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Figure 1: Kontinuous Kontext produces smooth edit trajectories across diverse attributes given an
image, instruction, and an edit scalar strength. Unlike prior methods that require attribute-specific
training, ours is a unified approach to enable fine-grained control.

ABSTRACT

Instruction-based image editing offers a powerful and intuitive way to manipulate
images through natural language. Yet, relying solely on text instructions limits
fine-grained control over the extent of edits. We introduce Kontinuous Kontext,
an instruction-driven editing model that provides a new dimension of control over
edit strength, enabling users to adjust edits gradually from no change to a fully
realized result in a smooth and continuous manner. Kontinuous Kontext extends
a state-of-the-art image editing model to accept an additional input, a scalar edit
strength which is then paired with the edit instruction, enabling explicit control
over the extent of the edit. To inject this scalar information, we train a lightweight
projector network that maps the input scalar and the edit instruction to coefficients
in the model’s modulation space. For training our model, we synthesize a diverse
dataset of image-edit-instruction-strength quadruplets using existing generative
models, followed by a filtering stage to ensure quality and consistency. Kontinu-
ous Kontext provides a unified approach for fine-grained control over edit strength
for instruction driven editing from subtle to strong across diverse operations such
as stylization, attribute, material, background, and shape changes, without requir-
ing attribute-specific training.

1 INTRODUCTION

The advent of large-scale text-to-image generative models (Ho et al., 2020; Song et al., 2022; Rom-
bach et al., 2022) has enabled phenomenal progress in instruction-driven image editing, allowing
users to perform a broad range of edits through natural language instructions (Hertz et al., 2022;
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‘Add a layer of snow’
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Data Generation Image Editing with Continuous Control

Figure 2 - Overview

Edits with intermediate strengths

Strength s1    Strength s2                          Strength sk       Strength 1
      

Source Image Edited Image

Continuous Edit Control

Source ‘Open the eyes of the dog widely’

‘Transform the jacket into a heavy fur jacket with vibrant orange color’Source

‘Make the panda open its mouth wide for yawning’

‘Transform her hair to be red and curly’

‘Reduce the size of the object’
Figure 2: Kontinuous Kontext enables finer control across diverse edits. It can do simultaneous
changes in attributes hair color and structure, highly localized changes such as editing the panda’s
mouth and geometric edits such as changing the size of the car.

Brooks et al., 2023; Batifol et al., 2025). With a single prompt (e.g., “make the person old”), these
models can change style, modify object appearance or shape, and add or remove objects. While
text is an intuitive interface for specifying editing goals, it is also a coarse modality: it conveys
what change to make but not to what extent. As a result, users lack fine-grained control over the
strength of an edit (e.g., adjusting the degree of “oldness” in a portrait). This limitation poses a
central challenge for achieving precise and controllable image manipulation.

To address this challenge, prior work has explored continuous control for image manipulation, rang-
ing from GAN-based latent space editing (Shen et al., 2020; Härkönen et al., 2020; Abdal et al.,
2021; Patashnik et al., 2021) to diffusion-based methods that rely on specialized per-attribute mod-
ules (Cheng et al., 2025; Gandikota et al., 2024; Sharma et al., 2024). While these approaches
demonstrate the appeal of continuous editing, they are often restricted to narrow domains or require
dedicated training for each attribute. This leaves open the need for a unified method that enables
continuous control across diverse types of edits without the burden of training per-attribute models.

In this work, we introduce Kontinuous Kontext, an instruction-driven image editing model that in-
troduces a new dimension of control, enabling continuous adjustment of edit strength across diverse
edit categories. Rather than being limited to a binary “before/after” operation, our approach en-
ables smooth traversal between no edit and a fully realized edit, turning coarse instructions into
rich, tunable controls. For example, users can gradually change the extent of stylization or inten-
sity of snowfall (Fig. 1), as well as perform local edits with finer control including attribute edits
such as hair color, facial expression, or object size (Fig. 2). By transforming discrete instructions
into continuous editing trajectories, our method bridges the gap between intuitive text prompts and
fine-grained user control, offering a level of precision unattainable with text alone.

We realize this new dimension of control by augmenting an existing instruction-based image editing
model with an additional input scalar that specifies edit strength. Specifically, we build on Flux
Kontext (Batifol et al., 2025), a state-of-the-art instruction-driven image editing model and condition
it with the strength scalar via a lightweight projector network. The projector takes as input the scalar
value together with the edit instruction embeddings and outputs coefficients calibrated to the specific
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edit instruction. These coefficients operate in the model’s modulation space (Garibi et al., 2025;
Dalva et al., 2024), where they modulate the text tokens, effectively refining the edit instruction to
reflect the desired strength.

Training the projector requires data consisting of source image, edit instruction, edit image, and
annotations of edit strengths, which is not readily available for real images. To overcome this lim-
itation, we synthesize such tuples using existing generative techniques. Specifically, we first use
an LVLM (Bai et al., 2025) to generate diverse, image-specific edit instructions. Next, we apply
Flux Kontext to produce edited images from the source images and the synthesized instructions.
Finally, we use a diffusion based image morphing model (Cao et al., 2025) to generate intermediate
edits at varying strengths. The synthesized data, however, often provides noisy supervision, where
the sequences are not smooth or the intermediate images have artifacts or deviate too far from the
endpoints. To address this, we apply filtering based on identity preservation of input images and
smoothness of the edit transitions to obtain clean, reliable training data. In addition, the scale and
diversity of the dataset helps mitigate remaining inaccuracies and outliers. Notably, we find that
even when trained on this high quality filtered but moderately sized dataset, our method generalizes
strongly across diverse editing categories.

Extensive experiments across a broad spectrum of instruction driven editing tasks show that Kontin-
uous Kontext provides rich, diverse, and finely controlled results. It enables precise strength control
for local edits such as attribute, material or appearance changes, global transformations such as style
or environment and lighting changes, and even challenging geometric edits like shape morphing.
Notably, it generalizes beyond its training categories to unseen cases such as facial attribute and
body shape changes. These findings establish our approach as a powerful, general framework for
continuous instruction-driven image editing, opening new directions for fine-grained and control-
lable visual editing.

2 RELATED WORKS

Instruction-driven Image Editing. The advancements of scalable visual generative models
(Esser et al., 2024; Podell et al., 2023; Ramesh et al., 2022; Wu et al., 2025a; Rombach et al., 2022)
trained on internet-scale image-text pairs have fueled a wide range of image editing applications.
Instruction-based image editing, introduced by Instruct-Pix2Pix (Brooks et al., 2023) enables editing
images with text instructions. To this end, they curated a synthetic dataset of image-edit pairs gen-
erated using Prompt2Prompt (Hertz et al., 2022), with corresponding editing instructions generated
by an LLM, and fine-tuned the Stable Diffusion model (Rombach et al., 2022) for instruction-driven
editing. Subsequently, many works (Sheynin et al., 2024; Zhang et al., 2025; 2024b) have improved
the dataset curation pipeline and model architecture, leading to stronger instruction-following abil-
ity. More recent approaches train large unified models for both generation and editing (Batifol et al.,
2025; Wu et al., 2025a;b; Xiao et al., 2025). These models are capable of performing diverse editing
tasks such as personalization, scene composition, and instruction-based editing. Despite their re-
markable general-purpose editing capabilities, these models lack control over the extent of the edit,
limiting their applicability for users who require fine-grained adjustments.

Discovering Continuous Control in Generative Models. A common approach to achieve con-
trol over edit strength is through traversals in latent spaces. In GANs and VAEs, compressed latent
representations capture rich semantics, enabling the discovery of directions that correspond to se-
mantic attributes (Karras et al., 2019; Härkönen et al., 2020; Hou et al., 2017; Higgins et al., 2017).
Numerous traversal methods have been developed to leverage these directions for fine-grained at-
tribute manipulation (Shen et al., 2020; Abdal et al., 2021; Patashnik et al., 2021). However, such
methods remain restricted to narrow domains. Extending the idea of latent space traversal to dif-
fusion models is challenging, as the denoising network does not naturally provide a compact latent
space (Kwon et al., 2022), text embeddings are not smooth (Hertz et al., 2022), and LoRA-based
weight interpolations (Gandikota et al., 2024; 2025; Dravid et al., 2024) remain computationally
expensive and concept-specific. These approaches all rely on discovering latent or weight-space
directions with continuous variation. In contrast, we augment the instruction mechanism with a new
control dimension, enabling smooth adjustment of any attribute the model can already edit. Hence,
our model does not require any additional training for specific attributes.

Adding Continuous Control for Image Editing. Another set of works introduces continuous
control in diffusion models by either fine-tuning the model itself or training auxiliary encoders that
modify its inputs. Some works (Sharma et al., 2024; Cheng et al., 2025; Magar et al., 2025) generate
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Figure 3: Data generation. Our pipeline consists of three steps: (a) We generate an edit instruc-
tion for each source image using a pretrained VLM, then apply Flux Kontext, an instruction-driven
editing model, to produce a full-strength edit. (b) We synthesize intermediate-strength edits using
a diffusion-based morphing method (Cao et al., 2025), which inverts both the source and edited
images into the diffusion latent space and interpolates their features. (c) To compensate for incon-
sistencies in the morphing sequence (Fig. 5), we filter the samples based on the inversion quality
and uniformity of the sequence.

synthetic data with varying material or illumination properties using rendering engines and fine-
tune diffusion models for continuous control over these attributes. Others train encoders to predict
new token embeddings injected into the text embedding space, enabling control over 3D properties
such as orientation, illumination, and shadows (Cheng et al., 2024; Parihar et al., 2025; Burgess
et al., 2024). A further line of work trains adapters that connect the continuous latent spaces of
GANs with the stronger generative capabilities of diffusion models, specifically for face attribute
editing (Parihar et al., 2024; Li et al., 2024). Despite their effectiveness, methods across these
directions remain limited to a single attribute or object category.

Image interpolation. A promising baseline strategy to achieve continuous control in image edit-
ing could be to generate the edited image with instruction and then generate intermediate images
between the source and the edited image. Diffusion-based morphing methods (Cao et al., 2025;
Zhang et al., 2024a) aim to generate intermediate transitions by interpolating in the diffusion feature
space, under the assumption that this space is semantically smooth. While this assumption holds in
some cases, the space is not robust to outliers and often produces artifacts in intermediate morphs,
such as missing objects or blurred scene content (Fig. 5). Another option is to adapt large video
inbetweening models (Wan et al., 2025; Zhu et al., 2025; Wang et al.) to synthesize intermediate
frames as continuous edits. However, as these models are trained on natural videos, they produce
abrupt transitions for imaginative edits such as stylization or attribute changes, and their outputs
frequently exhibit motion blur, making them unsuitable for high-quality image editing.

3 METHOD

We extend instruction-driven image editing by introducing a new dimension of control: continuous
adjustment of edit strength. To this end, our approach has two key stages. First, we generate a diverse
synthetic dataset of paired examples consisting of source images, edited images, edit instructions,
and continuous strength values (Sec. 3.1). Second, we propose a simple yet effective approach: fine-
tuning a modified instruction-driven editing model that accepts a scalar strength input alongside the
edit instruction, enabling smooth and continuous control over the target edit (Sec. 3.2).

3.1 DATASET

Our method utilizes a dataset of tuples (x, e, s, ys), where x is a source image, e is an edit instruction,
s is an edit strength, and ys is the corresponding target edit. Since collecting real data with multiple
strength levels is challenging, we curate a synthetic dataset using pretrained generative models.
Our data generation process involves three steps: (i) generate a full-strength edit using an existing
instruction-driven editing model, (ii) interpolate between the source and the full-strength edit to
produce intermediate-strength variations, and (iii) filtering poor quality data samples.

Generating Image Edit Pairs. We begin by sampling 110K images of diverse objects and scenes
across different background and environment conditions from the Subject200K dataset (Tan et al.,
2024). For each image, we generate an edit instruction using Qwen LVLM (Bai et al., 2025), cov-
ering a diverse category of continuous editing operations (Fig. 3a). We categorize edits into global
scene edits (stylization, scene reimagination, and environment change) and local object-specific ed-
its (material and appearance editing, attribute modification, and shape morphing) also shown in
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Figure 4: Samples from diverse image editing categories in our synthesized dataset. We cover a
wide range of global edits, including stylization, reimagination, and environment changes, as well
as local edits such as appearance changes, material changes, attribute editing, and object morphing.

Fig. 4. We define a fixed template system prompt for each subcategory. Additionally, we generate
n in-context examples using GPT4 for each of the subcategory. During instruction generation, we
randomly sample from these category specific in-context examples to guide the VLM in generating
diverse instructions. The source image and its corresponding instruction are then used to produce a
full-strength edit (y∗) with Flux Kontext (Batifol et al., 2025). Generating the edit from Flux Kon-
text ensures consistency with the base model’s output distribution. Further details of the prompts
and additional samples are provided in the appendix Sec. A.2.

Incomplete/Missing Objects Non-smooth sequences Poor inversion
Source Edited Edited Inversion

Incomplete/Missing Objects
Source Edited

Non-smooth sequence

Poor inversion

Edited Inversion

Edited Inversion Edited Inversion

Morphs

Figure 5: Generating intermediate images with
Freemorph can introduce inconsistencies such as
incomplete objects, abrupt jumps, or errors from
diffusion inversion. We filter such cases to obtain
a clean dataset with smooth trajectories.

Generating Edits With Intermediate Strength.
We generate intermediate edits by synthesizing
smooth transitions between the source image x and
the full-strength edit y∗ generated by Flux Kon-
text. We define a discrete set of N+1 edit strengths
{si = i/N | i = 0, . . . , N} uniformly sampled
within the normalized range [0, 1]. Here, s0 = 0
corresponds to the unedited source, sN = 1 corre-
sponds to the full edit y∗, and the intermediate val-
ues si for 1 ≤ i ≤ N−1 represent proportionally
graded changes. Given the source and edited images,
we use off-the-shelf diffusion based image morph-
ing method Freemorph (Cao et al., 2025) to gener-
ate the intermediate images ysi , which we treat as
edits at the corresponding strengths si. Freemorph
first inverts the two end point images into the latent
space of pretrained diffusion model. Next, it per-
forms guided spherical interpolation between their
self-attention maps during denoising to produce in-
termediate morphs. This yields perceptually mono-
tone transitions that interpolate between the two im-
ages (Fig.3b). We use prescribed N = 6 as provided
in Freemorph (Cao et al., 2025).

We observe that Freemorph has two key limitations. First, its latent space is not semantically smooth,
often producing unnatural intermediate images, artifacts with incomplete objects (Fig. 5) and abrupt
transitions for large edit transformations. More broadly, as an inference-time heuristic, Freemorph
lacks robustness, which further contributes to the errors. To address these issues, we employ an
extensive data filtering pipeline. Second, since Freemorph relies on diffusion inversion, it introduces
reconstruction errors in the source and edited images during inversion, which makes the intermediate
images inconsistent (Fig. 3b). We fix this limitation by replacing the original endpoints with their
reconstructions, ensuring consistency with the intermediate morphs.

Data Filtering. While effective, the above data generation pipeline is prone to errors from the un-
derlying generative models (Fig. 5), making filtering essential to eliminate inconsistent samples. To
filter out samples with non-smooth edit trajectories, we quantify the uniformity of the edit trajec-
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Figure 6: Model architecture. (a) In a simple experiment, we scale the text-token modulation
parameters in Flux Kontext with a scalar to generate edit variations. This perturbation produces edits
of varying strengths, revealing that modulation parameters can govern edit strength. (b) Building on
this insight, we design a lightweight projector network that maps a scalar edit strength s to offsets
of the text modulation parameters, enabling precise control over edit strength.
tory and threshold on this score. For a training sample (x, e, s, ys), the extent of change between
the source x and edit ys should scale with the edit strength s. Equivalently, the distance between
adjacent images in the sequence should remain consistent. We define the sequence of deltas as
D = {d0,1, d1,2, . . . , dN−1,N}, where di,i+1 is the distance between image yi and yi+1 and measure
its uniformity via the KL-divergence from a discrete uniform distribution. Samples with divergence
above 0.15 are discarded.
In addition to non-uniform trajectories we observe for stronger edits, the diffusion inversion step in
Freemorph can drastically alter the edited image (Fig. 5). We discard such cases by thresholding
the image distance between the edit and its inversion. Similarly, in some cases Flux Kontext fails to
perform the edit and instead reproduces the input with minimal changes; we filter out such examples
by computing image distance between the source and edited images. We used LPIPS (Zhang et al.,
2018) to compute the image distance in all the filtering criteria. After filtering, our dataset is re-
duced from 110,147 to 64,613 high-quality, smooth and, accurate edit trajectories. Additionally, we
generate 10K object size change dataset by pasting objects in different sizes in black backgrounds.

3.2 KONTINUOUS KONTEXT

Preliminaries. We build our model on Flux Kontext (Batifol et al., 2025), a DiT-based instruction-
driven image editing model. It takes a source image and an edit instruction as input and outputs the
edited result. The design follows Flux (Labs, 2024), where image and text are encoded as tokens
and processed through visual and textual attention streams. Flux Kontext extends this by encoding
the source (context) image with the Flux autoencoder, then concatenating the source tokens (x) with
the noised target tokens (yt), which are jointly processed in the visual stream (Fig. 6). As in Flux,
a pooled embedding of the edit instruction is fused with the timestep embedding to predict separate
modulation parameters for both textual and visual tokens.

Conditioning on edit strength. Our goal is to inject the scalar edit strength into the instruction-
driven Flux Kontext model (Batifol et al., 2025). Intuitively, edit strength can be viewed as an
attribute of the instruction itself, which suggests representing it as an additional token in text token
sequence. However, our early experiments revealed that the text embedding space is not a smooth
latent space for strength control, often producing abrupt transitions between adjacent edit strengths
(Fig. 15). Recent works (Garibi et al., 2025; Dalva et al., 2024) have shown that the modulation space
of DiT models is highly disentangled and enables fine-grained control of attributes in text-to-image
generation. In particular, object-specific attributes can be modified by adjusting the modulation
parameters of the corresponding word in the text prompt (Garibi et al., 2025).
We find that the modulation space of instruction-driven image editing models allows control over
edit strength. In a simple experiment, we scaled the modulation parameters of the text tokens with
a scalar v ∈ (0.5, 2.0) and generated multiple edits of the same image and instruction. As shown in
Fig. 6 & appendix Fig. 14, perturbing the modulation parameters produce edits of varying strength,
while preserving models prior of preserving image identity. Building on this insight, we inject
edit-strength information into the network through the modulation parameters of the text tokens.
Specifically, we design a strength projector network that maps the input scalar strength value to
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Figure 7: Adding text embeddings into the slider pro-
jector improves smoothness of edit transitions.

Strength Projector is a small MLP that maps
the scalar edit strength s ∈ (0, 1) into the off-
sets [∆yshift,∆yscale] to the modulation pa-
rameters of the text tokens [yshift, yscale]. A
direct implementation of this projector would
predict identical offsets for all edits at a given
strength, ignoring the type of edit. This leads to
uncalibrated edits resulting in sudden jumps in
edits. For example, as shown in Fig.7, for mate-
rial editing, the model generates sudden transi-
tions. To overcome this limitation, we provide
the pooled CLIP text embedding as an additional input, allowing the predicted modulation parame-
ters to depend on the instruction. This results in calibrated modulations that enable smooth, contin-
uous control across diverse edit categories. More details are in appendix Sec. A.3.
Training. We train our model on the curated dataset (Sec. 3.1) by sampling paired data consisting
of source image x, edit instruction e, edit strength s, and target edit ys. Trainable parameters include
LoRA for the attention projection matrices of the Flux Kontext model, along with the projector
network. Concretely, a data sample (x, e, s, ys) and a diffusion timestep t, we optimize the model
using the standard flow matching loss:

Lθ = Et∼p(t),x,e,s,ys

[∥∥vθ(yts, t, e, x, s)− (ϵ− x)
∥∥2
2

]
, (1)

where yts is the interpolated latent between ys and Gaussian noise ϵ ∼ N (0, 1), defined as yts =
(1− t)ys+ tϵ. vθ is the Kontinuous Kontext model. As a regularization we randomly drop the slider
conditioning with probability 0.1. For more details are in Sec. A.1.

4 EXPERIMENTS

Methods δsmooth ↓ CLIP-Dir. ↑
Diffmorpher 0.371 0.181
Freemorph 0.365 0.189
WAN-Video 0.853 0.269
Ours 0.329 0.241

Table 1: Comparison with Editing + Inter-
polation baselines.

Evaluation Benchmark. We use a standard image edit-
ing benchmark, PIEbench (Ju et al., 2024), that con-
sists of diverse and challenging instruction-driven image
editing test examples. The benchmark consists of ed-
its from the following editing categories: change object,
add/remove object, change pose, change color, change
material, change background and change style. We re-
move the add/remove category as it is not a continuous
edit. The instructions involved challenging edits that often have two-three edits in one prompt (e.g.,
‘transform the dog into a brown german shepherd, while he stands on the bench’). The evaluation
dataset consist of 540 images, with one edit instruction per image.

Methods δsmooth ↓ CLIP-Dir. ↑
ConceptSliders 0.143 0.186
Ours 0.098 0.382

MARBLE 2.577 0.157
Ours 0.350 0.101

Table 2: Domain specific comparison.

Metrics. We evaluate all the methods on two aspects:
smoothness of edit trajectories and instruction following.
Smoothness is measured with the triangle deficit (δsmooth),
which captures second-order consistency between adja-
cent edits; smaller values indicate smoother transitions.
We use DreamSim (Fu et al., 2023) as the distance met-
ric and report the maximum deficit per sequence. A
user study confirmed that this configuration for measur-
ing smoothness of edits aligns best with human preference (Fig. 16). We evaluate the instruction
following with CLIP directional similarity (CLIP-dir.) (Gal et al., 2021) aggregated over all edit
strengths. Full details about metrics and evaluation for identity preservation are provided in Ap-
pendix A.6.

4.1 BASELINE COMPARISONS

We compare Kontinuous Kontext against two categories of baselines here, and with additional cus-
tom inference-based baselines in Sec. A.8:

i) Editing + interpolation: We first generate a full strength edit with Flux Kontext and then pro-
duce intermediate editing using interpolation methods. We use Diffmorpher (Zhang et al., 2024a),
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‘Transform the marshmallows into chocolate chips’

‘Make the girl smile’

‘Change the season to winter with snow falling everywhere’

‘Transform the scene into complete desert with cactus growing’

‘Open the eyes of the dog widely’

‘Make the person fat and chubby’

‘Transform the glasses into aviator sunglasses’
Figure 8: Our method enables continuous control for challenging geometric edits, including smooth
body-shape transformations and seamless shape–color blending for eyeglass transition.

Freemorph (Cao et al., 2025), and a video inbetweening method WAN-2.1 (Wan et al., 2025) for
interpolation and evaluate on PIEBench. Diffmorpher trains a LoRA on the two input images and
interpolates the model weights, while Freemorph inverts the images and interpolates their attention
features during denoising. Both are post-hoc heuristics applied to pretrained diffusion models, mak-
ing them fragile across diverse edits. Video inbetweening methods, though explicitly trained for
interpolation, perform poorly on imaginative stylization tasks since they are trained on real videos.
Further, these baselines are slower as they require a cascade of models for slider based editing.
ii) Domain specific methods: Here, we compare against methods trained to control specific at-
tributes, such as facial properties (e.g., age, smile) or material properties (e.g., transparency, metal-
licness). We compare with ConceptSliders (Kim & Ghadiyaram, 2025), which trains a LoRA mod-
ule per attribute and achieves continuous control by weight interpolation. Because it is designed
for continuous attribute control during image generation with diffusion models (and not for editing
existing images), we evaluate it on 44 generated images across 11 sliders covering facial attributes,
stylization, and scene edits. For material control, we compare with MARBLE (Cheng et al., 2025),
which trains separate adapter networks to edit properties such as metallicness. We evaluate MAR-
BLE on 40 PIEBench images from the material editing category on metallicness and glow properties.

Methods δsmooth ↓ CLIP-dir ↑
text-space condn 1.468 0.191
w/o text projector 1.092 0.141

w/o filtering 0.483 0.228

Ours 0.329 0.241

Table 3: Ablation studies.

Analysis. We present quantitative comparisons with in-
terpolation methods in Tab. 1 and qualitative compari-
son in Fig. 9a on a challenging composite edit. Wan in-
betweening abruptly transitions the color of the objects
to the target full edit as such transformations are out of
distribution for video model which is reflected as higher
δsmooth value. However, this also raises CLIP-dir., it does
so only because the full edit appears prematurely at inter-
mediate strengths. Diffmorpher and Freemorph introduce severe distortions in intermediate steps,
often partially or completely removing the object, which leads to poor scores on both δsmooth and
CLIP-dir. Our method generates smooth transitions from the source to the final edit, gradually
changing the color of the rock and ball while preserving their identity. We compare with domain-
specific methods in Fig. 9b and Tab. 2. In comparison to ConceptSliders (C-Sliders), our method
produces smoother transitions in appearance while preserving facial structure, as reflected in lower
δsmooth. In contrast, C-Sliders often produces weak edits (see appendix for more comparisons), re-
sulting in lower CLIP-dir. MARBLE, trained on synthetic 3D assets for material control, struggles
on complex real images and, even when successful, exhibits abrupt jumps to the final edit at lower
strengths. This leads to significantly higher δsmooth despite high CLIP-dir. Our method achieves
smooth and consistent transitions across diverse scenarios. Importantly, unlike domain-specific ap-
proaches that require attribute-specific training, our model works out of the box for new attributes,
offering a single unified solution for continuous control of diverse attributes as shown in Fig. 8,& 11.
We present additional comparisons in appendix Fig. 19, 20, 21& 22.
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‘Transform the cat into an anime style in a digital art format’

‘Render as stone structure’

‘Metallic’

a) b)

‘Change the black rocks to white and the ball to blue while keeping them in the water.’

Figure 9: Visual Comparison. We evaluate against (a) image interpolation methods, where we first
generate a full strength edit with Flux-Kontext and interpolate to obtain intermediate edits, and (b)
domain-specific methods, which train separate LoRAs/Adapters for each attribute. Our generalized
method achieves superior slider control with consistent image identity and smooth edit transitions.

4.2 ABLATIONS

We ablate design choices in Tab. 3. Conditioning by adding the slider projector output as an extra
text token (text-space condn) is ineffective for fine-grained strength control and produces abrupt
transitions, reflected in the worst δsmooth. Removing the pooled text embedding input from the slider
projector (w/o text projector) leads to weaker, non-smooth edits and inferior δsmooth and CLIP-dir.
scores (see Fig. 15). Finally, effective data filtering that removes poor-quality and non smooth edit
sequences from the dataset significantly improves both smoothness and text alignment.

4.3 USER STUDY
WAN Diffmorpher Freemorph

C-Sliders MARBLE

Smoothness Realism Editing Ability Overall Quality

Figure 10: User study win-rates (%) of our method
against baselines in pairwise comparisons.

We conducted a user study to subjectively eval-
uate our method against all baselines. The
study followed a head-to-head comparison
where for each trial, one baseline was randomly
selected, and its outputs were compared with
ours across four dimensions: smoothness of the
edit sequence, realism of the edits, editing capa-
bility with respect to the given instruction, and
overall sequence quality. For each baseline, we
sampled 20 input images, resulting in a total of
100 images evaluated. The study involved 20
participants, each providing judgments on the
paired outputs. Figure 10 reports the win rates
of our method over the baselines. Morphing-based methods often appear smooth due to continu-
ous transitions but suffer from artifacts or missed edits. Our method consistently outperforms all
baselines across all criteria, delivering both faithful edits and superior perceptual quality.

5 DISCUSSION AND CONCLUSIONS

We presented Kontinuous Kontext, a simple extension to Flux Kontext that adds a continuous control
dimension for instruction-driven image editing. Our method provides smooth, fine-grained control
over the intensity of edits, without sacrificing the strong baseline capabilities of the underlying
model. While highly effective for continuous edits, our approach has some limitations. For inher-
ently discrete transformations, such as inserting or removing objects, the transitions are necessarily
abrupt since there is no natural continuum. Moreover, as Kontinuous Kontext is built on Flux Kon-
text, it inherits its weaknesses in categories like precise geometric manipulations such as accurate
object rotation or translation, where the base model itself struggles. A failure case of our method is
in generating consistent extrapolating edits (Fig. 24) for large transformations.
Beyond its practical utility, this work highlights that edit intensity is naturally encoded in the mod-
ulation space of instruction driven diffusion models. By learning a lightweight projector into this
space, we unlock a flexible control mechanism that generalizes across diverse edits without attribute
specific training. This suggests that other forms of continuous control, such as spatial or temporal
intensity fields, may be introduced in a similarly lightweight manner, opening opportunities for in-
teractive editing tools that combine the richness of language with the precision of continuous sliders.
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Reproducibility statement: We will release the code, pretrained models, and both the filtered and
raw datasets used in this project. Our model is built on the open-source FLUX.1-Kontext dev image
editing model. Details of the training setup and compute requirements are provided in Sec. A.1. A
full explanation of dataset generation and filtering, along with representative examples, is given in
Sec. 3.1 and Sec. A.2. The evaluation datasets and metrics are described in Sec. 4 and Sec. A.6. All
baseline methods were evaluated using their publicly available code.

Ethics Statement: Our work focuses on continuous strength control for image editing, improving
the controllability of image manipulation. While such techniques could be misused for creating
deceptive or harmful content, similar to other generative models, outputs from our method can be
watermarked. Our contributions are intended for research in controllable image generation, and we
see this as enabling many positive applications. In particular, our approach can support creative
design, accessibility, and educational tools, while ongoing advances in detecting AI-edited images
further help mitigate risks of misuse.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS.
We train slider projector along with a rank-4 LoRA on all attention layers of the base diffusion
model. We train all our models at a resolution of 512X512. After filtering our dataset consists of
66K edit trajectories, along with their edit instructions. We train all models on a single NVIDIA
A100 (80GB) GPU for 110, 000 iterations, using an effective batch size of 8 and a constant learning
rate of 2 × 10−5. Training takes about 120 hours to complete. During training, we drop the slider
conditioning 10% of the time. For inference, we use the default Euler scheduler from Flux Kontext
and use T = 28 inference steps for generation. The generation time is similar to Flux Kontext
model, as we only have the projector as the new component.

A.2 DATASET GENERATION

In this section we provide the details about our dataset generation process:

Generating Image Edit Pairs. We use Subject200K (Tan et al., 2024) dataset to source our input
images. This dataset has a diverse variety of input object and scenes captured in different environ-
ment conditions. We extract 110K source images from this dataset. Next, we generate image spe-
cific edit instructions for source images using a Qwen-VLM (Bai et al., 2025). For a good diversity
of our dataset, we categorize our edit categories into global edits (stylization, scene reimagination
and environment change) and local edits (material and appearance editing, attribute modification
and shape morphing). For each image in the dataset, we randomly sample one of these editing cat-
egories, and ask VLM to generate instruction from that category. We pass the input image along
with the system prompt to the multimodal VLM to generate instructions specific to the image. We
use the following system prompt and ask the VLM to generate the edit instruction in a desired .json
format for ’appearance change’ edit, and use similar system prompts for other editing categories.
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‘Transform the marshmallows into chocolate chips’

‘Make the girl smile’Source

‘Transform the scene into daytime with ample sunlight’

‘Transform the man into a statue made up of stone’

‘Make the panda open its mouth wide for yawning’

‘Transform the panda into a husky dog’  

‘Reduce the size of the object’  

‘Transform the scooter into an off-road motorbike’  

‘Transform her dress as if it is made of shiny gold material’

Source

Figure 11: Kontinuous Kontext can enable fine-grained control over the edit strength for diverse
instruction-driven image editing operations.
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System prompt for generating edit instructions

System Prompt: You are a professional image editor. Generate
an original, diverse, and detailed local appearance change
instruction for the given object in the image. Create a unique
instruction different in wording and content from the examples.
Examples: {examples}
Output ONLY a valid JSON object with EXACT keys "category" and
"instruction". No additional text or explanation.
Example output: {"category": "Appearance Change",
"instruction": "Modify the fabric of the couch to a rich
burgundy velvet with gentle sheen."} DO NOT include trailing
commas or escape characters.

We sample a predefine set 50 − 100 in-context examples per edit category and randomly sample 4
examples and combine it with the system prompt to generate rich prompts for generating diverse
editing instructions. Here are the in-context examples for each of the categories in our dataset.

In context example for local edits fonttitle

Appearance change
examples = [ "Transform the chair into plush candy-colored
marshmallow material with soft reflections",
"Make the bicycle frame appear as flowing liquid metal with
dynamic highlights",
"Turn the lampshade into glowing crystalline material with
internal refracted light"]

Material change
examples = [ "Replace the chair’s wooden legs with polished
chrome metal, emphasizing its reflective specularity",
"Make the tabletop appear carved from dark mahogany wood with
visible grain and a semi-matte roughness",
"Transform the bag’s fabric into smooth black leather with
glossy highlights and subtle texture"]

Attribute change
examples = ["Open the laptop lid halfway to reveal the
keyboard",
"Rotate the handlebar of the bicycle by 45 degrees",
"Raise the adjustable lamp arm to maximum height"]

Intra object morph
examples = ["Morph a teapot into a lantern while keeping the
spout as a decorative handle",
"Transform a bicycle into a motorbike with parts composed
naturally",
"Morph a chair into a bench while preserving the backrest
shape"]

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

In context example for global edits

Stylization
examples = [ "Render the scene in Studio Ghibli style with
dreamy backgrounds and soft pastel hues",
"Transform the image into Pixar-style 3D animation with vibrant
colors and cinematic lighting",
"Stylize the composition as a Van Gogh oil painting with thick
impasto brush strokes"]

Environment change
examples = ["Blanket the entire landscape with fresh, thick
snow, covering trees and rooftops with crystalline frost",
"Transform the scene into a harsh winter blizzard with swirling
snow and reduced visibility",
"Age the entire scene to look like a weathered medieval village
with cracked stone walls"]

Scene reimagination
examples = ["Place the entire village on a massive turtle’s
back slowly moving through the ocean",
"Transform the bustling marketplace into a floating bazaar
carried by hot air balloons",
"Reimagine the city skyline as colossal crystal formations
reflecting rainbow light"]

Generating image edits. We use the source images and obtained editing instructions to generate
edited versions of the source image using Flux Kontext (Batifol et al., 2025). Flux-kontext being a
generalist editing model, it can generate high quality edits for the source images. However, in some
cases it does not perform the edit and outputs the same input image. We filter our such cases in our
filtering stage discussed next. Next, we present a qualitative subset of source, edit image and the
instructions used for generating those edit images in Fig. 12.

Introduce vibrant poppies blooming amidst a 
tranquil garden setting

Global Edits Local Edits

Imagine the field is a vast ocean and the 
hoodie is a majestic ship sailing across it 
casting a warm glow against the setting 
sun

Transform the scene into a painting using soft 
pastels and muted colors to create a dreamy 
atmosphere

Add a dreamy fairy dust effect to create a 
whimsical forest backdrop for the kitchen 
counter

 Turn on the bright neon lights and add some 
futuristic urban elements such as floating 
holographic ads and colorful street art.

Convert the doll to a digital painting in the style of 
Chinese brush paintings using delicate strokes and 
muted colors to evoke a sense of nostalgia and 
spiritual tranquility.

Replace the cushion colors of all four chairs 
with uniform dark blue and white stripes

Morph the large thermos flask into a compact 
travel mug while maintaining its classic design

Morph the white electric scooter into a desk lamp

Improve the scene by replacing the wooden 
fountain pen with a futuristic stylus

Replace the leather seat cushion with 
sheepskin cushions for added comfort

Change the color of the kites body to 
a deep blue shade

Figure 12: Samples for generated edit instructions and the generated edits from Flux Kontext

Generating intermediate edits with Image morphing (Cao et al., 2025) Given the source and
edited image, we use Freemorph - a training free Diffusion based image morphing approach.
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Freemorph requires input caption for the two source images to be interpolated. To this end, we
use LLaVA (Liu et al., 2023) model to generate captions, as they suggested in their paper. Further,
the method first inverts the two images and then interpolated the attention features during denoising.
This requires a full denoising process to generate one morph image. In practice, we generate N = 5
intermediate morphs between the source and the edited image. We use official code provided by
the authors that is built on StableDiffusion-2.1 Rombach et al. (2022) and use DDIM scheduler for
generation with T = 50 steps. All the interpolations were generated at a native resolution 768X768
of SD-2.1.

Data Filtering. We filter out the edit sequences that are not smooth and have significant inversion
during the diffusion inversion. We visualize some examples that are selected and filtered out based
on the reconstruction quality and sequence uniformity in Fig. 13.

A.3 MODEL ARCHITECTURE

Our projector is a 4-layer MLP with dimensions 1536 → 256 → 128 → 6192. The output di-
mension of D = 6192 is divided into two chunks each of 3096 represnting offsets for modualtion
parameters - ∆yscale and ∆yshift. The 1536 dimensional input to the model consists of embedded
scale value s of dimension 768 and pooled CLIP text embedding of dimensions 768. We first apply
sinusoidal positional encoding to s to bring it to 128 dimensions followed by a linear layer to trans-
form it to similar dimension of 768. The CLIP embedding and the encoded scale embeddings are
concatenated and passed as a single input to the projector network.

A.4 INFERENCE-TIME CONTROL IN MODULATION SPACE

We performed a simple experiment to analyse the effect of modulation-parameters on the edit im-
ages. We scale the modulation parameters with v = (0.5, 1.3) for the text token and visualize the
generated edit image in Fig. 14. Though the generated edits are diverse for different scale values, the
scaling value v does not directly correlate with the strength of the edit. This raises a need of learn-
ing a calibrated mapper like our slider projector, that can expose the strength control by accurately
manipulating the modulation parameters.

A.5 ABLATION STUDY

We present ablation study in Fig. 15 for different architecture choices. Adding the output of slider
projector in the text embedding space leads to edit transitions with abrupt jumps. Similarly, adding
without adding the pooled text embedding in the projector leads to non-smooth edit trajectory. Our
design of injecting the slider control in the modulation space and making the projector adapt to the
edit instruction embedding, results in smooth trajectories, enabling fine-grained control to the user.

A.6 EVALUATION METRICS

A.6.1 SMOOTHNESS OF THE EDIT SEQUENCE

We measure both first and second-order smoothness of an edit trajectory for quantitative evalua-
tion. For a given source image x and edit instruction, we generate a sequence of N edited images
{ys1 , ys2 , . . . , ysN }, and include the source image as the initial element ys0 = x, yielding a se-
quence of N+1 images. We use an image distance metric d(·, ·) to compare the images. We used
Dreamsim (Fu et al., 2023) as it better captures the semantic differences between images in contrast
to LPIPS that has a high spatial bias.

First-order smoothness. We define adjacent distances between the images in the sequence as

di = d(ysi , ysi+1), i = 0, . . . , N−1,

and compute the cumulative path length

L =

N−1∑
i=0

di.
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Good trajectories

Filtered trajectories
Poor inversion

Weak edit - Flux Kontext fails

Non-uniform sequence and missing object

Non-smooth sequence & Poor inversion

Source EditedInversionInversion

Source EditedInversionInversion

Non-uniform sequence

Figure 13: Samples trajectories from our synthesized dataset
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Source v=0.0 v=0.5 v=0.6 v=0.7 v=0.8 v=0.9 v=1.0 v=1.1 v=1.2 v=1.3

Change the image to a watercolorpainting 

Change the image to a cartoon

Source v=0.0 v=0.5 v=0.6 v=0.7 v=0.8 v=0.9 v=1.0 v=1.1 v=1.2 v=1.3

Scaling the modulation parameters at inference time 

Figure 14: Inference time control in modulation space. We conducted a simple experiment by
scaling the text modulation parameters with values of v ∈ (0.5, 1.3) to generate multiple edits.
While these edits varied across different scales, the variations did not consistently correlate with the
intended edit strength. This highlights the need for a dedicated learning module that can translate
such variations into user-interpretable strength control by accurately manipulating the modulation
parameters.

Transform the living room into a pixel art style featuring a LEGO chair.

Modify the young lion to appear as a metallic figure constructed 
with gridlines.

Transform the kitten into a golden sculpture

Render the scene as an oil painting featuring a cartoon-style little 
girl playing a musical instrument.

Change the duck into a chicken sitting on a board near the water.
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Figure 15: Ablation over architecture of Kontinuous Kontext.

The first-order smoothness is then computed as:

δ1 = max
i

di
L
,
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which captures the largest normalized jump in the trajectory.

Second-order smoothness. For local consistency, we compute the triangle deficit given by

∆i = d(ysi , ysi+1
) + d(ysi+1

, ysi+2
)− d(ysi , ysi+2

), i = 0, . . . , N−2.

Each deficit is normalized by the direct distance between the endpoints:

∆̃i =
∆i

d(ysi , ysi+2
)
.

The second-order smoothness is then computed as:

δ2 = max
i

∆̃i,

where smaller values indicate smoother local transitions.
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Figure 16: We performed one user study where we
compute the alignment of the users scores given for
smoothness of the sequence with the different variations
of smoothness metrics. We found δ

(2)
smooth aligns well

with the user preferences for smoothness indicating that
it is a good metric to measure the smoothness.

Analysis. We conducted a user study to eval-
uate how well smoothness metrics align with
human preferences. Participants were shown
pairs of edit sequences and asked which ap-
peared smoother in terms of transitions. The
study included 20 volunteers and 40 sequence
pairs. For each sequence, we computed first-
and second-order smoothness using two dis-
tance functions: LPIPS (Zhang et al., 2018)
and DreamSim (Fu et al., 2023). We then mea-
sured agreement between user choices and each
of the four metric configurations (Fig. 16). Re-
sults show that δ2 (DreamSim) aligns best with
user preferences, as it captures fine-grained se-
mantic changes reflected in slider adjustments.
While first-order smoothness prevents abrupt
jumps, second-order smoothness ensures con-
sistency in the rate of change, producing natural
and continuous transitions that match user expectations. Fig. 17 illustrates this: although Sequence
1 has better first-order smoothness (lower δ1), Sequence 2 is semantically smoother, captured by a
lower δ2smooth. From these findings, we define the smoothness metric as:

δsmooth = δ2(Dreamsim)

A.6.2 INSTRUCTION FOLLOWING WITH CLIP DIRECTIONAL SIMILARITY

For a given input image x, and edit instruction e, we edit the image with uniformly sampled edit
strengths {si = i/N |i = 1, ..., N} to obtain the edited image sequence {yi|i = 1, ..., N}. We
compute the CLIP-direction similarity for each of the edits at each strength as:

di = dclip−sim(ysi , x, e), i = 1, ..., N

and report the aggregated normalized CLIP-sim as:

Dclip−dir =

∑N
i=0(di/si)

N

adjusting the directional similarity based on the edit strength.

A.6.3 IMAGE IDENTITY PRESERVATION WITH CLIP IMAGE SIMILARITY

We quantify the image identity preservation by computing the CLIP-Image similarity between the
source image and the edited image across different edit strengths. We present plot of the image sim-
ilarity value across the edit strengths in Fig. 18. Our method, gradually reduces the image similarity
with increasing strength following almost a linear decay. This further supports our finding that our
method generates smooth transitions between subsequent images.
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Edit sequence 1

𝛅1
smooth= 0.350  𝛅

2
smooth= 0.185   

Edit sequence 2
𝛅1

smooth= 0.367  𝛅
2

smooth= 0.105   

Source

Source

Figure 17: Qualitative interpretation for first order and second order smoothness. For slider-
based image editing, second-order smoothness is more important than first-order smoothness, as it
captures the local consistency needed for gradual, nuanced changes with slider controls.

DiffmorpherWAN Freemorph Ours

CLIP Image Similarity

0.16 0.33 0.50 0.66 0.83 1.00

Edit Strength 
0.16 0.33 0.50 0.66 0.83 1.00

Edit Strength 

C-Sliders Ours

Edit Strength 
0.16 0.33 0.50 0.66 0.83 1.00

CLIP Image Similarity

MARBLE Ours

CLIP Image Similarity

Figure 18: Comparison for identity preservation of our method against baselines. Our method
smoothly transforms the image into target edit over different edit strengths, resulting in close to
linear decay in identity change and preserving identity well in lower strengths. In contrast, baselines
change the identity of the subject significantly even with small edit strengths and don’t change the
image for stronger edits.

A.7 QUALITATIVE COMPARISON

We present additional comparison results with interpolation based baselines in Fig. 19, 20 and with
domain specific method ConceptSliders in Fig. 22, MARBLE in Fig. 21.

A.8 ADDITIONAL BASELINES

Methods δsmooth ↓ CLIP-dir ↑
CFG-scale 152.205 0.242
Attention-weighing 120.760 0.237
Ours 0.329 0.241

Table 4: Experiments for comparison with
additional inference time baselines.

We compared Kontinuous Kontext with two additional
simple baselines: a) CFG-Scale - We change the classi-
fier free guidance scale to control the extent of the edit,
as we expect with higher cfg scale the generated edit
should follow the edit instruction more closely. b) At-
tention reweighting - We scale the cross-attention maps
between the text tokens and the generated visual tokens
inspired by Prompt2Prompt (Hertz et al., 2022).

The insight is that, if we increase the cross-attention weight with the text instruction the edited image
will pay more attention to the edit resulting in stronger edits. We present comparison in Tab. 4 and
Fig. 23. Both the methods fail the generate smooth edit transitions and distort the input image
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'Modify the woman's hair to silver and change the flower to blue.'
Change the butterfly on a leaf into a parrot perched on a flower in the garden.

‘Modify the pigeon to be pecking at the sand with one foot raised.’

Modify the couch to have a cottony texture and change the 
curtain to a green wool fabric.

Figure 19: Comparison with interpolation baselines. Morphing-based methods generate smooth
transitions; however, they often introduce artifacts in the intermediate images or omit details such
as leaves. Similarly, the video inbetweening model WAN produces strong artifacts in intermediate
frames, as these appearance transitions are out of domain for an inbetweening model trained only
on real data.
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‘Transform the cat into an anime style in a digital art format’

‘Modify the lantern to be crystal and the trees to appear ancient while retaining 
the forest setting with lights.’
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Figure 20: Comparison with interpolation baselines. DiffMorpher and FreeMorph remove objects
in the intermediate edits of the first examples. Moreover, DiffMorpher produces blurred outputs even
for simple stylization transitions. The WAN inbetweening model generates transitions with abrupt
jumps in both examples. In contrast, our method produces smooth transitions while preserving
image identity.
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Figure 21: Comparison with MARBLE for material control
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Figure 22: Comparison with Concept Sliders for diverse attribute editing.
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‘Change the golden pagoda into a red one set in heavy rain.’
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‘Modify the horse in the photo to be a bronze toy while remaining in the field.’
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Figure 23: We compare with additional inference time baselines.

identity significantly. These abrupt transitions leads to a very high value for δsmooth smoothness
metric.

A.9 FAILURE CASE - EXTRAPOLATION BEYOND THE TRAINING STRENGTH s > 1

One of the failure case of our method is in extrapolating edits beyond strength value s = 1. Our
method either does not perform the edits for s > 1 or reduces the extent of the edit as shown in
Fig. 24.
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S = 1.0 S = 1.1 S = 1.2 S = 1.3

‘Transform her jacket to a brown colored 
overcoat_with fur on the collar and sleeves’

Transform the scene into a 3D pixar style animation

‘Reduce the size of the panda’
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Figure 24: Extrapolation of edit strengths. One of the failure case of our method is it cannot
generate edits with extrapolation well. In most cases, either it recreates the full edit image (s = 1),
or reduce the extent of edit in extrapolation region.
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A.10 LLM USED IN WRITING THE PAPER

We have used LLM to do grammatical changes or rephrasing at a sentence level in the paper text.
The authors of this paper are responsible for all the content of this paper.
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