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ABSTRACT

Spurious correlations often arise when models associate features strongly correlated
with, but not causally related to, the label e.g. an image classifier associates bodies
of water with ducks. To mitigate spurious correlations, existing methods focus on
learning unbiased representation or incorporating additional information about the
correlations during training. This work removes spurious correlations by “Erasing
with Activations” (EvA). EvA learns class-specific spurious indicator on each
channel for the fully connected layer of pretrained networks. By erasing spurious
connections during re-weighting, EvA achieves state-of-the-art performance across
diverse datasets (6.2% relative gain on BAR and achieves 4.1% on Waterbirds).
For biased datasets without any information about the spurious correlations, EvA
can outperform previous methods (4.8% relative gain on Waterbirds) with 6 orders
of magnitude less compute, highlighting its data and computational efficiency.

1 INTRODUCTION

Deep neural networks are susceptible to shortcuts and correlations with spurious features – features
predictive for training but lacking genuine causation. For example, consider an image classifier
for cats and dogs; if training images commonly depict dogs (but not cats) on grass, the model
may misclassify a cat on grass as a dog because grass is learned as a spurious feature. “Right
for the wrong reason” (Geirhos et al., 2020; Ross et al., 2017), spurious correlations may lead to
unintended biases (Zech et al., 2018; Sagawa et al., 2019) and catastrophic failures in real-world
environments (Adamson & Smith, 2018; Lesort, 2022).

Studies on spurious correlations and shortcuts (Zhu et al., 2021; Pezeshki et al., 2021; Bai et al.,
2021b) have shown that deep networks prioritize simple and low-frequency features like backgrounds
and textures (Xu et al., 2019). A straightforward approach adopted by Sagawa et al. (2019); Idrissi
et al. (2022) tries to identify the spurious correlation with “unbiased” data, e.g., dogs and cats with
grass as background. These methods may be data-wise expensive depending on the amount of
unbiased dataset or human annotation on spurious correlation, i.e., spurious feature label. Other
works (Arjovsky et al., 2019; Nam et al., 2020; Kim et al., 2022; Li et al., 2022; Tiwari & Shenoy,
2023) aim to learn invariant representations. These methods may be computationally expensive, as
they perform multiple rounds of retraining.

Recent works (Ye et al., 2023; Kirichenko et al., 2022; Krueger et al., 2021) contend that neural
networks, despite having spurious features, also learn “correct” core features; this is the case even at
the final (linear) layer. Previous methods such as DFR (Kirichenko et al., 2022) use unbiased dataset
to re-learns the last linear layer, freezing the feature extractor. Unfortunately, DFR’s effectiveness
decreases when the re-weighting dataset is small, and even worse when there is no additional unbiased
dataset or when the additional dataset is biased (Ye et al., 2023), underscoring the need for both
computational- and data-efficient alternatives.

Is it possible to identify spuriousness with minimal unbiased data while also preserving computational
efficiency? In this work, we propose a method that is robust to a small unbiased dataset, as well as a
variant that functions effectively without the need for any additional unbiased dataset and spurious
feature label during training with only a few minutes training on a single GPU.

We focus only on spuriousness at a feature (channel) level, specifically before the last linear layer. If
unbiased data is available, we compute a spurious measure for each feature based on the consistency of
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Figure 1: Spurious feature detection in EvA. When “unbiased” data is accessible, we measure the
spuriousness based on the activation distribution differences between spurious and unbiased data.
When only biased data is available, we estimate spuriousness by evaluating the contribution of each
feature to the energy score over the biased dataset.

penultimate activations between the spurious and unbiased datasets. In the absence of unbiased data,
the activations of a model fit to spurious training set can serve as a reliable indicator of spuriousness.
We assess the contribution of each feature to the network’s prediction confidence. Features with high
confidence are likely to be spurious, as the model has over-fitted on the spurious training set; we refer
to this metric as evidence energy. Subsequent to this evaluation, the fully connected layer undergoes
re-weighting based on the computed spurious indicators.

Utilizing consistency and evidence energy as to quantify the extent of spuriousness, the models
undergo fine-tuning based on their respective spurious indicators. "Erase Spurious Correlation with
Activations" (EvA) encompasses EvA-C (EvA-consistency), tailored for scenarios with extra training
data, and EvA-E (EvA-evidence energy), tailored for scenarios without extra data. Through channel-
based erasure and re-weighting on the final linear layer, EvA-C necessitates only 40% of the extra
unbiased data previously required and EvA-E can work even if only biased data is provided. For
computational efficiency, EvA-E significantly reduces the training duration to a mere 10 minutes, in
contrast to the 6 days necessitated by previous methodologies. EvA also yield improved performance
outcomes across the BAR, CelebA, and Waterbirds datasets (EvA-C achieves 6.2% relative gain on
BAR, EvA-E achieves 4.1% on Waterbirds, etc). Our contributions include:

• We propose a pipeline where the spurious indicators are first computed for each feature via
consistency and evidence energy, the spurious correlations are then erased by re-weighting
the fully connected layer based on the computed spurious indicators.

• We introduce two methods for detecting spurious feature: Consistency and Evidence Energy.
The latter obviating the necessity for extra training data.

• Under both settings, training with or without extra data, EvA achieves state-of-the-art
performance across various datasets with only minutes of training on a single GPU, compared
to six days of training per GPU. Both versions significantly outperform previous methods
without unbiased dataset or any annotation about existing spurious correlations.

2 RELATED WORKS

Spurious correlation has been studied from different perspectives, including worst-case generalization
and deep feature re-weighting with extra data, unbiased representation learning without extra data.
We provides a more detailed discussion in Appendix C.

Worst case generalization in extra-data settings. To address a specific spurious feature, a set of
works (Sagawa et al., 2019; Bai et al., 2021a; Teney et al., 2021) explicitly divide the dataset into
several feature-label groups based on the presence or absence of the given spurious feature. And the
target to overcome spurious correlation is formalized as minimizing the classification error on the
worst group (Sagawa et al., 2019). These methods show promising performance but are limited in
practicability because of the huge cost of identifying and labeling spurious features in the real world.
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Unbiased representation learning. To address the need for spurious feature labels, previous works
try to learn unbiased representations from a biased dataset. Most of these approaches (Nam et al.,
2020; Kim et al., 2022; Tiwari & Shenoy, 2023; Lee et al., 2023; Liu et al., 2021) adopt multi-stage
training and introduce additional neural networks and hyperparameters, all of which require extensive
computational resources for selection via validation data with less spurious correlations. Our method
is more efficient by moving the debiasing module into post-hoc erasure on the linear layer.

Deep feature reweighting. Similar to approaches using worst case generalization, methods rooted
on DFR (Kirichenko et al., 2022; Ye et al., 2023) are applied in extra-data setting where “unbiased”
validation data is available during training. DFR (Kirichenko et al., 2022) is efficient by retraining
the last linear layer with balanced data to robustify the classifier on overcoming spurious correlation.
This supports an important assumption: deep features commonly include both spurious features and
core features, motivating our works to erase spurious feature directly. However, different from our
work applied in both settings, the performance of DFR decreases significantly when the extra dataset
is imbalanced among feature-label groups or the size is limited.

3 METHOD

3.1 PRELIMINARIES

Following (Kirichenko et al., 2022; Ye et al., 2023), we model data-label pairs (x, y) based on core
and spurious components:

x = (xcore, xspu) ∈ Rd, y = βxcore + ϵcore, (1)

where core component xcore is drawn from some distribution P and the spurious component xspu is
correlated to the associated label y for samples from training set Dtrain but not for testing set Dtest:

xcore ∼ P ∈ Rd1 , xspu =

{
γT y + ϵspu ∈ Rd2 , ∼ Dtrain

ϵspu ∈ Rd2 , ∼ Dtest
. (2)

In Equation 1 and 2, the terms ϵcore and ϵspu denote noise associated with the core and spurious
components respectively, while the parameters β and γ are normalized coefficients. Furthermore, the
spurious component, being dependent on label y, is class-specific.

Consider a k-class neural network classifier f : x → ŷ, where x ∈ Rd, and ŷ ∈ Rk. f can be
decomposed into a feature extractor g and classifier h, i.e. f = h◦ g. The feature extractor g : x→ Z
yields an m-dimensional feature Z ⊂ Rm, while the classifier h is typically a linear function:

ŷ = h(Z) = WZ + b, where W ∈ Rk×m, b ∈ Rk. (3)

We define ϕ as the distribution of Z over some dataset, with ϕ(i) representing the distribution of the
i-th channel of Z. To further characterize the distribution for each class, we use ϕ(ik) to denote the
distribution ϕ(i) for class k, where the input data is restricted to class k. If f is learned on a training
set contains spurious correlation for class k, then ϕ(ik) will be spuriously correlated with class k.

3.2 QUANTIFYING SPURIOUS CORRELATIONS.

We aim to quantify the extent of the spurious correlation for feature ϕ(ik). To that end, we introduce
the Consistency measure and the Evidence Energy measure. The former is computed when unbiased
data Dunbiased is available, while the latter can be estimated without unbiased data Dunbiased.

3.2.1 WITH UNBIASED DATA: CONSISTENCY

We define the Consistency between ϕ(ik) and class k as the distance between training and testing
distributions of ϕ(ik):

C(ik) = −d(ϕ(ik)
train , ϕ

(ik)
test ) ≈ −d(ϕ

(ik)
train , ϕ

(ik)
unbiased). (4)
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Above, d is a symmetric function evaluating the distance between two distributions as a positive real
number; we use the Wasserstein distance (Vallender, 1974), which is commonly used as a distribution
metric (Arjovsky et al., 2017; Wang et al., 2021).

To approximate the unknown ϕ
(ik)
test , we instead compute the distance based on ϕ

(ik)
unbiased, estimated

from additional unbiased data Dunbiased. In comparison, other approaches use Dunbiased to re-learn
weights (DFR (Kirichenko et al., 2022)) or select hyperparameters (Arjovsky et al., 2019; Nam et al.,
2020; Kim et al., 2022; Li et al., 2022; Tiwari & Shenoy, 2023).

3.2.2 WITHOUT UNBIASED DATA: EVIDENCE ENERGY

We also define a measure without Dunbiased based on the observation that there is a high probability
of spurious correlations for network predictions with high confidence or prediction logits (Tiwari &
Shenoy, 2023; Xu et al., 2019). We elaborate on this observation from a theoretical perspective in
Section 3.4 and empirically in Section 4.2. In light of this observation, our aim is to determine the
feature contribution to the final logit, based on the energy.

Energy: The energy (LeCun et al., 2006; Liu et al., 2020) for an input x is formally defined as:

E(x) = −T · log
K∑

k=1

efk(x)/T , (5)

where T represents a temperature parameter, and fk(x) denotes the logit associated with class k.
Throughout training, the energy of training samples is implicitly minimized. As such, the energy
serves as an indicator of the network’s prediction confidence (LeCun et al., 2006; Liu et al., 2020);
the lower the energy, the more confident the prediction is.

Evidence Energy: We introduce the concept of evidence energy to quantify the correlation between
activation ϕ(ik) and the prediction confidence. To delineate, for a given data point x from the training
set, the evidence energy of x is approximated as the linear term of a Taylor expansion:

e(ik)(x) ≈ δE(x)

δϕ(ik)
· ϕ(ik) = −Mk ·Wki∑K

t=1 Mt

· ϕ(ik), where Mt = exp(

d∑
j=1

Wtj · ϕ(jk) + bt). (6)

We further define the expectation of the evidence energy on training dataset Dtrain as:

E(ik) = Ex∈Dk
train

[e(ik)(x)] ≈ 1

|Dk
train|

∑
x∈Dk

train

e(ik)(x), (7)

where Dk
train denotes training data for class k. The evidence energy is directly correlated with

consistency when the network f is trained on biased data. This observation is grounded in the notion
that neural networks prefers to learn simple features – the simplicity bias, as established by existing
works (Xu et al., 2019; Zhu et al., 2021; Sagawa et al., 2019). Furthermore, spurious features are
often simple (Pezeshki et al., 2021; Ye et al., 2023; Tiwari & Shenoy, 2023). Subsequently, during
inference, spurious correlations leads to elevated confidences and therefore evidence energy scores.

3.3 EVA PIPELINE.

EvA is a post-hoc method that detects spurious feature, erases it by setting the corresponding weights
to 0, and then re-weights the remaining core feature.

Detection. Given a spurious model f , we define a spurious feature indicator I(ik) for feature i on
class k to identify a set of spurious feature:

Φk = {ϕj ∈ Φ | I(jk) = 1} (8)

If Dunbiased is available, we use consistency as an indicator; otherwise, we use the evidence energy
from Equation 7:

I(ik)C =

{
1, C(ik) ≤ δC
0, C(ik) > δC

and I(ik)E =

{
1, E(ik) ≤ δE
0, E(ik) > δE

. (9)
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Both the threshold for consistency δC and evidence energy δE are determined by the erase ratio ϵ, a
hyperparameter determined in the re-weighting stage.

Reweighting. Re-weighting limits the linear layer’s dependency on spurious features and prioritizes
the core features. After distinguishing the two with the above indicators, we eliminate potential
spurious features within each class k by setting the corresponding weights to zero before relearning
the remaining non-zero weights.

More formally, given the set of spurious evidence for each class Φk, as determined by Equation 8, we
solve for new weights {W ∗, b∗}, which rely only on core evidence Φ \ Φk for each class k. Given a
reweighting dataset Dr, and a frozen feature extractor g, the objective of the linear layer {W ∗, b∗}
can be defined as a constrained optimization:

min
W∗,b∗

L(Dr; g,W
∗, b∗) s.t. Wkj = 0, ∀ϕj ∈ Φk, k ∈ {1 . . .K}. (10)

Dunbiased is used as Dr if it is available (EvA-C); note that differs from DFR (Kirichenko et al., 2022),
which retrains all the weights of the linear layer from both core and spurious features. Without any
Dunbiased, we use Dtrain instead (Eva-E). Such a setting is appealing as no extra unbiased dataset or
spurious feature label is required during training. We provide the whole algorithm in Appendix B.

3.4 THEORETICAL RESULTS

Following the framework used by (Arjovsky et al., 2019; Ye et al., 2023), we conceptualize the
network with two linear layers and employ data generation mechanism as the same as Section 3.1
for formal theoretical analysis, with further details of these conventional assumptions provided
in Appendix A. In this section, we consider some class k and two features ϕ(ak) and ϕ(bk). For
simplicity, we omit the superscript k, and two features can be represented as:

ϕ(a) = g(a)corexcore + g(a)spuxspu, and ϕ(b) = g(b)corexcore + g(b)spuxspu, (11)

where g
(a)
core is the coefficient associated with core component xcore for feature ϕ(a), g(a)spu is the

coefficient associated with spurious component xspu. Similarly, g(b)core and g
(b)
spu are the corresponding

coefficients of feature ϕ(b). We analyze the relationship of consistency and evidence energy with the
spurious component xspu.

Consistency: Feature with low consistency can be formally interpreted as having a greater reliance
on spurious components.

Theorem 1. (Informal) Under a set of assumption, the consistency of ϕ(a) exceeds that of ϕ(b) (i.e.,
C(ak) > C(bk)) if and only if |g(a)spuE[xspu]| < |g(b)spuE[xspu]|.

This theorem substantiates the claim that the spuriousness of a feature can be quantified through con-
sistency, as higher consistency indicates reduced reliance, i.e., |gspuE[xspu]|, on spurious component
xspu. The proof and more detailed explanations are given in Appendix A.1.

Evidence Energy: By comparing the evidence energy of two features, we demonstrate that spurious
features tend to have lower evidence energy, and this tendency becomes more pronounced as the
dataset becomes more biased. Let η2coreI and η2spuI denote the variance of xcore and xspu respectively.

Theorem 2. (Informal) Under a set of assumption, if η2spu < η2core and Wkag
(a)
spuxspu >

Wkbg
(b)
spuxspu, it holds that P

(
E(ak) < E(bk)

)
= 0.5 + R(ηspu, ηcore), where R(·, ·) is a strictly

positive-valued function.

The condition ηspu < ηcore mathematically describe that the noise associated with the spurious
component is less than that of the core component and making the spurious feature easier to learn (Ye
et al., 2023). Theorem 2 shows that if a feature contributing to the final result relies more on xspu,
i.e. Wkgspuxspu, it’s more likely to have lower evidence energy. The residual R increases when
the noise in the spurious feature is significantly smaller than the noise in the core feature, i.e., the
spurious feature is easier for the model to learn. The proof and more details for Theorem 2 are given
in Appendix A.2.
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While the theoretical model is a simplified view of neural networks and real-world data, we verify
empirically in Section 4.2 that both consistency and evidence energy can identify spurious features.

4 EXPERIMENTS & ANALYSIS

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation. We verify our proposed framework with the datasets listed in Table 1.
The datasets can be characterized by the conflicting ratio (Tiwari & Shenoy, 2023), or the proportion
of samples that counter the spurious correlation within the entire dataset. A detailed description is
given in Appendix D. For each dataset, we report the mean and standard deviation over ten runs on
the average top-1 Accuracy unless otherwise indicated.

• CMNIST. Color-MNIST (Tiwari & Shenoy, 2023) is a synthesized dataset that colors the
digits 0 and 1 from MNIST (Deng, 2012). In the training set, the 0’s are red and the 1’s are
green; in testing, the colors are mixed across the two digits.

• BAR. The Biased Activity Recognition dataset (Nam et al., 2020), features six human
actions spuriously correlated with the background in training but not in testing.

• Waterbirds. Waterbirds (Sagawa et al., 2019) is a two-class image dataset of water- and
ground-birds; the class is correlated with the background (water or ground) in training but
not in testing. It is evaluated according to Accuracy and Worst Acc (Sagawa et al., 2019;
Ye et al., 2021; 2023), which is the accuracy of the worst label-context group.

• CelebA Hair. CelebA is a large human face benchmark (Liu et al., 2018). Following
settings from (Ye et al., 2023; Tiwari & Shenoy, 2023), the task is to predict hair color based
on the face image. In the training dataset, >99% instances with blond hair are women so
blond hair and gender are spuriously correlated. CelebA is evaluated additionally based on
the Unbiased accuracy over each label-context group and Conflicting accuracy, averaged
over the bias-conflicting samples per class following (Li et al., 2022; Kim et al., 2022).

Training and Validation. For fair comparison with previous works (Nam et al., 2020; Tiwari &
Shenoy, 2023; Li et al., 2022; Teney et al., 2022), we use the ResNet18 (He et al., 2016) as the base
model initialized with weights pre-trained on ImageNet and the same settings of (Nam et al., 2020;
Tiwari & Shenoy, 2023; Li et al., 2022; Teney et al., 2022). To compare with the methods focusing
on minimizing the error in the worst label-context group, we also provide the results on ResNet50
with previous work in the Appendix E.2.

We use SGD optimization with a fixed learning rate of 0.001. For CMNIST, Waterbirds and CelebA,
we use the same validation and test dataset as (Sagawa et al., 2019; Ye et al., 2023; Tiwari & Shenoy,
2023). BAR has no provided validation set, so we randomly split the testing dataset into two equal
halves across the ten experiments to form a validation set that follows the same testing distribution.
To select the erase ratio ϵ, we retrain the linear layer with different erase ratio candidates and select
the one with the highest accuracy on Dunbiased.

Reweighting dataset. Under the setting without extra data, the training dataset is used as a reweight-
ing dataset. Under the setting with extra data, the validation dataset is split equally, while one serves
as a reweighting dataset, the other serves to select hyper-parameter. In BAR where the spurious
feature is not labeled, the reweighting dataset is also biased. In CelebA and Waterbirds, we follow
DFR (Kirichenko et al., 2022) to sample “unbiased” dataset from the validation set.

4.2 ANALYSIS

We analyze our methods according to 1) the correlation between evidence energy and consistency, 2)
the effectiveness of feature erasure, 3) data efficiency, and 4) computation efficiency.

Evidence energy & Consistency. We empirically access the correlation between evidence energy and
consistency. In Figure 2, we present an illustrative example of a feature set predicting the action class
Throwing in the BAR dataset, with an erase ratio of ϵ = 0.1. Inconsistency is computed between
the training dataset and the validation dataset. Figure 2 (a) shows a moderate positive correlation
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Dataset Val ratio Hparams goal Conflicting ratio
Train Val / Test

CMNIST 30% Accuracy 0% 50%
BAR 16% Accuracy 0% 100%
Waterbirds 25% Worst Acc 5% 25%
CelebA 12% Unbiased 0.8% 0.9%

Table 1: Summary of dataset details. ’Val ratio’ in-
dicates the proportion of the validation dataset size
relative to the training dataset size. ’Conflicting ratio’
denotes the proportion of images that counter the spu-
rious correlation within the entire dataset.

Method Target Feature Color Accuracy Digit Accuracy
EvA Color 98.74±1.0 52.34±8.8

Digit 51.45±2.4 97.32±2.8

ERM Color 97.78±1.3 51.66±1.8

Digit 92.11±2.5 56.03±7.2

Table 2: Accuracy (%; mean±std) on CMNIST Color
Dataset and Digit Dataset. ERM fails to learn the
more complex digit feature, whereas EvA achieves
97.78% on the digit dataset and only 51.45% on the
color dataset, indicating erasure of the color feature.

(a) (b) (c)
Figure 2: (a) Correlation between negative consistency and negative evidence energy for class Throwing in
the BAR dataset. Each point represents feature ϕi for a sample. Feature on the right of the blue line is erased
by evidence energy and most of spurious feature, i.e. above the green line, is erased as well. (b) Percentage of
erased feature within a range of inconsistency for class Throwing in the BAR dataset, e.g. 78% feature with
inconsistency between [1.0, 1.5] is erased. Erasing by evidence energy results in erasing most feature with high
inconsistency while keeping the core feature. (c) Effect of unbiased dataset size on BAR’s Accuracy. As the
unbiased set diminishes in size, the accuracy of EvA-C surpasses that of DFR by a greater margin.

between negative evidence energy and inconsistency, with a Pearson correlation coefficient of 0.704.
When EvA-E removes the feature above the erase threshold, we simultaneously eliminate most
spurious feature identified by consistency, which is demonstrated in Figure 2 (b). This observation
underscores the effectiveness of EvA in erasing a substantial amount of spurious feature while still
maintaining core feature.

We further use Integrated Gradient (Sundararajan et al., 2017) to compute the saliency map of the
value of feature with respect to the input, which shows that feature with lower evidence energy and
consistency tends to focus on spurious feature. We provide more analysis in the Appendix E.3.

Effectiveness on Feature Erasure. We verify the ability to control the feature of our EvA framework
on the CMNIST Dataset, as proposed by (Tiwari & Shenoy, 2023). In the testing dataset where the
colors are mixed across the two digits, we report the accuracy of predicting color labels and digit
labels. If the model erases the target feature successfully, then it will have nearly 50% accuracy
in predicting it but high accuracy when predicting the other feature. Notably, the target feature is
determined by the validation dataset. For instance, if the target feature is color, then the label of
validation data is also dependent on the color, and vice-versa.

Table 2 shows that EvA easily controls the feature it relies on to make predictions. Due to the
simplicity bias (Zhu et al., 2021), empirical risk minimization (ERM) still tends to learn color features
when the target is a digit, failing to overcome the spurious correlation between color and digit. EvA
overcomes it by erasing the other feature, showing consistently high accuracy on the target feature.

Data Efficiency: Size of Unbiased Dataset. We evaluate the impact of the unbiased dataset size on
test accuracy and compare with direct training on the CMNIST dataset. The size of the biased training
set is fixed at 2048, while varying amounts of unbiased data are supplied to assess the minimal
data required for effective debiasing. As shown in Table 3, both EvA-E and EvA-C achieve high
performance even with a very small fraction of unbiased dataset (0.7% of the training set). Additional
results on the Waterbirds dataset, compared with DFR, are presented in Figure 2 (c).

Data Efficiency: Applicability to Biased Datasets without Spurious Feature Labels. We evaluate
EvA-E against two state-of-the-art approaches that do not use unbiased datasets for tuning, JTT (Liu
et al., 2021) and DivDis (Lee et al., 2023), on Waterbirds using ResNet50. Following DivDis, when
the validation set is unbiased, the model is tuned using the Worst Accuracy across groups. Otherwise,
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Size of unbiased dataset 16 32 64 128 256 512 1024
Direct Training 57.1±1.8 59.3±9.6 61.4±9.0 62.5±5.1 78.7±2.3 88.3±0.4 97.2±1.3

EvA-E 92.9±0.7 93.0±0.2 93.1±0.1 93.1±0.0 93.1±0.0 93.1±0.0 93.1±0.0

EvA-C 91.6±2.0 96.0±0.5 97.3±0.2 97.9±0.0 98.5±0.0 98.8±0.0 98.9±0.0

Table 3: Accuracy of different methods across vari-
ous sizes of provided unbiased datasets with standard
deviations on CMNIST. It’s noteworthy that EvA-E
and EvA-C can debiased the model well even only
using unbiased dataset with very small size (16).

JTT (Liu et al., 2021) DivDis (Lee et al., 2023) EvA-E (Ours)
Tuning Data: Unbiased Biased Unbiased Biased Unbiased Biased

Worst Acc 86.7% 62.5% 85.6% 81.0% 86.6% 85.8%

Table 4: Worst Accuracy of different methods tuned
on unbiased dataset and biased dataset. Compared to
previous state-of-the-art methods, our method EvA-E
can achieve much better performance even with biased
dataset (85.8% against 81.0% and 62.5%).

Method Extra Data BAR CelebA Waterbirds FLOPTop-1 Accuracy Unbiased Conflicting Accuracy Worst Acc

ERM % 60.51±4.3 70.25±0.4 52.52±0.2 94.10±4.3 63.74±3.1 ≥ 109

LfF (Nam et al., 2020) % 62.98±2.8 84.24±0.4 81.24±1.4 - - ≥ 109

LWBC (Kim et al., 2022) % 68.45±1.3 88.90±1.6 87.22±1.1 - - ≥ 109

Debian (Li et al., 2022) % 69.88±2.9 86.74±3.2 85.33±3.7 - - ≥ 109

SiFER (Tiwari & Shenoy, 2023) % 72.08±0.4 89.00±0.9 88.04±1.3 96.11±0.6 77.22±0.4 ≥ 109

EvA-E % 73.70±0.8 90.51±1.0 88.74±1.4 96.95±0.9 81.31±1.5 ≈ 103

DFR (Kirichenko et al., 2022) ! 83.23±1.6 90.89±0.4 90.11±1.2 91.70±0.7 83.32±0.4 ≈ 103

EvA-C ! 89.43±1.0 91.32±0.2 90.39±0.8 92.48±0.1 86.70±0.3 ≈ 103

Table 5: Performance (%; mean±std) on CelebA / Waterbirds / BAR Test Dataset. The second column indicates
if the method uses the information of validation dataset (!) for training. Our method outperforms other methods
under both settings while significantly reducing the computation cost (from 109 to 103). Here, we use ResNet18
for all methods for fair comparison. Note these may differ from the original paper, which report ResNet50
results; we provide ResNet-50 results on CelebA and Waterbirds in Appendix E.2.

it is tuned using the mean accuracy since spurious feature labels are unavailable in biased datasets
to align with real world application. As shown in Table 4, our method performs competitively on
the unbiased dataset and significantly outperforms DivDis (by 4.8%) and JTT (by 23.3%) on the
biased dataset. This demonstrates that EvA-E is more data-efficient. Similarly, EvA-C is also more
data-efficient than DFR, which we further show it in Appendix E.2 that EvA-C is more robust to
biased dataset without spurious feature label.

Computation Efficiency. Most methods not relying on specific spurious feature information (Tiwari
& Shenoy, 2023; Nam et al., 2020; Kim et al., 2022) need to introduce hyperparameters to control the
feature. The computation expense of hyperparameter selection is commonly ignored in the previous
work. However, this is serious to be considered to apply these methods in the real world. Since the
selection module in EvA is based on post-hoc retraining linear layer (FLOP ≈ 103), we are six orders
of magnitude more efficient than other methods that require retraining the whole neural network
(FLOP ≥ 109) (Yu et al., 2020; Nam et al., 2020; Tiwari & Shenoy, 2023) as shown in Table 5. In
our experiments, EvA-E substantially lowers compute and achieves higher accuracy within 10 mins
compared to 6 days for SiFER (Tiwari & Shenoy, 2023) on one RTX 3080 GPU, we provide more
discussion and computation on FLOP in Appendix E.2.

4.3 COMPARISON TO STATE-OF-THE-ART

We conducted a comprehensive comparison of our proposed methods, EvA-E and EvA-C, against
state-of-the-art approaches in both with extra data and without extra data settings, as summarized in
Table 5. Our methods have substantial gain whether or not extra information and data are provided.
Remarkably, on the BAR dataset, which presents unique challenges due to its biased validation
dataset, EvA-C outperforms DFR by a substantial margin of 6.2%. We further show the results on
ResNet50 in the Appendix E.2. As we show in Section 4.2 and Appendix E.2, our methods surpass
state-of-the-art methods by 4.8% (EvA-E) and 4.6% (EvA-C) on Waterbirds when no spurious feature
label provided with much smaller computation cost for tuning, indicating strong improvement on
computation and data efficiency.

4.4 ABLATION STUDIES

Class-wise feature detection. EvA includes a strong consideration that each class has different
spurious feature. This is important to guarantee the performance to overcome spurious feature since
spurious correlation is dependent on the class. As shown in Figure 3 (b), to each pair of classes, only
a small portion of erased feature is shared. Concurrently, Figure 3 (a) shows the accuracy of EvA-E

8
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(a) (b) (c)
Figure 3: (a) Accuracy of different settings on the BAR dataset. The accuracy of EvA with class-wise erasure
is stably higher than the one without class-wise erasure. (b) Overlapping ratio of erased feature. Illustrates
the overlapping ratio of erased feature for each class. Notably, the number of erased feature instances shared
between the two classes is relatively low. (c) Impact of the erase ratio on Waterbirds’ Worst Acc. With the
increment in the erase ratio (ϵ), the accuracy of the worst group for both EvA-E and EvA-C exhibits a trend of
gradual improvement followed by a steep decline.

on the BAR dataset, where class-wise erasure (w/class-wise) is more powerful than the one without
such consideration (wo/class-wise).

Impact of erase ratio ϵ. Figure 3 (c) illustrates the effect of the hyperparameter erase ratio ϵ on
the accuracy of our model. For both EvA-E and EvA-C methods, an initial increase in the erase
ratio results in a gradual improvement in the accuracy for the worst group in the Waterbirds dataset.
However, this trend reverses into a sharp decline once the erase ratio exceeds a certain point—60%
for EvA-C and 50% for EvA-E. This suggests that beyond these thresholds, the core feature is likely
being removed, thus hindering the model’s accuracy.

Impact of unbiased dataset size. Both EvA-C and DFR reweight based on additional data from the
unbiased dataset. As Figure 2 (c) shows, the accuracy of EvA-C and DFR both increase when the
unbiased dataset gets larger, though EvA-C consistently outperforms DFR. EvA-C requires less data
than DFR to have a relatively good improvement. We provide more ablation studies in Appendix. E.4.

5 CONCLUSION

To address spurious correlation, we focus on each channel of deep feature, which we call evidence,
and formally define spurious evidence by its consistency across spurious training data and balanced
validation data. When balanced data is not available, we recognize distribution shift as a commonality
between spurious correlation challenges and out-of-distribution issues and empirically establish
evidence energy as a heuristic for spuriousness detection. Our findings demonstrate that erasing
potential spurious evidence and reweighting on core evidence can mitigate spurious correlations,
irrespective of the availability of additional information.

The proposed method, Erase spurious correlation with Activation (EvA), is distinguished by its
remarkable efficiency and effectiveness in addressing spurious correlations in practical scenarios.

• Data efficiency. A primary advantage of EvA is its superior data efficiency. EvA-C
outperforms deep feature reweighting (DFR) methodologies, yielding better results with
fewer unbiased dataset or even biased dataset. When no unbiased dataset and spurious feature
label is provided, EvA-E offers an alternative to debias deep learning models. Overall, EvA
demands less data to achieve competitive outcomes in mitigating spurious correlations.

• Computational efficiency. Our method boasts computational efficiency, requiring only one
hyperparameter, the erase ratio, during the erasing phase. Unlike conventional debiasing
techniques that typically depend on complex network architectures, EvA simplifies the
process by relying on alternative linear probing.

In summary, the EvA methodology heralds a potent solution for combating spurious correlations,
with its efficiency and adaptability to real world. By utilizing indicators including consistency and
evidence energy, it identifies and erases spurious feature, thereby elevating the bias. Our contributions
pave the way for future investigation into activation-based spurious feature detection and erasure,
offering a fresh perspective to overcome the spurious correlation problem.

9
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In the supplementary material, we present

• Section A: Theoretical analysis of evidence energy and consistency in Section 3.4.

• Section B: Algorithm of EvA with pseudo code.

• Section C: More discussion on the related work and the main difference with our methods.

• Section D: More detailed description of dataset utilized in the experiments.

• Section E: Supplementary experiments results with 1) More details on the results of BAR
dataset; 2) Experiments on ResNet50 mentioned in Section 4.1 further demonstrating
computation efficiency and data efficiency of our methods; 3) Additional analysis on
detected spurious feature including activation distribution and saliency map; 4) Additional
ablation study with Lasso Regression and other possible indicators.

Note that all the notations and abbreviations here are consistent with the main manuscript.

A THEORETICAL ANALYSIS

In this section, we conduct a formal analysis of the characteristics pertaining to consistency and
evidence energy, under reasonable assumptions. Our approach aligns with the frameworks established
in Ye et al. (2023); Arjovsky et al. (2019). In this setting, the data tuple (x, y) is generated via the
following mechanism:

xcore ∼ P ∈ Rd1×1,

y = βxcore + ϵcore,

xspu =

{
γT y + ϵspu ∈ Rd2×1,∼ Dtrain

ϵspu ∈ Rd2×1,∼ Dtest

x = (xcore, xspu) ∈ Rd×1

(12)

Here, xcore represents the core component, while xspu denotes the spurious component, which
exhibits different distributions in Dtrain and Dtest. The term ϵcore signifies the noise associated with
the core component, possessing a variance of η2core, and ϵspu represents the noise linked to the
spurious component, with a variance of η2spu. Both noise terms have a mean of zero. The parameters
β and γ are normalized coefficients, each with a unit l2 norm.

In our study, we conceptualize the network using two key components: a feature extractor g and a
linear probing mechanism h. Simplifying our approach, we treat g as a linear layer. The activation
function ϕ(i) is then defined as a linear transformation g applied to the input vector x = (xcore, xspu).
This simplification is aligned with prevalent theoretical models employed in the analysis of non-
convex optimization challenges in deep learning, as elaborated in references Arora et al. (2018);
Kumar et al. (2022); Ye et al. (2023). Additionally, we base our analysis on the assumption that the
training (Dtrain) and testing (Dtest) datasets are infinitely large and that training is conducted with an
infinitesimally small learning rate. This perspective enables us to distinctly represent the model in
terms of core and spurious features.

ϕ(i)(x) = g(i)corexcore + g(i)spuxspu, (13)

where i denotes the feature index, with a total count of m feature. Derived from the training dataset
Dtrain, the overall model can be expressed as:

ŷ = vcorexcore + vspuxspu (14)

vcore =

m∑
i=1

Wki · g(i)core, (15)

vspu =

m∑
i=1

Wki · g(i)spu (16)
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A.1 ANALYSIS ON CONSISTENCY

In our analysis, we demonstrate that feature with low consistency can be formally interpreted as having
a greater reliance on spurious features, assuming the random variables follow a Gaussian distribution.
To substantiate this claim, we reference established conclusions regarding the Wasserstein distance
between two Gaussian distributions as detailed in Takatsu (2011); Salmona et al. (2021).

Lemma 1: Consider two independent random variables x1 ∼ N(µ1,Σ1) and x2 ∼ N(µ2,Σ2), each
following a Gaussian distribution. The 2-Wasserstein distance between them is given by:

d2 = |µ1 − µ2|2 + Tr(Σ1 +Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2) (17)

Building upon this lemma, we present the following theorem:

Theorem 1: Given a data distribution:

((xcore, xspu), y) ∼ Dtrain,

((xcore, x
′
spu), y) ∼ Dtest,

xcore ∼ N(µcore,Σ
2
core),

ϵcore ∼ N(0, η2core),

ϵspu ∼ N(0, η2spu),

and considering two pieces of feature ϕa and ϕb:

ϕ(a)(x) = g(a)corexcore + g(a)spuxspu,

ϕ(b)(x) = g(b)corexcore + g(b)spuxspu,

The consistency of ϕ(a) exceeds that of ϕ(b) (i.e., C(ak) > C(bk)) if and only if |g(a)spuE[xspu]| <
|g(b)spuE[xspu]|.
Proof: Considering the assumption of infinite data points within the datasets Dtrain and Dtest, these
represent continuous joint distributions of (x, y). Given that xspu = γT y + ϵspu with ϵspu ∼
N(0, η2spu), we deduce:

xspu ∼ N(γT y, η2spu),

x′
spu ∼ N(0, η2spu).

Since xcore is independent of xspu, we can further deduce:

ϕ(a)(x | Dtrain) ∼ N(g(a)coreµcore + g(a)spuγ
T y,

g(a)core

2
Σ2

core + g(a)spu

2
η2spu),

ϕ(a)(x | Dtest) ∼ N(g(a)coreµcore,

g(a)core

2
Σ2

core + g(a)spu

2
η2spu).

Combining this with Lemma 1, we establish that the consistency of feature is:

C(ak) = −|g(a)spuγ
T y|,

C(bk) = −|g(b)spuγ
T y|.

Notice that γT y = E[xspu], it’s obvious that C(ak) = −|g(a)spuE[xspu]| and C(bk) = −|g(b)spuE[xspu]|.
Therefore, it follows that C(ak) > C(bk) if and only if |g(a)spuE[xspu]| < |g(b)spuE[xspu]|.
This theorem with an assumed model substantiates the claim that the spuriousness of feature can
be quantified through consistency, as higher consistency indicates a reduced reliance on spurious
features and provides insights on the more complicated scenario.
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A.2 ANALYSIS ON EVIDENCE ENERGY

In this section, we delve into the analysis of evidence energy as a metric for estimating the spuriousness
of specific feature, comparing the activation energies of two pieces of feature. Initially, let’s consider
the energy score of a sample derived from the Negative Log-Likelihood (NLL) Loss during training.
The NLL loss, which is minimized in this process, is defined as follows:

Lnll = E(x, y) ∼ P tr

(
− log

efy(x)/T∑K
j=1 e

fj(x)/T

)
(18)

Given that the energy function is defined as E(x, y) = −fy(x), we can rewrite the NLL loss as:

Lnll = E(x, y) ∼ P tr

 1

T
· E(x, y) + log

K∑
j=1

e−E(x,j)/T

 . (19)

The concept of evidence energy for ϕ(i)(x) is derived from the activation’s contribution to the negative
free energy, expressed as:

E(x) = − log
K∑

k=1

e−E(x,k)/T , (20)

and this can be approximated using a Taylor Expansion:

E(ik) ≈ − e−E(x,k)/T ·Wki∑C
c=1 e

−E(x,c)/T
· ϕ(i)(x) (21)

To elucidate what activation energy reveals, let us consider two pieces of feature, represented as
follows:

ϕ(a)(x) = g(a)corexcore + g(a)spuxspu, (22)

ϕ(b)(x) = g(b)corexcore + g(b)spuxspu. (23)

The comparison of their relative energies can be quantified by:

E(ak) −E(bk) = − e−E(x,k)/T∑C
c=1 e

−E(x,c)/T
(Wka · ϕ(a)(x)−Wkb · ϕ(b)(x)) (24)

= − e−E(x,k)/T∑C
c=1 e

−E(x,c)/T
(Wka · (g(a)corexcore + g(a)spuxspu)−Wkb · (g(b)corexcore + g(b)spuxspu))

(25)

= − e−E(x,k)/T∑C
c=1 e

−E(x,c)/T
(Wkag

(a)
corexcore +Wkag

(a)
spuxspu −Wkbg

(b)
corexcore +Wkbg

(b)
spuxspu)

(26)

This formulation allows us to quantitatively assess how different feature leverage core versus spurious
features in their activation energy. Specifically, our objective is to prove the following theorem.

Theorem 2: Under the same condition given in Theorem 1, if ηspu < ηcore and Wkag
(a)
spuxspu >

Wkbg
(b)
spuxspu, it holds that P

(
E(ak) < E(bk)

)
= 0.5 +R(ηspu, ηcore), where R(ηspu, ηcore) > 0.

This theorem is particularly relevant in scenarios where the noise associated with the spurious feature
is less than that of the core feature, i.e., the training dataset is biased. This indicates that spurious
correlations are more easily learned. To establish the foundation for proving Theorem 2, we first
introduce Lemma 2.

Lemma 2: Consider a model ŷ∗ = v∗corexcore + v∗spuxspu trained with empirical risk minimization,
perfectly matching an infinite number of data points inDtrain. If ηspu < ηcore, then both the expectation
and variance of the spurious component’s contribution exceed those of the core component. Formally:

E2
Dtrain

[v∗spuxspu] > E2
Dtrain

[v∗corexcore], (27)

VarDtrain [v
∗
spuxspu] > VarDtrain [v

∗
corexcore] (28)
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Proof of Lemma 2: Utilizing the conclusion from (Ye et al., 2023), we have:

(v∗core, v
∗
spu) =

(
η2spu

η2spu + η2core
β,

η2core
η2spu + η2core

γ

)
(29)

Considering y = βxcore + ϵcore and xspu = yγT + ϵspu in Dtr, we derive:

v∗spuxspu =
η2core

η2spu + η2core
(y + γϵspu),

v∗corexcore =
η2spu

η2spu + η2core
(y − βϵcore).

Given that E[ϵspu] = 0 and E[ϵcore] = 0, and considering EDtrain [y] = βµcore, the expectations
become:

EDtrain [v
∗
spuxspu] =

η2core
η2spu + η2core

βµcore,

EDtest [v
∗
corexcore] =

η2spu
η2spu + η2core

βµcore.

Moreover, with Var[ϵspu] = η2spu, Var[ϵcore] = η2core, we find:

VarDtr
[v∗spuxspu] =

η4core
(η2spu + η2core)

2
(η2spu + βΣcoreβ

T ),

VarDtr
[v∗corexcore] =

η4spu
(η2spu + η2core)

2
(η2core + βΣcoreβ

T ).

These derivations underpin the conclusion that when ηspu < ηcore, the model is more inclined to rely
on the spurious feature, as evidenced by E2[cspu] > E2[ccore] and Var[cspu] < Var[ccore], as posited
in Lemma 2.

In proceeding with the proof of Theorem 2 based on the intermediate steps and outcomes provided
in Lemma 2, we aim to evaluate the probability that feature exhibits higher activation energy when it
is more dependent on a spurious component compared to a core component.

Proof of Theorem 2: In the following, we denote

c(a)core = Wka · g(a)corexcore

c(a)spu = Wka · g(a)spuxspu

c(b)core = Wkb · g(b)corexcore

c(b)spu = Wkb · g(b)spuxspu

Notice that sign(E(ak) − E(bk)) = −sign(c(a)core + c
(a)
spu − (c

(b)
core + c

(b)
spu)). Based on the condition

Wka · g(a)spuxspu > Wkb · g(b)spuxspu, we can obtain c
(a)
spu > c

(b)
spu. Our focus is on a specific scenario

characterized by a positive real number t, for which we examine the probability:

P (c(a)core + c(a)spu > c(b)core + c(b)spu | c(a)spu − c(b)spu = t) (30)

This probability can be rewritten as:

P (c(b)core − c(a)core < t) (31)

Using the computation results induced from Lemma 2:

ccore ∼ N(
η2coreβµcore

η2spu + η2core
,
η4spu(η

2
core + βΣcoreβ

T )

(η2spu + η2core)
2

) (32)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Considering the independence of c(b)core and c
(a)
core given by xcore, their difference also follows a

Gaussian distribution:

c(b)core − c(a)core ∼ N(0, 2 ·
η4spu(η

2
core + βΣcoreβ

T )

(η2spu + η2core)
2

) (33)

Let Z be the standard normal variable, where Z ∼ N(0, 1), Then P (c
(b)
core − c

(a)
core < t) can be

translated to:
P (Z <

t
√
2 · (η

4
spu(η

2
core+βΣcoreβT )

(η2
spu+η2

core)
2 )

1
2

) (34)

Recall that our target is:

P (c(a)core + c(a)spu > c(b)core + c(b)spu | c(a)spu > c(b)spu) (35)

To obtain this, we integrate from t = 0 to t = 1. Because ccore is independent to cspu with known
parameter, we can decompose the probability in our objective as follows:∫ ∞

t=0

P (c(b)core − c(a)core < t) · P (c(a)spu − c(b)spu = t)dt

=

∫ ∞

t=0

P (Z <
t

√
2 · (η

4
core(η

2
spu+βΣcoreβT )

(η2
spu+η2

core)
2 )

1
2

)PZ(
t

√
2 · (η

4
spu(η

2
core+βΣcoreβT )

(η2
spu+η2

core)
2 )

1
2

)dt

We extract the residual expression as:

R(ηspu, ηcore) =

∫ ∞

t=0

P (Z <
t

√
2 · (η

4
core(η

2
spu+βΣcoreβT )

(η2
spu+η2

core)
2 )

1
2

)

PZ(
t

√
2 · (η

4
spu(η

2
core+βΣcoreβT )

(η2
spu+η2

core)
2 )

1
2

)− PZ(
t

√
2 · (η

4
core(η

2
spu+βΣcoreβT )

(η2
spu+η2

core)
2 )

1
2

)

 dt

Therefore, the original expression can be induced as:

∫ ∞

t=0

P (c(b)core − c(a)core < t) · P (c(a)spu − c(b)spu = t)dt

=

∫ ∞

t=0

P (Z <
t

√
2 · (η

4
core(η

2
spu+βΣcoreβT )

(η2
spu+η2

core)
2 )

1
2

)PZ(
t

√
2 · (η

4
core(η

2
spu+βΣcoreβT )

(η2
spu+η2

core)
2 )

1
2

)dt+R(ηspu, ηcore)

= 0.5 +R(ηspu, ηcore)

> 0.5

In the third line above, we use the condition that ηcore < ηspu which is true when the provided
training dataset is biased. Theorem 2 indicates that if a feature relies more heavily on a spurious
feature, it is more likely to exhibit lower evidence energy.

B ALGORITHM

EvA is a two-stage methodology, comprising detection and reweighting phases. In the experimental
implementation, assume the deep feature dimension is m. We erase ⌊ϵm⌋ feature for each class. The
measure of spuriousness is conducted using consistency in an open-box setting and evidence energy
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in a closed-box setting. Following this, the TopK function is employed to select ⌊ϵm⌋ pieces of
feature with the highest spuriousness, as delineated in Algorithm 1.

During the reweighting stage, the weight corresponding to spurious feature is ’frozen’ and assigned
a value of 0 in the linear layer. The final step involves selecting the reweighted linear layer based
on various erase ratio candidates, evaluating performance using the Eval function. The choice of
evaluation metric in Eval depends on the specific hyperparameter goals outlined in Section 3.1. The
entire algorithm is comprehensively illustrated in Algorithm2.

Algorithm 1: Detect(Φ,Dtrain, ϵ) / (Φ,Dtrain,Dex, ϵ)

Input:
training dataset Dtrain with K classes, extra dataset Dex (optional);
feature set Φ = {ϕ(i) | i ∈ {1, ...,m}} ;
linear probing hθ, where: θ = {(Wk, bk) ∈ Rm ×R | k ∈ {1, ...,K}}
HParams :erase ratio ϵ ;
Output:
spurious indicator P = {pk ∈ {0, 1}m} | k = {1, ...,K}}

1 for k = 1...K do
2 initialize pk = (0, ..., 0), P = {};
3 for i = 1...m do
4 pki ← E(ik)/C(ik)

5 end
6 p+k = {pkj1 , ..., pkj⌊ϵm⌋} ← TopK(pk, ⌊ϵm⌋);
7 for i = 1...m do
8 pki ← 1(pki ∈ p+k )
9 end

10 P ← P ∪ {pk};
11 end
12 Return P

Algorithm 2: Reweight
Input:
training dataset Dtrain, validation dataset Dv with K classes;
feature set Φ = {ϕ(i) | i ∈ {1, ...,m}} ;
linear probing hθ, where: θ = {(Wk, bk) ∈ Rm ×R | k ∈ {1, ...,K}}
HParams :erase ratio candidates E = {ϵ1, ..., ϵT } ;
Output:
re-weighted linear probing hθ∗

1 Initialize v∗ = 0
2 for t = 1, ..., T do
3 {p1, ..., pK} ← Detect(p,Dtrain, ϵt);
4 for k = 1, ...,K do
5 for i = 1, ...,m do
6 if pki = 0 then
7 Freeze(Wki)
8 end
9 end

10 Wk = pkWk;
11 end
12 θt ← argminθ Loss(Φ,Dtrain, hθ)
13 vt ← Eval(p,Dunbiased, hθt);
14 if vt > v∗ then
15 v∗ = vt, θ∗ = θt
16 end
17 end
18 Return θ∗
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C COMPARING METHODS

We provide additional details of comparing methods in this work based on two different categories:
methods without training with extra data and methods require extra data for training. Then we
discusses the main difference between our works and these comparing methods.

C.1 WITHOUT EXTRA DATA AND GROUP LABEL

LfF. Nam et al. (2020) proposes a method to reduce bias in neural networks without requiring
explicit labels or assumptions about the type of bias. They introduce a dual-network debiasing
strategy: the first network is trained to amplify its biases, while the second network is trained
using samples misclassified by the first, encouraging it to learn beyond the biases. This approach
effectively mitigates bias in various datasets and often outperforms traditional methods that need
more supervision. However, it trade-off computation efficiency for data-efficiency, i.e., reduces the
reliance on group label but requires extensive computation on hyper-parameter selection over two
neural networks together.

JTT. Liu et al. (2021) also proposes a two-stage method to improve worst-group accuracy without
extensive group annotations. It first trains a standard ERM model and then re-trains by upweighting
misclassified examples, thereby focusing on groups that ERM struggles with. JTT closes 75% of
the performance gap between ERM and group DRO across various tasks with spurious correlations,
while only needing minimal group annotations for hyperparameter tuning. However, it still requires
retraining the based neural network to tune several hyperparameter.

LWBC. Kim et al. (2022) introduces a method to train debiased classifiers without using labels for
spurious attributes. It uses a committee of classifiers to identify and assign higher weights to data that
do not exhibit spurious correlations. The committee, which is intentionally biased and diverse, helps
detect bias-conflicting samples by agreeing on their prediction difficulty. It learns alongside the main
classifier, gradually becoming less biased and emphasizing harder examples over time. However, it
also suffers from computation efficiency with training a commitee of classifiers.

Debian. Li et al. (2022) also addresses biases in deep image classifiers without relying on labels
for protected attributes. DebiAN adopts similar idea with LfF (Nam et al., 2020) and the framework
consists of two networks: a Discoverer that identifies unknown biases and a Classifier that unlearns
them through alternate training. DebiAN effectively mitigates multiple biases simultaneously where
most previous methods focus on single type of bias. But it also requires extensive computation to
tune the hyperparameter.

DivDis. Lee et al. (2023) is another two-stages debiasing method without requiring label. DivDis
first learns a diverse set of hypotheses using unlabeled test data, and then selects the most robust one
with minimal extra data. It is shown to effectively identify hypotheses that rely on robust features.
The computation cost can be reduced by training a singal model with different heads but still suffering
from retraining the whole model during tuning stage.

SiFER. Tiwari & Shenoy (2023) focus on general simplicity bias rather than only spurious correlation
and proposes feature sieve. During training iteration, they make assumption on simple features mostly
can be extracted from lower layer and add additional penalty to make it harder to classify based on
feature in the shallow layer. The method is effective in debiasing but lack computation efficiency in
tuning a large number of hyperparameters such as designs of classifier for adding the panalty and the
layer to append such classifier.

C.2 WITH EXTRA DATA AND GROUP LABEL

DFR. Kirichenko et al. (2022) significant improves the efficiency from previous methods by applying
last linear layer re-training to robustify the whole classifier. The method is simple but effective
and the work provides insights that the model learns spurious feature as well as core feature during
training but just biased to the spurious feature. And this bias can be suppressed by only reweighting
the last linear layer by a less unbiased dataset. However, our analysis shows that DFR may be worse
than the method without extra data in terms of data efficiency where there and Ye et al. (2023) shows
that DFR can only be effective when the extra training data is less unbiased, i.e., the noise exists in
correlation with core feature and label should be less than the correlation with spurious feature. The
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requirement for utilizing data for training makes it relies more on less biased data than those only use
it for tuning hyperparameter.

C.3 DIFFERENCES BETWEEN OUR WORK AND PREVIOUS METHODS

We notice that almost all existing methods without group label are two-stage where the first stage
includes training and collecting information related to potential spurious correlation and removing it
explicitly or indirectly in the second stage.

Commonly, the computation cost in the first stage is necessary to get the base model and debias on it.
However, the computation cost at the second stage is usually very large to tune the hyperparameter by
retraining another neural network or whole neural network, which makes these methods data-efficient
but less computation-efficient.

On the contrary, DFR (Kirichenko et al., 2022) provides compute-efficient method by only reweighting
linear layer in the second stage using unbiased dataset. However, its performance is only guaranteed
when tuning with Worst Accuracy but not robust when there is no group label, weaken its data-
efficiency.

EvA exploits the advantage from both sides. We observe that the deep spurious feature can be
identified without group label but the activation distribution over training dataset (EvA-E) or validation
dataset (EvA-C). This makes EvA as computation efficient as DFR (Kirichenko et al., 2022) and even
more data-efficient than previous methods (Nam et al., 2020; Liu et al., 2021; Kim et al., 2022; Lee
et al., 2023; Tiwari & Shenoy, 2023) not relying on group label as shown in Table 4.

D DATASET DETAILS

In this section, we provide detailed group information and the specific size of each group in the
datasets used for analysis and performance comparison. Each group is defined by a human-identified
feature and a label from the dataset, represented as (feature, label).

CMNIST. The Color-MNIST dataset Tiwari & Shenoy (2023) consists of four groups: (Red, Zero),
(Red, One), (Green, Zero), and (Green, One). In the training dataset, the size of each group is (1024,
0, 0, 1024), respectively. In the validation and test datasets, the size of each group is (128, 128,
128, 128), making the datasets perfectly unbiased with respect to the defined feature. Consequently,
models trained using ERM on the biased training dataset struggle to distinguish the digit label from
the color attribute.

BAR. The BAR dataset Nam et al. (2020) is a standard benchmark for debiasing tasks. Although
it does not provide explicit human-defined spurious features, it ensures that the background in
the training images for each class is different from the background in the test images for the
same class. The dataset contains images from six human action classes: "Climbing," "Diving,"
"Fishing," "Racing," "Throwing," and "Vaulting." It can be represented as 12 groups, with the first 6
corresponding to the training dataset and the remaining 6 to the test dataset. The sizes of the groups
in the training dataset are (326, 520, 163, 336, 317, 279, 0, 0, 0, 0, 0, 0), while in the test dataset, the
sizes are (0, 0, 0, 0, 0, 0, 105, 159, 42, 132, 85, 131), respectively. This dataset is challenging due to
the complex spurious correlations and class imbalances. As shown in Table 6, the performance of
debiasing methods on classes with fewer samples, such as "Fishing" and "Throwing," is often worse.

Waterbirds. The Waterbirds dataset Sagawa et al. (2019) is a benchmark for studying spurious
correlations. It is synthesized from real-world data and includes four groups: (land, landbird), (land,
waterbird), (water, landbird), and (water, waterbird). The sizes of each group in the training dataset
are (3498, 184, 56, 1057), and in the validation dataset, the sizes are (467, 466, 133, 133), respectively.
The minority groups in the training dataset are (water, landbird) and (land, waterbird). Models
trained with ERM on the entire training dataset tend to classify landbirds based on land backgrounds
and waterbirds based on water backgrounds.

CelebA Hair. The CelebA Hair dataset (Liu et al., 2018) is another standard benchmark for studying
spurious correlations and has a relatively larger size. It is a real-world dataset containing four groups:
(non-blond, woman), (non-blond, man), (blond, woman), and (blond, man). The sizes of each group
in the training dataset are (71629, 66874, 22880, 1387), and in the validation dataset, the sizes are
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Method Climbing Diving Fishing Racing Throwing Vaulting Average
LfF 79.39±4.79 34.59±2.26 75.39±3.63 83.08±1.90 33.72±0.68 71.75±3.32 62.98±2.76

DFR 92.08⋆±1.18 93.55±2.47 70.39±8.51 92.97±3.64 67.92±4.19 91.33±2.43 84.70±1.67

EvA-C 90.47±2.79 94.78⋆
±2.60 77.41⋆

±3.06 97.19⋆
±1.14 84.43⋆

±6.73 92.72⋆
±2.93 89.50⋆

±1.50

Table 6: Top-1 Accuracy (with standard deviations) of LfF (Nam et al., 2020) and DFR (Kirichenko
et al., 2022) with EvA-C (Ours) across different classes over BAR dataset. Asterisks (⋆) indicate the
best performance. Our method achieves much better results compared to previous methods.

Base Model Waterbirds CelebA FLOP for debiasingDebiasing Method Worst Acc Mean Acc Worst Acc Mean Acc
ResNet50 + JTT 86.7% 93.3% 81.0% 88.0% ≈ 4× 109 · cnms

ResNet50 + DivDis 85.6% - 55.0% - ≈ 4× 109 · cnms
ResNet50 + EvA-E 86.6% 92.5% 82.7% 88.7% ≈ 8× 103 · cnms

Table 7: Comparison of EvA-E (Ours) with two state-of-the-art methods, JTT Liu et al. (2021) and
DivDis Lee et al. (2023) without using extra data for training. The performance here is all tuned with
Worst Acc, i.e., the tuning dataset is with group label. The best performance is highlighted in bold.
Our method achieves competitive worst-case and mean accuracy with six orders of magnitude less
computational cost.

(8535, 8276, 2874, 182), respectively. The minority group in the training dataset is (blond, man).
Models trained with ERM on the entire training dataset tend to incorrectly classify individuals with
blond hair as women.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 PERFORMANCE OVER EACH CLASSES ON BAR DATASET

We present additional experimental results on the BAR dataset with ResNet18, focusing on the
mean and standard deviation of accuracy for each class. Our method, EvA-C, is compared against
LfF (Nam et al., 2020) and DFR (Kirichenko et al., 2022), as shown in Table 6. EvA-C consistently
outperforms the previous methods across most classes, demonstrating superior performance. Notably,
it achieves significant improvements in the "Fishing" and "Throwing" classes, where the previous
methods exhibited biases towards other classes.

E.2 COMPARISON WITH STATE-OF-THE-ART METHODS ON RESNET50

We extend our experiments analysis on the backbone ResNet-50 to compare our methods with
three state-of-the-art methods inlcuding JTT (Liu et al., 2021), DivDis (Lee et al., 2023) and
DFR (Kirichenko et al., 2022) to further demonstrate the computation and data efficiency of our
methods while remaining competitive performance on both ideal and practical settings.

Comparison between EvA-E and Methods without Extra Data for Training: We compare the
Worst Accuracy of EvA-E against JTT and DivDis on both unbiased and biased datasets, as shown
in Table 4 in the main text. Our results demonstrate a significant improvement in accuracy when
tuning data is biased, highlighting the practical applicability of our method in real-world scenarios.
Following previous studies (Kirichenko et al., 2022; Sagawa et al., 2019), we also present results
using the standard comparison method, where Worst Accuracy is measured with known group labels,
as shown in Table 7.

In addition, we report the FLOPs in Table 7 to quantify the computational cost of debiasing the model,
where c denotes the constant computation overhead for updating the gradient of each parameter, n
represents the number of epochs, m is the dataset size, and s is the size of the hyperparameter search
space. JTT requires retraining the entire model with a reweighted loss to select the appropriate weight
for the error set, and DivDis also involves retraining the entire network to determine the weight
of the mutual information loss during the diversification stage. In contrast, EvA-E only updates
the linear layer for debiasing. For a ResNet50 model, the FLOPs for retraining the entire network
are approximately 4× 109, whereas updating the linear layer requires only about 8× 103 FLOPs.
Therefore, the computational cost of EvA-E is significantly lower than that of previous debiasing
methods.
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Conflicting Ratio 50% 40% 30% 20%
ResNet50 + EvA-C 92.1 92.5 91.2 87.8
ResNet50 + DFR 90.7 89.0 86.6 83.2

Table 8: Comparison of the Worst Acc between EvA-C and DFR under different conflicting ratios
on the Waterbirds Dataset. To make fair comparison where group label is not accessed in the real
world, this result is obtained by tuning on Mean Acc rather than Worst Acc therefore the results is
different from 92.9 in the original paper (Kirichenko et al., 2022) tuned with Worst Acc. Under the
original setting using a “unbiased” dataset with a 50% conflicting ratio, our method still performs
better than DFR. As the conflicting ratio decreases, i.e., the validation dataset is more imbalanced,
EvA-C performs better than DFR.

Considering the results in Table 4, our method not only significantly improves computational
efficiency and data efficiency but also achieves competitive accuracy.

Comparison between EvA-C and DFR with Extra Data for training: Apart from the setting
where extra data is not provided for training, we also extend the results on ResNet-50 on the settings
where extra data is available, i.e., comparing EvA-C with DFR. To make fair comparison where
group label is not accessed in the real world, this result is obtained by tuning on average accuracy,
i.e., Mean Acc rather than worst accuracy, i.e., Worst Acc even when the conflicting ratio is 50%
where it’s unbiased. As demonstrated in Table 8, In the original setting, which has a 50% conflicting
ratio, EvA-C outperforms Deep Feature Reweighting (DFR).

We further investigate how the performance of our methods improves with an increase in the
conflicting ratio within the reweighting dataset. To manipulate the conflicting ratio, we selectively
add non-conflicting samples and remove conflicting samples into the tuning dataset. For instance, in
the Waterbirds dataset, which encompasses four groups - (water, water-birds), (water, land-birds),
(land, water-birds), and (land, land-birds) - we adjust the conflicting ratio by adding samples from the
(water, water-birds) and (land, land-birds) groups and eliminating samples from (water, land-birds)
and (land, water-birds) to keep the size of tuning dataset as the same.

The data presented in Table 8 illustrate that our method significantly outperforms DFR as the
conflicting ratio decreases. This result underscores the data efficiency of EvA-C, where EvA-C
requires substantially fewer labeled data points to achieve relatively good results. This is in contrast
to DFR, which is less robust to "biased" reweighting dataset.

E.3 ADDITIONAL ANALYSIS ON DETECTED SPURIOUS FEATURE

Activation distribution of detected spurious feature: We conduct a comparative analysis of the
activation distribution between potential spurious feature, identified by evidence energy, and the
remaining feature in the BAR dataset. This comparison is visually represented in Figure 4. Notably,
the activation distribution disparity between the training and validation datasets is significantly
more pronounced for the detected spurious feature than for the remaining feature. This further
echos Theorem 2 that if the feature exhibits higher evidence energy, it’s more likely to have higher
consistency. And it’s consistent with the empirical analysis on Section 4.2 Evidence Energy &
Consistency.

Saliency map of detected spurious feature: We further analyze the feature detected by both EvA-E
and EvA-C by visualizing their corresponding saliency maps. We use the BAR dataset for this
analysis, as it represents a real-world scenario where the distinction between core and spurious
features is clear. In the BAR dataset, which is designed for action recognition, the background is
considered a spurious feature, while the human body region is regarded as the core feature. For
instance, in the training set, the action "climbing" is predominantly associated with a normal mountain
background rather than a snow-covered one.

To indicate which input component used for a specific feature, we use Integrated Gradient (Sun-
dararajan et al., 2017) to compute the saliency map of the value of feature with respect to the input as
Figure 5 shows. The core feature identified by both EvA-E and EvA-C assigns higher importance on
the human body area while the detected spurious feature assigns higher importance on the background,
which is also aligned with human intuition.
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Figure 4: Activation distribution of potential spurious feature (the first row), identified by evidence
energy, compared to the remaining feature (the second row). The potential spurious feature exhibits a
more marked difference in activation distribution between the training and validation datasets than
the remaining feature, which is categorized as core feature.

(a) Input image (b) Saliency map of core feature (c) Saliency map of spurious feature
Figure 5: Saliency map of the activation on two feature annotated with their evidence energy (E)
and consistency (C) for class "climbing" with respect to the input image (a) from BAR dataset (Nam
et al., 2020). For action recognition task, background is considered as spurious feature while the
human body is considered as core feature. (b) The feature with higher consistency and evidence
energy, which is identified as core feature, focus more on the human body; while (c) the other feature
detected as spurious feature by EvA with lower evidence energy and consistency, is attributed to the
background.

E.4 ADDITIONAL ABLATION STUDIES

EvA v.s. Retrain Linear Layer with Lasso Regression: Notice that the implementation of DFR
implicitly considering tuning the weight decay which is the strength of L1 Norm. Therefore, the
comparison between EvA and Lasso Regression on last linear layer is directly reflected when
comparing EvA and DFR.

Other spuriousness indicator: In a closed-box setting, where additional data including spurious
feature information is unavailable, we extend our ablation study to include evidence energy alongside
other indicators like strength and instability.

Concretely, the mean of an feature’s activation distribution is termed its strength, while the variance
is defined as instability. For a given feature ϕ(i), a class k and a dataset D, strength is formulated as:

S(ϕ(i), k,D) = Ex∈Dk
[ϕ(i)(x)]

≈ 1

|Dk|
∑
x∈Dk

ϕ(i)(x)
(36)

Similarly, instability is defined as:

I(ϕ(i), k,D) = Ex∈Dk
[(ϕ(i)(x)− S(ϕ(i), k,D))2]

≈ 1

|D|
∑
x∈Dk

(ϕ(i)(x)− S(ϕ(i), k,D))2
(37)

where Dk = {x | (x, y) ∈ D, y = k} represents the subset of data with the ground truth label k.

In comparison to strength and instability, evidence energy demonstrates a stronger correlation with
consistency, as illustrated in Table9 and Figure6. This observation aligns with our findings from the
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Class climbing diving fishing racing throwing pole vaulting
Evidence Energy 0.46 0.34 0.73 0.69 0.70 0.46
Strength 0.44 0.29 0.62 0.64 0.63 0.42
Instability 0.17 0.20 0.37 0.27 0.37 0.16

Table 9: Pearson correlation between three indices—strength, instability, and evidence energy—and
their consistency on the BAR dataset. It is observed that evidence energy has a higher correlation
with consistency compared to the other two indices.

Figure 6: This figure illustrates the correlation between three indices—instability, strength, and
negative evidence energy—and inconsistency across six classes in the BAR dataset. In the subplots,
each point represents a data point from a specific class. The rows, ordered from top to bottom,
correspond to instability, strength, and negative evidence energy, respectively. The analysis reveals
that both negative evidence energy and strength exhibit a positive correlation with inconsistency,
while instability does not display a similar correlation trend.

BAR dataset. Experimentation with variations of EvA, including EvA-S (erasure based on strength)
and EvA-I (erasure based on instability), yielded accuracies of 71.81% and 64.81% respectively.
These results are lower than the 73.70% accuracy achieved by EvA-E. Interestingly, strength is
relatively good as well for detecting spurious feature. This may be because that the strength indicates
the level of reliance on a certain input component as well.
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