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Abstract

We present LLaVA-OneVision, a family of open large multimodal models (LMMs) devel-
oped by consolidating our insights into data, models, and visual representations in the
LLaVA-NeXT blog series. Our experimental results demonstrate that LLaVA-OneVision
is the first single model that can simultaneously push the performance boundaries of open
LMMs in three important computer vision scenarios: single-image, multi-image, and video
scenarios. Importantly, the design of LLaVA-OneVision allows strong transfer learning across
different modalities/scenarios, yielding new emerging capabilities. In particular, strong video
understanding and cross-scenario capabilities are demonstrated through task transfer from
images to videos.
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1 Introduction

It is a core aspiration in AI to build general-purpose assistants with Large Multimodal Models (LMM) (Li
et al., 2024c). LLaVA-OneVision is an open model, continuing to advance the line of research in building large
vision-and-language assistant (LLaVA) (Liu et al., 2023c) that can follow diverse instructions to complete a
variety of computer vision tasks in the wild. As a cost-efficient recipe, it is typically developed by connecting
vision encoders with large language models (LLM) using a simple connection module.

The first LLaVA model (Liu et al., 2023c) demonstrates impressive multimodal chat abilities, sometimes
exhibiting the behaviors similar to GPT-4V on previously unseen images and instructions for the first
time. LLaVA-1.5 (Liu et al., 2024a) significantly expands and improves the capabilities by incorporating
more academic-related instruction data, achieving SoTA performance on a dozens of benchmarks with a
data-efficient recipe. LLaVA-NeXT (Liu et al., 2024b) inherits this property, further pushing performance
boundaries through three key techniques: AnyRes for handling high-resolution images, expanding high-quality
instruction data, and utilizing the best open LLM available at the time.

LLaVA-NeXT provides an extendable and scalable prototype, which facilitates several parallel explorations,
reported in the LLaVA-NeXT blog series (Liu et al., 2024b; Zhang et al., 2024h; Li et al., 2024b;a;d):

• The Video blog (Zhang et al., 2024h) shows that the image-only-trained LLaVA-NeXT model is
surprisingly strong on video tasks with zero-shot modality transfer, due to the design of AnyRes to
digest any vision signals as a sequence of images.

• The Stronger blog (Li et al., 2024b) demonstrates the LLM model scaling succuss of this cost-efficient
strategy. By simply scaling up the LLM, it achieves performance comparable to GPT-4V on selected
benchmarks.

• The Ablation blog (Li et al., 2024a) summarizes our empirical exploration except the visual instruction
data itself, including the choice of architectures (scaling of LLM & vision encoder), visual representations
(resolution & #tokens), as well as training strategies (trainable modules & high-quality data) in the
pursuit of data scaling success.

• The Interleave blog (Li et al., 2024d) describes the strategies to extend and improve the capability in
new scenarios including multi-image, multi-frame (video) and multi-view (3D), while maintaining the
single-image performance.

Motivated by these explorations, we aim to offer useful insights and develop the next state-of-the-art level model
to handle versatile visual inputs. During the process, we have also been accumulating and curating a large
collection of the high-quality datasets. By consolidating these insights, we introduce LLaVA-OneVision. We
implement the new model with the available compute, without extensively de-risking individual components.
This leaves room for further improvements in capabilities through additional data and model scaling following
our recipe. In particular, our paper makes the following contributions:

• Large multimodal models. We develop LLaVA-OneVision, a family of open large multimodal models
(LMMs) that improves the performance boundaries of open LMMs in three important vision settings,
including single-image, multi-image, and video scenarios.

• Emerging Capabilities with Task Transfer. Our design in modeling and data representations allow task
transfer across different scenarios, suggesting a simple approach to yield new emgerging capabilities.
In particular, LLaVA-OneVision demonstrate strong video understanding through task transfer from
images.

• Open-source. To pave the way towards building a general-purpose visual assistant, we release the
following assets to the public: the generated multimodal instruction data, the codebase, the model
checkpoints, and a visual chat demo.

2 Related Work

The SoTA proprietary LMMs, such as GPT-4V (OpenAI, 2023), GPT-4o (OpenAI, 2024), Gemini (Team
et al., 2023) and Claude-3.5 (Anthropic, 2024), exhibit excellent performance in versertile vision scenarios,
including single-image, multi-image and video settings. In the open research community, existing works
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typically develop models tailored to each individual scenario separately. Specifically, most focus on pushing
the performance limits in single-image scenarios (Dai et al., 2024; Liu et al., 2023c; Zhu et al., 2023; Li et al.,
2024g; Zhang et al., 2023a; Guo et al., 2023), only a few recent papers have begun to explore multi-image
scenarios (Li et al., 2023a; Jiang et al., 2024). While video LMMs excel in video understanding, they often
do so at the expense of image performance (Li et al., 2024f; Lin et al., 2023). It is rare to have a single
open model that reports excellent performance in all three scenarios. LLaVA-OneVision aims to fill this gap
by demonstrating state-of-the-art performance across a broad range of tasks, and showcasing interesting
emerging capabilities through cross-scenario task transfer and composition.

To the best of our knowledge, LLaVA-NeXT-Interleave (Li et al., 2024d) is the first attempt to report good
performance in all three scenarios, LLaVA-OneVision inherits its training recipe and data for improved
performance. Other versatial open LMMs with potentials to excel include VILA (Lin et al., 2024), InternLM-
XComposer-2.5 (Zhang et al., 2024c). Unfortunately, their results are not fully evaluated and reported; we
compare with them in the experiments. In addition to building systems with versatial capabilities, LLaVA-
OneVision is benefited from large-scale high-quality data training, including model-synthesized knowledge
and the new collection of diverse instruction tuning data. For the former, we inherit all the knowledge
learning data in (Li et al., 2024a). For the latter, our are motivated by FLAN (Wei et al., 2021; Longpre
et al., 2023; Xu et al., 2024c). The data collection process is con-current with Idefics2 (Laurençon et al.,
2024) and Cambrian-1 (Tong et al., 2024), but we focus on a smaller but more carefully curated collection of
datasets. A similar conclusion is observed: a large amount of visual instruction tuning data can significantly
improve performance. For comprehensive investigations on design choices of LMMs, we refer to several recent
studies (Karamcheti et al., 2024; Laurençon et al., 2024; Li et al., 2024a; McKinzie et al., 2024; Tong et al.,
2024; Beyer et al., 2024).

3 Modeling

3.1 Network Architecture

The model architecture inherits the minimalism design of LLaVA series, whose primary goals are (i) effectively
leverage the pre-trained capabilities of both the LLM and visual model, as well as (ii) facilitate strong scaling
behavior in terms of both data and model. The network archtecture is illustrated in Figure 1.

• LLM. We choose Qwen-2 (Yang et al., 2024) as our LLM fϕ(·) parameterized by ϕ, as it offers various
model size and exhibits strong language capabilities to date among publicly available checkpoints.

• Vision Encoder. We consider the SigLIP (Zhai et al., 2023) as the visual encoder gψ(·) parameterized by
ψ, encoding an input image Xv into its visual feature Zv = g(Xv). The grid features before and after
the last Transformer layer are considered in our experiments.

• Projector. We consider a 2-layer MLP (Liu et al., 2024a) pθ(·) parameterized by θ, to project image
features into the word embedding space, yielding a sequence of visual tokens Hv = p(Zv).

The model choice is based on our empirical insights in (Li et al., 2024b;a) that stronger LLM typically
supercharge stronger multimodal capabilities in the wild, while SigLIP yields higher LMM performance
among open vision encoders.

For a sequence of length L, we compute the probability of the target answers Xa by:

p(Xa|Xv, Xq) =
L∏

i=1
p(xi|Xv, Xq,<i, Xa,<i), (1)

where Xq,<i and Xa,<i are the instruction and answer tokens in all turns before the current prediction token
xi, respectively. For the conditionals in equation 1, we explicitly add Xv to emphasize the fact that the
visual signal is grounded for all answers. As explained in Section 3.2, the form of visual signal Xv is general.
The visual input fed into the vision encoder depends on the corresponding scenarios: the invidiual image
crop in the single-image sequence, the invidiual image in a multi-image sequence and the invidiual frame in
the video sequence, respectively.
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Figure 1: LLaVA-OneVision network architecture. Left: The current model instantiation; Right: the general
form of LLaVA architecture in (Liu et al., 2023c), but is extended to support more visual signals.

3.2 Visual Representations

The representation of visual signals is key to the success of the visual encoding. It relates to two factors, the
resolution in the raw pixel space and the number of tokens in the feature space, leading to the visual input
representation configuration (resolution, #token). The scaling of both factors leads to improved performance,
especially on tasks that require visual details. To strike a balance of performance and cost, we observe that
the scaling of resolution is more effective than that of token numbers, and recommend an AnyRes strategy
with pooling. The comparison is illustrated in Figure 2.

For AnyRes with a configuration of width a, height b, it divides the image into a × b crops, each with the
shape (a, b). Each crop has the same resolution suitable for the vision encoder. Assuming there are T tokens
per crop, the total number of visual tokens is L = (a × b + 1) × T , where the base image is resized before
being fed into the vision encoder. We consider a threshold τ , and reduce the #token per crop, using bilinear
interpolation if needed:

Tnew =
{

τ
(a×b+1) if L > τ

T if L ≤ τ
(2)

A set of spatial configurations (a, b) is defined to specify various methods for cropping images, thereby
accommodating images of different resolutions and aspect ratios. Among them, the configuration that requires
a minimum number of crops is selected. Please see our detailed ablations of visual representation in (Li et al.,
2024a).

The proposed Higher AnyRes strategy can serve as a flexible visual representation framework, adaptable for
multi-image and video representation. The optimal configuration for performance and cost can be adjusted
accordingly. We illustratie the configuration in Figure 3, describe the detailed in Section A.1 and provide
high-level encoding strategies as below:

• Single-image. We consider a large maximum spatial configuration (a, b) for single-image representation
to maintain the original image resolution without resizing. Additionally, we purposefully allocate a large
number of visual tokens per image, resulting in a long sequence to effectively represent the visual signal.
This is based on the observation that there is a larger number of high-quality training samples with
diverse instructions for images compared to videos. By representing an image with a long sequence
that mimics video representation, we facilitate a smoother capability transfer from image to video
understanding (Zhang et al., 2024h; Li et al., 2024a).

4



Published in Transactions on Machine Learning Research (02/2025)

split encode

LLM

resize encode flatten

Bilinear
Interpolation flatten

resize & split encode
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flatten

LLM

(a) Higher AnyRes with Bilinear Interpolation

(b) The original AnyRes

Figure 2: The visual representations. Top: The new Higher AnyRes scheme with Bilinear Interpolation to
deal with images of higher resolution; Bottom: the original AnyRes in (Liu et al., 2024b).

Single-Image

Multi-Image

Video

729 + N * 729 Tokens

N * 729 Tokens

… N Images

… NCrops

… N Frames

N * 196 Tokens

Max Tokens

32 * 196 = 6272 Tokens

12 * 729 = 8748 Tokens

(1 + 9) * 729 = 7290 Tokens

Example on Token Strategy

Figure 3: The visual representation strategy to allocate tokens for each scenario in LLaVA-OneVision. The
maximum number of visual tokens across different scenarios is designed to be similar, ensuring balanced
visual representations to accommodate cross-scenario capability transfer. Note that 729 is the #tokens for
SigLIP to encode a visual input of resolustion 384×384.

• Multi-image. Only the base image resolution is considered and fed into the vision encoder to obtain
feature maps, eliminating the need for multi-crop of high resolution image and thus saving computational
resources (Li et al., 2024d).
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• Video. Each frame of the video is resized to the base image resolution and processed by the vision
encoder to generate feature maps. Bilinear interpolation is employed to reduce the number of tokens,
allowing the consideration of a larger number of frames by reducing tokens per frame. Empirical evidence
suggests this provides a better trade-off between performance and computational cost (Zhang et al.,
2024h).

These representation configurations are designed for capability transfer with a fixed compute budget in our
experiments. With increased computational resources, the number of tokens per image or frame can be
increased during both training and inference stages to boost performance.

4 Data

In the realm of multimodal training from LLM, the axiom “quality over quantity” is especially true. This
principle is paramount due to the extensive knowledge stored within pre-trained LLMs and Vision Transformers
(ViTs). While it is essential to accumulate balanced, diverse, and high-quality instruction data by the end of
the LMM’s training lifecycle, an often-overlooked aspect is the continuous exposure of the model to new,
high-quality data for further knowledge acquisition whenever it is available. In this section, we discuss the
data sources and strategies for high-quality knowledge learning and visual instruction tuning.

4.1 High-Quality Knowledge

The web-scale public image-text data is often of low-quality, rendering the data scaling of multimodal
pre-training less efficient. Instead, we recommend to focus on high-quality knowledge learning, given a
limited compute budget. This approach acknowledges that the pre-trained LLMs and ViTs already possess a
substantial knowledge base, and the goal is to refine and enhance this knowledge with carefully curated data.
By prioritizing the quality of data, we can maximize compute efficiency.

We consider data from three major categories for high-quality knowledge learning:

• Re-Captioned Detailed Description Data. LLaVA-NeXT-34B (Liu et al., 2024b) is known for its strong
detailed caption ability among open-source LMMs. We used the model to generate new captions for the
images from the following datasets: COCO118K, BLIP558K, and CC3M. We combined them to form
the Re-Captioned Detailed Description Data, totaling 3.5M samples. This can be viewed as an simple
attempt of self-improvement AI, where the training data is generated by an early version of the model
itself.

• Document / OCR Data. We utilized the Text Reading subset from the UReader dataset, totaling
100K, which is easily accessible through PDF rendering. We used this text reading data along with the
SynDOG EN/CN, to form the Document / OCR Data, totaling 1.1M samples.

• Chinese and Language Data. We used the original ShareGPT4V (Chen et al., 2023a) images and utilized
GPT-4V provided by the Azure API to generate 92K detailed Chinese caption data, aiming to improve
the model’s capability in Chinese. Since we used a large portion of detailed caption data, we also aim to
balance the model’s language understanding ability. We collected 143K samples from the Evo-Instruct
dataset (Chen et al., 2024a).

It is interesting to note that almost all (accounting for 99.8%) of the high-quality knowledge data is synthetic.
This is due to the high cost and copyright constraints associated with collecting large-scale, high-quality
data in the wild. In contrast, synthetic data can be easily scaled. We believe that learning from large-scale
synthetic data is becoming a trend as AI models continue to grow more powerful.

4.2 Visual Instruction Tuning Data

Visual instruction tuning (Liu et al., 2023c) refers to the capability of an LMM to understand and act upon
visual instructions. These instructions can be in the form of language, combined with visual media such as
images and videos, which the LMM processes and follows to perform a task or provide a response. This
involves integrating visual understanding with natural language processing to interpret the instructions and
execute the required responses.
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Data Collection and Curation. As demosntrated in previous works (Liu et al., 2024a; Tong et al., 2024;
Laurençon et al., 2024), visual instruction tuning data is crutial for LMM capaiblity. Therefore, maintaining
a high-quality dataset collection is crucial and beneficial to the community. We started to collect a large pool
of instruction tuning datasets from various original sources, with an unbalanced data ratio among categories.
Additionally, we utilize a few new subsets from the Cauldron (Laurençon et al., 2024) and Cambrian (Tong
et al., 2024) dataset collections.

We categorize the data based on a three-level hierachy: vision, instruction, and response.

• Vision Input. Three vision scenarios are considered, depding which visual input is considered in the
multimodal sequence, including single-image, multi-image, video.

• Language Instruction. The instructions, which often appears as questions, define the tasks to perform to
deal with the visual input. We classify the data into five major categories: General QA, General OCR,
Doc/Chart/Screen, Math Reasoning, and Language. These instructions define the skill sets that a trained
LMM could cover. We use task categorization to help maintain and balance the skill distribution.

• Language Response. The answer not only responds the user request, but also specifies the model behavior.
It can be broadly categorized into free-form and fixed-form.

Free-form data is typically annotated by advanced models like GPT-4V/o and Gemini, while fixed-form data is
derived from academic datasets, e.g. VQAv2, GQA, Visual Genome. For free-form data, we keep the original
answers. However, for fixed-form data, we manually review the content and make necessary corrections to
the question and answer formats. We adhere to the LLaVA-1.5 prompting strategy for multiple-choice data,
short answer data, and specific task data (e.g., OCR). This step is crucial for guiding the model’s behavior to
correctly balance QA performance, conversational ability, and reasoning skills in more complicated tasks, as
well as preventing potential conflicts from different data sources. We list the full details about each dataset
in our collection, and their categorization and formatting prompt in Appendix C.3.

We divide the instruction data into two separate groups: one for single-image scenario and the other for all
vision scenarios. This division is based on insights from our earlier studies (Li et al., 2024d; Zhang et al.,
2024h), which highlight the relationship between image and video models: a stronger image model can better
transfer to multi-image and video tasks. Additionally, the quantity and quality of training datasets available
for single images are significantly higher than those for videos and multi-image tasks.

Single-Image Data. Since single-image data is crucial for multimodal capabilities, we explicitly compile
a large single-image data collection for model learning. We select from collected data sources to form a
balanced collection, resulting in a total of 3.2 million samples. The overall distribution of single-image data is
shown in Figure 4, with detailed information and the roadmap of data collection presented in Appendix C.1.

Single-image 
3.2M

General (36.1%) ALLaVA Inst (70.0K) AOKVQA (66.2 K) Cambrian (filtered) (83.1 K)
CLEVR (0.7 K) COCO Caption (20.0 K) Hateful Memes (8.5 K) IconQA (2.5 K)
Image Textualization (99.6 K) LLaVA-158K (158.0 K) LLaVA-Wild (train) (54.5 K) LLaVAR (20.0 K)
OKVQA (9.0 K) RefCOCO (50.6 K) ScienceQA (5.0 K) ShareGPT4o (57.3 K)
ShareGPT4V (91.0 K) ST-VQA (17.2 K) TallyQA (9.9 K) Vision FLAN (186.1 K)
Visual7W (14.4 K) VisText (10.0 K) VizWiz (6.6 K) VQARAD (0.3 K)
VQAv2 (82.8 K) VSR (2.2 K) WebSight (10.0 K) InterGPS (1.3 K)

Doc/Chart/Screen (20.6%) AI2D (GPT4V) (4.9 K) AI2D (InternVL) (12.4 K) AI2D (Original) (3.2 K)
Chart2Text (27.0 K) ChartQA (18.3 K) Diagram Image2Text (0.3 K) Doc-VQA (10.2 K)
DVQA (20.0 K) FigureQA (1.0 K) HiTab (2.5 K) Infographic VQA (4.4 K)
LRV Chart (1.8 K) RoBUT SQA (8.5 K) RoBUT WikiSQL (75.0 K) RoBUT WTQ (38.2 K)
Screen2Words (15.7 K) TQA (1.4 K) UReader Caption (91.4 K) UReader IE (17.3 K)
UReader KG (37.6 K) UReader QA (252.9 K) VisualMRC (3.0 K)

Math/Reasoning (20.1%) MAVIS MCollect (87.4 K) MAVIS Data Engine (100.0 K) Geo170K QA (67.8 K)
Geometry3K (2.1 K) GEOS (0.5 K) Geometry3K (MathV360K) (9.7 K) GeoMVerse (MathV360K) (9.3 K)
GeoQA+ (MathV360K) (17.2 K) MapQA (MathV360K) (5.2 K) CLEVR-Math (5.3 K) Geo170K Align (60.3 K)
MathQA (29.8 K) Super-CLEVR (8.7 K) TabMWP (45.2 K) UniGeo (12.0 K)
GQA (72.1 K) LRV Normal (10.5 K) RAVEN (2.1 K) Visual Genome (86.4K)

General OCR (8.9%) ChromeWriting (8.8 K) HME100K (74.5 K) IIIT5K (2.0 K)
IAM (5.7 K) K12 Printing (12.8 K) OCR-VQA (80.0 K) Rendered Text (10.0 K)
SynthDog-EN (40.1 K) TextCaps (21.9 K) TextOCR (25.1 K)

Language (14.3%) Magpie Pro (L3 MT) (150.0 K) Magpie Pro (L3 ST) (150.0 K) Magpie Pro (Qwen2 ST) (150.0 K)

Figure 4: Single-Image 3.2M. A High-Quality Single-Image Dataset Collection. Left: Data Distribution within Each
Category. The outer circle shows the distribution of all data categories and the inner circle shows the distribution of
data subsets. Right: The detailed quantities of datasets.

OneVision Data. In addition to the single-image stage training, we further fine-tune the model using a
mixture of video, image, and multi-image data. We introduce a total of 1.6 million mixed data samples,
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comprising 560K multi-image data from Li et al. (2024d), 350K videos collected in this project, and 800K
single-image samples. Notably, in this stage, we do not introduce new single-image data but instead sample
high-quality and balanced portions from the previous single-image data, as described in Li et al. (2024d). The
data distribution and details are presented in Figure 5, with additional information available in Appendix C.2.

OneVision
1.6M

Single-Image (31.2%) Magpie Pro (90.0K) Vision FLAN (filtered) (55.8K) Image Textualization (49.8K)
Cauldron (40.2K) UReader (39.9K) ShareGPT4V (21.0K) ALLaVA Inst. (21.0K)
Cambrian (filtered GPT4o) (24.9K) LLAVA-Wild (train) (10.9K) LAION-GPT4V (8.0K) LLAVA-158K (7.0K)
Geo170K-QA (6.8K) Geo170K-Align (6.0K) ShareGPT4o (5.7K) TabMWP (4.5K)
LLAVAR GPT4 (4.0K) MapQA (4.3K) MathQA (3.0K) TextOCR (GPT4V) (2.5K)
TextCaps (2.2K) ScienceQA (1.9K) FigureQA (1.8K) GeoQA+ (1.7K)
AI2D (InternVL) (1.2K) UniGeo (1.2K) IconQA (1.1K) LRV-Normal (filtered) (1.1K)
TQA (1.0K) Geometry3K (1.0K) Super-CLEVR (0.9K) AI2D (GPT4V) (0.7K)
VizWiz (0.7K) VQA-AS (0.6K) CLEVR-Math (0.5K) PlotQA (0.5K)
GEOS (0.5K) InfoVQA (0.9K) PMC-VQA (0.4K) Geo3K (0.2K)
VQA-RAD (0.2K) LRV-Chart (0.2K)

Multi-Image (43.0%) NLVR (86.4K) Co-Instruct (50.0K) ScanNet (49.9K)
RAVEN (35.0K) IconQA (34.6K) VIST (26.0K) ScanQA (25.6K)
ContrastiveCaption (25.2K) ALFRED (22.6K) FlintstonesSV (22.3K) ImageCode (16.6K)
DreamSim (15.9K) Birds-to-Words (14.3K) PororoSV (12.3K) Spot-the-Diff (10.8K)
nuScenes (9.8K) VISION (9.9K) WebQA (9.3K) RecipeQA-VisualCloze (8.7K)
RecipeQA-ImageCoherence (8.7K) TQA (MI) (8.2K) AESOP (6.9K) HQ-Edit-Diff (7.0K)
MagicBrush-Diff (6.7K) COMICS-Dialogue (5.9K) MultiVQA (5.0K) VizWiz (MI) (4.9K)
CLEVR-Change (3.9K) NextQA (3.9K) IEdit (3.5K) Star (3.0K)
DocVQA (MI) (1.9K) MIT-PropertyCoherence (1.9K) MIT-StateCoherence (1.9K) OCR-VQA (MI) (1.9K)

Video (25.9%) ActivityNet (6.5K) Charades (23.6K) Ego4D (0.8K)
NextQA (9.5K) ShareGPT4Video (255.0K) Youcook2 (41.9K)

Figure 5: OneVision 1.6M. A high-quality single-image, multi-image and video dataset collection. Left: Data
Distribution within each category. The outer circle shows the distribution of all data categories and the inner circle
shows the distribution of data subsets. Right: The detailed quantities of datasets. “MI” means it is the multi-image
version dataset proposed by DEMON (Li et al., 2024e).

Language-Image Alignment High-Quality
Knowledge Learning Visual Instruction Tuning

Stage-1 Stage-1.5 Stage-2

Stage-1 Stage-1.5 Stage-2

Single-Image OneVision

V
is

io
n Resolution 384 384×{2×2, 1×{2,3}, {2,3}×1} 384×{{1×1}, · · · , {6×6}} 384×{{1×1}, · · · , {6×6}}

#Tokens 729 Max 729×5 Max 729×10 Max 729×10 (See Fig. 3)

D
at

a Dataset LCS Image (Sec. 4.1) Image (Sec. 4.2) (Multi)-Image & Video (Sec. 4.2)
#Samples 558K 4M 3.2M 1.6M

M
od

el

Trainable Projector Full Model Full Model Full Model
0.5B LLM 1.8M 0.8B 0.8B 0.8B
7.6B LLM 20.0M 8.0B 8.0B 8.0B
72.7B LLM 72.0M 73.2B 73.2B 73.2B

Tr
ai

ni
ng

Batch Size 512 256/512 256/512 256/512
LR: ψvision 1×10−3 2 ×10−6 2 ×10−6 2 ×10−6

LR: {θproj,ϕLLM} 1×10−3 1 ×10−5 1 ×10−5 1 ×10−5

Epoch 1 1 1 1

Table 1: Detailed configuration for each training stage of the LLaVA-OneVision model. The table outlines the
progression of vision parameters, dataset characteristics, model specifications, and training hyperparameters
across different stages of the curriculum learning process. We use a global batch size of 512 for the 0.5B
model, and 256 for the 7B and 72B models.

5 Training Strategies

To enable LLM for multimodal capabilities, we identify three critical functionalities, and systematically
divide them into three distinct learning stages for the purpose of ablation studies. As with most existing
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research, prior LLaVA models mainly explore the single-image instruction tuning. However, other parts are
less frequently investigated and therefore constitute the primary focus of this section.

We train the model via a curriculum learning principle, where training objectives and examples of increasing
difficulty are observed in a stage-wise manner. With a fixed compute budget, this strategy helps decompose
the training process and produces immediate checkpoints that can be re-used in more experiment trails.

• Stage-1: Language-Image Alignment. The goal is to well align the visual features into the word embedding
space of LLMs.

• Stage-1.5: High-Quality Knowledge Learning. To strike a balance between compute-efficiency and
injecting new knowledge into LMMs, we recommend to consider the high-quality knowledge for LMM
learning. The training configuration mirrors the settings used in Stage-2, ensuring consistency and
allowing the model to integrate new information seamlessly.

• Stage-2: Visual Instruction Tuning. To teach LMM to solve a diverse set of visual task with preferred
responces, we organize the instruction data into different groups, described in Section 4.2. The model is
scheduled to train on these groups in order.

Specifically, the visual instruction tuning process consists of two phases: (i) Single-Image Training: The
model is first trained on 3.2 million single-image instructions, resulting in a model with strong performance in
following a diverse set of instructions to complete visual tasks using a single image. (ii) OneVision Training:
The model is then trained on a mixture of video, single-image, and multi-image data. In this phase, the model
expands its capabilities from single-image scenarios to diverse scenarios. It learns to follow instructions to
complete tasks in each new scenario and transfer the learned knowledge across different scenarios, resulting in
new emergent capabilities. Note that the proposed OneVision training in the post-training stage is probably
the simplest and most cost-efficient way to empower the LMMs with the multi-image and video understanding
capabilities.

The training strategy is summarized in Table 1. We progressively train the model to deal with long sequence
training. The maximum image resolution and the number of visual tokens gradually increase as training
progresses. In Stage-1, the base image representation is considered with 729 tokens. In Stages 1.5 and 2,
AnyRes is considered with up to 5 times and 10 times more visual tokens, respectively. Regarding trainable
modules, Stage-1 updates only the projector, while the subsequent stages update the full model. It is also
noted that the learning rate for the vision encoder is 5 times smaller than that for the LLM.

6 Experimental Results

We conduct standardized and reproducible evaluations for LLaVA-OneVision models on all benchmarks using
LMMs-Eval (Zhang et al., 2024b). For fair comparison with other leading LMMs, we primarily report results
from original papers. When results are unavailable, we onboard the models in LMMs-Eval and evaluate
them using consistent settings. All our results are reported with greedy decoding and 0-shot settings unless
otherwise specified.

To reveal the generality and effectiveness of the designed paradigm, we comprehensively evaluate our LLaVA-
OneVision models across different modalities in Table 2, including single-image, multi-image, and video
benchmarks. Detailed results for each modality are presented in Table 3, Table 4, and Table 5, respectively.
We denote the the model checkpoint trained after the single-image stage and one-vision stage as LLaVA-OV
(SI) or LLaVA-OV, respectively

Three model sizes are provided (0.5B, 7B and 72B), to accomodate applications with different performance-
throughput trade-off, ranging from edge device to cloud serving. The GPT-4V and GPT-4o results are
presented as references. Our largest model LLaVA-OneVision-72B yields superior performance between
GPT-4V and GPT-4o on most benchmarks. It suggests that the proposed recipe is effecitve, revealing a
promising path for further scaling. However, a relatively larger gap remains in complex tasks such as visual
chat scenarios, we leave it as future research in stronger LLMs, larger training data and better preference
learning.
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6.1 Single-Image Benchmarks

To validate the performance for single-image tasks in real-world scenories, we consider a comprehensive set of
image benchmarks in Table 3. It can be categorized into three classes:

(1) Chart, Diagram, and Document Understanding. As the main visual formats for structured OCR data, we
evaluate the results on AI2D (Kembhavi et al., 2016a), ChartQA (Masry et al., 2022), DocVQA (Mathew
et al., 2021), and InfoVQA (Mathew et al., 2022) benchmarks. Though current open-source models such as
InternVL (Chen et al., 2023b) and Cambrian (Tong et al., 2024) achieve performance comparable to commercial
models, LLaVA-OneVision goes a step further, surpassing GPT-4V (OpenAI, 2023) and approaching the
performance level of GPT-4o (OpenAI, 2024).

(2) Perception and Multi-discipline Reasoning. Including visual perception scenarios, we reveal the potentials
of our model for more complex and challenging reasoning tasks. Specifically, we adopt the perception
benchmarks including MME (Yin et al., 2023), MMBench (Liu et al., 2023e), and MMVet (Yu et al., 2023),
and reasoning benchmarks such as MathVerse (Zhang et al., 2024e), MathVista (Lu et al., 2023a), and
MMMU (Yue et al., 2024). The results of LLaVA-OneVision significantly outperforms GPT-4V on various
benchmarks, and comparable to GPT-4o on MathVista. This further confirms the superiority of our framework
in visual perception and reasoning tasks.

(3) Real-world Understanding and Visual Chat. We consider the evaluation of LMMs as general-purpose
assistant in the wild as the most important metrics, beyond the lab environments. To validate the capabilities
in real-world scenarios, we utilize several widely-adopted benchmarks, including RealworldQA (x.ai), Vibe-
Eval (Padlewski et al., 2024b), MM-LiveBench (Zhang et al., 2024b), and LLaVA-Bench-Wilder (Li et al.,
2024b). While our model still has room for improvement compared to GPT-4V and GPT-4o, it achieves
competitive performance with open-source models of similar parameter size. Notably, our model performs
well on MM-LiveBench (Zhang et al., 2024b), a benchmark for real-world internet content with constantly
updated content, demonstrating the model’s broad world knowledge and strong generalization abilities.

6.2 Multi-Image Benchmarks

We further evaluate LLaVA-OneVision in multi-image interleaved settings, where users may ask questions
between multiples images. In particular, we perform comprehensive assessment on the diverse subtasks of
LLaVA-Interleave Bench (Li et al., 2024d), such as Spot the Difference (Jhamtani & Berg-Kirkpatrick, 2018a),
Image Edit Instruction (IEI) (Li et al., 2024d), Visual Storytelling (VST) (Huang et al., 2016), Text-rich
VQA (TR-VQA) (Liu et al., 2023d), Multi-image VQA (MI-VQA) (Raj et al., 2021), Raven Puzzle (Chia
et al., 2024), Q-Bench (QB) (Wu et al., 2023), and NLVR2 (Suhr et al., 2017)). We also utilize several
multi-view benchmarks for evaluation, which depict 3D environments with multiple viewpoints, including 3D
Dialogue (3D-Chat) and Task Decomposition (3D-TD) from 3D-LLM (Hong et al., 2023), ScanQA (Azuma
et al., 2022a), ALFRED (Shridhar et al., 2020), and nuScenes VQA (Bansal et al., 2020). We refer to these
datasets as in-domain evaluations, since our training data includes the training split of them.

Moreover, we conduct evaluations on different out-domain tasks, which reveals the generalization capability
of our approach. They include the multi-image split of math QA benchmark MathVerse (Zhang et al., 2024e)
and science QA benchmark SciVerse (Guo et al., 2024), multi-image perception benchmark BLINK (Fu
et al., 2024c), MMMU-(multi-image) (Yue et al., 2024) that contains all multi-image QA in MMMU, and
MuirBench (Wang et al., 2024) spanning 12 diverse multi-image tasks.

As shown in Table 4, LLaVA-OneVision (SI) consistently outperforms existing multi-image LMMs in all
benchmarks. After additional tuning on multi-image and video data, LLaVA-OneVision shows a marked
improvement over GPT-4V in specific areas, with significant margins. This highlights its strong performance
in complex tasks such as multi-image reasoning, identifying differences, and understanding 3D environments.
In addition, we observe a consistent performance enhancement on after the one-vision training stage, which
is more evident on multi-view benchmarks that are absent in single-image data. This demonstrates the
significance of our one-vision paradigm for empowering LMMs with comprehensive visual capbalities.
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6.3 Video Benchmarks

Video is also a common modality to build world model, capturing the dynamic nature of the real world
over time. We conduct experiments on several open-ended and multi-choice video benchmarks. These
include ActivityNet-QA (Yu et al., 2019) that contains human-annotated action-related QA pairs derived
from ActivityNet dataset, EgoSchema (Mangalam et al., 2024) and MLVU (Zhou et al., 2024a) focusing
on long video understanding, PerceptionTest (Pătrăucean et al., 2023) designed to evaluate the perception
skills, VideoMME (Fu et al., 2024b) and NeXTQA (Xiao et al., 2021) containing diverse video domains and
durations (from minutes to hours), VideoDetailCaption (LMMs-Lab, 2024) and Video-ChatGPT (Maaz et al.,
2023) for video detailed description and visua chat, respectively.

As shown in Table 5, LLaVA-OneVision achieves comparable or better results than previous open source
models with much larger LLMs. The superiority of LLaVA-OneVision is particularly evident in complex
benchmarks such as EgoSchema and VideoMME. Even compared to the advanced commercial model GPT-4V,
LLaVA-OneVision performs competitively on the ActivityNet-QA, MLVU, and VideoMME benchmarks.

Within the LLaVA-OV split, the smallest performance difference occurs in PerceptionTest, with a minimal
improvement of 0.5 points when scaling the LLM from 0.5B to 7B. This contrasts with at least a 5-point
improvement in other datasets. The modest gain at PerceptionTest suggests that LLaVA-OV’s perception
capabilities may mainly depend on its vision module, supporting findings from recent studies such as those
by Qiao et al. (Qiao et al., 2024), which separate the roles of the image encoder and the LLM in perception
and reasoning tasks. Notably, for datasets like EgoSchema that demand significant reasoning, a larger LLM
substantially enhances performance.

Moreover, in comparing LLaVA-OV-7B (SI) with LLaVA-OV-7B, the smallest improvement is seen with
ActivityNet-QA. This suggests that LLaVA-OV-7B (SI), which is trained only on images, can already perform
well on this dataset. Delving into ActivityNet-QA, it becomes apparent that many questions can be answered
by observing just a single frame from the video. For instance, the question “What’s the color of the ball?"
can be answered throughout the video as the ball is visible from start to finish. This scenario does not require
the model to understand the video sequence, allowing LLaVA-OV-7B (SI) to perform well.

7 Emerging Capabilities with Task Transfer
In addition to reporting the LLaVA-OneVision’s capabilities across various benchmarks, we also observe the
emerging behaviors of the proposed model with task transfer and composition, paving a promising way to
generalize to tackle real-world computer vision tasks in the wild. We illustrate several emerging capabilities
using examples as below.

S1: Joint understanding of diagram and chart (Transfer from single-image to multi-image) The
capability to understand tables and charts are seperately learned from single image diagram and single-image
chart understanding data, and the joint understanding task of table and chart do not appear in multi-image
data. As shown in Table 6, LLaVA-OneVision is capable of understanding and reasoning over the joint of
diagram and chart.

S2: GUI for multi-modal agent (Transfer from single-image and multi-image). Understanding
GUIs and applying multimodal models to agentic tasks is of great value. In Table 7, LLaVA-OneVision
recognizes the graphical user interface (GUI) screenshots of an iPhone and provides operational instructions
to search for and open the TikTok app. This task requires strong OCR capabilities learned from single-image
scenarios and relational reasoning skills developed from multi-image scenarios. The example highlights
LLaVA-OneVision’s proficiency in GUI understanding and task execution.

S3: Set-of-mark Prompting (Transfer from single-image task composition). Different from existing
open LLMs, LLaVA-OneVision demonstrates excellent set-of-marks (SoM) reasoning (Yang et al., 2023), an
emerging capability shown in Table 8. To the best of our knowledge, this is the first time that open LMMs
report good emerged SoM ability, as we observe that LLaVA-OneVision is able to produce SoM reasoning
for many examples in (Yang et al., 2023). This task is not explicitly included in our training data, it is
hypothsized that the ability is composed by visual referring and OCR.
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S4: Image-to-Video Editing Instruction (Transfer from single-image and video). LLaVA-
OneVision could generate detailed video creation prompts based on a static image in Table 9. Given an image
and a target video, the model constructs a coherent and vivid narrative for the video, detailing elements
such as characters, actions, background settings, and scene specifics. This task leverages both single-image
analysis and video comprehension. It is hypothesized that this ability is generalized from the composition of
single-image editing instruction task and video detailed description task.

S5: Video-to-Video Difference (Transfer from multi-image and video). Understanding differences
in images is a common ability in recent large multimodal models (LMMs), but our models extend this
capability to videos. Table 10 showcases LLaVA-OneVision’s ability to analyze differences between two video
sequences with the same beginning frame but different endings. The model provides a detailed comparison,
describing characters, actions, and scene changes. In Table 11, LLaVA-OneVision’s describe the differences
one by one between videos with a similar background but different main object in the foreground. This task
leverages spot the difference in the multi-image analysis to generalize to video scenarios.

S6: Multi-camera Video Understanding in Self-driving (Transfer from single-image and multi-
image to video). Understanding videos in a normal aspect ratio is straightforward, what about the videos
with multi-views? In Table 12, we observe that LLaVA-OneVision could analyze and interprets multi-camera
video footage from self-driving cars. Given video showing four camera views, the model describes each view
in detail and plans the ego car’s next move. This task combines multi-panel comprehension, video detailed
description, and spatial-temporal reasoning.

S7: Composed Sub-video Understanding (Transfer from multi-image to video). Besides multi-
view video, we see our model generalize to vertical videos with two sub-scenes. Table 13 demonstrates
LLaVA-OneVision’s ability to understand and describe the content and layout of a composed sub-video. Given
a vertical video with a series of frames featuring a consistent background and a person in the foreground, the
model provides a detailed analysis of visual elements, their arrangement, and the narrative context. This
task requires single-image analysis, multi-image sequence comprehension, and contextual reasoning.

S8: Visual prompting in video (Task transfer from single-image to video). In Table 14, LLaVA-
OneVision is able to understand the highlighed area with a semi-transparent circle in the video, and clearly
see the number “10” on the back of the player. The capability of understanding visual prompts and OCR is
a capablity of single-image LMMs. Our model displays the capablity of understanding visual prompts in
videos, without training on video data with visual prompts.

S9: Visual Referring in Image in Video Understanding. The ability to refer to image query when
answering questions about a video as shown in Table 15. This capbility is not seen in LLaVA-NeXT or
LLaVA-Interleave, this is proabably because strong base single-image training is required for such capabilty
to appear.

8 Conclusions

LLaVA-OneVision is a new, open LMM that shines when transferred to a broad range of tasks in the scenarios
of single-image, multi-image and videos. Our design allows new capabilities to emerge, through training
multiple scenarios together and task transfer, eg, strong visual understanding ability from image to video.
Our results demonstrate that LMMs trained with this open recipe and resources achieve state-of-the-art
performance across various benchmarks. We also hope that LLaVA-OneVision serves as a valuable starting
point for the community to build specific applications, and develop stronger LMMs for diverse vision scenarios
through further scaling.
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Capability Benchmark LLaVA
OneVision-
0.5B

LLaVA
OneVision-
7B

LLaVA
OneVision-
72B

GPT-4V
(V-
Preview)

GPT-4o

Single-Image

†AI2D
Science Diagrams

57.1% 81.4% 85.6% 78.2% 94.2%

†ChartQA
Chart Understanding

61.4% 80.0% 83.7% 78.5% 85.7%

†DocVQA (test)
Document Understanding

70.0% 87.5% 91.3% 88.4% 92.8%

†InfoVQA (test)
Infographic Understanding

41.8% 68.8% 74.9% - -

MathVerse (vision-mini)
Professional Math Reasoning

17.9% 26.2% 39.1% 32.8% 50.2%

MathVista (testmini)
General Math Understanding

34.8% 63.2% 67.5% 49.9% 63.8%

MMBench (en-dev)
Multi-discip

52.1% 80.8% 85.9% 75.0% -

MME (cog./perp.)
Multi-discip

240/1238 418/1580 579/1682 517/1409 -

MMStar
Multi-discip

37.5% 61.7% 66.1% 57.1% -

MMMU (val)
College-level Multi-disp

31.4% 48.8% 56.8% 56.8% 69.1%

MMVet Multi-discip 29.1% 57.5% 63.7% 49.9% 76.2%
SeedBench (image)
Multi-discip; Large-scale

65.5% 75.4% 78.0% 49.9% 76.2%

†ScienceQA
High-school Science

67.2% 96.0% 90.3% 75.7% -

RealworldQA
Realworld Scenes

55.6% 66.3% 71.9% 61.4% -

Vibe-Eval
Chanllenging Cases

33.8% 51.7% 50.7% 57.9% 63.1%

MM-LiveBench (2406)
Internet Content

49.9% 77.1% 81.5% - 92.4%

LLaVA-Wilder (small)
Realworld Chat

55.0% 67.8% 72.0% 81.0% 85.9%

Multi-Image

LLaVA-Interleave
Out-domain

33.3% 64.2% 79.9% 60.3% -

MuirBench
Comprehensive Multi-image

25.5% 41.8% 54.8% 62.3% -

Mantis
Multi-image in the Wild

39.6% 64.2% 77.6% 62.7% -

BLINK
Unusual Visual Scenarios

52.1% 48.2% 55.4% 51.1% -

†Text-rich VQA
OCR, Webpage, Ducument

65.0% 80.1% 83.7% 54.5% -

Video

ActivityNetQA
Spatio-Temporal Reasoning

50.5% 56.6% 62.3% 57.0% -

EgoSchema
Egocentric Video

26.8% 60.1% 62.0% - -

PerceptionTest
Perception and Reasoning

49.2% 57.1% 66.9% - -

SeedBench (video)
Multi-discip; Video

44.2% 56.9% 62.1% 60.5% -

LongVideoBench (val)
Long Video

45.8% 56.3% 63.2% 60.7% 66.7%

MLVU
Long Video

50.3% 64.7% 68.0% 49.2% 64.6%

MVBench
Multi-discip

45.5% 56.7% 59.4% 43.5% -

VideoChatGPT
Video Conversation

3.12 3.49 3.62 4.06 -

VideoMME
Multi-discip

44.0% 58.2% 66.2% 59.9% 71.9%

Table 2: Performance comparison to state-of-the-art commercial models with our LLaVA-OneVision models
(0.5B to 72B parameters) across diverse evaluation benchmarks spanning multiple modalities. † indicates
that the training set has been observed in our data mixture.
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Model AI2D ChartQA DocVQA InfoVQA MathVerse MathVista MMBench MME MMMU

test test val/test val/test mini-vision testmini en-dev test val

Qwen-VL-Max (Bai et al., 2023b) 79.3 79.8 -/93.1 - 23.0 51.0 77.6 2281 51.4
Gemini-1.5-Pro (Team, 2024) 94.4 87.2 -/93.1 -/81.0 - 63.9 - - 62.2
Claude 3.5 Sonnet (Anthropic, 2024) 94.7 90.8 -/95.2 49.7 - 67.7 - - 68.3
GPT-4V (OpenAI, 2023) 78.2 78.5∗ -/88.4 - 32.8 49.9 75.0 517/1409 56.8
GPT-4o (OpenAI, 2024) 94.2 85.7 -/92.8 - 50.2 63.8 - - 69.1

Cambrian-34B (Tong et al., 2024) 79.7 73.8 -/75.5 - - 53.2 81.4 - 49.7
VILA-34B (Lin et al., 2024) - - - - - - 82.4 1762 51.9
IXC-2.5-7B (Zhang et al., 2024c) 81.5 82.2 -/90.9 -/70.0 20.0 59.6 82.2 2229 42.9
InternVL-2-8B (Chen et al., 2023b) 83.8 83.3 -/91.6 -/74.8 27.5 58.3 81.7 2210 49.3
InternVL-2-26B (Chen et al., 2023b) 84.5 84.9 -/92.9 -/75.9 31.3 59.4 83.4 2260 48.3

LLaVA-OV-0.5B (SI) 54.2 61.0 75.0/71.2 44.8/41.3 17.3 34.6 43.8 272/1217 31.2
LLaVA-OV-0.5B 57.1 61.4 73.7/70.0 46.3/41.8 17.9 34.8 52.1 240/1238 31.4
LLaVA-OV-7B (SI) 81.6 78.8 89.3/86.9 69.9/65.3 26.9 56.1 81.7 483/1626 47.3
LLaVA-OV-7B 81.4 80.0 90.2/87.5 70.7/68.8 26.2 63.2 80.8 418/1580 48.8
LLaVA-OV-72B (SI) 85.1 84.9 93.5/91.8 77.7/74.6 37.7 66.5 86.6 563/1706 57.4
LLaVA-OV-72B 85.6 83.7 93.1/91.3 79.2/74.9 39.1 67.5 85.9 579/1682 56.8

Model MMVet MMStar S-Bench S-QA ImageDC MMLBench RealWorldQA Vibe-Eval LLaVA-W L-Wilder

test test image test test 2024-06 test test test small

Qwen-VL-Max (Bai et al., 2023b) - - - - - - - - - -
Gemini-1.5-Pro (Team, 2024) - - - - - 85.9 70.4 60.4 - -
Claude 3.5 Sonnet (Anthropic, 2024) 75.4 - - - - 92.3 59.9 66.2 102.9 83.1
GPT-4V (OpenAI, 2023) 49.9 57.1 49.9 75.7 91.5 - 61.4 57.9 98.0 81.0
GPT-4o (OpenAI, 2024) 76.2 - 76.2 - 92.5 92.4 58.6 63.1 106.1 85.9

Cambrian-34B (Tong et al., 2024) - - - 85.6 - - 67.8 - - -
VILA-34B (Lin et al., 2024) 53.0 - 75.8 - - - - 81.3 - -
IXC-2.5-7B (Zhang et al., 2024c) 51.7 59.9 75.4 - 87.5 - 67.8 45.2 78.1 61.4
InternVL-2-8B (Chen et al., 2023b) 60.0 59.4 76.0 97.0 87.1 73.4 64.4 46.7 84.5 62.5
InternVL-2-26B (Chen et al., 2023b) 65.4 60.4 76.8 97.5 91.0 77.2 66.8 51.5 99.6 70.2

LLaVA-OV-0.5B (SI) 26.9 36.3 63.4 67.8 83.0 43.2 53.7 34.9 71.2 51.5
LLaVA-OV-0.5B 29.1 37.5 65.5 67.2 83.3 49.9 55.6 33.8 74.2 55.0
LLaVA-OV-7B (SI) 58.8 60.9 74.8 96.6 85.7 75.8 65.5 47.2 86.9 69.1
LLaVA-OV-7B 57.5 61.7 75.4 96.0 88.9 77.1 66.3 51.7 90.7 67.8
LLaVA-OV-72B (SI) 60.0 65.2 77.6 91.3 91.5 84.4 73.8 46.7 93.7 72.9
LLaVA-OV-72B 63.7 66.1 78.0 90.3 91.2 81.5 71.9 50.7 93.5 72.0

Table 3: LLaVA-OneVision performance on single-image benchmarks. ∗GPT-4V reports 4-shot results on
ChartQA. All results are reported as 0-shot accuracy.
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in-domain multi-image in-domain multi-view out-domain

GPT-4V (OpenAI, 2023) 11.0 52.0 88.8 17.1 76.5 12.5 54.5 10.9 31.2 35.4 32.6 10.3 63.7 51.1 62.7 60.3 62.3 66.9

LLaVA-N-Image-7B† (Liu et al., 2024b) 13.2 39.4 68.0 9.0 51.0 12.9 59.6 10.1 - - - - - 41.8 46.1 13.5 - 12.2
VPG-C-7B (Li et al., 2023a) 15.2 46.8 73.2 2.4 57.6 27.8 38.9 21.5 - - - - - 43.1 52.4 24.3 - 23.1
Mantis-7B (Jiang et al., 2024) 11.2 52.5 87.4 25.7 69.9 17.6 45.2 12.5 2.60 14.7 16.1 14.0 46.2 46.4 59.5 27.2 36.1 29.3
LLaVA-N-Inter-7B (Li et al., 2024d) 24.3 87.5 88.8 48.7 74.2 37.1 76.1 33.1 - - - - - 52.6 62.7 32.8 38.9 31.6
LLaVA-N-Inter-14B (Li et al., 2024d) 24.5 95.0 91.1 59.9 76.7 40.5 78.6 33.3 70.6 52.2 34.5 62.0 76.7 52.1 66.4 33.4 40.7 32.7

LLaVA-OV-0.5B (SI) 15.6 44.8 56.1 30.0 45.8 8.5 36.7 7.6 22.1 22.1 16.9 25.5 8.2 37.9 38.2 20.9 22.7 26.7
LLaVA-OV-0.5B 17.1 48.7 63.4 35.4 48.8 36.4 65.0 29.8 60.0 48.0 29.4 62.2 70.5 52.1 39.6 60.0 25.5 29.1
LLaVA-OV-7B (SI) 20.5 60.3 75.9 24.6 56.0 7.9 52.8 8.4 24.5 29.9 22.1 32.0 70.8 45.6 54.2 26.3 32.7 30.0
LLaVA-OV-7B 22.2 90.2 89.4 53.3 74.5 39.2 80.1 31.7 62.8 52.6 30.1 61.0 79.8 48.2 64.2 67.6 41.8 79.1
LLaVA-OV-72B (SI) 22.1 61.2 78.9 44.2 61.5 15.6 67.9 12.1 30.8 25.4 21.9 43.5 75.5 46.0 56.8 58.6 33.2 65.8
LLaVA-OV-72B 22.5 95.3 93.8 63.4 83.2 43.3 83.7 34.5 63.2 53.3 35.8 66.3 78.8 55.4 77.6 91.6 54.8 94.9

Table 4: LLaVA-OneVision performance on multi-image benchmarks with all results reported in accuracy.
† denotes the LLaVA-NeXT-Vicuna-7B (2024-01). We use IEI for Image Edit Instruction, MI-VQA for
Multi-image VQA, NLVR2 for Natural Language for Visual Reasoning, SDiff for Spot the Difference, VST
for Visual Story Telling, TR-VQA for Text-rich VQA. For MathVerse and SciVerse, we report the accuracy
on their multi-image splits.
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GPT-4V (OpenAI, 2023) 57.0 - 49.2 43.5 - - 60.5 4.06 4.00 59.9/63.3 61.3
GPT-4o (OpenAI, 2024) - - 64.6 - - - - - - 71.9/77.2 66.7
Gemini-1.5-Flash (Team et al., 2023) 55.3 65.7 - - - - - - - 70.3/75.0 61.6
Gemini-1.5-Pro (Team et al., 2023) 57.5 72.2 - - - - - - - 75.0/81.3 64.0

VILA-40B (Lin et al., 2024) 58.0 58.0 - - 67.9 54.0 - 3.36 3.37 60.1/61.1 -
PLLaVA-34B (Xu et al., 2024a) 60.9 - - 58.1 - - - 3.48 - - -
LLaVA-N-Video-34B (Zhang et al., 2024h) 58.8 49.3 - - 70.2 51.6 - 3.34 3.48 52.0/54.9 50.5
LongVA-7B (Zhang et al., 2024d) 50.0 - 56.3 - 68.3 - - 3.20 3.14 52.6/54.3 -
IXC-2.5-7B (Zhang et al., 2024c) 52.8 - 37.3 69.1 71.0 34.4 - 3.46 3.73 55.8/58.8 -
LLaVA-N-Video-32B (Zhang et al., 2024h) 54.3 60.9 65.5 - 77.3 59.4 - 3.59 3.84 60.2/63.0 -

LLaVA-OV-0.5B (SI) 49.0 33.1 47.9 43.3 53.6 48.6 43.4 3.08 3.51 41.7/40.4 41.9
LLaVA-OV-0.5B 50.5 26.8 50.3 45.5 57.2 49.2 44.2 3.12 3.55 44.0/43.5 45.8
LLaVA-OV-7B (SI) 55.1 52.9 60.2 51.2 61.6 54.9 51.1 3.54 3.51 55.0/59.1 54.3
LLaVA-OV-7B 56.6 60.1 64.7 56.7 79.4 57.1 56.9 3.51 3.75 58.2/61.5 56.4
LLaVA-OV-72B (SI) 62.1 58.6 60.9 57.1 67.2 62.3 60.9 3.55 3.66 64.8/66.9 58.3
LLaVA-OV-72B 62.3 62.0 68.0 59.4 80.2 66.9 62.1 3.62 3.60 66.2/69.5 61.3

Table 5: LLaVA-OneVision performance on video benchmarks. We report the score out of 5 for VideoDC,
VideoChatGPT while other results are reported in accuracy. All results are reported as 0-shot accuracy.
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S1: Joint Understanding of Diagram and Chart from Multi-Image

User Ross owns a house similar to the brown sector in the following image . They want to get
the insurance from Allstate. The price per unit area is given in the following figure . What
would be the cost of insuring the whole house? All the computations are rounded to two
places of decimal.

LLaVA-OV To find the cost of insuring the whole house, we need to calculate the area of the sector and
then multiply it by the price per unit area. The area of the sector can be calculated using
the formula A = (θ/360) ∗ π ∗ r2, where θ is the central angle and r is the radius. In this case,
θ = 40◦ and r = 11. Plugging these values into the formula, we get A = (40/360) ∗ π ∗ 112 ∼
38.01. The price per unit area is given in the table as $63. Multiplying the area by the price
per unit area, we get the cost of insuring the whole house as 38.01 ∗ $63 ∼ $2, 386.03.

Table 6: LLaVA-OneVision transfers its ability to understand diagram and table to multi-image scenarios,
interpreting multiple images in a coherent manner.
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S2: Multi-image GUI Understanding for Agents

User There are four sequential mobile UI screens, and are transformed by three steps of tap operations.
Please respectively describe the three tap operations.

LLaVA-OV The image shows a sequence of four mobile application interface screens. Here’s a breakdown of
the three tap operations based on the visible changes:
1. First Tap Operation:

- The user starts by tapping on the search bar at the top of the screen.
- The keyboard is shown at the bottom of the screen, indicating that the user can now type a

search query.
- The user types "TikTok" in the search bar and taps the search icon on the keyboard to initiate

a search.
2. Second Tap Operation:

- After tapping the search icon or pressing ’Enter’, the screen displays a list of search results.
- The user taps on the first result, which is the TikTok application.
- This action opens the TikTok’s app store page, which includes the app icon, developer

information ...
3. Third Tap Operation:

- The user taps the "Open" button on the app store page.
- This action opens the TikTok application, and the screen transitions to the app’s main

interface.

Table 7: LLaVA-OneVision plays the role of agent. It recognizes multiple screenshots on the iPhone and take
action to interact with the iPhone, providing operation instructions for automating tasks.
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S3: Set-of-mark Prompting

User Here’s an image with objects labeled in numbers. Please describe the objects that are
marked as 4, 5 and 7.

LLaVA-OV The image shows a room with various items marked with numbers. Here’s the description
for the items marked as 4, 5, and 7:
The item marked as 4 is a framed picture hanging on the wall. It features a black and
white illustration of a dandelion with seeds blown away, creating a sense of movement.
The item marked as 5 is a white bookshelf with multiple shelves. It appears to be a
storage unit that is part of the room’s furniture. It is located between the two desks.
The item marked as 7 is a black chair with a modern design. It has a metal frame and a
woven seat, suggesting a contemporary style. This chair is positioned in front of one of
the desks.

Table 8: LLaVA-OneVision exhibits excellent set-of-mark prompting capabilities, ie, referring to marks when
answering questions. This example demonstrates that describing specific objects based on numerical labels
within an image highlights its comprehension skills in handling fine-grained visual content.

S4: Image-to-Video Editing Instruction

User Please provide the video generation instruction that can change the source image to the
target video.

LLaVA-OV To generate a video from the provided image, you would need to create a sequence of
images that depict the progression of the mushrooms being transformed into penguins.
Here’s a step-by-step guide on how to create this video:
1. Start with the initial image of the mushrooms on a plate.
2. In the next image, begin to change the appearance of the mushrooms to resemble
penguins. Start with the smallest mushrooms and gradually move to the larger ones.
3. Continue to transform the mushrooms into penguins, adding details such as eyes,
beaks, and flippers.
4. As the video progresses, more mushrooms should be transformed, and the penguins
should appear to interact with each other and the mushrooms.
5. The final images should show a group of penguins interacting with the mushrooms,
creating a playful and whimsical scene. Remember to maintain a consistent style and
color palette throughout the video to ensure a cohesive look. The transformation should
be smooth and realistic, making it seem as though the mushrooms are naturally turning
into penguins.

Table 9: LLaVA-OneVision learns to generate detailed video creation prompts based on a static image. This
capability is generalized to videos from the image-to-image language editing generation.
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S5: Video-to-Video Difference

User Here are two videos, please provide the analysis on their differences.
LLaVA-OV The first video shows a sequence of images where a man in a blue plaid shirt approaches

a woman in a red dress, engages in a conversation, and eventually gives her a kiss on the
cheek. The woman in the red dress is looking at the man with a slight smile, and another
woman in a light blue top is observing the scene. The setting appears to be a street with
buildings in the background.
The second video shows the same man in the blue plaid shirt walking away from the
woman in the red dress, who is now looking in the opposite direction. The woman in
the light blue top is no longer visible in this sequence. The man is walking down the
street, passing by the buildings and other pedestrians. The overall mood of the video
changes from the intimate and personal interaction in the first video to a more solitary
and neutral scene in the second video.

Table 10: LLaVA-OneVision learns to analyze differences between videos with the same starting frame but
different endings.
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S5: Video-to-Video Difference

User What are the differences between the two videos?
LLaVA-OV The first video features a caterpillar with green and black stripes on its body, resting on a

leaf. The caterpillar has white, bristly hair-like structures along its back. The background
is blurred, but it appears to be a garden or a natural setting with green foliage and some
sunlight filtering through. The second video shows a butterfly with blue and black wings,
resting on a leaf. The butterfly has white spots on its wings and an orange patch near
the base of the wings. The background is also blurred but suggests a similar garden or
natural setting with greenery. The differences between the two videos are:
1. The first video shows a caterpillar, while the second video shows a butterfly.
2. The caterpillar has green and black stripes, while the butterfly has blue and black
wings with white spots.
3. The caterpillar has white, bristly hair-like structures along its back, which are not
present on the butterfly.
4. The butterfly has a more delicate and transparent appearance compared to the fuzzy
texture of the caterpillar.
5. The wings of the butterfly are spread out, while the caterpillar is in a curled position.
6. The butterfly has long antennae, which are not visible in the caterpillar’s frame.

Table 11: LLaVA-OneVision learns to analyze differences between videos with similar backgrounds but
different foreground objects.
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S6: Multi-camera Video Understanding in Self-driving

User Here is a video showing four camera views of a driving car. The top two show front views,
and the bottom two show back views. First describe the video of each view in detail, and
then plan the next move of the ego car.

LLaVA-OV The video consists of six different camera views of a driving car, arranged in two columns
with three rows. Each view captures the car from a different angle, showing both front
and back perspectives.
In the front views:

1. The first image shows the car approaching an intersection with a pedestrian crossing.
There are cars ahead, and the pedestrian is visible on the sidewalk.

2. The second image shows the car at the intersection, with the pedestrian crossing
and cars ahead. The pedestrian is now closer to the car.

3. The third image shows a pedestrian visible on the sidewalk.
In the back views:

1. The first image shows the car approaching the intersection with pedestrians crossing
and a black car aside.

2. The second image shows the car at the intersection, with several cars behind.
3. The third image shows the car passing through the intersection, with the pedestrian

visible on the sidewalk.
The next move of the ego car would be to continue driving forward, following the road
and traffic rules, and ensuring the pedestrian’s safety as they cross the street.The next
move of the ego car would be to continue driving forward, following the road and traffic
rules, and ensuring the pedestrian’s safety as they cross the street.

Table 12: LLaVA-OneVision analyzes and interprets multi-camera video footage in self-driving contexts.
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S7: Composed Sub-video Understanding

User Please describe the video’s content and layout in detail.
LLaVA-OV The video showcases a series of frames featuring a central, obscured foreground view of a

room, presumably a game room or office setup. The room is adorned with several posters
on the wall, a model of a humanoid figure wearing armor, and various other items that
suggest a space dedicated to hobbies or gaming. In the foreground, there is a person,
likely a woman, who is wearing headphones and has a neutral to slightly surprised facial
expression, indicating that she may be reacting to something off-screen.
The backdrop throughout the video is a dynamic, digital illustration from the television
show "Game of Thrones," specifically from the series "House of the Dragon." This series is
a prequel to "Game of Thrones" and centers around the House Targaryen, a prominent
family within the show’s fictional world. The images in question feature characters from
the series, including members of House Targaryen. Some characters are seen in battle
attire, riding dragons, and engaged in combat scenarios. The scenes are detailed and
vivid, depicting intense moments from the show, such as the White Walkers and dragon
battles.
The video starts with the person in the foreground wearing headphones and a black shirt.
Behind her, the consistent backdrop from "House of the Dragon" unfolds, focusing on
characters from the series. It is evident that the series elements are meant to evoke a
sense of drama and tension that is central to the narrative of "House of the Dragon."
As the video progresses, the scenes transition through various moments from the series.
The characters are shown in different scenarios, such as riding dragons, engaging in
combat, and experiencing intense moments. The visuals are rich with color and detail,
highlighting the epic scale and dramatic tone of the series. The consistent presence of the
game room setup in the foreground provides a sense of continuity throughout the video.
The video captures the essence of "House of the Dragon" by using dramatic and action-
packed scenes from the series. The person in the foreground remains a constant, adding
an element of personal reaction to the intense moments presented in the background.
In summary, the video juxtaposes a calm, possibly surprised individual in a game room
setup with dynamic and intense scenes from "House of the Dragon," creating a contrast
between the peaceful foreground and the dramatic background

Table 13: LLaVA-OneVision learns to understand and describe composed sub-videos in detail.
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S8: Visual Prompting in Video

User Describe the player highlighted in the video.
LLaVA-OV The player highlighted in the video is wearing a white kit, and the number "10" is visible

on their shirt. This player is positioned in the center of the pitch and is actively involved
in the play, demonstrating control and dribbling skills as they navigate around the field.
The player is surrounded by opponents in red kits, indicating that they are likely a key
player for their team, possibly a playmaker or attacking midfielder. Throughout the
video, the player maintains possession of the ball and creates opportunities for their team,
showcasing their importance in the game’s dynamics.

Table 14: LLaVA-OneVision learns to provide detailed descriptions of highlighted subjects in video content.
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S9: Referring Image in Video Understanding

User There are 2 images. Does the person in image 1 appear in image 2? If yes, what is he
doing ?

LLaVA-OV Yes, the person from image 1 appears in image 2. He is playing soccer with two other
individuals in a residential outdoor area.

User Who is the man in image 1?
LLaVA-OV The man is Lionel Messi.

User Here is an image and a video. Does the man shown in the image also appear in the video?
If yes, describe his behavior in detail.

LLaVA-OV Yes, the man shown in the image appears in the video. He is seen engaging in a soccer
activity in a grassy outdoor area. He is dressed in a white shirt, dark pants, and white
shoes. Throughout the video, he is seen standing near a yellow and black soccer ball,
and at various points, he is either preparing to kick the ball or has just kicked it. His
actions suggest he is actively participating in the game, and he appears to be in motion,
indicating movement and activity.

User Here is a video and an image. Does the man shown in the image also appear in the video?
Explain it.

LLaVA-OV The man shown in the image does not appear in the video. The image shows a person in
a red sports jersey with the number 7, while the video features individuals playing with a
soccer ball in a grassy outdoor area. The clothing, background, and activity are different
between the image and the video, indicating that they are separate and not related.

User Who is the man in the image?
LLaVA-OV The man is Cristiano Ronaldo.

Table 15: LLaVA-OneVision’s capability in referring image and video understanding. It accurately identifies
the same individual in two images in the first instance. It identifies the same individual in both the image and
the video in the second instance and correctly concludes the absence of the individual in the third instance,
indicating its understanding capability to relate visual query in both image and video understanding.
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A Implmenetation Details

A.1 Token Strategy for Mixed-Modality Data

We provide a detailed explanation of our token strategy for handling mixed-modality data within LLaVA-
OneVision’s architecture, which is illustrated in Figure 3.

For single-image data, we employ the AnyResMax-9 strategy, as previously outlined in blog Li et al. (2024a).
Using SO400M Zhai et al. (2023) as the Vision Encoder, each input image (or grid) is processed into 729
visual tokens. Consequently, the maximum number of visual tokens for a single image is 729 × (1 + 9), where
1 × 729 represents the base tokens and 9 × 729 accounts for the grid tokens.

For multi-image data, we utilize a simple padding strategy. Each image is first resized to fit within a 384x384
frame by zero-padding, as required by SO400M, while maintaining the aspect ratio. After processing through
the vision encoder, the zero-padding is removed from the tokens. Our training data includes up to 12 images
per instance, resulting in a maximum of 12 × 729 multi-image tokens.

For video data, we adopt a strategy similar to LLaVA-NeXT-Video Zhang et al. (2024h). Each frame is
processed through the vision encoder and then subjected to 2 × 2 bilinear interpolation, resulting in 196
tokens per frame. We sample up to 32 frames per video, leading to a maximum of 32 × 196 video tokens.

As shown in Figure 3, the maximum number of tokens across different modalities is approximately equal.
This design strategy aims to balance the data from various modalities, ensuring more equitable representation
that is transferable from the perspective of the language model. For instance, a high-resolution image can be
interpreted as a composition of multiple images, and multiple images can be understood as a shorter video.

A.2 Language Templates and Special Tokens

We utilize the Qwen-2 series Yang et al. (2024) language models with the template as OpenAI’s ChatML1.
During training, we adopt <image> as the marker for image tokens, following previous LLaVA models. This
image special token is represented as −200 in the input index after tokenization. For multi-image scenarios,
we use multiple <image> interleaved with text to denote the positions of the images. For video scenarios, we
place a single <image> at the beginning to indicate the inclusion of a video.

One more aspect related to the handling of image tokens is ensuring that there are no extra <image> in the
data. For instance, in some code writing tasks, there could be <image>...</image> related to HTML code.
To avoid potential misunderstandings, we manually removed around 10 such samples from the Magpie Xu
et al. (2024b) and Screen2Words Wang et al. (2021) datasets.

B Evaluation Steers Development

B.1 Post-Evaluation as a Development Tool

With the help of our comprehensive evaluation toolkit, LMMs-Eval Zhang et al. (2024b), we conduct
post-evaluations on a selected set of benchmarks after each training experiment concludes.

Our preference for selecting benchmarks is based on whether the targeted scenarios are sufficiently important
and specific. These evaluations should not be too resource-intensive, meaning the benchmarks should not
contain too many items, take too long to evaluate, or consume a large number of GPT-4V tokens (when
using it as the judge model).

In our development, we evaluate on AI2D Kembhavi et al. (2016a), ChartQA Masry et al. (2022),
DocVQA Mathew et al. (2021), and InfoVQA Mathew et al. (2022) to examine the model’s fine-grained
understanding of tables, charts, and diagrams, as well as MME Fu et al. (2024a) for formatting control, since
it requires only Yes or No answers. We also include MMBench-Dev Liu et al. (2023e) and MMMU-Val Yue

1OpenAI Release v0.28.0/chatml.md
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et al. (2024) for multi-discipline evaluation. Quickly obtaining evaluation results on these benchmarks will
guide our next steps in model development and data curation.

B.2 Improving Model Performance on Key Scenarios

During our development process, we gradually recognized the significance of using static evaluation benchmarks
as perfprmance indicators. Our primary goal at this stage is not to overfit the model to certain datasets to
achieve exceptionally high performance. Instead, we benchmark our models against GPT-4V’s performance
to set our target thresholds (e.g., initially 80%, gradually increasing to 95%-100%). Once the model meets the
score requirements in static evaluations, it indicates that the model has sufficient capabilities in the selected
scenarios. Furthermore, we cannot blindly pursue results on benchmarks, as even the test data for AI2D may
have certain issues 2.

Ultimately, our focus is on optimizing the model’s visual chat and reasoning capabilities. In this stage, we
monitored the model’s performance on benchmarks such as MathVista Lu et al. (2023a), LLaVA-Wilder Li
et al. (2024b), MM-LiveBench Zhou et al. (2024b), and Vibe-Eval Padlewski et al. (2024a). These benchmarks
require the model to engage in visual dialogue with challenging questions, and demand a diverse skill set with
extensive world knowledge. This helps us create a model with strong generalization capabilities in real-world
scenarios.

B.3 Evaluation Task Information

In this section, we provide information on all the tasks used during the evaluation. Specifically, we use the
default post_prompt and pre_prompt from the LMMs-Eval framework. These prompts are consistent with
the evaluation of our previous LLaVA-NeXT Li et al. (2024b); Zhang et al. (2024h); Li et al. (2024d). The
table below details the specific tasks used in LMMs-Eval and their corresponding task names.

Tasks Information
• Single-image:

– ai2d, chartqa, docvqa_val, infovqa_val, mme, realworldqa, mathvista_testmini, llava_in_the_wild,
mmvet, mmbench_en_dev, ocrbench, mmmu, llava_wilder_small, vibe_eval, wildvision_0617,
live_bench_2406, mathverse_testmini_vision, seedbench, scienceqa_img, mmstar, dc100_en

• Videos:
– activitynetqa, videochatgpt, nextqa_mc_test, egoschema, video_dc499, videmme,

videomme_w_subtitle, perceptiontest_val_mc, mlvu, mvbench, longvideobench_val_v
• Multi-image:

– llava_interleave_bench, muirbench

By referring to the task names listed here, the audience can directly retrieve the generation arguments and
specific prompt information. For instance, the details for tasks=ai2d are available at lmms-eval/ai2d. By
following these settings, researchers can easily reproduce our results.

C Data Curation Roadmap of LLaVA-NeXT Series

In this section, we provide the in-depth experience and roadmap of data curation in the LLaVA-NeXT series.
To achieve strong multimodal performance, we need to collect and curate high-quality data from various
sources, which is crucial for the model’s generalization capabilities.

C.1 Single-Image Data Curation

As the primary data source, our principle for single-image data has always been that quality outweighs
quantity. Given limited resources, we strive to use high-quality data to maximize the performance.

2Discussion on AI2D Evaluation
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The first version of the LLaVA-NeXT models (LLaVA-NeXT-Vicuna-7B/13B, Mistral-7B, Hermes-Yi-34B),
comprising 760K data samples Liu et al. (2024b), includes 665K samples from LLaVA-1.5 Liu et al. (2024a),
3,247 samples from AI2D Kembhavi et al. (2016b), 18,317 samples from ChartQA Masry et al. (2022),
10,194 samples from DocVQA Mathew et al. (2021), 20,000 samples from DVQA Kafle et al. (2018), 40,093
samples from SynthDOG-EN Kim et al. (2022), and 15,131 samples from user requests on LLaVA’s demo,
re-annotated with GPT-4V. In the subsequent iteration, we added 20,000 samples from COCO Caption Lin
et al. (2015), forming a new 790K version. This 790K dataset supported the second release of LLaVA-NeXT
models (LLaVA-NeXT-LLaMA3-8B, LLaVA-NeXT-Qwen-72B, LLaVA-NeXT-Qwen-110B).

In subsequent collections, we accumulated open-sourced datasets from the Internet and referred to the dataset
collection processes of other advanced LMMs, such as Qwen-VL Bai et al. (2023b), DeepSeek-VL Lu et al.
(2024), Intern-VL Chen et al. (2023b), Vision-Flan Xu et al. (2024d), UReader Ye et al. (2023), Idefics-2
(Cauldron) Laurençon et al. (2024), and Cambrian. During the data iteration process, we strictly adhered to
the initial LLaVA-1.5 strategy. For each dataset, we manually inspected and ensured its quality and QA
format. We also designed specific formatting prompts to make data from different sources compatible with
each other, thus avoiding conflicts.

Some data sources, such as AI2D and ChartQA, appear in different dataset collections and may be duplicated.
Since Cauldron includes special formatting prompts, its data is not straightforward to re-format. Therefore,
we prioritize using data from other collections that are closer to the raw format. For the Cambrian dataset,
we only selected a subset of the GPT-4o re-annotated data. We also collected math-related data from the
MathV and MAVIS datasets.

For the pure language data, we replaced the ShareGPT ShareGPT (2023) text data that LLaVA has been
using since version 1.5. Given that our largest Qwen2-72B model has achieved performance levels close to
latest GPT-4 model in language tasks, we need to use higher quality language data to maintain or further
enhance its language capabilities. To achieve this, we sourced the highest quality language SFT data available,
the Magpie-Pro dataset Xu et al. (2024b).

After undergoing the aforementioned process, we have obtained approximately 4 million raw SFT data
samples, ensuring their quality and accuracy. Additionally, we utilized Azure’s OpenAI GPT-4V and GPT-4o
services to re-annotate our data, focusing on scenarios that were not adequately covered by the original data
but are crucial. These scenarios include:

(1) Detailed Descriptions on Charts and Diagrams: For this scenario, we used images from the AI2D
and InfoVQA training sets and employed GPT-4V to provide detailed descriptions of the images, resulting in
4,874 detailed descriptions for AI2D and 1,992 samples for InfoVQA.

(2) Chinese Language: We used images from the LLaVA-158K dataset and employed GPT-4o to provide
detailed descriptions in Chinese, resulting in a total of 91,466 samples.

(3) Multi-turn Dialogue: Also with the LLaVA-158K dataset, we employed GPT-4o to create long dialogues
with an average of more than 3 turns per conversation, obtaining a total of 26,048 samples.

When resources permit, we recommend a data validation process we used in early stage data sourcing. We
extract approximately 100K samples from each newly added data source or collection (if the selected data
source can form a collection) and add them to the 790K version of the dataset. We validate newly added data
under the SO400M-Qwen-1.5-0.5B experimental setting. If the addition of new data results in a performance
decline compared to the baseline, we conduct further manual inspections of the data and adjust the formatting
prompt accordingly. This step requires abundant resources and must be carried out by highly professional
researchers, as it cannot be substituted with average human annotators.

During the collection process, we manually labeled the datasets with two tags: {General, Language, Math-
/Reasoning, General OCR, Doc/Chart/Screen} and {Fixed-form, Free-form}. Based on these tags, we formed
the final distribution of 3.2 million single-image data samples.

Starting with the initial distribution, we gradually increased the amount of free-form (most of them are
GPT-4V/o annotated) data and observed the model’s performance on various benchmarks and try to balance
among them. These benchmarks include academic datasets, such as AI2D Kembhavi et al. (2016a), MME Fu
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et al. (2024a), MMMU Yue et al. (2024), MathVista Lu et al. (2023a), and visual chat datasets, such as
LLaVA-Wilder Li et al. (2024b), and Vibe-Eval Padlewski et al. (2024a). Ultimately, we gradually established
an optimal data distribution for single-image tasks under the 7B setting.

C.2 OneVision Data Curation

In addition to single-image data, we incorporate multi-image and video datasets to support a wider scope of
visual scenarios. We aim to balance the capability among different data modalities, and achieve an overall
superior performance with one framework as LLaVA-OneVision.

For multi-image data, we adopt the diverse interleaved multimodal tasks within M4-Instruct dataset from
LLaVA-NeXT-Interleave Li et al. (2024d). This dataset mainly comprises general multi-image tasks, such as
spotting the difference, visual story telling, image editing instruction generation, interleaved multi-image
dialogue, multi-image puzzle, low-level multi-image assessment, etc. Besides, we also utilize the multi-view
datasets in M4-Instruct to indicate spatial information in the 3D world, including embodied VQA (dialogue
and planning) and 3D scene VQA (captioning and grounding).

For video data, we first integrate the multi-frame data from M4-Instruct, including NExT-QA Xiao et al.
(2021) and ShareGPT4Video Chen et al. (2024b). Then, to enable more detailed temporal cues, we select
several datasets commonly used in recent academic research for re-annotation, including Charades Sigurdsson
et al. (2016), ActivityNet Yu et al. (2019), YouCook2 Zhou et al. (2017), and Ego4D Grauman et al. (2022).
Initially, we annotated captions. Following ShareGPT-4o Laboratory (2023), we sampled video frames at 1
frame per second (FPS) and used the pre-defined instructions to prompt GPT-4o for generating video captions.
Additionally, following LLaVA-Hound Zhang et al. (2024g), we developed open-ended question-answering pairs
and their corresponding multiple-choice versions using the captions created by GPT-4o. We also employed
GPT-4o to generate question-answer pairs, obtaining high-quality video data for OneVision training.

C.3 Detailed Dataset Statistics

We primarily use tables to present the statistical information of all datasets utilized in both the Single-Image
and OneVision stages. The information includes the dataset category, dataset name, number of samples, and
prompt type. The dataset statistics are summarized in Table 16.
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Dataset # Samples Prompt ID Dataset # Samples Prompt ID
General (1.14M, 36.1%)

AOKVQA Schwenk et al. (2022) 66160 1 Cambrian (filtered) Tong et al. (2024) 83131 -
CLEVR Johnson et al. (2017) 700 1 COCO Caption Lin et al. (2015) 20000 9
Hateful Memes Kiela et al. (2020) 8500 1 IconQA Lu et al. (2021c) 2494 5
Image Textualization Pi et al. (2024) 99583 11 LLaVA-158K Liu et al. (2023c) 158000 -
LLaVA-Wild (train) Liu et al. (2023c) 54517 - LLaVAR Zhang et al. (2023b) 20000 -
OKVQA Marino et al. (2019) 8998 1 RefCOCO Yu et al. (2016) 50586 7,8
ScienceQA Lu et al. (2022) 4976 5 ShareGPT4O ShareGPT (2023) 57289 11
ShareGPT4V ShareGPT (2023) 92025 11 ST-VQA Biten et al. (2019) 17247 1
TallyQA Acharya et al. (2019) 9868 1 Vision FLAN Xu et al. (2024d) 186070 -
Visual7W Zhu et al. (2016) 14366 5 VisText Tang et al. (2023) 9969 15
VizWiz Gurari et al. (2018) 6614 2 VQARAD Lau et al. (2018) 313 1
VQAv2 Antol et al. (2015) 82783 1 VSR Liu et al. (2023a) 2157 3
WebSight 10000 18 InterGPS Lu et al. (2021b) 1280 5
ALLaVA Instruct Chen et al. (2024a) 70000 -

Doc/Chart/Screen (20.6%, 647K)
AI2D (GPT4V Detailed Caption) 4874 12 AI2D (InternVL Chen et al. (2023b)) 12413 4
AI2D (Original) Kembhavi et al. (2016b) 3247 5 Chart2Text Obeid & Hoque (2020) 26961 13
ChartQA Masry et al. (2022) 18317 1 Diagram Image2Text 300 17
DocVQA Mathew et al. (2021) 10194 1 DVQA Kafle et al. (2018) 20000 1
FigureQA Kahou et al. (2018) 1000 3 HiTab Cheng et al. (2022) 2500 1
Infographic VQA Mathew et al. (2022) 4404 1 LRV Chart Liu et al. (2023b) 1787 -
RoBUT SQA 8514 - RoBUT WikiSQL 74989 -
RoBUT WTQ 38246 1 Screen2Words Wang et al. (2021) 15730 10
TQA Kembhavi et al. (2017b) 1365 5 UReader Caption Ye et al. (2023) 91439 9
UReader IE Ye et al. (2023) 17327 1 UReader KG Ye et al. (2023) 37550 14
UReader QA Ye et al. (2023) 252954 1 VisualMRCTanaka et al. (2021) 3027 -

Math/Reasoning (20.1%,632K)
MAVIS Manual Collection Zhang et al. (2024f) 87358 19 MAVIS Data Engine Zhang et al. (2024f) 100000 19
CLEVR-Math Johnson et al. (2017) 5290 2 Geo170K Align Gao et al. (2023) 60252 -
Geo170K QA Gao et al. (2023) 67833 19 Geometry3K Lu et al. (2021b) 2101 6
GEOS Seo et al. (2015) 508 6 Geometry3K (MathV360K) Lu et al. (2021a) 9734 6
GeoMVerse (MathV360K) Kazemi et al. (2023) 9303 20 GeoQA+ (MathV360K) Chen et al. (2022b) 17172 6
MapQA (MathV360K) Chang et al. (2022) 5235 1 MathQA Amini et al. (2019) 29837 19
Super-CLEVR Li et al. (2023b) 8652 2 TabMWP Lu et al. (2023b) 45184 2
UniGeo Chen et al. (2022a) 11959 6 GQA Hudson & Manning (2019) 72140 1
LRV Normal Liu et al. (2023b) 10500 - RAVEN Zhang et al. (2019) 2100 3
Visual Genome Krishna et al. (2016) 86417 7,8

General OCR (8.9%,281K)
ChromeWriting Wendler (2023) 8835 21 HME100K Yuan et al. (2022) 74502 21
IIIT5K Mishra et al. (2012) 2000 22 IAM Marti & Bunke (2002) 5663 22
K12 Printing 12832 22 OCR-VQA Mishra et al. (2019b) 80000 1
Rendered Text Wendler (2023) 10000 22 SynthDog-EN Kim et al. (2022) 40093 16
TextCaps Sidorov et al. (2020) 21952 9 TextOCR-GPT4V Carter (2024) 25114 11

Pure Language (450K) (14.3%, 647K)
Magpie Pro Xu et al. (2024b) (L3 MT) 149999 - Magpie Pro (L3 ST) 150000 -
Magpie Pro (Qwen2 ST) 149996 -

Table 16: The detailed statistics of Single-Image datasets used in LLaVA-OneVision. Prompt ID denotes the
ID of Formatting Prompt which is corresponding to the ID in Table 18. - denotes no fromatting prompt is
used.
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Dataset # Samples Prompt ID Dataset # Samples Prompt ID
Multi-image Scenarios

Spot-the-Diff Jhamtani & Berg-Kirkpatrick (2018b) 10.8K 20 Birds-to-Words Forbes et al. (2019) 14.3K 21
CLEVR-Change Park et al. (2019); Hosseinzadeh & Wang (2021) 3.9K 22 HQ-Edit-Diff Hui et al. (2024) 7.0K 3
MagicBrush-Diff Zhang et al. (2024a) 6.7K 4 IEdit Tan et al. (2019) 3.5K 19
AESOP Ravi et al. (2021) 6.9K 23 FlintstonesSV Gupta et al. (2018) 22.3K 24
PororoSV Li et al. (2019) 12.3K 25 VIST Ting-Hao et al. (2016) 26K 4
WebQA Chang et al. (2021) 9.3K 8 TQA (MI) Kembhavi et al. (2017a) 8.2K 9
OCR-VQA (MI) Mishra et al. (2019a) 1.9K 17 DocVQA (MI) Mathew et al. (2021) 1.9K 18
RAVEN Zhang et al. (2019) 35K 5 MIT-StateCoherence Isola et al. (2015) 1.9K 11
MIT-PropertyCoherence Isola et al. (2015) 1.9K 12 RecipeQA ImageCoherence Yagcioglu et al. (2018) 8.7K 14
VISION Bai et al. (2023a) 9.9K 13 Multi-VQA Li et al. (2024e) 5K -
IconQA Lu et al. (2021c) 34.6K - Co-Instruct Wu et al. (2024) 50.0K -
DreamSim Fu et al. (2023) 15.9K - ImageCoDe Krojer et al. (2022) 16.6K -
nuScenes Caesar et al. (2020) 9.8K 10 ScanQA Azuma et al. (2022b) 25.6K 7
ALFRED Shridhar et al. (2020) 22.6K 16 ContrastCaption Jiang et al. (2024) 25.2K -
VizWiz (MI) Gurari et al. (2018) 4.9K 6 ScanNet Dai et al. (2017) 49.9K 7
COMICS Dialogue Iyyer et al. (2017) 5.9K 15 NLVR2 Suhr et al. (2019) 86K 26

Multi-frame (Video) Scenarios
NExT-QA Xiao et al. (2021) 9.5K 2 ActivityNet Yu et al. (2019) 6.5k 1
Ego-4D Grauman et al. (2022) 0.8K 2 Charades Sigurdsson et al. (2016) 23.6K 1
YouCook2 Zhou et al. (2017) 41.9K 2 ShareGPT4Video Chen et al. (2024b) 255K -

Table 17: The detailed statistics of Multi-Image and Video datasets used in LLaVA-OneVision. Prompt ID
denotes the ID of Formatting Prompt corresponding to the ID in Table 19. - denotes no fromatting prompt
is used. “MI" means it is the multi-image version dataset from DEMON Li et al. (2024e).
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ID Type Postion Prompt
1 VQA Tail Answer the question with a single word (or phrase).
2 VQA Head Hint: Please answer the question and provide the final answer at the end.
3 VQA (Yes/No) Tail Answer the question with Yes or No./Yes or No?/...
4 Choice Tail Answer with the given letter directly
5 Choice (Option Letter) Tail Answer with the option letter from the given choices directly. / Please

respond with only the letter of the correct answer.
6 Choice (Option Letter) Head Hint: Please answer the question and provide the correct option letter,

e.g., A, B, C, D, at the end.
7 Region Caption All Provide a short description for this region.
8 Grounding All Provide the bounding box coordinate of the region this sentence describes.
9 Breif Caption All Provide a one-sentence caption for the provided image./Create a compact

narrative representing the image presented./...
10 Screen Summarization All Summarize the main components in this picture./Provide a detailed ac-

count of this screenshot./...
11 Detailed Caption All Describe this image in detail./Explain the visual content of the image in

great detail./...
12 Science Books All Here is a diagram figure extracted from some Grade 1 - 6 science

books.\nPlease first describe the content of this figure in detail,
including how the knowledge visually displayed in the diagram.\nThen
start with a section title \"related knowledge:\", briefly
and concisely highlight the related domain knowledge and theories that
underly this diagram. Note that you do not need to provide
much detail. Simply cover the most important concepts.

13 Information Extraction Head Provide the requested information directly.
14 Graph Sumarization All Please clarify the meaning conveyed by this graph./Explain what this

graph is communicating./...
15 Photo Sumarization All Highlight a few significant elements in this photo./Mention a couple of

crucial points in this snapshot./...
16 Chart Sumarization All What insights can be drawn from this chart?/Explain the trends shown in

this chart./...
17 OCR Head OCR this image section by section, from top to bottom, and left to right.

Do not insert line breaks in the output text. If a word is split
due to a line break in the image, use a space instead

18 Diagram Linkage All Dissect the diagram, highlighting the interaction between ele-
ments./Interpret the system depicted in the diagram, detailing component
functions./...

19 Code Generation All Compose the HTML code to achieve the same design as this screenshot.
20 Choice (with Reasoning) Head First perform reasoning, then finally select the question from the choices

in the following format: Answer: xxx.
21 Math Computing Tail Round computations to 2 decimal places.
22 LaTeX OCR All Please write out the expression of the formula in the image using LaTeX

format.
23 Text Reading All What is written in the image? Answer this question using the text in the

image directly./Read and list the text in this image.
24 Choice (Full Option) Tail Please provide your answer by stating the letter followed by the full option.

Table 18: The information of formatting prompts for Single-Image data. The “Position" means the position
of the formatting prompt in the prompt where “All" means the formatting prompt is the prompt. Some-
times, there are multiple prompts of the same meaning. In this case, the prompt column is fomatted as
“Prompt1/Prompt2/...".
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ID Type Postion Prompt

Video

1 Choice (Option Letter) Tail Answer with the option letter from the given choices directly. / Please respond with only the letter of
the correct answer.

2 Choice (Full Option) Tail Please provide your answer by stating the letter followed by the full option.

Multi-Image

3 Open-Ended Head What’s the difference between 2 images?
4 Open-Ended Head Given the stories paired with the first several images, can you finish the story based on the last

image?/With the narratives paired with the initial images, how would you conclude the story using the
last picture?/...

5 Multi-Choice Head Here is a Raven’s Progressive Matrice in a three-by-three form. You are provided with the first eight
elements in eight images, please select the last one from four choices following the structural and analogical
relations.

6 Multi-Choice All There are ten possible explanations for the ten different answers to a VQA: ... I will give you two sets of
pictures, questions, and answers to determine if they belong to the same ’Question-Answer Differences’.
You must choose your answer from the Choice List.

7 Open-Ended Head This is a 3D scenario.
8 Open-Ended Head I will give you several images and a question, your job is to seek information in the slide and answer the

question correctly./Based on the images, please answer the following question./...
9 Multi-Choice Head Provided with a series of diagrams from a textbook, your responsibility is to correctly answer the following

question. You must choose your answer from the Choice List./Using a selection of textbook diagrams,
your task is to provide an accurate response to the subsequent query. You must choose your answer from
the Choice List./...

10 Open-Ended Head Given six images taken from different cameras on a street view car, your task is to answer questions about
the depicted scene. You must choose your answer from the Choice List. /Upon receiving six photographs
captured from various cameras on a street-view car, your responsibility is to provide accurate responses
to questions about the scene. You must choose your answer from the Choice List. /...

11 Multi-Choice Head I will provide you with two sets of pictures, each of which shows an object in the opposite state. Can you
tell me if the states of these two sets of pictures are the same? You must choose your answer from the
Choice List. /I have two sets of pictures that show an object in opposite states. Can you tell me if the
states of these two sets of pictures are the same? You must choose your answer from the Choice List. /...

12 Multi-Choice Head Are the following four images of the same class? You must choose your answer from the Choice List. /Do
the following four images belong to the same category? You must choose your answer from the Choice
List. /...

13 Multi-Choice Head Are these two workpieces the same type?/Are these two workpieces of the same kind?/...
14 Multi-Choice Head Presented with a textual recipe tutorial, your task is to scrutinize it carefully and select the image that

is incoherent in the provided sequence of images. You must choose your answer from the Choice List.
/Given a text-based recipe guide, your responsibility is to meticulously review it and identify the image
that doesn’t fit in the following sequence of images. You must choose your answer from the Choice List.
/...

15 Multi-Choice Head I will give you a series of comic panels. The dialogue box of the last panel is masked. Can you choose
the most relevant one from the candidates? You must choose your answer from the Choice List. /Given
previous full panels and one masked panel, your job is to select the most appropriate dialogue among
four candidates. You must choose your answer from the Choice List. /...

16 Open-Ended Head Give you a main goal, your job is to figure out what to do now by looking at current envirments. Your past
views as well as decisions are also provided./Given a primary objective and your current surroundings,
use your previous decisions and perspectives to determine your next move./...

17 Multi-Choice Head I will give you two pictures of the book cover. Please look at the pictures and answer a question You must
choose your answer from the Choice List. /I will provide you with two images of the book cover. Please
examine the images and answer a question. You must choose your answer from the Choice List. /...

18 Multi-Choice Head I will give you some pictures, and each group of pictures will correspond to a question. Please answer
it briefly. You must choose your answer from the Choice List. /For each group of pictures, there is a
question. Please give a short answer to it. You must choose your answer from the Choice List. /...

19 Open-Ended Head Please give a editing Request to describe the transformation from the source image to the target
image./What is the correct image edit instruction that can transfrom the source image to target
image?/...

20 Open-Ended Head What’s the difference between 2 images? /Identify the alterations between these two images. /...
21 Open-Ended Head What’s the difference between 2 birds? /Identify the alterations between these two birds. /...
22 Open-Ended Head What’s the difference between 2 images? /Identify the alterations between these two images. /...
23 Open-Ended Head Given the stories paired with the first several images, can you finish the story based on the last

image?/With the narratives paired with the initial images, how would you conclude the story using the
last picture?/...

24 Open-Ended Head Given the stories paired with the first several images, can you finish the story based on the last
image?/With the narratives paired with the initial images, how would you conclude the story using the
last picture?/...

25 Open-Ended Head Given the stories paired with the first several images, can you finish the story based on the last
image?/With the narratives paired with the initial images, how would you conclude the story using the
last picture?/...

26 Multi-Choice All Answer the following multiple-choice question: Here is a statement describing 2 images: ... Is it true or
false?

Table 19: The information of formatting prompts for One-Vision data. The “Position" means the position of the formatting
prompt in the prompt where “All" means the formatting prompt is the prompt. Sometimes, there are multiple prompts of the
same meaning. In this case, the prompt column is fomatted as “Prompt1/Prompt2/...".
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C.4 Policy Information and Reproducibility

We will open-source most of the public datasets we used. These images and data are already publicly available
for academic research; we incorporated them and converted the format for our use. However, a small portion
of our data sources related to user data and those obtained using the Azure OpenAI Service cannot be directly
released due to company policy. We will provide the exact data YAML files used in the final reproduction
scripts and will offer reproducible experimental scripts, training logs, and final version checkpoints using fully
public data as our compute resources allow.
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