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Fig. 1: Illustrating the paragraph rendering capabilities with automatic multi-line lay-
out planning (1%% row), text-rich design images (2"¢ row), and open-domain images
with scene text (3™ row), generated with our approach.

Abstract. Visual text rendering poses a fundamental challenge for con-
temporary text-to-image generation models, with the core problem lying
in text encoder deficiencies. To achieve accurate text rendering, we iden-
tify two crucial requirements for text encoders: character awareness and
alignment with glyphs. Our solution involves crafting a series of cus-
tomized text encoder, Glyph-ByT5, by fine-tuning the character-aware
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ByT5 encoder using a meticulously curated paired glyph-text dataset.
We present an effective method for integrating Glyph-ByT5 with SDXL,
resulting in the creation of the Glyph-SDXL model for design image gen-
eration. This significantly enhances text rendering accuracy, improving it
from less than 20% to nearly 90% on our design image benchmark. Note-
worthy is Glyph-SDXL’s newfound ability for text paragraph rendering,
achieving high spelling accuracy for tens to hundreds of characters with
automated multi-line layouts. Finally, through fine-tuning Glyph-SDXL
with a small set of high-quality, photorealistic images featuring visual
text, we showcase a substantial improvement in scene text rendering ca-
pabilities in open-domain real images. These compelling outcomes aim
to encourage further exploration in designing customized text encoders
for diverse and challenging tasks.

1 Introduction

Diffusion models have emerged as the predominant approach for image gener-
ation. Noteworthy contributions, like DALL-E3 [2}/18] and Stable Diffusion se-
ries [21L|23|, showcase remarkable proficiency in generating high-quality images
in response to user prompts. However, a significant limitation persists in their
ability to accurately render visual text, which is a critical element in various
image generation applications. These applications range from producing design
images for posters, cards, and brochures to synthesizing real-world images fea-
turing scene text found in road signs, billboards, or text-laden T-shirts. The
challenge of achieving precise text rendering accuracy has hindered the practical
deployment of image generation models in these important domains.

We posit that the primary challenge hindering visual text rendering per-
formance lies in the limitations of text encoders. The widely used CLIP text
encoder, trained to align with visual signals, primarily focuses on grasping im-
age concepts rather than delving into image details. Conversely, the commonly
adopted TH text encoder, designed for a comprehensive understanding of lan-
guage, lacks alignment with visual signals. We argue that a text encoder capable
of encoding character-level information and aligning with visual text signals, or
glyphs, is essential for achieving high accuracy in visual text rendering. Drawing
inspiration from the character-aware ByT5 encoder [15], our approach aims to
customize it to better align with visual text or glyphs.

To construct the desired character-aware and glyph-aligned text encoder,
we employ a fine-tuning approach based on the ByT5 model using paired text-
glyph data. The main challenge arises from the scarcity of high-quality paired
text-glyph data, which we overcome by establishing a scalable pipeline capable
of generating virtually unlimited paired data based on graphic rendering. Ad-
ditionally, we incorporate a glyph augmentation strategy to enhance the char-
acter awareness of the text encoder, addressing various error types commonly
encountered in visual text rendering, as discussed in [15]. Leveraging our metic-
ulously crafted dataset and employing an innovative box-level contrastive loss,
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Method #Params|Char-aware|Glyph-align Precision (%)
<20 chars <20-50 chars <50-100 chars >100 chars

SDXL (cLip & opencrip)| 817M X X 21.72 20.98 18.23 19.17
+ T5-L + 394M X X 48.46 44.89 34.59 26.09
-+ ByT5-S + 292M v X 60.52 52.79 50.11 42.05
+ Glyph-ByT5-S + 292M v v 92.58 90.38 87.16 83.17
t Glyph-ByT5-s™ + 292M v v 93.89 93.67 91.45 89.17
DeepFloyd-IF (5 xx1,) 4.3B X X 17.63 17.17 16.42 13.05
DALL-E3 Unknown X X 23.23 21.59 20.1 15.81

Table 1: Illustrating the improved results achieved with our approach based on SDXL
across a varying number of characters, we choose the encoder of T5-Large and ByT5-
Small for a relatively fair comparison. We only display the number of parameters
for the text encoder components in the second column. Performance is demonstrated
through evaluating the word-level precision of each model on different text length
ranges. Char-aware: using character-aware text encoder. Glyph-align: glyph-alignment
pre-training. We also report the performance of DeepFloyd-IF and DALL-E3 in our
benchmark, which comprises 1,000 prompts, with 250 prompts within each range of
character numbers. By default, we compute all precision scores at the word level. The
superscript ‘1M’ indicates the use of 1 million training pairs, whereas the preceding
four rows use 500K by default.

we efficiently fine-tune ByT5 into a series of customized text encoder for glyph
generation, named Glyph-ByT5.

Upon thorough training, Glyph-ByT5 is seamlessly integrated into the SDXL
model using an efficient region-wise cross-attention mechanism, significantly en-
hancing the text rendering performance of the original diffusion model. The
resultant Glyph-SDXL model showcases exceptional spelling accuracy, outper-
forming other state-of-the-art models in the generation of text-rich design im-
ages, as illustrated in Table [I] Furthermore, we fine-tuned Glyph-SDXL using a
limited set of scene-text images, significantly bolstering its proficiency in gener-
ating scene-text images. The examples featured in Fig. [I| demonstrate that the
refined model adeptly renders text paragraphs as scene text without perceptible
degradation in the image generation capabilities of the original model.

Our investigation reveals that, through the training of a customized text en-
coder and the implementation of a suitable information injection mechanism,
we can transform an open-domain image generator into an outstanding visual
text renderer. When presented with a textual paragraph ranging from tens to
hundreds of characters, our fine-tuned diffusion model achieves high spelling ac-
curacy for rendering within the designated region, with fully automated handling
of multi-line layouts. In essence, this work contributes in three distinct yet com-
plementary ways. First, we train a character-aware, glyph-aligned text encoder,
Glyph-ByT5, as the key solution to the accurate visual text rendering problem.
Second, we elaborate on the architecture and training of Glyph-SDXL, a robust
design image generator that integrates Glyph-ByT5 into SDXL through an effi-
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cient region-wise cross-attention mechanism. Lastly, we showcase the potential of
fine-tuning Glyph-SDXL into a scene-text image generator, laying the ground-
work for the development of a comprehensive, open-domain image generator
equipped with exceptional visual text rendering capabilities.

2 Related Work

2.1 Visual Text Rendering

Rendering legible and visually coherent text poses a well-known limitation and
a significant challenge for diffusion-based image generation models. It is worth
noting that certain contemporary open-domain image generation models, such
as Stable Diffusion 3 [9] and Ideogram 1.7} have dedicated considerable effort
to enhance visual text rendering performance. However, the spelling accuracy of
the rendered text remains unsatisfactory. Conversely, there have been endeavors
focused on visual text rendering, such as GlyphControl, GlyphDraw, and the
TextDiffuser series [5}6,15/17,/28]. While these efforts have shown substantial
improvements in spelling accuracy, it is disappointing to note that they are still
focusing on rendering single words or text lines with fewer than approximately
20 characters. In this study, we aim to tackle the precise visual text rendering
problem, particularly when dealing with textual content longer than a hundred
characters, setting forth an ambitious goal in this domain.

2.2 Customized Text Encoder

Several recent efforts [4,/11,/31] have been made to train text-oriented diffusion
models and replace or augment the original CLIP encoders with customized text
encoders in different manners. However, these methods, like their predecessors,
are limited to handling text sequences of a certain length, with UDiffText [31]
supporting sequences of no more than 12 characters. In contrast, our method-
ology distinguishes itself by its ability to generate text sequences of more than
100 characters while achieving exceptionally high accuracy, reaching nearly 90%
word-level accuracy. This significant progress addresses the shortcomings of pre-
vious methods, providing wider applicability and improved performance in text
generation tasks. Another closely related work is Counting-aware CLIP [20],
which enhances the original CLIP text encoder with a specialized image-text
counting dataset and a counting-focused loss function. However, a significant lim-
itation of their approach is the lack of scalability in their dataset. They choose
to replace the original text encoders and train diffusion models from scratch,
whereas our data construction pipeline is scalable, and we prioritize integrating
GlyphByT5 with the original text encoders to improve efficiency.

Our Contribution Our work aligns with the insights of the previously men-
tioned studies, identifying that one critical limitation in most current text-to-
image generation models resides in the text encoder. The primary contribution
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of our work lies in presenting an effective strategy for systematically address-
ing the glyph rendering task. We first demonstrate that leveraging graphic ren-
dering to create scalable and accurate glyph-text data is crucial for training a
high-quality, glyph-aligned, character-aware text encoder. Then, we introduce a
simple yet powerful method to integrate our Glyph-ByT5 text encoder with the
original CLIP text encoder used in SDXL. Additionally, we illustrate how our
approach can be applied to scene-text generation by performing design-to-scene
alignment fine-tuning. We anticipate that training the customized text encoder
on scalable, high-quality data represents a promising avenue for overcoming fun-
damental limitations, such as spatial awareness and numeracy.

3 Owur Approach

We begin by illustrating the details of our customized glyph-aligned, character-
aware text encoder, Glyph-ByT5, which is trained using a substantial dataset
of paired glyph images and textual instructions. Subsequently, we demonstrate
how Glyph-ByT5 significantly enhances the visual text rendering accuracy when
integrated with the SDXL models for the design-text rendering task. Finally, we
introduce a straightforward yet effective approach for design-to-scene alignment,
enabling the adaptation of Glyph-SDXL for precise scene-text generation.

3.1 Glyph-ByT5: Customized Glyph-Aligned Character-Aware Text
Encoder for Design-text Generation

A key factor contributing to inaccuracies in text rendering is the inherent lim-
itations of text encoders in modern diffusion models, especially regarding their
interpretation of glyph images. The original CLIP text encoder, for example, is
tailored for broad visual-language semantic alignment at the conceptual level,
while the T5/ByT5 text encoder focuses on deep language understanding. How-
ever, neither is explicitly fine-tuned for glyph image interpretation although the
recent works show that T5/ByTb5 text encoder is favorable for visual text render-
ing task. This lack of customized text encoder design can result in less accurate
text rendering in various applications.

To bridge the gap between existing text encoders (such as the CLIP text en-
coder or the T5/ByT5 text encoder) and glyph images, we propose a innovative
glyph-alignment methodology for training a series of glyph-aligned character-
aware text encoders, i.e., Glyph-ByT5. Our approach is focused on training a
series of glyph-aware text encoders, specifically designed to reconcile the dispar-
ity between glyph images and text. Drawing inspiration from the LiT frame-
work [29], our strategy involves exclusively fine-tuning the text models while
maintaining the pre-trained image models frozen. This approach effectively com-
pels the text encoders to adapt, learning to identify the rich information encoded
within the visual glyph representations extracted from the already trained im-
age model. For the vision encoder component, we opt for the pre-trained CLIP
vision encoders or the DINOv2 models, leveraging their advanced capabilities in
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Fig. 2: Tllustrating the scheme of glyph augmentation. (a) original glyph. (b) charac-
ter replacement (Happy — Hdppy). (¢) character repeat (Happy — Happpppy). (d)
character drop (Happy — Hapy). (e) character add (Graduation — Gradumation).
(f) word replacement (Graduation — Gauatikn). (g) word repeat (Happy — Happy
Happy). (h) word drop (Happy Graduation Amber — Graduation).

Fig. 3: Illustrating the example images with paragraph visual text in our Paragraph-
Glyph-Text dataset. From left to right, # of words: 55, 64, 52, 46, 34, 35, 40, 43; # of
characters: : 443, 442, 416, 318, 247, 267, 282, 302.

handling visual data. We also explore the impact of employing vision encoders
specifically tailored for scene text recognition or other tasks, and we consider
the development and training of more advanced vision encoders for visual text
rendering as a future avenue of research.

Creating Scalable and Accurate Glyph-Text Dataset To enable the train-
ing of the customized glyph-aware text encoder, we first create a high-quality
glyph-text dataset, denoted as D, consisting of approximately ~ 1 million pairs
of synthetic data {lgyph, Ttext}. This dataset was developed with the improved
graphic render introduced in the recent work by [12]. We construct the initial
glyph image set based on the original typographic attributes (including font
types, colors, sizes, positions, and others) found in the crawled graphic design
images. We compile a large text corpus that can be used to enrich the glyph image
set by replacing the words with random text sampled from the corpus. Addi-
tionally, we randomly modify the font types and colors within each text box to
further enlarge the dataset. Our glyph-text dataset D encompasses nearly ~ 512
different font types and ~ 100 distinct font colors. To ensure the glyph-aligned
text encoder focuses on only the difference on the visual text, we all use black
colored background by default.

We present the example of glyph prompts corresponding to the glyph image
shown in Figure (a), detailing font types, colors, and text, as illustrated follows:
{Text “The way you create a better future is by studying the past.” in [font-color-
127], [font-type-234]. Text “Happy Graduation Amber” in [font-color-98] [font-
type-231]}. In this process, special tokens are utilized to denote font colors and
types. Prior to inputting it into the Glyph-ByT5 text encoder, we preprocess the
prompt text by substituting special tokens, like the token ‘[font-color-127]’, with
a series of global embeddings from the enriched codebook. We have conducted
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experiments on the Glyph-Text datasets at three distinct scales, expanding from
100K to 500K, and up to 1M. In the future, we aim to significantly expand our
datasets, scaling up to 100M given access to more computing resources.
Creating Paragraph-Glyph-Text Dataset To enhance both the generation
quality of small-sized fonts and the paragraph-level layout planning capability
of customized text encoder, we have additionally compiled a dense-and-small
paragraph-level glyph-text dataset, denoted as DParagraph,

We define a ‘paragraph’ as a block of text that cannot be accommodated
within a single line, typically consisting of more than 10 words or 100 characters.
The paragraph-glyph rendering task poses a greater challenge, as it demands not
only very high word-level spelling accuracy but also meticulous planning of word-
level and line-level layouts within the specified box. This dataset is comprised
of 100,000 pairs of synthetic data {lgiypn, Ttext }. Empirical findings suggest that
fine-tuning on DPaa&raPh markedly improves performance in rendering small-
sized and paragraph-level visual text.

The capability for paragraph-level layout planning is non-trivial, and we em-

pirically demonstrate that the diffusion model can effectively plan multi-line
arrangements and adjust the line or word spacing according to the given text
box, regardless of its size or aspect ratios. We display example images of the
paragraph glyph-text data in Figure [3] illustrating that each image contains at
least one text box with more than 100 characters. Some images even reach 400
characters, arranged into multiple lines with reasonable spacing. We also con-
struct three scales of the paragraph-glyph-text datasets, comprising 100K, 500K,
and 1M glyph-text pairs.
Glyph Augmentation Unlike conventional CLIP models, which only consider
different glyph-text pairs as negative samples-thereby modeling only the rela-
tively high-level differences caused by multiple words or even paragraphs con-
sisting of more than 10 characters-we propose a simple yet effective character-
level and word-level glyph augmentation scheme. This approach constructs more
informative negative samples, significantly enhancing training efficiency.

The proposed character-level and word-level augmentation scheme essentially
consist of a combination of four different glyph augmentation strategies including
glyph replacement, glyph repeat, glyph drop, and glyph add at both character-
level and word-level. We apply these augmentations to both lgypn and Tiext
to ensure consistency. Figure [2| shows some representative examples with these
augmentation strategies. We also investigate the effect of constructing different
ratios of informative negative samples for each sample. We independently apply
these augmentations to each text box. We present statistics on the number of
text boxes, words, and characters across the entire glyph-text dataset and the
paragraph-glyph-text dataset in the appendix.

Glyph Text Encoder To efficiently capture the text features of each charac-
ter, we have selected the character-aware ByT5 [26] encoder as the default text
encoder for Glyph-CLIP. The original ByT5 model features a robust, heavy en-
coder paired with a lighter decoder. The ByT5 encoder is initialized using the
official pre-trained checkpoints from the mC4 text corpus, as mentioned in [27].
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Furthermore, we explore the impact of scaling the text encoders from smaller
to larger sizes. This includes the evaluation of various ByT5 models such as
ByT5-Small (217M parameters), ByT5-Base (415M parameters), and ByT5-
Large (864M parameters) examining their performance enhancements. To dis-
tinguish from the original ByT5 series, we refer to these text encoders as Glyph-
ByT5, indicating their specialized focus on bridging the gap between glyph im-
ages and their corresponding text prompts.

Glyph Vision Encoder For the exploration of the visual encoder, we ana-
lyzed the impact of using visual embeddings derived from CLIP [22]|, or DI-
NOv2 [8,/19], or the variants |1,30] tailored for visual text recognition task.
Our observations revealed that DINOv2 yields the best performance. It was also
noted that CLIP’s visual embeddings struggled to distinguish between different
font types. This finding aligns with recent research efforts, as discussed by [733],
which demonstrate that DINOv2 excels in preserving identity information. As a
result, DINOv2 has been chosen as our primary visual encoder. Furthermore, we
explored the effect of scaling visual encoders from smaller to larger sizes on per-
formance. This included assessing variations like ViT-B/14 (86M parameters),
ViT-L/14 (300M parameters), and ViT-g/14 (1.1B parameters), aligning them
with the above mentioned three ByT5 text encoders of varying scales.

Box-level Contrastive Loss Unlike conventional CLIP, which applies con-
trastive loss to the entire image, we propose applying a box-level contrastive
loss that treats each text box and its corresponding text prompt as an instance.
Based on the number of characters or words within the text box, we can cat-
egorize them into either a word text box, a sentence text box, or a paragraph
text box. Therefore, our box-level contrastive loss is capable of aligning the text
with glyph images at different levels of granularity. This alignment aids our
customized text encoder in acquiring the capability for paragraph-level layout
planning. We illustrate the mathmatical formulation as follows:

[N [Bi]

Loox = = S ‘B|ZZ

=1 j5=1

tx y7 etxg y!

+ log 7, ), (1)

where N' = {(I1,T1), (I2, T2), ... } represents all image-text pairs within the same
batch, where the i-th image-text pair consists of |B;| box-sub-text pairs. We
compute the box embedding and sub-text embedding of j-th box in ¢-th image-
9
(Tl
f(-) and g¢(-) represent the visual encoder and text encoder, respectively We

text pair (I;, T;) as follows: x/ = ROIAIign(%,boxz) and y/ =

set the two normalization factors following Z, = WI Z‘B’“‘ ! Yk and Zy =
ZlM ii’“l‘ k¥l t is a learnable temperature parameter.

Hard-negative Contrastive Loss based on Glyph Augmentation: We additionally
compute a contrastive loss for the hard-negative samples generated with our
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Box-level Contrastive Objective
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Fig. 4: Ilustrating the glyph-alignment pre-training framework and the region-wise
multi-head cross attention module

glyph augmentation and the mathematical formulatioin is shown as follows:

[N 1B oty oty

1
Lhard = —#ZZ(IOngﬂLIOg —ang ) (2)
2 1Bl Za Zy

i=1 j=1

where Z, = Zlgg:ll ey’ and Z, = Zgg:ll etxi’ i Here, G represents the aug-
mented training data based on box x] and sub-text y’. We investigate the impact
of varying the number of augmented data points in the ablation experiments.

We combine the above two losses, i.e., Lyox + Lhard, to facilitate the glyph-
alignment pre-training process. We also empirically demonstrate that our design
outperforms the image-level contrastive loss in the ablation experiments. We
attribute the superior performance to two main factors: the availability of a
significantly larger number of effective training samples, and the box-level visual
features providing more accurate visual text information. These assertions are
corroborated by the findings in two prior studies . Figure @ depicts the
complete framework of Glyph-ByT5, showcasing its glyph-alignment pre-training
process that integrates the critical components previously mentioned.

3.2 Glyph-SDXL: Augmenting SDXL with Glyph-ByT5 for Design
Image Generation

To verify the effectiveness of our approach in generating accurate text contents
in design images and planning visual paragraph layouts within each text box,
we integrate our Glyph-ByT5 with the state-of-the-art, open-sourced text-to-
image generation model, SDXL . The primary challenge lies in integrating
our customized encoder with the existing one to harness the strengths of both
without detracting from the original performance. Another challenge is the lack
of high-quality graphic design datasets with coherent background image layers.

To address the two mentioned challenges, we first introduce a region-wise
multi-head cross-attention mechanism to seamlessly fuse the glyph knowledge
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encoded in our customized text encoder within the target typography boxes and
the prior knowledge carried by the original text encoders in background regions.
Additionally, we build a high-quality graphic design dataset to train our Glyph-
SDXL model for accurate visual text rendering. Detailed discussions of these two
pivotal contributions are provided in subsequent sections.

Region-wise Multi-head Cross-Attention The original multi-head cross-
attention is the core component responsible for mapping the rich semantic infor-
mation of text-space into different positions in the image-space. In other words,
it determines generate what object at where by continuely applying multi-head
cross-attention across different layers and time steps.

The detailed framework of the region-wise multi-head cross-attention is dis-
played on the right side of Figure [d] In this mechanism, we first partition input
pixel embeddings (Query) into multiple groups. These groups correspond to the
target text boxes, which can be either specified by the user or automatically
predicted by leveraging the planning capability of GPT-4. Simultaneously, we
divide the text prompts (Key-Value) into corresponding sub-sections, which in-
clude a global prompt and several groups of glyph-specific prompts. We then
specifically direct the pixel embeddings within the target text boxes to attend
only to the glyph embeddings extracted with Glyph-ByT5. Similarly, pixel em-
beddings outside the text boxes are made to attend exclusively to the global
prompt embeddings extracted with the original CLIP encoders.

To close the gap between the output embedding space of Glyph-ByT5 with
the original SDXL space, we introduce a lightweight mapper, namely the ByT5-
to-SDXL mapper. This mapper is equipped with four randomly initialized ByT5
encoder layers and applied to the output of Glyph-ByT5. For efficiency, we imple-
ment the above-mentioned region-wise multi-head cross-attention by modulating
the attention maps with a mask that ensures the mapping relations between pixel
embeddings and the multiple text encoder embeddings. We fine-tune the weights
of both text encoder and mapper modules during training, in line with previ-
ous research |15] which highlights that refining a character-aware text encoder
within a diffusion model can significantly enhance performance.

Visual Design Dataset for Design-text Generation It is important to
choose a reliable task to access design-text rendering performance. This work
selects the design image generation as this is one of the most representative
text-intensive generation task. Therefore, we first build a high-quality visual
design image dataset with dense paragraph-level visual text rendered on each
image by crawling from graphic design websites following [12]. This task presents
two significant challenges, as it demands not only the generation of dense visual
text but also necessitates visually appealing background images. We also create
three versions of the graphic design datasets, encompassing sizes of 100K, 500K,
and 1M, where we utilize LLaVA [14] based on Llama2-13B [24] to generate
detailed captions, with the ground-truth glyph text readily accessible. We also
conduct data cleaning to ensure that few graphic design images share the same
typography as the glyph-text images used for glyph-alignment pre-training.
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Glyph-SDXL We train the Glyph-SDXL on the above constructed design-text
dataset. To preserve the inherent capabilities of SDXL, we lock the entire model’s
weights. First, we implement LoRA [10] module exclusively on the UNet compo-
nents. Second, we introduce a region-wise multi-text-encoder fusion mechanism
designed to integrate the glyph-aware capabilities of the Glyph-ByT5 text en-
coder with the formidable strengths of the two original CLIP text encoders. This
approach aims to synergize the unique features of each text encoder, enhancing
visual text rendering performance. In implementation, we modify the original
multi-head cross-attention module accordingly.

Our tailored Glyph-ByT5 matches the rendering accuracy of conventional
tools while leveraging the capabilities of fully diffusion-based models. This allows
it to tackle scene-text generation tasks which are beyond the capabilities of
standard rendering tools.

3.3 Design-to-Scene Alignment: Fine-tuning Glyph-SDXL for
Scene-text Generation

The previous constructed Glyph-SDXL, which mainly trained on design images,
encounters difficulties in producing coherent scene texts. Furthermore, we notice
a ‘language drift’ phenomenon, which slightly undermines the model’s original
proficiency. To tackle these issues and create a superior scene text generation
model, we develop a hybrid design-to-scene alignment dataset combining three
types of high-quality data: 4,000 scene and design text images from TextSeg |25],
4,000 synthetic images generated by SDXL, and 4,000 design images. We fine-
tune Glyph-SDXL on the hybrid design-to-scene alignment dataset for 2 epochs
and conduct thorough evaluations of the scene-text rendering capability across
three public benchmarks and report significant performance gains compared to
previous state-of-the-art methods. To distinguish it from the original Glyph-
SDXL, we designate the fine-tuned version as Glyph-SDXL-Scene. Additionally,
we demonstrate that each subset is useful for three combined purposes: coherent
layout, accurate text rendering, and visual quality, as detailed in the appendix.

4 Experiment

We assess our method’s ability to generate accurate design text in graphic design
images, which often feature numerous paragraph-level text boxes, as well as scene
text within photorealistic images. To facilitate the assessment of paragraph-level
visual text rendering, we develop the VISUALPARAGRAPHY benchmark, which
includes multi-line visual text within boxes of diverse aspect ratios and scales.

Our evaluation compares our method against commercial products and the
most advanced visual text rendering techniques, such as DALL-E, in the design-
text generation task. We report objective OCR metrics and conduct a subjec-
tive user study to evaluate visual quality from other aspects. For the scene-text
generation task, we compare our method with the representative models Glyph-
Control [28] and TextDiffuser-2 [5] across three public benchmarks.
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Fig. 5: Glyph-SDXL v.s. DALL-E3 Win Rate Percentage.
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Fig. 6: Qualitative comparison results. We show the results generated with our Glyph-
SDXL and DALL-E3 in the first row and second row, respectively.

Additionally, we conduct thorough ablation experiments to study the effect
of each component of our approach and visualize the cross-attention maps to
demonstrate that our customized text encoder can provide a glyph prior to dif-
fusion models. We detail training settings and additional results in the appendix.

4.1 Metrics

In the majority of our experiments, we default to reporting case-sensitive word-
level precision, except for comparisons involving GlyphControl and TextDiffuser.
In these instances, we align with their original methodologies by reporting case-
agnostic metrics and image-level metrics. For instance, as indicated in Table
Case-Recall is used as a case-sensitive metric to differentiate between uppercase
and lowercase letters. Conversely, all other metrics are case-agnostic. Accuracy
[IMG] is utilized to denote image-level accuracy, which depends on the accurate
spelling of every visual word within the entire image to achieve a favorable
evaluation. Furthermore, we identified a direct correspondence between the OCR,
Accuracy metric in GlyphControl and the Recall metric in TextDiffuser. As a
result, to ensure consistency in metrics reporting for both SimpleBench and
CreativeBench, we unify the approach by selecting Recall as the principal metric.

4.2 VISUALPARAGRAPHY Benchmark

We construct a benchmark for design-text generation task, amassing approxi-
mately ~ 1,000 prompts covering varying number of characters with different
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Method SimpleBench CreativeBench MARIO-Eval
Recall Case-Recall Edit-Dis. | Recall Case-Recall Edit-Dis. | Accuracy [IMG] Precision Recall F-measure

DeepFloyd IF [13] 0.6 33 1.63 1 21 3.09 2.6 14.5 22.5 17.6
GlyphControl [28| 42 48 1.43 28 34 2.40 - - - -
TextDiffuser 6] - - - - - - 56.1 78.5 78.0 78.2
TextDiffuser-2 |5] - - - - - - 57.6 74.0 76.1 75.1
Glyph-SDXL 93.56 93.62 0.09 92.00 92.06 0.16 74.8 88.2 92.6 90.4
Glyph-SDXL-Scene | 92.69 95.88 0.05 88.81 91.38 0.15 66.5 83.9 89.0 86.4

Table 2: Comparison on SimpleBench, CreativeBench, and MARIO-Eval.

) Precision (%)
Visual encoder <20 chars  <20-50 chars  <50-100 chars  >100 chars Precision (%)
=2 chars = hars = 5 = b can ByT5-to-SDXL mapper
DINOV2 ViT-B/14 + reg | 84.54 5456 79.89 73.29 <20 chars <20-50 chars <50-100 chars >100 chars
CLIP ViT-B/16 7707 7478 74.94 66.34 w/o mapper 80.22 78.48 72.91 65.02
VITSTR 79.29 8.2 75.35 68.49 w/ mapper 84.54 84.56 79.89 73.29
CLIP4STR ViT-B/16 80.38 79.12 77.08 69.24 Table 4: Effect of the ByT5-tO-SDXL

Table 3: Effect of using different pre-

. . mapper within Glyph-SDXL.
trained visual encoder.

- Precision (%) Precision (%)
# Glyph Image-Text Text encoder | #Params
<20 chars <20-50 chars <50-100 chars >100 chars <20 chars <20-50 chars <50-100 chars >100 chars
100K 85.6 85.02 81.2 74.58 Glyph-ByT5-S | 202M | 84.54 84.56 79.89 73.29
500K 91.11 93.35 85.43 82.83 Glyph-ByT5-B| 510M | 87.10 84.93 78.72 72.81
IM 93.54 93.96 91.0 89.96 Glyph-ByT5-L| 963M | 87.07 82.87 79.12 73.72

Table 5: Effect of scaling the training Table 6: Effect of scaling customized text
data for Glyph-ByT5 and Glyph-SDXL. encoder model scales.

difficulty, rendering less than 20, 20 to 50, 50 to 100, and more than 100 charac-
ters respectively. We provide some representative examples in the appendix. We
use approximately 1,000 design-text prompts in the comparison with DALL-E3,
while by default, a smaller subset of approximately 400 design-text prompts are
used in all subsequent ablation experiments for efficiency.

4.3 Comparison to Commercial-Product DALL-E3

We compare our approach with the most powerful commercial product in the vi-
sual text rendering task, namely, DALL-E3 on VISUALPARAGRAPHY benchmark.
We conducted a user study to assess the results from three critical aspects: vi-
sual aesthetics, layout quality, and typography accuracy. We hired 10 users with
design backgrounds to rank the results from these aspects and report win-rate
results in Figure [} We conclude that Glyph-SDXL is significantly preferred in
terms of typography and comparable or slightly lower on other aspects. Addi-
tionally, we visualize representative comparison results in Figure[6] We find that
our approach demonstrates significant advantages in design-text rendering. We
further improve the visual aesthetics in the follow-up work [16].

4.4 Comparison to State-of-the-Art

Our foremost goal was to confirm the broad applicability of our visual text gener-
ation model. To this end, we carefully detail outcomes obtained by applying our
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method to the representative scene-text rendering benchmarks outlined in earlier
research, such as TextDiffuser 1 and 2 [5,/6], and GlyphControl |28|. This encom-
passed comprehensive testing on benchmarks like MARIO-Eval, SimpleBench,
and CreativeBench. The comparison results are summarized in Table [2] As in-
dicated, it is evident that our Glyph-SDXL-Scene significantly outperforms the
previous state-of-the-art by a substantial margin across these three benchmarks.
All of the results of our method represent zero-shot performance.

4.5 Ablation Experiments

We carry out all ablation studies by initially undertaking glyph-alignment pre-
training, followed by training the Glyph-SDXL model on our graphic design
benchmarks. Furthermore, all ablations are carried out on 100K glyph image-
text pairs for Glyph-ByT5 and Glyph-SDXL models respectively unless specified.
Pre-trained Visual Encoder Choice We study the effect of choosing four
different pre-trained visual encoders: CLIP visual encoder [22], DINOv2 |g],
VIiTSTR |[1], and CLIP4STR visual encoder [30]. We report the detailed com-
parison results in Table [3| Notably, we also observe that accurate font type and
color controls only occur when using DINOv2 as the pre-trained visual encoder.
Mapper, Loss Design, Glyph Augmentation, Scaling and More Table [4]
shows the importance of using the ByT5-to-SDXL mapper to align the gap.
Table [5] and Table [f] verify the benefits of scaling up the glyph-text dataset size
and text encoder size. We provide more ablations, as well as experiments of
Glyph-SDXL-Scene in the appendix.

5 Conclusion

This paper presents the design and training of the Glyph-ByT5 text encoder,
tailored for accurate visual text rendering with diffusion models. The two key
contributions are: the creation of a scalable, high-quality glyph-text dataset and
the implementation of pre-training techniques for glyph-text alignment. These
designs efficiently bridge the gap between glyph imagery and text prompts, fa-
cilitating the generation of accurate text for both text-rich design images and
open-domain images with scene text. The compelling performance achieved by
our proposed Glyph-SDXL model suggests that the development of specialized
text encoders represents a promising avenue for overcoming some of the funda-
mental challenges associated with diffusion models.
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