseDrive-S Sun et al. (2024) 49.9 57.0 58.4 55.1
SparseDrive-B Sun et al. (2024) 53.2 56.3 59.1 56.2

DiFSD-S (Dense) 46.7 54.3 56.0 52.3
DiFSD-S (Sparse) 54.9 55.7 57.3 56.0
DiFSD-B (Sparse) 52.3 58.2 59.3 56.6

(b) Online mapping results

DiFSD-S (Sparse) and dense BEV perception version DiFSD-S (Dense) are all implemented for
comparison. ResNet50 He et al. (2016) is adopted as the default backbone network for visual en-
coding. The perception range is set to 60m×30m longitudinally and laterally. Input image size of
DiFSD-S is resized to 640 × 360. For DiFSD-S (Dense), the default number of BEV query, map
query, agent query is 100×100, 100×20 and 300, respectively. For DiFSD-S (Sparse),Ndec is 6,Na

is 900 andNm is 100 respectively. Each map element contains 20 map points. The feature dimension
C is 256. The noise scale s is set to 2.0 and 0.2×FD for motion and planning respectively. G is set
to 3. DiFSD-B has larger input image resolution (1280× 720) and backbone network (ResNet101).
We use AdamW Loshchilov & Hutter (2017) optimizer and Cosine Annealing Loshchilov & Hutter
(2016) scheduler to train DiFSD with weight decay 0.01 and initial learning rate 2×10−4. DiFSD is
trained for 48 epochs in stage-1 and 20 epochs in stage-2, running on 8 NVIDIA Tesla A100 GPUs
with batch size 1 per GPU.

4.3 MAIN RESULTS

As show in Tab. 1, DiFSD shows great advantages in both performance and efficiency compared
with previous works, including either visual-based or multi-modality based methods. On one hand,
DiFSD-S achieves the minimum L2 error even with lightweight visual backbone and inferior dense
perception encoder. Specifically, compared with BEVFormer-based end-to-end methods Hu et al.
(2023); Jiang et al. (2023), DiFSD-S (Dense) reduces the average L2 error by a great margin (0.68m
and 0.37m, separately), while significantly reducing the average collision rates by 77% and 68%
respectively. Equipped with deeper visual backbone and advanced sparse perception, the average
L2 error and collision rates can be further reduced to 0.32m and to 0.06% respectively. Notably, we
are the first to achieve 0% collision rate on 1s. On the other hand, benefiting from the ego-centric
hierarchical interaction, only sparse interactive agents (2%) are considered for motion planning.
Hence, DiFSD-S can achieve great efficiency with 14.8 FPS, 8.2× and 3.3× faster than UniAD Hu
et al. (2023) and VAD Jiang et al. (2023) respectively.

4.4 ABLATION STUDY

We conduct extensive experiments to study the effectiveness and necessity of each design choice
proposed in our DiFSD. We use DiFSD-S as the default model for ablation.
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Table 3: Effect of ego-centric query selector and geometric prior.

Object
Selection

Geometric
Attention

Planning L2 (m) ↓ Planning Coll. (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

100% ✗ 0.27 0.47 0.74 0.49 0.10 0.21 0.37 0.22
Random (5%) ✗ 0.28 0.49 0.79 0.52 0.08 0.17 0.38 0.21
Random (2%) ✗ 0.33 0.57 0.87 0.59 0.18 0.30 0.51 0.33

0% ✗ 2.25 3.75 5.26 3.75 2.82 5.42 6.39 4.88
Attn (5%) ✗ 0.16 0.34 0.63 0.38 0.07 0.09 0.31 0.16
Attn (2%) ✗ 0.16 0.34 0.61 0.37 0.08 0.11 0.27 0.15

Attn (2%) Random 0.17 0.36 0.67 0.40 0.07 0.10 0.34 0.17
Attn (2%) GroundTruth 0.14 0.23 0.33 0.23 0.07 0.08 0.10 0.07
Attn (2%) ✓ 0.16 0.33 0.59 0.35 0.00 0.04 0.18 0.07

Table 4: Ablation for designs in the hierarchi-
cal interaction. “DI” means dual interaction;
“GA” means geometric attention; “CFS” means
coarse-to-fine selection.

DI GA CFS Planning L2 (m) ↓ Planning Coll. (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

✗ ✓ ✓ 0.18 0.35 0.62 0.38 0.09 0.12 0.23 0.14
✓ ✗ ✓ 0.16 0.34 0.61 0.37 0.08 0.11 0.27 0.15
✓ ✓ ✗ 0.16 0.33 0.59 0.36 0.09 0.11 0.25 0.15
✓ ✓ ✓ 0.16 0.33 0.59 0.35 0.00 0.04 0.18 0.07

Table 5: Ablation for designs in the motion
planner. “JMP”: joint motion prediction; “PO”:
planning optimization; “IR”: iterative refine-
ment. “UD”: uncertainty denoising.

ID JMP PO IR UD Planning L2 (m) ↓ Planning Coll. (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

1 ✓ ✗ ✗ ✓ 0.23 0.48 0.83 0.51 0.08 0.13 0.35 0.18
2 ✓ ✓ ✗ ✓ 0.16 0.33 0.61 0.37 0.01 0.08 0.23 0.11
3 ✓ ✓ ✓ ✗ 0.16 0.34 0.64 0.38 0.07 0.07 0.17 0.10
4 ✓ ✓ ✓ ✓ 0.16 0.33 0.59 0.35 0.00 0.04 0.18 0.07

Effect of Sparse Perception. In addition to BEV-perception based end-to-end methods Hu et al.
(2023); Jiang et al. (2023), recent end-to-end planning method Sun et al. (2024) resorts to the sparse
perception fashion to provide advanced 3D detection and online mapping results with high effi-
ciency. To study the significance of advanced perception encoders for ego-planning, we compare
the perception performance of various end-to-end methods as shown in Tab. 2. With sparse percep-
tion encoder Lin et al. (2023), the performance of 3D object detection and online mapping can be
greatly improved (10.6 NDS and 7.5 mAP, respectively) compared with dense BEV-based percep-
tion paradigm Li et al. (2022b). And the end-to-end planner Sun et al. (2024) equipped with the
advanced perception encoder can consistently boost the planning performance as shown in Tab. 1.
Therefore, the perception performance is essential for the end-to-end planner, which decides the
planning upper-bound and provides rich clues of surrounding environment including both dynamic
and static elements.

Necessity of Geometric Prior. We claim that only interactive agent and map queries are signif-
icant for ego-vehicle planning, where the Closest In-Path Vehicle as well as Stationary (CIPV /
CIPS) are more likely to interact with the ego-vehicle. To verify the necessity of such geometric
prior, we conduct exhaustive ablations of the ego-centric query selector as show in Tab. 3. Without
ego-centric selection, fewer objects randomly selected can result in worse planning results. While
using the ego-centric cross attention, only 2% of surrounding queries are enough for achieving con-
vincing planning performance, instead of considering all existing dynamic/static elements. Besides,
introducing the geometric prior through attention can dramatically reduce the L2 error and collision
rate by 8% and 42% respectively. Meanwhile, when utilizing the ground-truth geometric score for
upper-limit evaluation, we can obtain the extremely lower average L2 error and collision rate (0.23m
and 0.07% respectively). Undoubtedly, the proposed ego-centric selector equipped with geometric
attention is nontrivial for efficient interaction and motion planner.

Effect of designs in Hierarchical Interaction. Tab. 4 shows the effectiveness of our elaborate
designs in the hierarchical interaction module, which contains three main designs such as Dual
Interaction (DI), Geometric Attention (GA) and Coarse-to-Fine Selection (CFS). DI models both
ego-centric and object-centric interactions respectively, which improves the planning performance
greatly as expected. GA facilitates the query selection process as discussed in Tab. 3, which reduces
the collision rate by a great margin (42%). And CFS contributes to the interaction modeling qual-
ity through hierarchical receptive fields from global to local. All of these three designs combined
together can achieve overall convincing planning performance.

Effect of designs in Motion Planner. As for motion planner in DiFSD, Joint Motion Prediction
(JMP), Planning Optimization (PO) as well as Iterative Refinement (IR) makes up the planning
pipeline of ego-vehicle. Besides, Uncertain Denoising (UD) contributes to the system stability and
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Table 6: Module runtime statistics.The inference speed is measured for DiFSD-S on one NVIDIA
Tesla A100 GPU. Different perception fashions are both considered for comparisons.

Module Dense BEV Fashion Fully Sparse Fashion
Latency (ms) Proportion (%) Latency (ms) Proportion (%)

Backbone 8.4 12.4 11.0 11.8
Perception 34.4 50.8 54.9 58.6
Hierarchical Interaction 17.0 25.1 19.9 21.2
Joint Motion Prediction 4.5 6.6 4.5 4.8
Planning Optimization 3.4 5.1 3.4 3.6

Total 67.7 100 93.7 100

training convergence. Tab. 5 explores the effect of each design exhaustively. ID-1 indicates evaluat-
ing the proposal trajectory of ego-vehicle predicted together with interactive agents, which achieves
competitive L2 error but is easier to collide with surrounding agents. ID-2 improves the collision
rate greatly by 38.9% with the help of PO and planning constraints Jiang et al. (2023) during training
phase. ID-4 emphasizes the importance of IR in improving the quality of ego-planning trajectory
(average 5.4% L2 error and 36.3% collision rate reduction respectively). ID-3 reflects the benefit of
UD used for end-to-end training compared with ID-4.

Plan

Plan

Plan

Motion

Pedestrian 
Crossing

BEV

Turn Left

Turn Right

Go Straight

BEV

BEV

Figure 5: Qualitative results of DiFSD. DiFSD
outputs planning results based on hierarchical in-
teraction and joint motion of sparse interactive
agents without considering other irrelevant ob-
jects. We omit the map selection results for clarity
of road structure details.

Runtime of each module. As shown in Tab. 6,
visual backbone and sparse perception occupy
the most of the runtime (70.4%) for feature ex-
traction and scene understanding. Hierarchical
interaction also takes a significant part (21.2%)
for interaction modeling and interactive query
selection. Thanks to the sparse representation
and ego-centric interaction module, the motion
planner only consumes 7.9ms to plan the future
ego-trajectory (8.4% in total).

4.5 QUALITATIVE RESULTS

We visualize the motion trajectories of interac-
tive agents as well as planning results of DiFSD
as illustrated in Fig. 5. Both surrounding cam-
era images and prediction results on BEV are
provided accordingly. Besides, we also project
the planning trajectories to the front-view cam-
era image. Only the top-3 trajectories of se-
lected agents interacting with ego-vehicle are
visualized for better understanding of DiFSD
motivation. DiFSD outputs planning results
based on the fully sparse representation in an
end-to-end manner, not requiring any dense in-
teraction and redundant motion modeling, let
alone hand-crafted post-processing.

5 CONCLUSION

In this paper, we propose a fully sparse paradigm for end-to-end self-driving in an ego-centric man-
ner, termed as DiFSD. DiFSD revisits the human driving behavior and conducts hierarchical inter-
action based on sparse representation and perception results. Only interactive agents are considered
for joint motion prediction with the ego-vehicle. Iterative planning optimization strategy contributes
to the driving safety with high efficiency. Besides, uncertainty modeling is conducted to improve
the stability of end-to-end system. Extensive ablations and comparisons reveal the superiority and
great potential of our ego-centric fully sparse paradigm for future research.
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