
Gaussian Process Predictions with Uncertain Inputs
Enabled by Uncertainty-Tracking Processor

Architectures

Janith Petangoda∗

Signaloid,
Cambridge, UK

Chatura Samarakoon
University of Cambridge,

Cambridge, UK

Phillip Stanley-Marbell
Signaloid / University of Cambridge,

Cambridge UK.

Abstract

Gaussian Processes (GPs) are theoretically-grounded models that capture both
aleatoric and epistemic uncertainty, but, the well-known solutions of the GP pre-
dictive posterior distribution apply only for deterministic inputs. If the input is
uncertain, closed-form solutions aren’t generally available and approximation
schemes such as moment-matching and Monte Carlo simulation must be used.
Moment-matching is only available under restricted conditions on the input dis-
tribution and the GP prior and will miss the nuances of the predictive posterior
distribution; Monte Carlo simulation can be computationally expensive. In this
article, we present a general method that uses a recently-developed processor
architecture [1, 2] capable of performing arithmetic on distributions to implicitly
calculate the predictive posterior distribution with uncertain inputs. We show that
our method implemented to run on a commercially-available implementation [3] of
an uncertainty-tracking processor architecture captures the nuances of the predictive
posterior distribution while being ∼108.80x faster than Monte Carlo simulation.

1 Introduction

Gaussian Processes (GPs) are a class of non-parametric models that can intrinsically capture model
uncertainty. The prediction of a GP for a unobserved input is referred to as the predictive posterior
distribution since it is a distribution over the predictive output conditioned on the observed data. For
deterministic inputs, there is a closed-form solution for the predictive posterior distribution of a GP.

GPs can also capture the impact of input uncertainty on the predicted output. With an uncertain input,
the GP predictive posterior distribution is in general arbitrary and no general closed-form solution
exists. A typical tactic for handling uncertain inputs is to carry out moment-matching, where the
first k (usually k = 2) moments of the true predictive posterior distribution are calculated [4, 5].
Closed-form solutions for even the first two moments are only available in special cases, and even
then, such a Gaussian approximation loses key statistical properties of the true posterior distribution,
such as multi-modality and skewness. A better approximation could be obtained by carrying out a
(potentially) computationally-expensive Monte Carlo simulation.

In this article, we present an algorithm for implicitly computing the GP predictive posterior distri-
bution with uncertain inputs using recent advances in uncertainty-tracking processor architectures
(UTPAs) [1, 2]. Our method does not rely on Monte Carlo simulation but rather exploits the internal
distributional representation of the UTPA. Our method is agnostic to the distribution of the input and
the GP prior.

We evaluate the effectiveness of our method against the Monte Carlo method by comparing the
accuracies of the solutions to the ground-truth (obtained by a Monte Carlo simulation with a large

∗The work was mostly carried out at the University of Cambridge.

Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024 (MLNCP 2024).

number of samples). We also compare the run time of each method. We show in Section 6 that
running our new algorithm on a commercially-available implementation [3] of a UTPA [1, 2] can
achieve orders of magnitude faster performance while achieving the same accuracy.

2 Gaussian Processes

A GP is a collection of random variables (Definition A.2 in Appendix A) where any finite subcollection
of those random variables is jointly Gaussian. It is a distribution over the infinitely-many random
variables that satisfy this condition on any finite subcollection of them. We can define a GP implicitly
by specifying a mechanism for deriving the mean vector and covariance matrix of the multivariate
Gaussian distribution that distributes any given subset of random variables. We can do so using a
mean function m and covariance kernel k to derive the mean vector and covariance matrix of the
multivariate Gaussian distribution using the indexes of the random variables.

Definition 2.1 (Implicit definition of a Gaussian Process). Let X be an index set. Then, for a
finite subset of X , {x1, ..., xn} ∈ X , let the random variables Yx1

, ..., Yxn
be jointly distributed

as a multivariate Gaussian, N (µ,Σ), where the elements µi of the mean vector µ and Σij of the
covariance matrix Σ are implicitly derived using

µi = m(xi),

and
Σij = k(xi, xj).

The function m : X → R is called the mean function and the function k : X × X → R is the
covariance kernel. We denote an implicitly-defined GP by GP(m, k).

We denoted the index set with X and the random variable with Yxi , for xi ∈ X to highlight that a GP
is a distribution over functions where X is the input space and Y = Yxi∈X is the output space. Thus
the sample space of each Yxi is Y . Let X = R and Y = R be an input and output space respectively
and F denote a space of functions, where (f ∈ F) : X → Y denotes a possible function from X to
Y . We can place a GP prior over F by writing F ∼ GP(m, k). In this view, a sample from a GP is a
sample from all the random variables Yx = f(x),∀x ∈ X .

The function space F over which a GP is defined is implicitly described by the chosen mean function
and the covariance kernel; we have placed a GP prior over F . Popular kernels include the squared
exponential (this is a basic ‘all-rounder’ kernel) and the Matern class of kernels [6]. The squared
exponential kernel is given by

ksqc,λ(x, x
′) = c exp(

−(x− x′)T (x− x′)

λ2
), (1)

where c ∈ R+ and λ ∈ R are hyperparameters of the kernel. The parameter c is the signal variance
and the parameter λ is the characteristic length scale2. The squared exponential kernel describes a
function space of smooth functions that have a variability that is described by the signal variance and
the length scale; the signal variable loosely specifies how much the function can vary from the mean
function and the length scale specifies how quickly the function can vary from the mean function.

2.1 GP Prediction with Deterministic Inputs

Let X = Rd denote an input space, where d denotes the dimension of X , and let Y = R denote
an output space. Let f : X → Y be an arbitrary function from X to Y from a function space F .
We define a GP prior over F as F ∼ GP(m, k). The mean function m and covariance kernel k
implicitly define the function space F . Further, let the likelihood function be ỹ = f(x) + ϵ, where
ϵ ∈ N (0, σ2

ϵ) and ỹ ∈ (Ỹ = Y) denotes a noisy observation. Finally, let X ∈ Rk×d be a matrix of k
input points from X , and let Y ∈ Rk×1 be a matrix of k noisy output points from Ỹ .

We are interested in the posterior GP over F given the data (X,Y). However, rather than finding an
explicit conditional distribution over F , we express the distribution of the posterior GP evaluated at a

2It is possible to write the squared exponential kernel in terms of a specific length scale for each dimension
of the input space. For simplicity, will be using a single, common length scale for all dimensions in this article.

2

particular point x∗ ∈ X , which, by Definition 2.1 is a Gaussian random variable. Therefore, for an
arbitrary point x∗ ∈ X , the predictive posterior density of the random variable Yx∗ = f(x∗) is

Yx∗ = f(x∗) ∼ pf(x∗)(y
∗|X,Y) = N (µ∗(x

∗), σ2
∗(x

∗)), (2)
where,

µ∗ : X → R
x∗ 7→ µ∗(x

∗) =m(x∗) + k(x∗,X)(K + σ2
ϵ I)−1(Y−m(x∗)),

(3)

σ2
∗ : X → R

x∗ 7→ σ2
∗(x

∗) = k(x∗, x∗)− k(x∗,X)(K + σ2
ϵ I)−1k(x∗,X)T .

For a deterministic input, GP prediction can be thought of as a function from the input to a mean and
a variance, as Equation 3 shows, that defines the predictive posterior distribution.

3 GP Prediction with Uncertain Inputs

A useful enhancement to GP prediction with deterministic input is to consider a distributional input.
Let the input to the GP now be a random variable X∗, the sample space of which is X . Thus,
X∗ ∼ pX∗(·). We are still interested in the predictive distribution of Yx∗ ∼ pf(X∗)(y|X,Y), where
x∗ ∈ X∗. However, we must now marginalize over X∗ because it is a random variable:

pf(X∗)(f(x
∗) = y∗|X,Y) =

∫
X

pf(x∗)(y
∗|X,Y, x∗)pX(x∗)dx∗. (4)

In general, this integral is intractable. Therefore, we must usually resort to approximation methods.
We discuss two approximation methods used in the literature below. In Section 4, we introduce a
method for implicitly computing the predictive posterior distribution with uncertain input using a
state-of-the-art UTPA [1, 2].

3.1 Moment-matching approximation

We can approximate the intractable predictive posterior distribution as a Gaussian distribution. This
is done by defining a Gaussian distribution using the first and second moments of the predictive
posterior distribution [4, 5]. This mean and variance can be computed analytically when using the
squared exponential kernel and the input is a Gaussian random variable [4, 5]. For more complicated
input distributions and GP priors, it is difficult to find closed-form solutions. Furthermore, a Gaussian
approximation to a non-Gaussian predictive posterior distribution would lack important statistical
information such as multi-modality and skewness.

3.2 Monte Carlo simulation

The Monte Carlo method can be used to obtain a more informative approximation of pf(X∗)(y
∗|X,Y).

Monte Carlo simulation [7, 8, 9] applies the Monte Carlo method to approximate the probability
density function of a transformed random variable. That is, if we want the probability density function
of Y = f(X), then we first take n samples of xi ∼ X , transform each sample by applying f to
obtain n samples yi = f(xi) of Y , and create a density estimation (such as a histogram) using the
transformed samples. Better approximations are obtained by increasing the number of samples n.

Girard et al. [5] suggests estimating the integral in Equation 4 using Monte Carlo integration, where,

pf(X∗)(y
∗|X,Y) =

∫
pf(x∗)(y

∗|X,Y, x∗)pX(x∗) dx∗ ≈ 1

n

n∑
i=1

pf(x∗)(y
∗|X,Y, x∗

i) dx∗. (5)

For this method, we would need to evaluate the sum in Equation 5 for each value that f(x∗) can take.
Instead, when using Monte Carlo simulation, we will obtain samples of f(x∗) under pf(x∗)(y

∗|X,Y)

by taking samples of x∗
i ∼ X∗, calculating the mean µ∗(x

∗
i) and variance σ2

∗(x
∗
i) according to

Equation 3 for pf(X∗)(y
∗|X,Y, x∗), and taking samples y∗i ∼ N (µ∗(x

∗
i), σ

2
∗(x

∗
i)).

The Monte Carlo method can be used to obtain an arbitrarily-good approximation of pf(X∗)(y
∗|X,Y).

However, doing so can be prohibitively expensive due to its slow convergence rate [9].

3

4 Gaussian Process Prediction with Uncertain Inputs on an
Uncertainty-Tracking Processor Architecture

To overcome the accuracy limitations of moment-matching and the computational costs of Monte
Carlo simulations, we present a method that is enabled by recent advances in UTPAs [1, 2]. A UTPA
is a computer microarchitecture that can represent distributional information in its microarchitectural
state and track how these distributions evolve under arithmetic operations transparently to the
applications running on it. A UTPA does this by providing an in-processor representation of
probability distributions and a suite of arithmetic operations that can manipulate this representation.
A UTPA carries out deterministic computations on probability distributions and does not rely on
any sampling methods. Therefore, unlike Monte Carlo methods that require convergence to a good
solution by increasing the number of Monte Carlo iterations, a UTPA is convergence-oblivious up to
the fidelity of its representation.

The UTPA presented by Tsoutsouras et al. [1, 2] has an associated representation size, r, that describes
the precision of the representation. Larger representation sizes result in more accurate representations.
A useful analogy is the IEEE-754 standard [10, 11] that approximately represents the infinite set of
real numbers as floating point numbers on computers that can only handle a finite set of values.

A practical way of thinking of what a UTPA does is that it carries out uncertainty propagation. If
we have a random variable X represented in the UTPA’s distribution representation and a function
f : X → Y , then a UTPA directly computes the distribution representation of Y = f(X) by directly
computing it through the function f without resorting to Monte Carlo sampling.

4.1 Gaussian Process Prediction with Uncertain Inputs as a Transformation of Random
Variables

Since a UTPA can represent any distribution for the input random variable X , our goal is to use a
UTPA to directly compute the predictive posterior distribution of a GP with an uncertain input. To do
this, we first note that a GP is practically two functions that map some input x∗ to the mean µ∗(x

∗)
and variance σ2

∗(x
∗) of the output distribution at x∗ (as given by Equation 3), but not to the output

random variable itself. Simply plugging a UTPA-represented distribution to Equation 3 on a UTPA
would result in distributions over the mean and variance and not a distribution of the output random
variable that we desire.

We can express a transformation of random variables that results in a random variable that has the
desired predictive posterior distribution pf(X∗)(y

∗|X,Y) by using the "reparametrization trick" [12],

f(X∗) = µ∗(X
∗) + σ∗(X

∗)ϵ, (6)
where ϵ ∼ N (0, 1), and µ(x∗) and σ∗(x

∗) are the mean and standard deviation of the GP posterior
at x∗ respectively from Equation 3. Theorem 4.1 shows that f(X∗) has the desired distribution.
Theorem 4.1. Let µ∗(X

∗) and σ2
∗(X

∗) denote the application of the mean and variance functions
of the Gaussian Process predictive posterior distribution (as in Equation 3) to a random variable
X∗ ∼ pX(·) given some input and output data X and Y respectively, and let ϵ ∼ N (0, 1). Then, the
probability density function of the random variable defined as

f(X∗|X,Y) = µ∗(X
∗) + σ∗(X

∗)ϵ

is given by

pf(X∗)(y
∗|X,Y) =

∫
pf(x∗)(y

∗|X,Y, x∗)pX(x∗)dx∗ =

∫
N
(
µ∗(x

∗), σ2
∗(x

∗)
)
pX(x∗)dx∗,

where pf(x∗)(y
∗|X,Y, x∗) is the conditional probability density function of f(x∗) given X, Y, and a

particular value of x∗ ∈ X∗.

Proof. See Appendix B. ■

4.2 Implementing the Transformation of Random Variables on an Uncertainty-Tracking
Processor Architecture is Trivial

Using Algorithm 1, we can easily find the GP predictive posterior with an uncertain input using a
UTPA. Here, X∗, ϵ, and y are distributional variables that are represented in the UTPA.

4

Algorithm 1 Gaussian Process Prediction with Uncertain Inputs Using an Uncertainty-Tracking
Processor Architecture [1, 2]
Require: X∗ ⇐= DistributionalVariable,X,Y
m← µ∗(X

∗) ▷ From Equation 3
v ← σ2

∗(X
∗) ▷ From Equation 3

ϵ← GaussianDistributionalVariable(0, 1) ▷ A distributional variable in the UTPA [1, 2]
y ← m+

√
vϵ ▷ From Equation 6

return y

5 Methods

We compare the performance of Monte Carlo simulation and Algorithm 1 for computing the predictive
posterior distribution. We measure the timing performance in terms of the wall-clock run time of
each method and the accuracy in terms of the Wasserstein distance [13] of the result of each method
compared to a ground-truth predictive posterior distribution obtained by a large (n = 1, 000, 000)
Monte Carlo simulation.

We carry out experiments using the two methods across different number of iterations n (of the
Monte Carlo simulation) and representation sizes r (of the UTPA) to compare the trade-offs between
converging to the output distribution and the extra time required to do so. For each configuration of n
or r, we carry out 30 repetitions to account for variation in sampling3.

We set the mean function of the GP prior to m(x) = 0. We set X and Y to be the real space R, and
generate a dataset (X,Y) of k = 10 data points by setting x0 = −3π, xi = xi−1 +0.6π 4 , and yi as,

yi(xi) = sin(2xi) cos(xi)
(
e−

1
5x + e

1
5x
)
+ ϵi, (7)

where each ϵi ∼ N (0, 0.01)5. For each case, we use the squared exponential kernel ksq
c=1,λ=

√
1.7

and
we set the uncertain input distribution to X∗ ∼ N (0, 4) (see Figure 2 in Appendix C).

For the Monte Carlo method, we evaluate on n ∈ {4, 256, 1152, 2048, 4096, 8192, 16000, 32000,
64000, 128000, 512000}. For Algorithm 1, we evaluate on r ∈ {32, 64, 128, 256, 512, 2048}. For
the UTPA for Algorithm 1, we use a commercial implementation of a multi-dimensional variation
of the UTPA presented by Tsoutsouras et al. [1, 2] that automatically tracks correlations between
arbitrary random variables.

We implement both Algorithm 1 and the Monte Carlo simulation using the C programming language
and a custom tensor library implemented in C6. The commercial implementation of the UTPA [3]
is implemented as a single-threaded emulated processor running on a 3rd Generation Intel Xeon
system. As a result, Algorithm 1 is at an inherent disadvantage since it is benefiting only from the
algorithmic advances of the distribution representation and its associated arithmetic and is not taking
advantage of hardware acceleration; an FPGA or a custom silicon implementation of the underlying
UTPA could provide even greater speedups than we present in this paper. We perform the Monte
Carlo experiments on the same hardware as the hardware we used to emulate the UTPA. We note
that we did not exploit parallelization for the Monte Carlo method (e.g., by using a GPU) since the
commercial implementation of the UTPA [3] does not exploit parallelization either. See Appendix C
for more detail on our method.

6 Results

Figure 1 summarizes our results; Table 2 in the Appendix shows numerical results for the other
configurations. Figure 1a shows that the results from Algorithm 1 are almost always at the Pareto

3We calculate the Wasserstein distance for the result of Algorithm 1 by generating 1,000,000 samples from
the UTPA representation. Therefore we repeat the experiments of Algorithm 1 on a UTPA 30 times for each
representation size despite Algorithm 1 being deterministic and convergence-oblivious.

4In other words, we have equally divided the range [−3π, 3π] to n = 10 points.
5We set the random seed to 42.
6Code is available on GitHub: https://github.com/physical-computation/uncertain-gaussia

n-process-code

5

https://github.com/physical-computation/uncertain-gaussian-process-code
https://github.com/physical-computation/uncertain-gaussian-process-code

Table 1: Selection of results showing the Wasserstein distance and the run time required by the best
overall configuration for Algorithm 1 and the close-to-equivalent Monte Carlo configuration. To
obtain a similar accuracy, the Monte Carlo method took ∼108.80× more time than Algorithm 1. See
Table 2 for complete results.

Problem Core Representation Size /
Number of samples

Wasserstein Distance
(mean ± std. dev.)

Run time (ms)
(mean ± std. dev.)

Squared Exponential Kernel Algorithm 1 128 0.00290± 0.00050 3.182± 0.376
Squared Exponential Kernel Traditional Monte Carlo 128000 0.00324± 0.00129 346.186± 1.800

Algorithm 1-32

Algorithm 1-64

Algorithm 1-128

Algorithm 1-256

Algorithm 1-512

Algorithm 1-2048

MC-256

MC-1152

MC-2048

MC-4096

MC-8192

MC-16K

MC-32K

MC-64K

MC-128K

MC-512K

0.00 0.02 0.04 0.06
Wasserstein Distance

100

101

102

103

T
im

e
(m

s)

(a) Pareto plot summarizing our results. The Monte
Carlo simulation with n = 4 is omitted for clarity.

−2.265 −1.070 0.124 1.319 2.513
Output

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

D
en

si
ty

(b) Histogram for a single experiment using Algo-
rithm 1 with r = 128. The Wasserstein distance was
0.00337307; the run time was 5.177ms (67.3x faster).

−2.265 −1.070 0.124 1.319 2.513
Output

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

D
en

si
ty

(c) Histogram for a single experiment using Monte
Carlo with n = 128000. The Wasserstein distance
was 0.00224596; the run time was 348.452ms (67.3x
slower).

Figure 1: Summaries of our key results. Subfigure (a) is a Pareto plot between the mean run time
and the mean Wasserstein distance from the ground-truth output distribution. The error bars are ±1
standard deviation. From our experiments, Algorithm 1 is almost always on the Pareto frontier, even
after accounting for uncertainty. Subfigures (b) and (c) are histograms from Algorithm 1 and the
Monte Carlo method respectively. The ground-truth distribution is in black, behind each histogram.

frontier. Therefore, for any required accuracy except for the highest, in the ranges that we had tested,
Algorithm 1 is at least an order of magnitude faster. Table 1 shows that for r = 128, the Monte Carlo
method with n = 128000 shows a nearly identical Wasserstein distance (albeit with more than twice
the standard deviation) while taking approximately 108.80× longer to compute.

Furthermore, Algorithm 1 does not suffer from large variances in the accuracy since the UTPA carries
out deterministic computation on probability distributions. We see this from the constant variance
shown by the results from Algorithm 1. This uncertainty is due to the fact that we calculated the
Wasserstein distance using finite samples from the output distribution. It is possible to calculate the
Wasserstein distance directly from the UTPA’s representation, but we did not do so at this time. After
r = 128, the accuracy of Algorithm 1 stagnates and the trade-off with run time increases. Therefore,
for this particular application, if larger accuracy is required, the Monte Carlo method must be used.

Figures 1b and 1c show that the posterior distribution is more complex than a Gaussian. A moment-
matched Gaussian solution would, for example, miss that the posterior distribution is multi-modal.

7 Conclusions

Existing methods for approximating the often-intractable GP predictive posterior distribution with
uncertain inputs can be inaccurate and constrained in their use (moment-matching), or computationally
expensive (Monte Carlo simulation). We present a method for computing the desired predictive
posterior distribution on a UTPA [1, 2] by making use of the reparametrization trick. Our method can
be used on any input distribution and GP prior unlike moment-matching and we show experimentally
that our method can be as accurate as and orders of magnitude faster than Monte Carlo simulation.

6

8 Acknowledgements

This work was supported by UKRI Materials Made Smarter Research Centre (EPSRC grant
EP/V061798/1).

References

[1] V. Tsoutsouras, O. Kaparounakis, B. Bilgin, C. Samarakoon, J. Meech, J. Heck, and P. Stanley-
Marbell, “The laplace microarchitecture for tracking data uncertainty and its implementation
in a risc-v processor,” in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 1254–1269, 2021.

[2] V. Tsoutsouras, O. Kaparounakis, C. Samarakoon, B. Bilgin, J. Meech, J. Heck, and P. Stanley-
Marbell, “The laplace microarchitecture for tracking data uncertainty,” IEEE Micro, vol. 42,
no. 4, pp. 78–86, 2022.

[3] “Signaloid cloud developer platform.” signaloid.io, 2023.
[4] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-efficient approach to

policy search,” in Proceedings of the 28th International Conference on machine learning
(ICML-11), pp. 465–472, Citeseer, 2011.

[5] A. Girard, C. Rasmussen, J. Q. Candela, and R. Murray-Smith, “Gaussian process priors with
uncertain inputs application to multiple-step ahead time series forecasting,” Advances in neural
information processing systems, vol. 15, 2002.

[6] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning, vol. 2. MIT
press Cambridge, MA, 2006.

[7] R. L. Harrison, “Introduction to monte carlo simulation,” in AIP conference proceedings,
vol. 1204, pp. 17–21, American Institute of Physics, 2010.

[8] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, vol. 4. Springer,
2006.

[9] S. Weinzierl, “Introduction to monte carlo methods,” arXiv preprint hep-ph/0006269, 2000.
[10] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2019 (Revision of IEEE 754-2008),

pp. 1–84, 2019.
[11] D. Goldberg, “What every computer scientist should know about floating-point arithmetic,”

ACM computing surveys (CSUR), vol. 23, no. 1, pp. 5–48, 1991.
[12] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.
[13] L. V. Kantorovich, “Mathematical methods of organizing and planning production,” Manage-

ment science, vol. 6, no. 4, pp. 366–422, 1960.
[14] B. Presnell, “A geometric derivation of the cantor distribution,” The American Statistician,

vol. 76, no. 1, pp. 73–77, 2022.
[15] V. I. Bogachev and M. A. S. Ruas, Measure theory, vol. 1. Springer, 2007.
[16] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, and

R. Ulerich, GNU scientific library. Network Theory Limited Godalming, third ed., 2009.
[17] S. Loosemore, R. Stallman, R. McGrath, A. Oram, and U. Drepper, “The gnu c library reference

manual: for version 2.38,” Free Software Foundation, 2022.
[18] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

7

signaloid.io

Supplementary Section

A Mathematical Preliminaries

In this section, we define some key mathematical details.

A.1 Random Variables

Definition A.1 (Probability density function). Let X be a set called the sample space and pX be a
map from X to R+,

pX : X → R+,

that satisfies: ∫
X

pX(x) dx = 1.

We define pX to be the probability density function on X .
Definition A.2 (Random Variable). Let X be a set and pX a probability density function on X . We
define the tuple (X, pX) as a random variable7.

In the rest of this article, we suppress the notation (X, pX) and simply write X to denote a random
variable. We use the simple definition of a random variable above rather than the typical measure-
theoretic definition to capture what we think of as a random variable in practice; we often think
of a random variable in terms of its probability density function (for example, when we think of a
Gaussian random variable, we often think of the bell curve drawn by the Gaussian probability density
function).

Often, the set X = Rd, where Rd is the d-dimensional real space. In the integration above (and
below), we have suppressed the fact that it contains multiple integrals over each dimension of X .

The probability distribution of a random variable is a set function PX : Ω→ R+ that tells us about
the probability of the random variable taking on the values inside the given set, where Ω is a set of
subsets of X . Ω must technically be a σ-algebra, which for our purposes, can be thought of as a set
of sets each of which can be expressed as a countable union of disjoint sets that also belong to Ω8.
Since we are only considering random variables that contain probability density functions, we define
the distribution of a random variable as:
Definition A.3 (Distribution of a Random Variable). Given a random variable X with probability
density function pX , the distribution of X is given by the set function

PX : Ω→ R+

ω =
⋃
i

Ui 7→ PX(ω) =
∑
i

∫
Ui

pX(x) dx, (8)

where Ui is a collection of disjoint sets whose union equals the input set ω.
Definition A.4 (Cumulative Distribution Function of a Random Variable). The cumulative distribution
function FX of the random variable X with probability density function pX is given by

FX : X → [0, 1]

x 7→ FX(x) = P({t|t ∈ X and t < x}) =
∫
{t|t∈X and t<x}

pX(t) dt,
(9)

Note that in the integrations above, we have suppressed the fact that the integrations need to occur
over dimentions of X . By applying the Fundamental Theorem of Calculus to each such integral, we
obtain that pX(x) = ∂dFX

∂x1...∂xd
(x) This also gives us a way of going from a distribution of a random

7There can be measure theoretic random variables, such as the random variable that has the Cantor distribution,
that do not admit probability density functions [14]. In this article, we do not consider such exotic random
variables.

8The sets in a σ-algebra must also satisfy that countable unions and intersections also belong to Ω.

8

variable to its probability density function. Therefore, in this article, we often refer to the distribution
and the probability density function interchangeably.

An example of a high dimensional random variable is the multivariate Gaussian random variable:

Definition A.5 (Multivariate Gaussian random variable). Let µ ∈ Rd and Σ ∈ Rd×d be a mean
vector and a covariance matrix respectively. The multivariate Gaussian random variable (XN , pNX) is
defined as:

XN = Rd,

pNX : Rd → R+,

x 7→ 1√
(2π)d detΣ

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

pNX is called the multivariate Gaussian distribution. A Gaussian distribution is fully specifed by its
mean vector µ and its covariance matrix Σ. Therefore, we can also write that a random variable XN

is distributed as a multivariate Gaussian by writing

XN ∼ N (µ,Σ).

The mean vector µ is the expectation of the random variable XN , which is defined for any random
variable X as,

Definition A.6 (Expectation of a Random Variable). Let (X, pX) be a random variable. The
expectation of X is defined as:

E[X] =

∫
X

xpX(x) dx.

An alternative view of a multivariate Gaussian random variable, or any other random variable over Rd,
is that it is a collection of univariate (single dimensional) random variables that are jointly distributed
as the multivariate distribution. The covariance matrix Σ is a matrix the elements Σij = cov[Xi, Xj],
where Xi and Xj are the i-th and j-th univariate random variables of X respectively. Generally, the
covariance of two random variables is defined as:

Definition A.7 (Covariance of Random Variables). Let (X, pX) and (Y, pY) be two random variables.
The covariance of X and Y is defined as:

cov[X,Y] = E[(X − E[X])(Y − E[Y])].

We note that the covariance between the same random variable is its variance:

cov[X,X] = E[(X − E[X])2] = var[X].

In this article, we write cov[X] to denote the variance of X .

Give a collection of random variables {Xi}i=1,...,n, we can construct a covariance matrix Σ:

Definition A.8 (Covariance Matrix). Let X be an index set and {Yi}x = 1n be a collection of
random variables indexed by x ∈ X . Then, the covariance matrix Σ ∈ Rn×n of the collection of
random variables that contains the pairwise covariances of the random variables:

Σij = cov[Yi, Yj].

A.2 Change of variables

Let f : X → Y denote a transformation from a random variable X to a random variable Y (i.e.,
Y = f(X))9. We can also apply f to an instance value x of X to obtain an instance value y = f(x)
of Y .

If f is invertible and once-differentiable, then Theorem A.1 derives the probability density function
of Y , denoted as pY [15, Chapter 3.7].

9f transforms the set X such that there exists a valid probability density function pY over the set Y .

9

Theorem A.1 (Change of variables). Given a random variable X with a probability density function
pX and an invertible and once-differentiable transformation f : X → Y , the probability density
function pY of the random variable Y = f(X) is given by:

pY : Y → R+,

y 7→ pY (y) = pX ◦ f−1(y)|det∇f
(
f−1(y)

)
|−1

= pX ◦ f−1(y)|det∇f−1(y)|,
where f−1 is the inverse of f and∇f(·) and∇f−1(·) denote the Jacobian matrices of f and f−1

respectively.

A.3 Gram matrices, kernels and covariance functions

Definition A.9 (Kernel). Let X be an input space. A kernel on X is a function k : X ×X → R.

In this paper, X will always be a subset of Rd. Given a kernel k on X , we can construct a Gram
matrix:
Definition A.10 (Gram matrix). Let {xi ∈ X}i=1,...,n be a set of n ∈ N points in X , and k be a
kernel on X . The Gram matrix K ∈ Rn×n is a n× n matrix, where each element Kij = k(xi, xj).

Kernels can have some properties:
Definition A.11 (Symmetric kernel). A kernel k on X is said to be symmetric if k(x, x′) = k(x′, x)
for all x, x′ ∈ X .
Definition A.12 (Postive semi-definite kernel). A kernel k on X is said to be positive semi-definite if
it satisfies: ∫

X

∫
X

k(x, x′)f(x)f(x′)dxdx′ ≥ 0,

for all square-integrable f : X → R.

An alternative definition can be written in terms of the kernel’s Gram matrix. A Gram matrix
K is positive semi-definite if vT Kv ≥ 0 for all v ∈ Rn. If, ∀n ∈ N and all sets of n points
{xi ∈ X}i=1,...,n the Gram matrix K is positive semi-definite, then the kernel k is defined to be
positive semi-definite.

A kernel k on X which is symmetric and positive semi-definite is called a covariance function because
it can be used to define a valid covariance matrix.
Definition A.13 (Covariance function). A covariance function k on X is a kernel k : X ×X → R
which is symmetric and positive semi-definite. A covariance function is also called a covariance
kernel.

The Gram matrix of a covariance function is also symmetric and positive semi-definite, which means
that it can act as a covariance matrix.

A.3.1 Some notes on notation

In this article, we do not make the distinction between a scalar and a vector. Rather, we write
x ∈ (X = Rd) to denote an element of some d−dimensional real space, where d should be clear
from context, or is an abstract value. Thus, x contains d elements, and when d = 1, x represents a
scalar. Any vector and matrix operation we write also works for scalar values.

Furthermore, we will be applying a kernel function k to a variety of different types of inputs, with
slight abuse of notation. Let us make clear what we mean by each kind here:

Two vector inputs: k(x, x′) is the kernel applied to two points x, x′ ∈ X . Thus the output is a
scalar value k(x, x′) ∈ R.

A vector input and a matrix input: k(x,X) is the kernel applied to a point x ∈ X and a set of
points n points {xi}i=1,...,n collected into a matrix X ∈ Rn×d. The output is a vector k(x,X) ∈ Rn,
where each element k(x,X)i = k(x, xi).

10

Two matrix inputs: k(X,X′) is the kernel applied to two sets of matrices obtained from sets
{xi}i=1,...,n and {x′

j}i=1,...,m collected into matrices X ∈ Rn×d and X′ ∈ Rm×d respectively. The
output is a matrix k(X,X′) ∈ Rn×m, where each element k(X,X′)ij = k(xi, x

′
j).

B Proof of Theorem 4.1

Theorem B.1. Let µ∗(X
∗) and σ2

∗(X
∗) denote the application of the mean and variance functions of

the Gaussian Process predictive posterior distribution (Equation 3) to a random variable X∗ ∼ pX(·)
given some input and output data X and Y respectively, and let ϵ ∼ N (0, 1). Then, the probability
density function of the random variable defined as

f(X∗|X,Y) = µ∗(X
∗) + σ∗(X

∗)ϵ

is given by

pf(X∗)(y
∗|X,Y) =

∫
pf(x∗)(y

∗|X,Y, x∗)pX(x∗)dx∗ =

∫
N
(
µ∗(x

∗), σ2
∗(x

∗)
)
pX(x∗)dx∗,

where pf(x∗)(y
∗|X,Y, x∗) is the conditional probability density function of f(x∗) given X, Y, and a

particular value of x∗ ∈ X∗.

Proof. The conditional probability density function of f(x∗) given X, Y, and a particular value of
x∗ ∈ X∗ can be derived from Theorem A.1 for the transformation in the theorem:

pf(x∗)(y
∗|x∗,X,Y) = pϵ

(
y∗ − µ∗(x

∗)

σ2
∗(x

∗)

)
d

dy∗

(
y∗ − µ∗(x

∗)

σ2
∗(x

∗)

)
=

1√
2π

exp

(
−1

2

(
y∗ − µ∗(x

∗)

σ2
∗(x

∗)

)2
)

1

σ2
∗(x

∗)

= N
(
µ∗(x

∗), σ2
∗(x

∗)
)
.

Then, the joint probability density function pf(x∗)(f(x
∗), x∗) is given by

pf(x∗)(y
∗, x∗|X,Y) = pf(x∗)(y

∗|x∗,X,Y)pX(x∗),

and the marginal probability density function of f(x∗) is given by:

pf(X∗) (y
∗|X,Y) =

∫
pf(x∗)(y

∗|x∗,X,Y)pX(x∗)dx∗

=

∫
N
(
µ∗(x

∗), σ2
∗(x

∗)
)
pX(x∗)dx∗.

■

C Methods: More details

C.1 The Gaussian Process and Input Distribution used in Experiments

We set the prior mean function to m(x) = 0. We set X = R and Y = R, and generate a dataset
(X,Y) of k = 10 data points by setting x0 = −3π, xi = xi−1 + 0.6π10, and yi as

yi(xi) = sin(2xi) cos(xi)
(
e−

1
5x + e

1
5x
)
+ ϵi, (10)

where each ϵi ∼ N (0, 0.1)11. For each case, we use the squared exponential kernel ksq
c=1,λ=

√
1.7

and
we set the uncertain input distribution to X∗ ∼ N (0, 4).

Figure 2 show an illustration of the Gaussian Process and the input distribution used.

10In other words, we have equally divided the range [−3π, 3π] to n = 10 points.
11We set the random seed to 42.

11

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

2

0

2

Ou
tp

ut

Gaussian Process

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Input

0.0

0.1

0.2

Pr
ob

ab
ilit

y
De

ns
ity Uncertain Input

Figure 2: Illustration of the Gaussian Process (with its data points) and the input distribution that are
used throughout the experiments in this article.

C.2 Generating random samples for the Monte Carlo method

The Monte Carlo method requires us to generate samples from several Gaussian distributions. For
this, we used the gsl_ran_gaussian_ziggurat function provided by GSL [16].

C.3 Measuring the run time

We measure the run time as the sum of the time taken to generate samples incurred during the
sampling step of the Monte Carlo method or the initializing step of Algorithm 1, and the time taken
for the evaluation step. For both methods, we measure time using the gettimeofday function from the
Standard C library [17]. We measure the time from the start of the main entry point until the end of
key computations. The reported times omit any time spent by the programs on saving and reporting
the results.

In order to explicitly quantify the post-processing step of the Monte Carlo method, we compute
the mean and the variance of the samples obtained from the Monte-Carlo-based experiments. In
Algorithm 1 we calculate the mean and variance using the representation of the commercial UTPA [3]
as provided by its hardware API. We note that we are being generous to the Monte Carlo method,
since the mean and the variance alone does not fully capture the shape of a non-Gaussian distribution.
In contrast, the representation the uncertainty-tracking processor architecture (UTPA) captures the
full distribution in its representation.

C.4 Measuring the Wasserstein Distance

The Wasserstein distance [13] is a metric that measures the distance between probability distributions.
We quantify the distance of the outputs to the ground-truth using the Wasserstein distance between the
output distribution calculated by each approach and the ground-truth output distribution. We compute
the ground-truth output distribution by running the Monte Carlo method with 1,000,000 samples.
In our experiments, we calculate the Wasserstein distance using the scipy.stats.wasserstein_distance

function from the SciPy Python package [18].

C.5 Experimental setup

For Algorithm 1, we vary the representation size of the UTPA. Since the underlying UTPA on which
Algorithm 1 is implemented generates in-processor representations of the output distribution, we
take samples from this distributional representation to compute the Wasserstein distance. We take
1,000,000 samples, similar to the ground truth. We do not include the time taken for this sampling
in the run time because this sampling is done solely to calculate the Wasserstein distance and is
not part of a typical use case of Algorithm 1. The commercial implementation [3] of the UTPA

12

Problem Core Representation Size /
Number of samples

Wasserstein Distance
(mean ± std. dev.)

Run time (ms)
(mean ± std. dev.)

Squared Exponential Kernel Algorithm 1 32 0.01871± 0.00010 2.392± 0.359
Squared Exponential Kernel Algorithm 1 64 0.00730± 0.00031 2.524± 0.052
Squared Exponential Kernel Algorithm 1 128 0.00290± 0.00050 3.182± 0.376
Squared Exponential Kernel Algorithm 1 256 0.00246± 0.00050 6.348± 0.148
Squared Exponential Kernel Algorithm 1 512 0.00173± 0.00053 19.458± 2.215
Squared Exponential Kernel Algorithm 1 2048 0.00211± 0.00069 279.482± 2.491

Squared Exponential Kernel Traditional Monte Carlo 4 0.41230± 0.22109 0.129± 0.006
Squared Exponential Kernel Traditional Monte Carlo 256 0.05596± 0.01936 0.819± 0.015
Squared Exponential Kernel Traditional Monte Carlo 1152 0.02943± 0.01174 3.268± 0.087
Squared Exponential Kernel Traditional Monte Carlo 2048 0.02334± 0.01216 5.673± 0.023
Squared Exponential Kernel Traditional Monte Carlo 4096 0.01482± 0.00580 11.195± 0.051
Squared Exponential Kernel Traditional Monte Carlo 8192 0.01116± 0.00578 22.316± 0.092
Squared Exponential Kernel Traditional Monte Carlo 16000 0.00696± 0.00301 43.553± 0.654
Squared Exponential Kernel Traditional Monte Carlo 32000 0.00512± 0.00219 86.781± 0.447
Squared Exponential Kernel Traditional Monte Carlo 64000 0.00419± 0.00177 173.586± 1.463
Squared Exponential Kernel Traditional Monte Carlo 128000 0.00324± 0.00129 346.186± 1.800
Squared Exponential Kernel Traditional Monte Carlo 512000 0.00213± 0.00085 1385.516± 8.283

Table 2: Complete results comparing the mean Wasserstein distance (to the ground truth) obtained by
the Monte Carlo method and Algorithm 1 to the mean run time taken to run each configuration. In
order to obtain a similar accuracy, the Monte Carlo method took approximately 108.80× more time
than Algorithm 1. In order for the Monte Carlo method to obtain better results than Algorithm 1 (at
r = 128) by (approximately) more than 1-standard deviation, the Monte Carlo must spend 435.42×
more time.

presented by Tsoutsouras et al. [1, 2] is implemented as a single-threaded emulated processor running
on top of a single x86 3rd Generation Intel Xeon system. As a result, our implementation is at an
inherent disadvantage since it is benefiting only from the algorithmic advances of the distribution
representation and its associated arithmetic and is not taking advantage of hardware acceleration; an
FPGA or custom silicon implementation could provide even greater speedups than we present in this
paper.

For the Monte Carlo simulations, we vary the number of Monte Carlo iterations that were used in
each simulation. We perform the Monte Carlo experiments on the same x86 hardware as the hardware
we used to emulate the UTPA. This provides a baseline for the performance of the Monte Carlo
method that can be expected in the real-world. All random samples for the Monte Carlo simulation
were carried out using functions made available by GSL [16].

We implement both Algorithm 1 and Monte Carlo experiments using the C programming language
and a custom tensor library implemented in C. We compile Monte Carlo implementations with the
highest level of compiler optimizations (-O3)12.

D Ensuring meaningful timing results

When running the experiments on the Monte Carlo method, each repetition of an experiment was
run after a 5s delay. This delay ensures that we avoid buffer cache optimizations carried out by the
operating system.

We note that we did not exploit parallelization for the Monte Carlo method (e.g., by using a GPU)
since the commercial implementation of the UTPA [3] does not exploit parallelization either. We felt
that this provided an apples-to-apples comparison.

E Extended Table of Results

Table 2 shows the numerical results from all our experiments.

12Code is available on GitHub: https://github.com/physical-computation/uncertain-gaussia
n-process-code

13

https://github.com/physical-computation/uncertain-gaussian-process-code
https://github.com/physical-computation/uncertain-gaussian-process-code

	Introduction
	Gaussian Processes
	GP Prediction with Deterministic Inputs

	GP Prediction with Uncertain Inputs
	Moment-matching approximation
	Monte Carlo simulation

	Gaussian Process Prediction with Uncertain Inputs on an Uncertainty-Tracking Processor Architecture
	Gaussian Process Prediction with Uncertain Inputs as a Transformation of Random Variables
	Implementing the Transformation of Random Variables on an Uncertainty-Tracking Processor Architecture is Trivial

	Methods
	Results
	Conclusions
	Acknowledgements
	Mathematical Preliminaries
	Random Variables
	Change of variables
	Gram matrices, kernels and covariance functions
	Some notes on notation

	Proof of Theorem 4.1
	Methods: More details
	The Gaussian Process and Input Distribution used in Experiments
	Generating random samples for the Monte Carlo method
	Measuring the run time
	Measuring the Wasserstein Distance
	Experimental setup

	Ensuring meaningful timing results
	Extended Table of Results

