
Kontinuous Kontext: CONTINUOUS STRENGTH CONTROL FOR INSTRUCTION-BASED IMAGE EDITING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

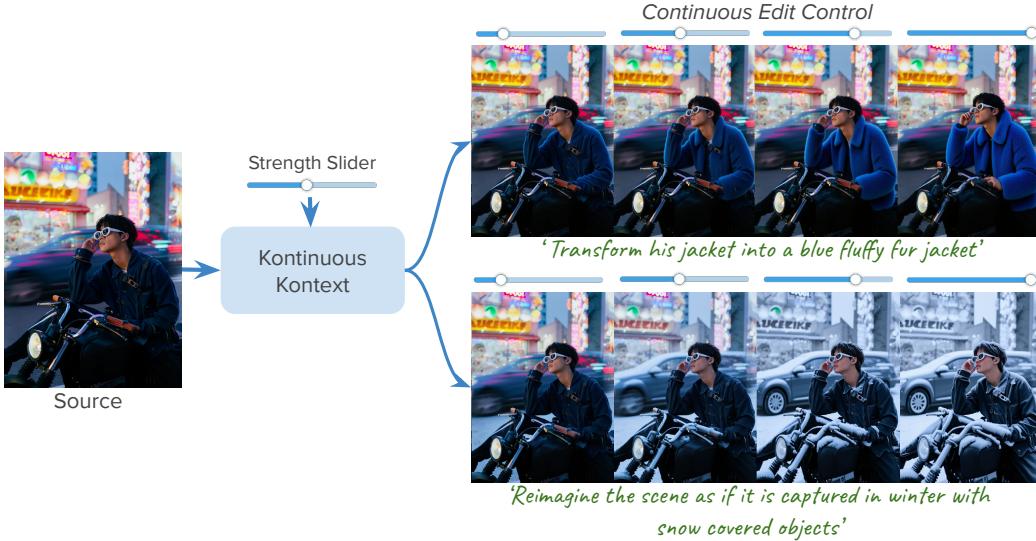


Figure 1: *Kontinuous Kontext* produces smooth edit trajectories across diverse attributes given an image, instruction, and an edit scalar strength. Unlike prior methods that require attribute-specific training, ours is a unified approach to enable fine-grained control.

ABSTRACT

Instruction-based image editing offers a powerful and intuitive way to manipulate images through natural language. Yet, relying solely on text instructions limits fine-grained control over the extent of edits. We introduce *Kontinuous Kontext*, an instruction-driven editing model that provides a new dimension of control over edit strength, enabling users to adjust edits gradually from no change to a fully realized result in a smooth and continuous manner. *Kontinuous Kontext* extends a state-of-the-art image editing model to accept an additional input, a scalar edit strength which is then paired with the edit instruction, enabling explicit control over the extent of the edit. To inject this scalar information, we train a lightweight projector network that maps the input scalar and the edit instruction to coefficients in the model’s modulation space. For training our model, we synthesize a diverse dataset of image-edit-instruction-strength quadruplets using existing generative models, followed by a filtering stage to ensure quality and consistency. *Kontinuous Kontext* provides a unified approach for fine-grained control over edit strength for instruction driven editing from subtle to strong across diverse operations such as stylization, attribute, material, background, and shape changes, without requiring attribute-specific training.

1 INTRODUCTION

The advent of large-scale text-to-image generative models (Ho et al., 2020; Song et al., 2022; Rombach et al., 2022) has enabled phenomenal progress in instruction-driven image editing, allowing users to perform a broad range of edits through natural language instructions (Hertz et al., 2022;

079 Figure 2: *Kontinuous Kontext* enables finer control across diverse edits. It can do simultaneous
 080 changes in attributes hair color and structure, highly localized changes such as editing the panda’s
 081 mouth and geometric edits such as changing the size of the car.

082 Brooks et al., 2023; Batifol et al., 2025). With a single prompt (e.g., “make the person old”), these
 083 models can change style, modify object appearance or shape, and add or remove objects. While
 084 text is an intuitive interface for specifying editing goals, it is also a coarse modality: it conveys
 085 what change to make but not to what extent. As a result, users lack fine-grained control over the
 086 strength of an edit (e.g., adjusting the degree of “oldness” in a portrait). This limitation poses a
 087 central challenge for achieving precise and controllable image manipulation.

088 To address this challenge, prior work has explored continuous control for image manipulation, rang-
 089 ing from GAN-based latent space editing (Shen et al., 2020; Härkönen et al., 2020; Abdal et al.,
 090 2021; Patashnik et al., 2021) to diffusion-based methods that rely on specialized per-attribute mod-
 091 ules (Cheng et al., 2025; Gandikota et al., 2024; Sharma et al., 2024). While these approaches
 092 demonstrate the appeal of continuous editing, they are often restricted to narrow domains or require
 093 dedicated training for each attribute. This leaves open the need for a unified method that enables
 094 continuous control across diverse types of edits without the burden of training per-attribute models.

095 In this work, we introduce *Kontinuous Kontext*, an instruction-driven image editing model that in-
 096 troduces a new dimension of control, enabling continuous adjustment of edit strength across diverse
 097 edit categories. Rather than being limited to a binary “before/after” operation, our approach en-
 098 ables smooth traversal between no edit and a fully realized edit, turning coarse instructions into
 099 rich, tunable controls. For example, users can gradually change the extent of stylization or inten-
 100 sity of snowfall (Fig. 1), as well as perform local edits with finer control including attribute edits
 101 such as hair color, facial expression, or object size (Fig. 2). By transforming discrete instructions
 102 into continuous editing trajectories, our method bridges the gap between intuitive text prompts and
 103 fine-grained user control, offering a level of precision unattainable with text alone.

104 We realize this new dimension of control by augmenting an existing instruction-based image editing
 105 model with an additional input scalar that specifies edit strength. Specifically, we build on Flux
 106 Kontext (Batifol et al., 2025), a state-of-the-art instruction-driven image editing model and condition
 107 it with the strength scalar via a lightweight projector network. The projector takes as input the scalar
 value together with the edit instruction embeddings and outputs coefficients calibrated to the specific

108 edit instruction. These coefficients operate in the model’s modulation space (Garibi et al., 2025;
109 Dalva et al., 2024), where they modulate the text tokens, effectively refining the edit instruction to
110 reflect the desired strength.

111 Training the projector requires data consisting of source image, edit instruction, edit image, and
112 annotations of edit strengths, which is not readily available for real images. To overcome this lim-
113 itation, we synthesize such tuples using existing generative techniques. Specifically, we first use
114 an LVLM (Bai et al., 2025) to generate diverse, image-specific edit instructions. Next, we apply
115 Flux Kontext to produce edited images from the source images and the synthesized instructions.
116 Finally, we use a diffusion based image morphing model (Cao et al., 2025) to generate intermediate
117 edits at varying strengths. The synthesized data, however, often provides noisy supervision, where
118 the sequences are not smooth or the intermediate images have artifacts or deviate too far from the
119 endpoints. To address this, we apply filtering based on identity preservation of input images and
120 smoothness of the edit transitions to obtain clean, reliable training data. In addition, the scale and
121 diversity of the dataset helps mitigate remaining inaccuracies and outliers. Notably, we find that
122 even when trained on this high quality filtered but moderately sized dataset, our method generalizes
123 strongly across diverse editing categories.

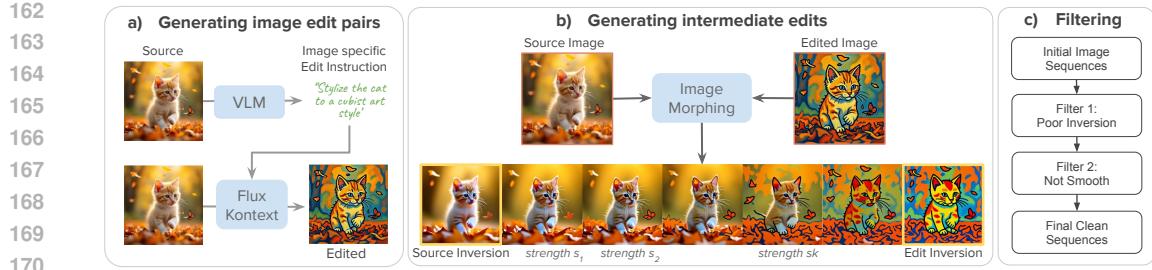
124 Extensive experiments across a broad spectrum of instruction driven editing tasks show that *Kontin-
125 uous Kontext* provides rich, diverse, and finely controlled results. It enables precise strength control
126 for local edits such as attribute, material or appearance changes, global transformations such as style
127 or environment and lighting changes, and even challenging geometric edits like shape morphing.
128 Notably, it generalizes beyond its training categories to unseen cases such as facial attribute and
129 body shape changes. These findings establish our approach as a powerful, general framework for
130 continuous instruction-driven image editing, opening new directions for fine-grained and control-
131 lable visual editing.

132 2 RELATED WORKS

133 **Instruction-driven Image Editing.** The advancements of scalable visual generative models
134 (Esser et al., 2024; Podell et al., 2023; Ramesh et al., 2022; Wu et al., 2025a; Rombach et al., 2022)
135 trained on internet-scale image-text pairs have fueled a wide range of image editing applications.
136 Instruction-based image editing, introduced by Instruct-Pix2Pix (Brooks et al., 2023) enables editing
137 images with text instructions. To this end, they curated a synthetic dataset of image-edit pairs gen-
138 erated using Prompt2Prompt (Hertz et al., 2022), with corresponding editing instructions generated
139 by an LLM, and fine-tuned the Stable Diffusion model (Rombach et al., 2022) for instruction-driven
140 editing. Subsequently, many works (Sheynin et al., 2024; Zhang et al., 2025; 2024b) have improved
141 the dataset curation pipeline and model architecture, leading to stronger instruction-following abil-
142 ity. More recent approaches train large unified models for both generation and editing (Batifol et al.,
143 2025; Wu et al., 2025a;b; Xiao et al., 2025). These models are capable of performing diverse editing
144 tasks such as personalization, scene composition, and instruction-based editing. Despite their re-
145 markable general-purpose editing capabilities, these models lack control over the extent of the edit,
146 limiting their applicability for users who require fine-grained adjustments.

147 **Discovering Continuous Control in Generative Models.** A common approach to achieve con-
148 trol over edit strength is through traversals in latent spaces. In GANs and VAEs, compressed latent
149 representations capture rich semantics, enabling the discovery of directions that correspond to se-
150 mantic attributes (Karras et al., 2019; Härkönen et al., 2020; Hou et al., 2017; Higgins et al., 2017).
151 Numerous traversal methods have been developed to leverage these directions for fine-grained at-
152 tribute manipulation (Shen et al., 2020; Abdal et al., 2021; Patashnik et al., 2021). However, such
153 methods remain restricted to narrow domains. Extending the idea of latent space traversal to dif-
154 fusion models is challenging, as the denoising network does not naturally provide a compact latent
155 space (Kwon et al., 2022), text embeddings are not smooth (Hertz et al., 2022), and LORA-based
156 weight interpolations (Gandikota et al., 2024; 2025; Dravid et al., 2024) remain computationally
157 expensive and concept-specific. These approaches all rely on discovering latent or weight-space
158 directions with continuous variation. In contrast, we augment the instruction mechanism with a new
159 control dimension, enabling smooth adjustment of any attribute the model can already edit. Hence,
our model does not require any additional training for specific attributes.

160 **Adding Continuous Control for Image Editing.** Another set of works introduces continuous
161 control in diffusion models by either fine-tuning the model itself or training auxiliary encoders that
modify its inputs. Some works (Sharma et al., 2024; Cheng et al., 2025; Magar et al., 2025) generate



162
163
164
165
166
167
168
169
170
171 **Figure 3: Data generation.** Our pipeline consists of three steps: (a) We generate an edit instruction
172 for each source image using a pretrained VLM, then apply Flux Kontext, an instruction-driven
173 editing model, to produce a full-strength edit. (b) We synthesize intermediate-strength edits using
174 a diffusion-based morphing method (Cao et al., 2025), which inverts both the source and edited
175 images into the diffusion latent space and interpolates their features. (c) To compensate for in-
176 consistencies in the morphing sequence (Fig. 5), we filter the samples based on the inversion quality
177 and uniformity of the sequence.

178 synthetic data with varying material or illumination properties using rendering engines and fine-
179 tune diffusion models for continuous control over these attributes. Others train encoders to predict
180 new token embeddings injected into the text embedding space, enabling control over 3D properties
181 such as orientation, illumination, and shadows (Cheng et al., 2024; Parihar et al., 2025; Burgess
182 et al., 2024). A further line of work trains adapters that connect the continuous latent spaces of
183 GANs with the stronger generative capabilities of diffusion models, specifically for face attribute
184 editing (Parihar et al., 2024; Li et al., 2024). Despite their effectiveness, methods across these
185 directions remain limited to a single attribute or object category.

186 **Image interpolation.** A promising baseline strategy to achieve continuous control in image editing
187 could be to generate the edited image with instruction and then generate intermediate images
188 between the source and the edited image. Diffusion-based morphing methods (Cao et al., 2025;
189 Zhang et al., 2024a) aim to generate intermediate transitions by interpolating in the diffusion feature
190 space, under the assumption that this space is semantically smooth. While this assumption holds in
191 some cases, the space is not robust to outliers and often produces artifacts in intermediate morphs,
192 such as missing objects or blurred scene content (Fig. 5). Another option is to adapt large video
193 inbetweening models (Wan et al., 2025; Zhu et al., 2025; Wang et al.) to synthesize intermediate
194 frames as continuous edits. However, as these models are trained on natural videos, they produce
195 abrupt transitions for imaginative edits such as stylization or attribute changes, and their outputs
frequently exhibit motion blur, making them unsuitable for high-quality image editing.

196 3 METHOD

197 We extend instruction-driven image editing by introducing a new dimension of control: continuous
198 adjustment of edit strength. To this end, our approach has two key stages. First, we generate a diverse
199 synthetic dataset of paired examples consisting of source images, edited images, edit instructions,
200 and continuous strength values (Sec. 3.1). Second, we propose a simple yet effective approach: fine-
201 tuning a modified instruction-driven editing model that accepts a scalar strength input alongside the
202 edit instruction, enabling smooth and continuous control over the target edit (Sec. 3.2).

204 3.1 DATASET

205 Our method utilizes a dataset of tuples (x, e, s, y_s) , where x is a source image, e is an edit instruction,
206 s is an edit strength, and y_s is the corresponding target edit. Since collecting real data with multiple
207 strength levels is challenging, we curate a synthetic dataset using pretrained generative models.
208 Our data generation process involves three steps: (i) generate a full-strength edit using an existing
209 instruction-driven editing model, (ii) interpolate between the source and the full-strength edit to
210 produce intermediate-strength variations, and (iii) filtering poor quality data samples.

211 **Generating Image Edit Pairs.** We begin by sampling 110K images of diverse objects and scenes
212 across different background and environment conditions from the Subject200K dataset (Tan et al.,
213 2024). For each image, we generate an edit instruction using Qwen LVLM (Bai et al., 2025), cov-
214 ering a diverse category of continuous editing operations (Fig. 3a). We categorize edits into global
215 scene edits (*stylization, scene reimagination, and environment change*) and local object-specific edits
(*material and appearance editing, attribute modification, and shape morphing*) also shown in

216
217
218
219
220
221
222
223
224
225
226
227
228



Figure 4: Samples from diverse image editing categories in our synthesized dataset. We cover a wide range of global edits, including stylization, reimagination, and environment changes, as well as local edits such as appearance changes, material changes, attribute editing, and object morphing.

Fig. 4. We define a fixed template system prompt for each subcategory. Additionally, we generate n in-context examples using GPT4 for each of the subcategory. During instruction generation, we randomly sample from these category specific in-context examples to guide the VLM in generating diverse instructions. The source image and its corresponding instruction are then used to produce a full-strength edit (y^*) with Flux Kontext (Batifol et al., 2025). Generating the edit from Flux Kontext ensures consistency with the base model’s output distribution. Further details of the prompts and additional samples are provided in the appendix Sec. A.2.

Generating Edits With Intermediate Strength.

We generate intermediate edits by synthesizing smooth transitions between the source image x and the full-strength edit y^* generated by Flux Kontext. We define a discrete set of $N+1$ edit strengths $\{s_i = i/N \mid i = 0, \dots, N\}$ uniformly sampled within the normalized range $[0, 1]$. Here, $s_0 = 0$ corresponds to the unedited source, $s_N = 1$ corresponds to the full edit y^* , and the intermediate values s_i for $1 \leq i \leq N-1$ represent proportionally graded changes. Given the source and edited images, we use off-the-shelf diffusion based image morphing method Freemorph (Cao et al., 2025) to generate the intermediate images y_{s_i} , which we treat as edits at the corresponding strengths s_i . Freemorph first inverts the two end point images into the latent space of pretrained diffusion model. Next, it performs guided spherical interpolation between their self-attention maps during denoising to produce intermediate morphs. This yields perceptually monotone transitions that interpolate between the two images (Fig.3b). We use prescribed $N = 6$ as provided in Freemorph (Cao et al., 2025).

We observe that Freemorph has two key limitations. First, its latent space is not semantically smooth, often producing unnatural intermediate images, artifacts with incomplete objects (Fig. 5) and abrupt transitions for large edit transformations. More broadly, as an inference-time heuristic, Freemorph lacks robustness, which further contributes to the errors. To address these issues, we employ an extensive data filtering pipeline. Second, since Freemorph relies on diffusion inversion, it introduces reconstruction errors in the source and edited images during inversion, which makes the intermediate images inconsistent (Fig. 3b). We fix this limitation by replacing the original endpoints with their reconstructions, ensuring consistency with the intermediate morphs.

Data Filtering. While effective, the above data generation pipeline is prone to errors from the underlying generative models (Fig. 5), making filtering essential to eliminate inconsistent samples. To filter out samples with non-smooth edit trajectories, we quantify the uniformity of the edit trajec-

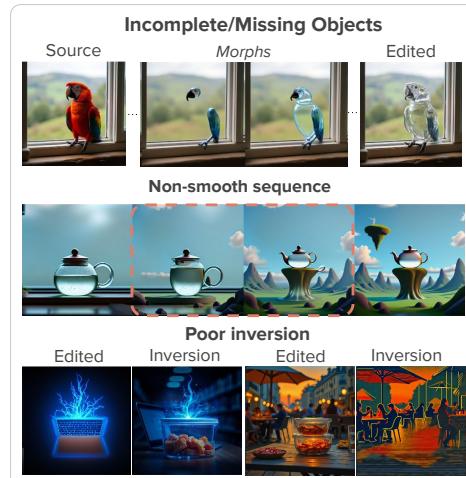


Figure 5: Generating intermediate images with Freemorph can introduce inconsistencies such as incomplete objects, abrupt jumps, or errors from diffusion inversion. We filter such cases to obtain a clean dataset with smooth trajectories.

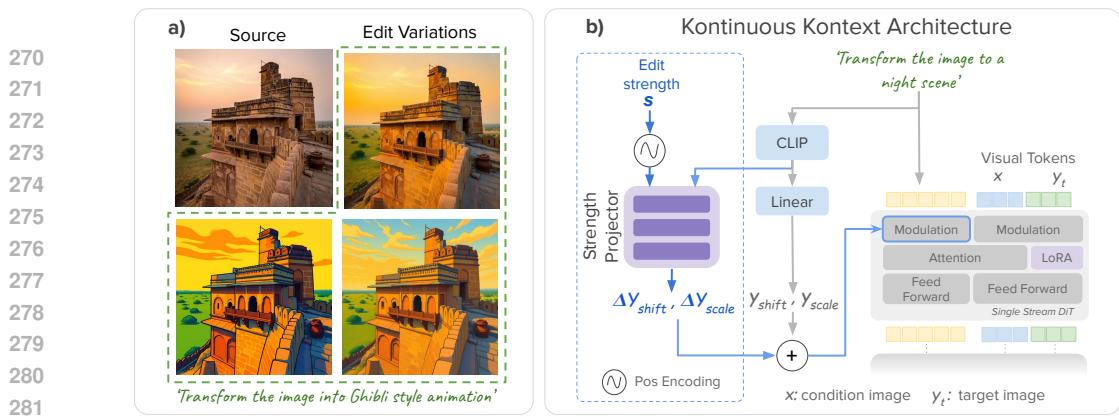


Figure 6: **Model architecture.** (a) In a simple experiment, we scale the text-token modulation parameters in Flux Kontext with a scalar to generate edit variations. This perturbation produces edits of varying strengths, revealing that modulation parameters can govern edit strength. (b) Building on this insight, we design a lightweight projector network that maps a scalar edit strength s to offsets of the text modulation parameters, enabling precise control over edit strength.

tory and threshold on this score. For a training sample (x, e, s, y_s) , the extent of change between the source x and edit y_s should scale with the edit strength s . Equivalently, the distance between adjacent images in the sequence should remain consistent. We define the sequence of deltas as $D = \{d_{0,1}, d_{1,2}, \dots, d_{N-1,N}\}$, where $d_{i,i+1}$ is the distance between image y_i and y_{i+1} and measure its uniformity via the KL-divergence from a discrete uniform distribution. Samples with divergence above 0.15 are discarded.

In addition to non-uniform trajectories we observe for stronger edits, the diffusion inversion step in Freemorph can drastically alter the edited image (Fig. 5). We discard such cases by thresholding the image distance between the edit and its inversion. Similarly, in some cases Flux Kontext fails to perform the edit and instead reproduces the input with minimal changes; we filter out such examples by computing image distance between the source and edited images. We used LPIPS (Zhang et al., 2018) to compute the image distance in all the filtering criteria. After filtering, our dataset is reduced from 110,147 to 64,613 high-quality, smooth and, accurate edit trajectories. Additionally, we generate 10K object size change dataset by pasting objects in different sizes in black backgrounds.

3.2 KONTINUOUS KONTEXT

Preliminaries. We build our model on Flux Kontext (Batifol et al., 2025), a DiT-based instruction-driven image editing model. It takes a source image and an edit instruction as input and outputs the edited result. The design follows Flux (Labs, 2024), where image and text are encoded as tokens and processed through visual and textual attention streams. Flux Kontext extends this by encoding the source (context) image with the Flux autoencoder, then concatenating the source tokens (x) with the noised target tokens (y_t), which are jointly processed in the visual stream (Fig. 6). As in Flux, a pooled embedding of the edit instruction is fused with the timestep embedding to predict separate modulation parameters for both textual and visual tokens.

Conditioning on edit strength. Our goal is to inject the scalar edit strength into the instruction-driven Flux Kontext model (Batifol et al., 2025). Intuitively, edit strength can be viewed as an attribute of the instruction itself, which suggests representing it as an additional token in text token sequence. However, our early experiments revealed that the text embedding space is not a smooth latent space for strength control, often producing abrupt transitions between adjacent edit strengths (Fig. 15). Recent works (Garibi et al., 2025; Dalva et al., 2024) have shown that the modulation space of DiT models is highly disentangled and enables fine-grained control of attributes in text-to-image generation. In particular, object-specific attributes can be modified by adjusting the modulation parameters of the corresponding word in the text prompt (Garibi et al., 2025).

We find that the modulation space of instruction-driven image editing models allows control over edit strength. In a simple experiment, we scaled the modulation parameters of the text tokens with a scalar $v \in (0.5, 2.0)$ and generated multiple edits of the same image and instruction. As shown in Fig. 6 & appendix Fig. 14, perturbing the modulation parameters produce edits of varying strength, while preserving models prior of preserving image identity. Building on this insight, we inject edit-strength information into the network through the modulation parameters of the text tokens. Specifically, we design a strength projector network that maps the input scalar strength value to

324 offsets of the original text modulation parameters, enabling appropriate adjustments for continuous
 325 control of edit strength.
 326

327 **Strength Projector** is a small MLP that maps
 328 the scalar edit strength $s \in (0, 1)$ into the off-
 329 sets $[\Delta y_{shift}, \Delta y_{scale}]$ to the modulation pa-
 330 rameters of the text tokens $[y_{shift}, y_{scale}]$. A
 331 direct implementation of this projector would
 332 predict identical offsets for all edits at a given
 333 strength, ignoring the type of edit. This leads to
 334 uncalibrated edits resulting in sudden jumps in
 335 edits. For example, as shown in Fig. 7, for mate-
 336 rial editing, the model generates sudden transi-
 337 tions. To overcome this limitation, we provide
 338 the pooled CLIP text embedding as an additional input, allowing the predicted modulation pa-
 339 rameters to depend on the instruction. This results in calibrated modulations that enable smooth, con-
 340 tinuous control across diverse edit categories. More details are in appendix Sec. A.3.

341 **Training.** We train our model on the curated dataset (Sec. 3.1) by sampling paired data consisting
 342 of source image x , edit instruction e , edit strength s , and target edit y_s . Trainable parameters include
 343 LoRA for the attention projection matrices of the Flux Kontext model, along with the projector
 344 network. Concretely, a data sample (x, e, s, y_s) and a diffusion timestep t , we optimize the model
 345 using the standard flow matching loss:

$$\mathcal{L}_\theta = \mathbb{E}_{t \sim p(t), x, e, s, y_s} \left[\|v_\theta(y_s^t, t, e, x, s) - (\epsilon - x)\|_2^2 \right], \quad (1)$$

346 where y_s^t is the interpolated latent between y_s and Gaussian noise $\epsilon \sim \mathcal{N}(0, 1)$, defined as $y_s^t =$
 347 $(1 - t)y_s + t\epsilon$. v_θ is the Kontinuous Kontext model. As a regularization we randomly drop the slider
 348 conditioning with probability 0.1. For more details are in Sec. A.1.

349 4 EXPERIMENTS

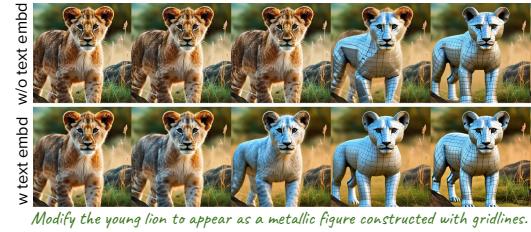
350 **Evaluation Benchmark.** We use a standard image edit-
 351 ing benchmark, PIEbench (Ju et al., 2024), that con-
 352 sists of diverse and challenging instruction-driven image
 353 editing test examples. The benchmark consists of edits
 354 from the following editing categories: change object,
 355 add/remove object, change pose, change color, change
 356 material, change background and change style. We re-
 357 move the add/remove category as it is not a continuous
 358 edit. The instructions involved challenging edits that often
 359 ‘transform the dog into a brown german shepherd, while he stands on the bench’). The evaluation
 360 dataset consist of 540 images, with one edit instruction per image.

361 **Metrics.** We evaluate all the methods on two aspects:
 362 smoothness of edit trajectories and instruction following.
 363 Smoothness is measured with the triangle deficit (δ_{smooth}),
 364 which captures second-order consistency between adja-
 365 cent edits; smaller values indicate smoother transitions.
 366 We use DreamSim (Fu et al., 2023) as the distance met-
 367 ric and report the maximum deficit per sequence. A
 368 user study confirmed that this configuration for measur-
 369 ing smoothness of edits aligns best with human preference (Fig. 16). We evaluate the instruction
 370 following with CLIP directional similarity (CLIP-dir.) (Gal et al., 2021) aggregated over all edit
 371 strengths. Full details about metrics and evaluation for identity preservation are provided in Ap-
 372 pendix A.6.

373 4.1 BASELINE COMPARISONS

374 We compare *Kontinuous Kontext* against two categories of baselines here, and with additional cus-
 375 tom inference-based baselines in Sec. A.8:

376 **i) Editing + interpolation:** We first generate a full strength edit with Flux Kontext and then pro-
 377 duce intermediate editing using interpolation methods. We use Diffmorpher (Zhang et al., 2024a),



378 Figure 7: Adding text embeddings into the slider pro-
 379 jector improves smoothness of edit transitions.

Methods	$\delta_{smooth} \downarrow$	CLIP-Dir. \uparrow
Diffmorpher	0.371	0.181
Freemorph	<u>0.365</u>	0.189
WAN-Video	0.853	0.269
Ours	0.329	0.241

378 Table 1: Comparison with **Editing + Inter-**
 379 **polation** baselines.

380 have two-three edits in one prompt (e.g.,
 381 ‘transform the dog into a brown german shepherd, while he stands on the bench’). The evaluation
 382 dataset consist of 540 images, with one edit instruction per image.

Methods	$\delta_{smooth} \downarrow$	CLIP-Dir. \uparrow
ConceptSliders	0.143	0.186
Ours	0.098	0.382
MARBLE	2.577	0.157
Ours	0.350	0.101

383 Table 2: **Domain specific** comparison.

Figure 8: Our method enables continuous control for challenging geometric edits, including smooth body-shape transformations and seamless shape–color blending for eyeglass transition.

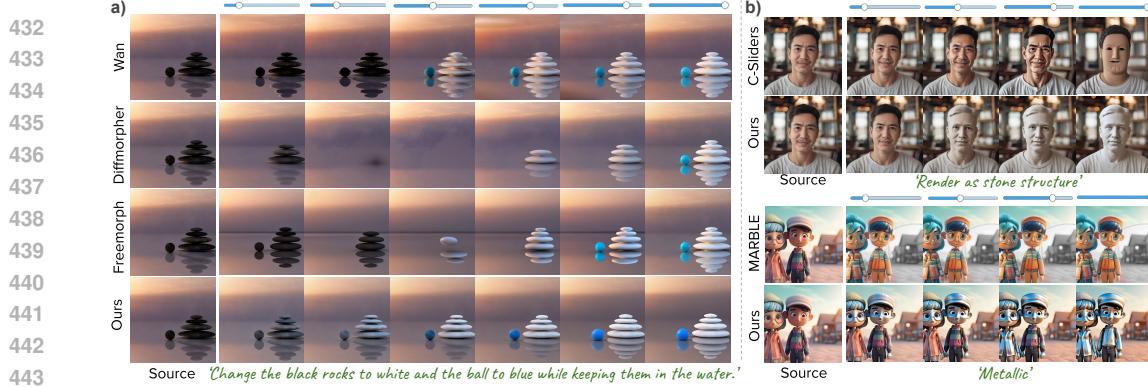
Freemorph (Cao et al., 2025), and a video inbetweening method WAN-2.1 (Wan et al., 2025) for interpolation and evaluate on PIEBench. Diffmorpher trains a LoRA on the two input images and interpolates the model weights, while Freemorph inverts the images and interpolates their attention features during denoising. Both are post-hoc heuristics applied to pretrained diffusion models, making them fragile across diverse edits. Video inbetweening methods, though explicitly trained for interpolation, perform poorly on imaginative stylization tasks since they are trained on real videos. Further, these baselines are slower as they require a cascade of models for slider based editing.

ii) Domain specific methods: Here, we compare against methods trained to control specific attributes, such as facial properties (e.g., age, smile) or material properties (e.g., transparency, metallicness). We compare with ConceptSliders (Kim & Ghadiyaram, 2025), which trains a LoRA module per attribute and achieves continuous control by weight interpolation. Because it is designed for continuous attribute control during image generation with diffusion models (and not for editing existing images), we evaluate it on 44 generated images across 11 sliders covering facial attributes, stylization, and scene edits. For material control, we compare with MARBLE (Cheng et al., 2025), which trains separate adapter networks to edit properties such as metallicness. We evaluate MARBLE on 40 PIEBench images from the material editing category on metallicness and glow properties.

Analysis. We present quantitative comparisons with interpolation methods in Tab. 1 and qualitative comparison in Fig. 9a on a challenging composite edit. Wan inbetweening abruptly transitions the color of the objects to the target full edit as such transformations are out of distribution for video model which is reflected as higher δ_{smooth} value. However, this also raises CLIP-dir., it does so only because the full edit appears prematurely at intermediate strengths. Diffmorpher and Freemorph introduce severe distortions in intermediate steps, often partially or completely removing the object, which leads to poor scores on both δ_{smooth} and CLIP-dir. Our method generates smooth transitions from the source to the final edit, gradually changing the color of the rock and ball while preserving their identity. We compare with domain-specific methods in Fig. 9b and Tab. 2. In comparison to ConceptSliders (C-Sliders), our method produces smoother transitions in appearance while preserving facial structure, as reflected in lower δ_{smooth} . In contrast, C-Sliders often produces weak edits (see appendix for more comparisons), resulting in lower CLIP-dir. MARBLE, trained on synthetic 3D assets for material control, struggles on complex real images and, even when successful, exhibits abrupt jumps to the final edit at lower strengths. This leads to significantly higher δ_{smooth} despite high CLIP-dir. Our method achieves smooth and consistent transitions across diverse scenarios. Importantly, unlike domain-specific approaches that require attribute-specific training, our model works out of the box for new attributes, offering a single unified solution for continuous control of diverse attributes as shown in Fig. 8,& 11. We present additional comparisons in appendix Fig. 19, 20, 21& 22.

Methods	$\delta_{\text{smooth}} \downarrow$	CLIP-dir \uparrow
text-space condn	1.468	0.191
w/o text projector	1.092	0.141
w/o filtering	0.483	0.228
Ours	0.329	0.241

Table 3: Ablation studies.



432
433
434
435
436
437
438
439
440
441
442
443
444 Figure 9: **Visual Comparison.** We evaluate against (a) image interpolation methods, where we first
445 generate a full strength edit with Flux-Kontext and interpolate to obtain intermediate edits, and
446 (b) domain-specific methods, which train separate LoRAs/Adapters for each attribute. Our generalized
447 method achieves superior slider control with consistent image identity and smooth edit transitions.

448 4.2 ABLATIONS

449 We ablate design choices in Tab. 3. Conditioning by adding the slider projector output as an extra
450 text token (**text-space condn**) is ineffective for fine-grained strength control and produces abrupt
451 transitions, reflected in the worst δ_{smooth} . Removing the pooled text embedding input from the slider
452 projector (**w/o text projector**) leads to weaker, non-smooth edits and inferior δ_{smooth} and CLIP-dir.
453 scores (see Fig. 15). Finally, effective data filtering that removes poor-quality and non smooth edit
454 sequences from the dataset significantly improves both smoothness and text alignment.

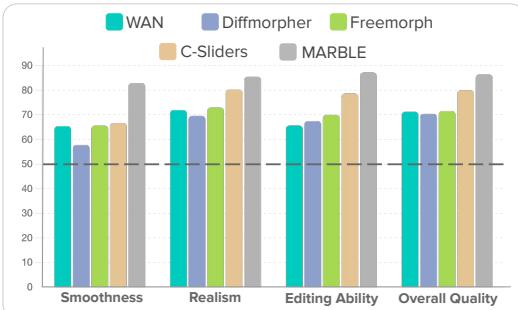
455 4.3 USER STUDY

456 We conducted a user study to subjectively evaluate our method against all baselines. The
457 study followed a head-to-head comparison where for each trial, one baseline was randomly
458 selected, and its outputs were compared with ours across four dimensions: smoothness of the
459 edit sequence, realism of the edits, editing capability with respect to the given instruction, and
460 overall sequence quality. For each baseline, we sampled 20 input images, resulting in a total of
461 100 images evaluated. The study involved 20 participants, each providing judgments on the
462 paired outputs. Figure 10 reports the win rates of our method over the baselines. Morphing-based
463 methods often appear smooth due to continuous transitions but suffer from artifacts or missed edits.
464 Our method consistently outperforms all baselines across all criteria, delivering both faithful edits and
465 superior perceptual quality.

466 5 DISCUSSION AND CONCLUSIONS

467 We presented *Kontinuous Kontext*, a simple extension to Flux Kontext that adds a continuous control
468 dimension for instruction-driven image editing. Our method provides smooth, fine-grained control
469 over the intensity of edits, without sacrificing the strong baseline capabilities of the underlying
470 model. While highly effective for continuous edits, our approach has some limitations. For inherently
471 discrete transformations, such as inserting or removing objects, the transitions are necessarily
472 abrupt since there is no natural continuum. Moreover, as *Kontinuous Kontext* is built on Flux Kontext,
473 it inherits its weaknesses in categories like precise geometric manipulations such as accurate
474 object rotation or translation, where the base model itself struggles. A failure case of our method is
475 in generating consistent extrapolating edits (Fig. 24) for large transformations.

476 Beyond its practical utility, this work highlights that edit intensity is naturally encoded in the mod-
477 ulation space of instruction driven diffusion models. By learning a lightweight projector into this
478 space, we unlock a flexible control mechanism that generalizes across diverse edits without attribute
479 specific training. This suggests that other forms of continuous control, such as spatial or temporal
480 intensity fields, may be introduced in a similarly lightweight manner, opening opportunities for in-
481 teractive editing tools that combine the richness of language with the precision of continuous sliders.



477 Figure 10: User study win-rates (%) of our method
478 against baselines in pairwise comparisons.

479 Morphing-based methods often appear smooth due to continuous transitions but suffer from artifacts or missed edits.
480 Our method consistently outperforms all baselines across all criteria, delivering both faithful edits and
481 superior perceptual quality.

486 **Reproducibility statement:** We will release the code, pretrained models, and both the filtered and
487 raw datasets used in this project. Our model is built on the open-source FLUX.1-Kontext dev image
488 editing model. Details of the training setup and compute requirements are provided in Sec. A.1. A
489 full explanation of dataset generation and filtering, along with representative examples, is given in
490 Sec. 3.1 and Sec. A.2. The evaluation datasets and metrics are described in Sec. 4 and Sec. A.6. All
491 baseline methods were evaluated using their publicly available code.

492 **Ethics Statement:** Our work focuses on continuous strength control for image editing, improving
493 the controllability of image manipulation. While such techniques could be misused for creating
494 deceptive or harmful content, similar to other generative models, outputs from our method can be
495 watermarked. Our contributions are intended for research in controllable image generation, and we
496 see this as enabling many positive applications. In particular, our approach can support creative
497 design, accessibility, and educational tools, while ongoing advances in detecting AI-edited images
498 further help mitigate risks of misuse.

499
500 **REFERENCES**

501 Rameen Abdal, Peihao Zhu, Niloy J. Mitra, and Peter Wonka. Styleflow: Attribute-conditioned
502 exploration of stylegan-generated images using conditional continuous normalizing flows. *ACM
503 Trans. Graph.*, 40(3), May 2021. ISSN 0730-0301. doi: 10.1145/3447648. URL <https://doi.org/10.1145/3447648>.

504
505 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
506 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
507 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
508 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv
509 preprint arXiv:2502.13923*, 2025.

510
511 Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dock-
512 horn, Jack English, Zion English, Patrick Esser, Sumith Kulal, et al. Flux. 1 kontext: Flow match-
513 ing for in-context image generation and editing in latent space. *arXiv e-prints*, pp. arXiv–2506,
514 2025.

515
516 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
517 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
518 recognition*, pp. 18392–18402, 2023.

519
520 James Burgess, Kuan-Chieh Wang, and Serena Yeung-Levy. Viewpoint textual inversion: Discov-
521 ering scene representations and 3d view control in 2d diffusion models. In *European Conference
522 on Computer Vision*, pp. 416–435. Springer, 2024.

523
524 Yukang Cao, Chenyang Si, Jinghao Wang, and Ziwei Liu. Freemorph: Tuning-free generalized
525 image morphing with diffusion model. *arXiv preprint arXiv:2507.01953*, 2025.

526
527 Ta-Ying Cheng, Matheus Gadelha, Thibault Groueix, Matthew Fisher, Radomir Mech, Andrew
528 Markham, and Niki Trigoni. Learning continuous 3d words for text-to-image generation. In *Pro-
529 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6753–
530 6762, 2024.

531
532 Ta Ying Cheng, Prafull Sharma, Mark Boss, and Varun Jampani. Marble: Material recomposition
533 and blending in clip-space. In *Proceedings of the Computer Vision and Pattern Recognition
534 Conference*, pp. 13061–13071, 2025.

535
536 Yusuf Dalva, Kavana Venkatesh, and Pinar Yanardag. Fluxspace: Disentangled semantic editing in
537 rectified flow transformers, 2024.

538
539 Amil Dravid, Yossi Gandelsman, Kuan-Chieh Wang, Rameen Abdal, Gordon Wetzstein, Alexei
540 Efros, and Kfir Aberman. Interpreting the weight space of customized diffusion models. *Advances
541 in Neural Information Processing Systems*, 37:137334–137371, 2024.

542
543 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
544 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers

540 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
541 2024.

542

543 Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
544 Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic
545 data. *arXiv preprint arXiv:2306.09344*, 2023.

546

547 Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
548 guided domain adaptation of image generators, 2021.

549

550 Rohit Gandikota, Joanna Materzyńska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept
551 sliders: Lora adaptors for precise control in diffusion models. In *European Conference on Com-
552 puter Vision*, pp. 172–188. Springer, 2024.

553

554 Rohit Gandikota, Zongze Wu, Richard Zhang, David Bau, Eli Shechtman, and Nick Kolkin.
555 Sliderspace: Decomposing the visual capabilities of diffusion models. *arXiv preprint
556 arXiv:2502.01639*, 2025.

557

558 Daniel Garabi, Shahar Yadin, Roni Paiss, Omer Tov, Shiran Zada, Ariel Ephrat, Tomer Michaeli,
559 Inbar Mosseri, and Tali Dekel. Tokenverse: Versatile multi-concept personalization in token
560 modulation space, 2025. URL <https://arxiv.org/abs/2501.12224>.

561

562 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
563 Prompt-to-prompt image editing with cross attention control. 2022.

564

565 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
566 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
567 constrained variational framework. In *International conference on learning representations*, 2017.

568

569 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
570 <https://arxiv.org/abs/2006.11239>.

571

572 Xianxu Hou, Linlin Shen, Ke Sun, and Guoping Qiu. Deep feature consistent variational autoen-
573 coder. In *2017 IEEE winter conference on applications of computer vision (WACV)*, pp. 1133–
574 1141. IEEE, 2017.

575

576 Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering
577 interpretable gan controls. In *Proc. NeurIPS*, 2020.

578

579 Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Pnp inversion: Boosting
580 diffusion-based editing with 3 lines of code. *International Conference on Learning Represen-
581 tations (ICLR)*, 2024.

582

583 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
584 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
585 recognition*, pp. 4401–4410, 2019.

586

587 Dahye Kim and Deepti Ghadiyaram. Concept steerers: Leveraging k-sparse autoencoders for con-
588 trollable generations. *arXiv preprint arXiv:2501.19066*, 2025.

589

590 Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent
591 space. *arXiv preprint arXiv:2210.10960*, 2022.

592

593 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

594

595 Xiaoming Li, Xinyu Hou, and Chen Change Loy. When stylegan meets stable diffusion: a w+
596 adapter for personalized image generation. In *Proceedings of the IEEE/CVF Conference on Com-
597 puter Vision and Pattern Recognition*, pp. 2187–2196, 2024.

598

599 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
600 in neural information processing systems*, 36:34892–34916, 2023.

594 Nadav Magar, Amir Hertz, Eric Tabellion, Yael Pritch, Alex Rav-Acha, Ariel Shamir, and Yedid
595 Hoshen. Lightlab: Controlling light sources in images with diffusion models. In *Proceedings of*
596 *the Special Interest Group on Computer Graphics and Interactive Techniques Conference Con-*
597 *ference Papers*, pp. 1–11, 2025.

598 Rishabh Parihar, VS Sachidanand, Sabariswaran Mani, Tejan Karmali, and R Venkatesh Babu. Pre-
599 cisecontrol: Enhancing text-to-image diffusion models with fine-grained attribute control. In
600 *European Conference on Computer Vision*, pp. 469–487. Springer, 2024.

602 Rishabh Parihar, Vaibhav Agrawal, Sachidanand VS, and Venkatesh Babu Radhakrishnan. Compass
603 control: Multi object orientation control for text-to-image generation. In *Proceedings of the*
604 *Computer Vision and Pattern Recognition Conference*, pp. 2791–2801, 2025.

606 Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-
607 driven manipulation of stylegan imagery. In *Proceedings of the IEEE/CVF International Confer-*
608 *ence on Computer Vision (ICCV)*, pp. 2085–2094, October 2021.

609 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
610 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
611 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

613 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
614 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

616 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
617 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
618 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

619 Prafull Sharma, Varun Jampani, Yuanzhen Li, Xuhui Jia, Dmitry Lagun, Fredo Durand, Bill Free-
620 man, and Mark Matthews. Alchemist: Parametric control of material properties with diffusion
621 models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-*
622 *nition*, pp. 24130–24141, 2024.

623 Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for
624 semantic face editing. In *CVPR*, 2020.

626 Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh,
627 and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks. In *Pro-*
628 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8871–
629 8879, 2024.

631 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
632 <https://arxiv.org/abs/2010.02502>.

633 Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol: Min-
634 imal and universal control for diffusion transformer. *arXiv preprint arXiv:2411.15098*, 2024.

636 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
637 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
638 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
639 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
640 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
641 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
642 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
643 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
644 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
645 *arXiv preprint arXiv:2503.20314*, 2025.

646 Xiaojuan Wang, Boyang Zhou, Brian Curless, Ira Kemelmacher-Shlizerman, Aleksander Holyn-
647 ski, and Steve Seitz. Generative inbetweening: Adapting image-to-video models for keyframe
interpolation. In *The Thirteenth International Conference on Learning Representations*.

648 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
649 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
650 2025a.

651 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
652 Jiang, Yexin Liu, Junjie Zhou, et al. Omnipgen2: Exploration to advanced multimodal generation.
653 *arXiv preprint arXiv:2506.18871*, 2025b.

654 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
655 Shuting Wang, Tiejun Huang, and Zheng Liu. Omnipgen: Unified image generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 13294–13304, 2025.

656 Kaiwen Zhang, Yifan Zhou, Xudong Xu, Bo Dai, and Xingang Pan. Diffmorpher: Unleashing the
657 capability of diffusion models for image morphing. In *Proceedings of the IEEE/CVF Conference
658 on Computer Vision and Pattern Recognition*, pp. 7912–7921, 2024a.

659 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
660 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
661 computer vision and pattern recognition*, pp. 586–595, 2018.

662 Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih Chen, Ning Yu, Zeyuan Chen, Huan
663 Wang, Silvio Savarese, Stefano Ermon, et al. Hive: Harnessing human feedback for instructional
664 visual editing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
665 Recognition*, pp. 9026–9036, 2024b.

666 Zechuan Zhang, Ji Xie, Yu Lu, Zongxin Yang, and Yi Yang. In-context edit: Enabling instructional
667 image editing with in-context generation in large scale diffusion transformer. *arXiv preprint
668 arXiv:2504.20690*, 2025.

669 Tianyi Zhu, Dongwei Ren, Qilong Wang, Xiaohe Wu, and Wangmeng Zuo. Generative inbetweening
670 through frame-wise conditions-driven video generation. In *Proceedings of the Computer
671 Vision and Pattern Recognition Conference*, pp. 27968–27978, 2025.

672

673 A APPENDIX

674 A.1 IMPLEMENTATION DETAILS.

675 We train slider projector along with a rank-4 LoRA on all attention layers of the base diffusion
676 model. We train all our models at a resolution of 512X512. After filtering our dataset consists of
677 66K edit trajectories, along with their edit instructions. We train all models on a single NVIDIA
678 A100 (80GB) GPU for 110,000 iterations, using an effective batch size of 8 and a constant learning
679 rate of 2×10^{-5} . Training takes about 120 hours to complete. During training, we drop the slider
680 conditioning 10% of the time. For inference, we use the default Euler scheduler from Flux Kontext
681 and use $T = 28$ inference steps for generation. The generation time is similar to Flux Kontext
682 model, as we only have the projector as the new component.

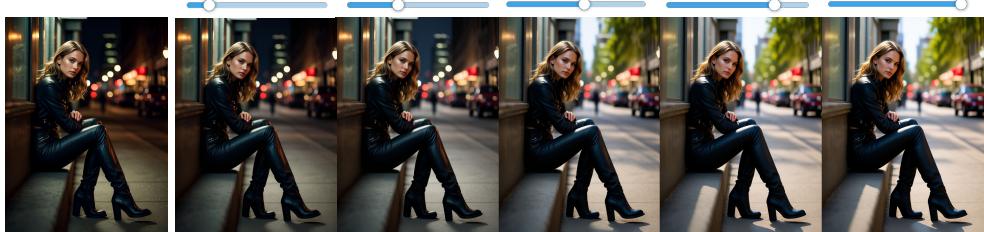
683 A.2 DATASET GENERATION

684 In this section we provide the details about our dataset generation process:

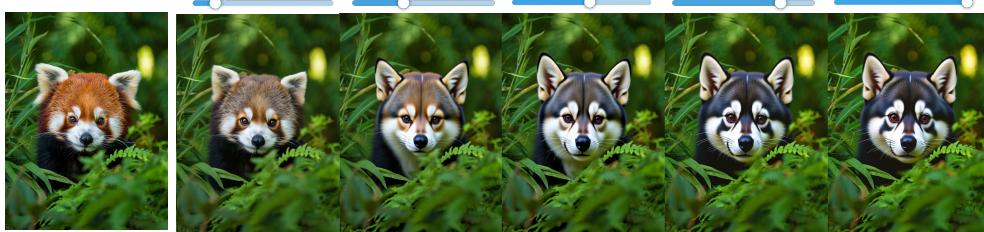
685 **Generating Image Edit Pairs.** We use Subject200K (Tan et al., 2024) dataset to source our input
686 images. This dataset has a diverse variety of input object and scenes captured in different environ-
687 ment conditions. We extract 110K source images from this dataset. Next, we generate image spe-
688 cific edit instructions for source images using a Qwen-VLM (Bai et al., 2025). For a good diversity
689 of our dataset, we categorize our edit categories into global edits (stylization, scene reimagination
690 and environment change) and local edits (material and appearance editing, attribute modification
691 and shape morphing). For each image in the dataset, we randomly sample one of these editing cat-
692 egories, and ask VLM to generate instruction from that category. We pass the input image along
693 with the system prompt to the multimodal VLM to generate instructions specific to the image. We
694 use the following system prompt and ask the VLM to generate the edit instruction in a desired .json
695 format for ‘appearance change’ edit, and use similar system prompts for other editing categories.

702
703
704
705

714 'Transform her dress as if it is made of shiny gold material'



723 'Transform the scene into daytime with ample sunlight'



731 'Transform the panda into a husky dog'

740 'Reduce the size of the object'

749 'Transform the scooter into an off-road motorbike'

750
751
752
753
754
755

Figure 11: *Kontinuous Kontext* can enable fine-grained control over the edit strength for diverse instruction-driven image editing operations.

756
757

System prompt for generating edit instructions

758
759
760
761
762
763
764
765
766
767
768
769
770
771

System Prompt: You are a professional image editor. Generate an original, diverse, and detailed local appearance change instruction for the given object in the image. Create a unique instruction different in wording and content from the examples. Examples: {examples}
Output ONLY a valid JSON object with EXACT keys "category" and "instruction". No additional text or explanation.
Example output: {"category": "Appearance_Change", "instruction": "Modify the fabric of the couch to a rich burgundy velvet with gentle sheen."} DO NOT include trailing commas or escape characters.

772
773
774
775
776
777

We sample a predefine set 50 – 100 in-context examples per edit category and randomly sample 4 examples and combine it with the system prompt to generate rich prompts for generating diverse editing instructions. Here are the in-context examples for each of the categories in our dataset.

778
779
780
781
782
783
784
785
786
787

In context example for local edits fonttitle

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Appearance_change

```
examples = [ "Transform the chair into plush candy-colored
marshmallow material with soft reflections",
"Make the bicycle frame appear as flowing liquid metal with
dynamic highlights",
"Turn the lampshade into glowing crystalline material with
internal refracted light"]
```

Material_change

```
examples = [ "Replace the chair's wooden legs with polished
chrome metal, emphasizing its reflective specularity",
"Make the tabletop appear carved from dark mahogany wood with
visible grain and a semi-matte roughness",
"Transform the bag's fabric into smooth black leather with
glossy highlights and subtle texture"]
```

Attribute_change

```
examples = [ "Open the laptop lid halfway to reveal the
keyboard",
"Rotate the handlebar of the bicycle by 45 degrees",
"Raise the adjustable lamp arm to maximum height"]
```

Intra_object_morph

```
examples = [ "Morph a teapot into a lantern while keeping the
spout as a decorative handle",
"Transform a bicycle into a motorbike with parts composed
naturally",
"Morph a chair into a bench while preserving the backrest
shape"]
```

810
811

In context example for global edits

812

Stylization

813

examples = ["Render the scene in Studio Ghibli style with dreamy backgrounds and soft pastel hues",
"Transform the image into Pixar-style 3D animation with vibrant colors and cinematic lighting",
"Stylize the composition as a Van Gogh oil painting with thick impasto brush strokes"]

814

815

Environment_change

816

examples = ["Blanket the entire landscape with fresh, thick snow, covering trees and rooftops with crystalline frost",
"Transform the scene into a harsh winter blizzard with swirling snow and reduced visibility",
"Age the entire scene to look like a weathered medieval village with cracked stone walls"]

817

818

Scene_reimagination

819

examples = ["Place the entire village on a massive turtle's back slowly moving through the ocean",
"Transform the bustling marketplace into a floating bazaar carried by hot air balloons",
"Reimagine the city skyline as colossal crystal formations reflecting rainbow light"]

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

Generating image edits. We use the source images and obtained editing instructions to generate edited versions of the source image using Flux Kontext (Batifol et al., 2025). Flux-kontext being a generalist editing model, it can generate high quality edits for the source images. However, in some cases it does not perform the edit and outputs the same input image. We filter our such cases in our filtering stage discussed next. Next, we present a qualitative subset of source, edit image and the instructions used for generating those edit images in Fig. 12.

835

836

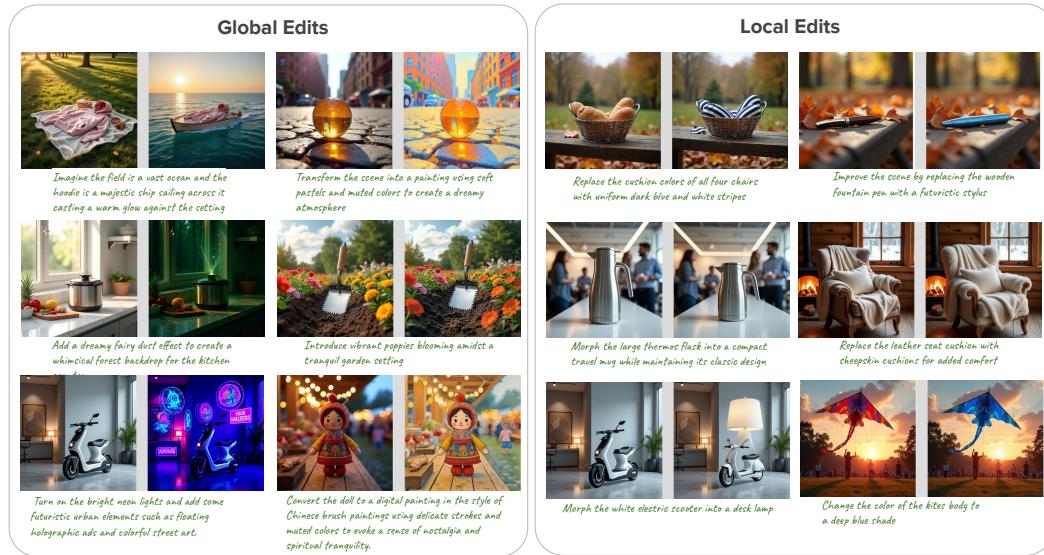
837

838

839

840

841



853

854

855

856

857

858

859

860

861

862

863

Figure 12: Samples for generated edit instructions and the generated edits from Flux Kontext

Generating intermediate edits with Image morphing (Cao et al., 2025) Given the source and edited image, we use Freemorph - a training free Diffusion based image morphing approach.

864 Freemorph requires input caption for the two source images to be interpolated. To this end, we
865 use LLaVA (Liu et al., 2023) model to generate captions, as they suggested in their paper. Further,
866 the method first inverts the two images and then interpolated the attention features during denoising.
867 This requires a full denoising process to generate one morph image. In practice, we generate $N = 5$
868 intermediate morphs between the source and the edited image. We use official code provided by
869 the authors that is built on StableDiffusion-2.1 Rombach et al. (2022) and use DDIM scheduler for
870 generation with $T = 50$ steps. All the interpolations were generated at a native resolution 768X768
871 of SD-2.1.

872 **Data Filtering.** We filter out the edit sequences that are not smooth and have significant inversion
873 during the diffusion inversion. We visualize some examples that are selected and filtered out based
874 on the reconstruction quality and sequence uniformity in Fig. 13.

876 A.3 MODEL ARCHITECTURE

878 Our projector is a 4-layer MLP with dimensions $1536 \rightarrow 256 \rightarrow 128 \rightarrow 6192$. The output di-
879 mension of $D = 6192$ is divided into two chunks each of 3096 representing offsets for modulation
880 parameters - Δy_{scale} and Δy_{shift} . The 1536 dimensional input to the model consists of embedded
881 scale value s of dimension 768 and pooled CLIP text embedding of dimensions 768. We first apply
882 sinusoidal positional encoding to s to bring it to 128 dimensions followed by a linear layer to trans-
883 form it to similar dimension of 768. The CLIP embedding and the encoded scale embeddings are
884 concatenated and passed as a single input to the projector network.

885 A.4 INFERENCE-TIME CONTROL IN MODULATION SPACE

887 We performed a simple experiment to analyse the effect of modulation-parameters on the edit im-
888 ages. We scale the modulation parameters with $v = (0.5, 1.3)$ for the text token and visualize the
889 generated edit image in Fig. 14. Though the generated edits are diverse for different scale values, the
890 scaling value v does not directly correlate with the strength of the edit. This raises a need of learn-
891 ing a calibrated mapper like our slider projector, that can expose the strength control by accurately
892 manipulating the modulation parameters.

894 A.5 ABLATION STUDY

896 We present ablation study in Fig. 15 for different architecture choices. Adding the output of slider
897 projector in the text embedding space leads to edit transitions with abrupt jumps. Similarly, adding
898 without adding the pooled text embedding in the projector leads to non-smooth edit trajectory. Our
899 design of injecting the slider control in the modulation space and making the projector adapt to the
900 edit instruction embedding, results in smooth trajectories, enabling fine-grained control to the user.

901 A.6 EVALUATION METRICS

903 A.6.1 SMOOTHNESS OF THE EDIT SEQUENCE

905 We measure both first and second-order smoothness of an edit trajectory for quantitative evalua-
906 tion. For a given source image x and edit instruction, we generate a sequence of N edited images
907 $\{y_{s_1}, y_{s_2}, \dots, y_{s_N}\}$, and include the source image as the initial element $y_{s_0} = x$, yielding a se-
908 quence of $N+1$ images. We use an image distance metric $d(\cdot, \cdot)$ to compare the images. We used
909 Dreamsim (Fu et al., 2023) as it better captures the semantic differences between images in contrast
910 to LPIPS that has a high spatial bias.

911 **First-order smoothness.** We define adjacent distances between the images in the sequence as

$$913 d_i = d(y_{s_i}, y_{s_{i+1}}), \quad i = 0, \dots, N-1,$$

914 and compute the cumulative path length

$$916 L = \sum_{i=0}^{N-1} d_i.$$

918
919
920
921
922

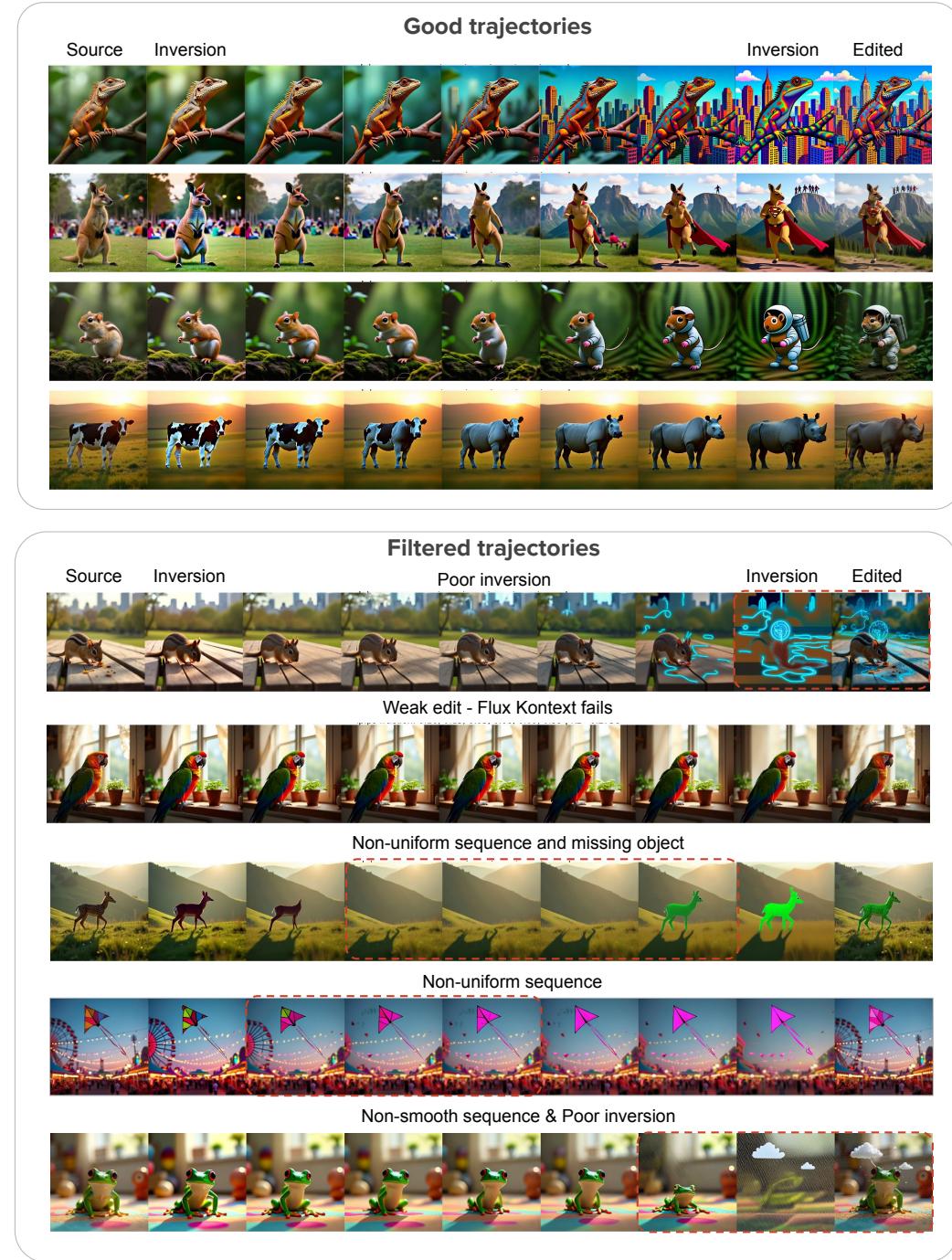


Figure 13: Samples trajectories from our synthesized dataset

972
973

Scaling the modulation parameters at inference time

974

975

Change the image to a watercolorpainting

976

977

Change the image to a cartoon

978

979

980

981

982

983

984

Figure 14: **Inference time control in modulation space.** We conducted a simple experiment by scaling the text modulation parameters with values of $v \in (0.5, 1.3)$ to generate multiple edits. While these edits varied across different scales, the variations did not consistently correlate with the intended edit strength. This highlights the need for a dedicated learning module that can translate such variations into user-interpretable strength control by accurately manipulating the modulation parameters.

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

Render the scene as an oil painting featuring a cartoon-style little girl playing a musical instrument.

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1026 which captures the largest normalized jump in the trajectory.
 1027

1028 **Second-order smoothness.** For local consistency, we compute the triangle deficit given by
 1029

$$1030 \quad \Delta_i = d(y_{s_i}, y_{s_{i+1}}) + d(y_{s_{i+1}}, y_{s_{i+2}}) - d(y_{s_i}, y_{s_{i+2}}), \quad i = 0, \dots, N-2.$$

1031 Each deficit is normalized by the direct distance between the endpoints:
 1032

$$1033 \quad \tilde{\Delta}_i = \frac{\Delta_i}{d(y_{s_i}, y_{s_{i+2}})}.$$

1034 The second-order smoothness is then computed as:
 1035

$$1036 \quad \delta^2 = \max_i \tilde{\Delta}_i,$$

1038 where smaller values indicate smoother local transitions.
 1039

1040 **Analysis.** We conducted a user study to evaluate how well smoothness metrics align with
 1041 human preferences. Participants were shown
 1042 pairs of edit sequences and asked which ap-
 1043 peared smoother in terms of transitions. The
 1044 study included 20 volunteers and 40 sequence
 1045 pairs. For each sequence, we computed first-
 1046 and second-order smoothness using two dis-
 1047 tance functions: LPIPS (Zhang et al., 2018)
 1048 and DreamSim (Fu et al., 2023). We then mea-
 1049 sured agreement between user choices and each
 1050 of the four metric configurations (Fig. 16). Re-
 1051 sults show that δ^2 (DreamSim) aligns best with
 1052 user preferences, as it captures fine-grained
 1053 semantic changes reflected in slider adjust-
 1054 ments. While first-order smoothness prevents
 1055 abrupt jumps, second-order smoothness ensures
 1056 consistency in the rate of change, producing natural
 1057 and continuous transitions that match user ex-
 1058 pectations. Fig. 17 illustrates this: although Se-
 1059 quence 1 has better first-order smoothness (lower δ^1),
 1060 Sequence 2 is semantically smoother, captured by a
 1061 lower δ^2_{smooth} . From these findings, we define the smoothness metric as:
 1062

$$1063 \quad \delta_{\text{smooth}} = \delta^2(\text{Dreamsim})$$

1064 A.6.2 INSTRUCTION FOLLOWING WITH CLIP DIRECTIONAL SIMILARITY

1065 For a given input image x , and edit instruction e , we edit the image with uniformly sampled edit
 1066 strengths $\{s_i = i/N | i = 1, \dots, N\}$ to obtain the edited image sequence $\{y_i | i = 1, \dots, N\}$. We
 1067 compute the CLIP-direction similarity for each of the edits at each strength as:
 1068

$$1069 \quad d_i = d_{\text{clip-dir}}(y_{s_i}, x, e), \quad i = 1, \dots, N$$

1070 and report the aggregated normalized CLIP-sim as:
 1071

$$1072 \quad D_{\text{clip-dir}} = \frac{\sum_{i=0}^N (d_i/s_i)}{N}$$

1073 adjusting the directional similarity based on the edit strength.
 1074

1075 A.6.3 IMAGE IDENTITY PRESERVATION WITH CLIP IMAGE SIMILARITY

1076 We quantify the image identity preservation by computing the CLIP-Image similarity between the
 1077 source image and the edited image across different edit strengths. We present plot of the image simi-
 1078 larity value across the edit strengths in Fig. 18. Our method, gradually reduces the image similarity
 1079 with increasing strength following almost a linear decay. This further supports our finding that our
 method generates smooth transitions between subsequent images.

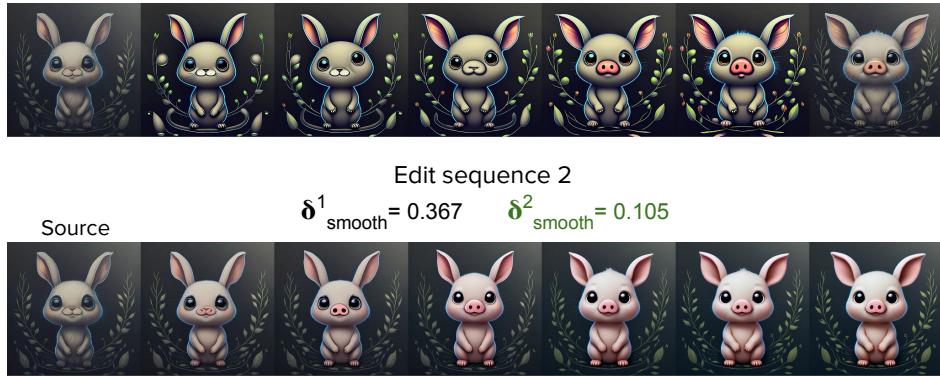


Figure 17: **Qualitative interpretation for first order and second order smoothness.** For slider-based image editing, second-order smoothness is more important than first-order smoothness, as it captures the local consistency needed for gradual, nuanced changes with slider controls.

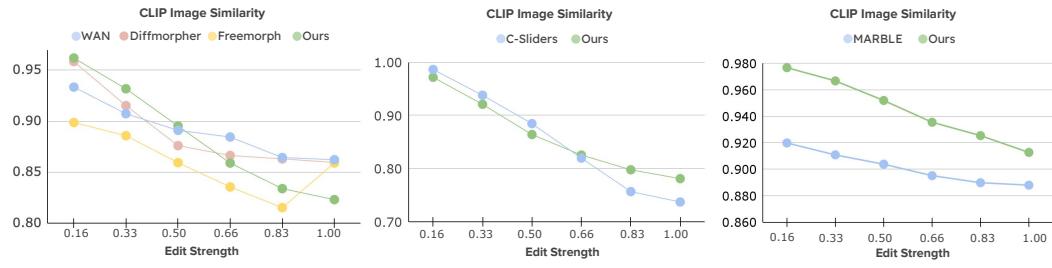


Figure 18: **Comparison for identity preservation of our method against baselines.** Our method smoothly transforms the image into target edit over different edit strengths, resulting in close to linear decay in identity change and preserving identity well in lower strengths. In contrast, baselines change the identity of the subject significantly even with small edit strengths and don't change the image for stronger edits.

A.7 QUALITATIVE COMPARISON

We present additional comparison results with interpolation based baselines in Fig. 19, 20 and with domain specific method ConceptSliders in Fig. 22, MARBLE in Fig. 21.

A.8 ADDITIONAL BASELINES

We compared *Kontinuous Kontext* with two additional simple baselines: a) CFG-Scale - We change the classifier free guidance scale to control the extent of the edit, as we expect with higher cfg scale the generated edit should follow the edit instruction more closely. b) Attention reweighting - We scale the cross-attention maps between the text tokens and the generated visual tokens inspired by Prompt2Prompt (Hertz et al., 2022).

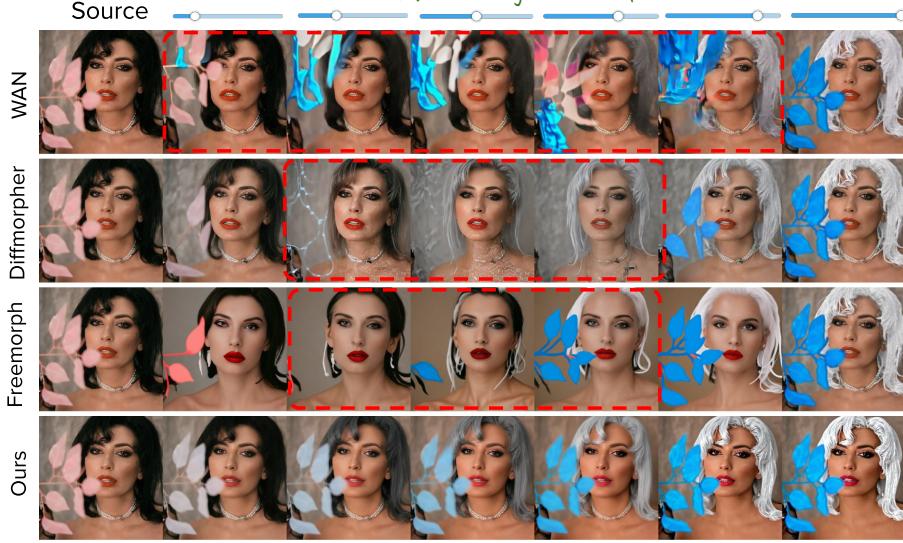
The insight is that, if we increase the cross-attention weight with the text instruction the edited image will pay more attention to the edit resulting in stronger edits. We present comparison in Tab. 4 and Fig. 23. Both the methods fail to generate smooth edit transitions and distort the input image

Methods	$\delta_{\text{smooth}} \downarrow$	CLIP-dir \uparrow
CFG-scale	152.205	0.242
Attention-weighing	120.760	0.237
Ours	0.329	0.241

Table 4: Experiments for comparison with additional inference time baselines.

1134
1135
1136
1137
1138
1139

1145 *Modify the couch to have a cottony texture and change the*
1146 *curtain to a green wool fabric.*

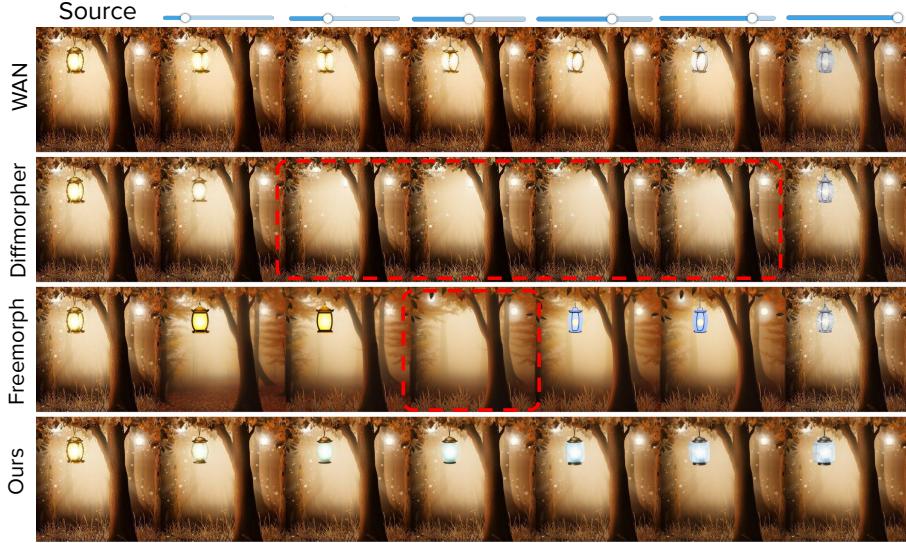


1152 *'Modify the woman's hair to silver and change the flower to blue.'*

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

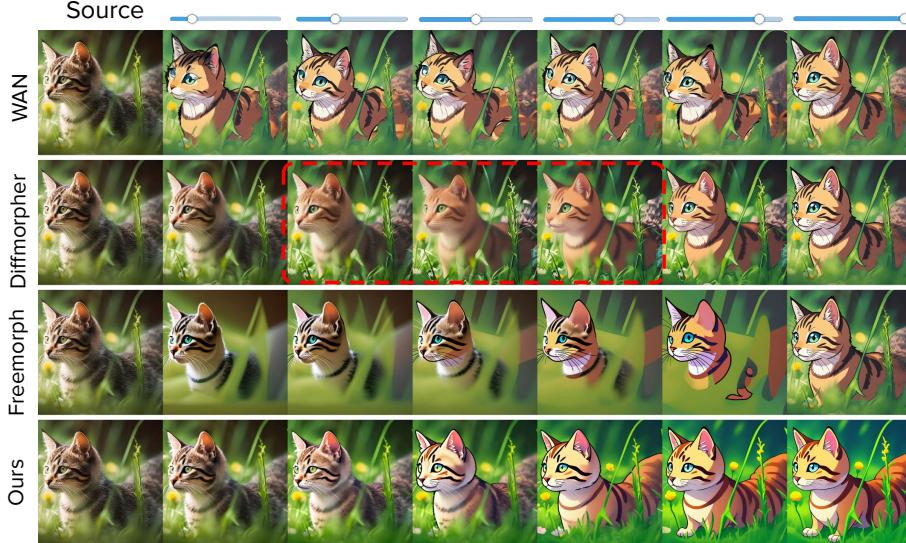
Figure 19: **Comparison with interpolation baselines.** Morphing-based methods generate smooth transitions; however, they often introduce artifacts in the intermediate images or omit details such as leaves. Similarly, the video inbetweening model WAN produces strong artifacts in intermediate frames, as these appearance transitions are out of domain for an inbetweening model trained only on real data.

1188
1189
1190
1191
1192
1193



1199 *'Modify the lantern to be crystal and the trees to appear ancient while retaining the forest setting with lights.'*

1200



1206 *'Transform the cat into an anime style in a digital art format'*

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

Figure 20: **Comparison with interpolation baselines.** DiffMorpher and FreeMorph remove objects in the intermediate edits of the first examples. Moreover, DiffMorpher produces blurred outputs even for simple stylization transitions. The WAN inbetweening model generates transitions with abrupt jumps in both examples. In contrast, our method produces smooth transitions while preserving image identity.

1233

1234

1235

1236

1237

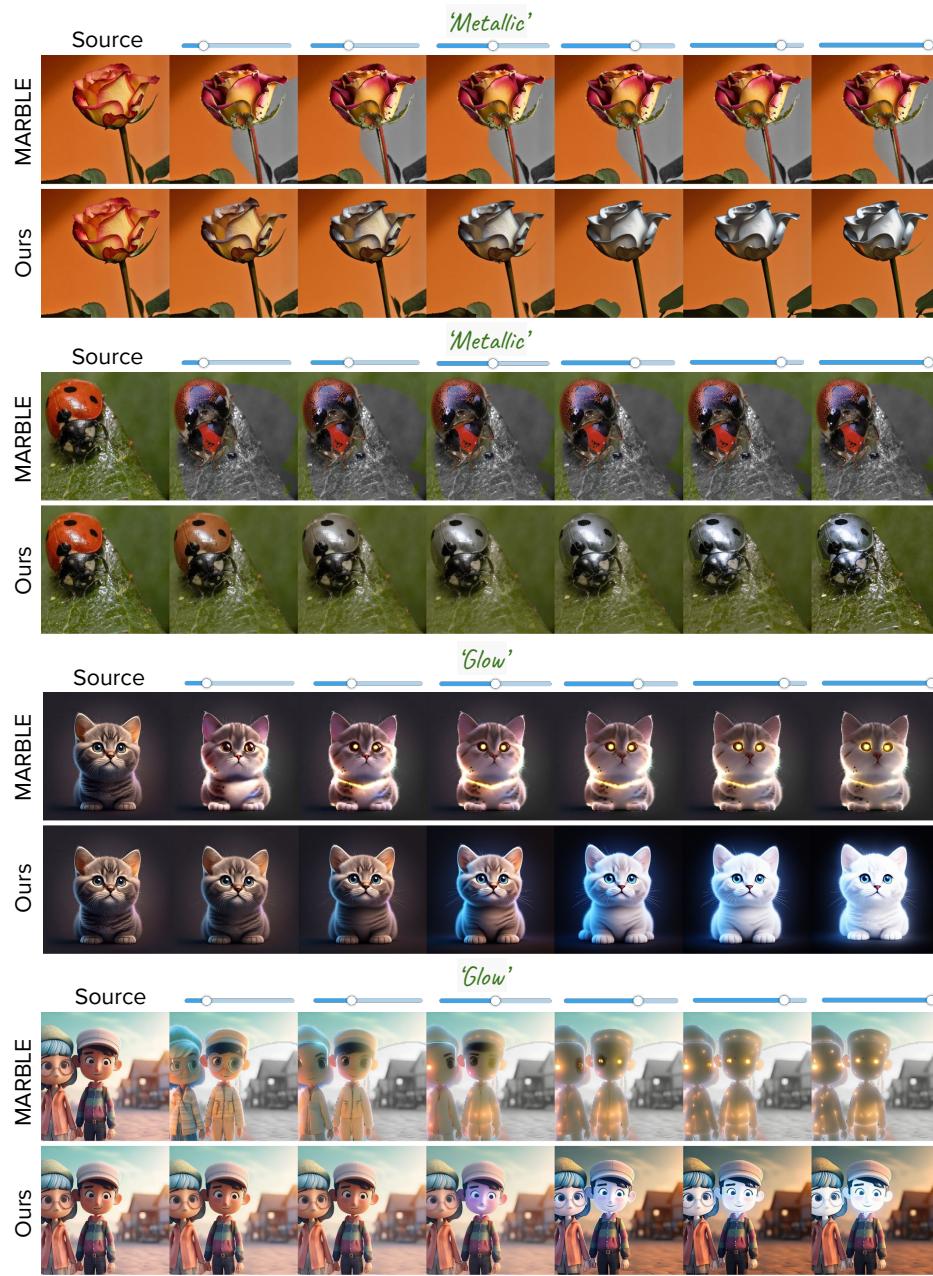
1238

1239

1240

1241

1242
1243
1244
1245
1246
1247
1248



1289
1290
1291
1292
1293
1294
1295

Figure 21: Comparison with MARBLE for material control

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

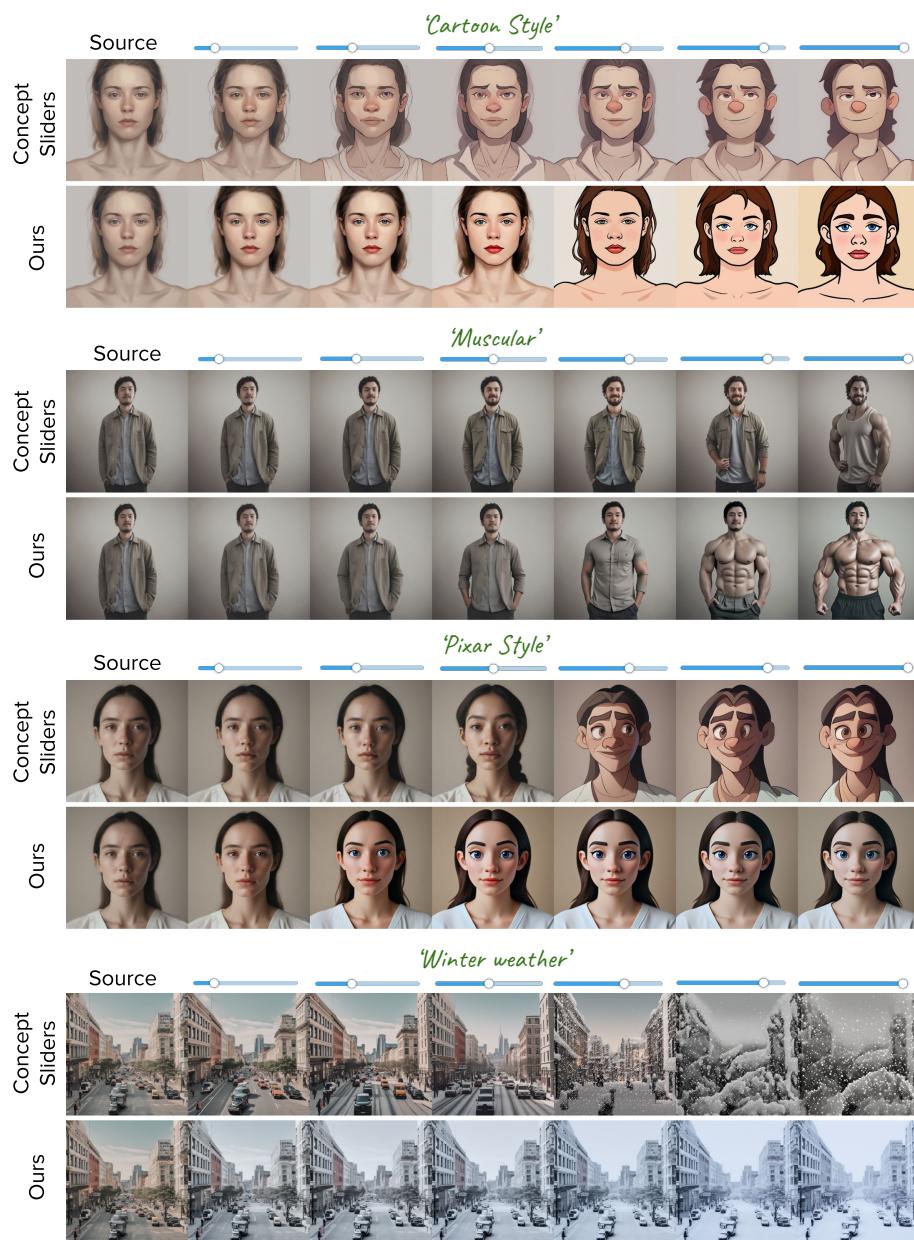


Figure 22: Comparison with Concept Sliders for diverse attribute editing.

Figure 23: We compare with additional inference time baselines.

identity significantly. These abrupt transitions leads to a very high value for δ_{smooth} smoothness metric.

A.9 FAILURE CASE - EXTRAPOLATION BEYOND THE TRAINING STRENGTH $s > 1$

One of the failure case of our method is in extrapolating edits beyond strength value $s = 1$. Our method either does not perform the edits for $s > 1$ or reduces the extent of the edit as shown in Fig. 24.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

Figure 24: **Extrapolation of edit strengths.** One of the failure case of our method is it cannot generate edits with extrapolation well. In most cases, either it recreates the full edit image ($s = 1$), or reduce the extent of edit in extrapolation region.

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Transform the scene into a 3D pixar style animation

'Transform her jacket to a brown colored overcoat_with fur on the collar and sleeves'

'Reduce the size of the panda'

1458
1459

A.10 LLM USED IN WRITING THE PAPER

1460
1461

We have used LLM to do grammatical changes or rephrasing at a sentence level in the paper text.
The authors of this paper are responsible for all the content of this paper.

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511