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Abstract

Diffusion models are powerful generative models that produce high-quality sam-
ples from complex data. While their infinite-data behavior is well understood,
their generalization with finite data remains less clear. Classical learning theory
predicts that generalization occurs at a sample complexity that is exponential in
the dimension, far exceeding practical needs. We address this gap by analyzing
diffusion models through the lens of data covariance spectra, which often follow
power-law decays, reflecting the hierarchical structure of real data. To understand
whether such a hierarchical structure can benefit learning in diffusion models, we
develop a theoretical framework based on linear neural networks, congruent with a
Gaussian hypothesis on the data. We quantify how the hierarchical organization
of variance in the data and regularization impacts generalization. We find two
regimes: When N < d, not all directions of variation are present in the training
data, which results in a large gap between training and test loss. In this regime, we
demonstrate how a strongly hierarchical data structure, as well as regularization
and early stopping help to prevent overfitting. ForN > d, we find that the sampling
distributions of linear diffusion models approach their optimum (measured by the
Kullback-Leibler divergence) linearly with d/N , independent of the specifics of the
data distribution. Our work clarifies how sample complexity governs generalization
in a simple model of diffusion-based generative models.

Diffusion models [1, 2, 3] have become the state-of-the-art paradigm in generative AI, where they are
trained to sample from an unknown distribution ρ based on a finite set of training data drawn from ρ.
While the behavior of diffusion models that have learned this mapping accurately [4, 5, 6, 7, 8, 9]
as well as the learning dynamics of diffusion models trained on unstructured data [10, 11, 12] has
been studied recently , much less is known about their behavior when trained on finite, structured
datasets. Ideally, diffusion models abstract the characteristic statistics of ρ from the training data
using a neural network. Conventional learning theory dictates that one needs a number of samples N
that is exponential in d to accurately approximate a arbitrarily complex function on a d-dimensional
space, far more than available in practice. The success of diffusion models then appears to indicate
that ρ is simple enough such that its key properties can be inferred with fewer data.

Many machine learning datasets exhibit hierarchical structure, where some features are more impor-
tant than others. Theoretical work on diffusion models captures this in different ways. One approach
assumes a random hierarchy model [13] for ρ, showing that generalization occurs when N scales
polynomially with d, [14, 15], though it lacks quantitative predictions for specific datasets. Another
assumes data lie on a low-dimensional manifold [16, 17, 18], implying sample complexity depends on
the manifold dimension rather than the embedding dimension.This manifold hypothesis is ubiquitous
in the theory of learning with neural networks [19]. However, estimating manifold dimension is
difficult. Moreover, recent work shows a more refined picture of dimensionality in image data [20]
that challenges the notion of these data lying on a lower dimensional manifold of homogeneous
dimension in space.

In contrast to these approaches, we make use of one salient feature of ρ that can be determined
directly from the data: its covariance spectrum. Covariance spectra inform us about the relative
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Figure 1: a) Eigenvalues of covariances obtained from image data sets, sorted by rank. b) - d)
Example images from image datasets. e) - g) Top three leading eigenvectors of covariance matrices
obtained from the full image dataset. h) Prediction for test and training loss of linear diffusion models
trained on N samples d = 100-dimensional samples from N (0,Σ), where the eigenvalues of Σ
follow a powerlaw with exponent k normed such that TrΣ/d = 1. i) - k) Test and train loss of
trained diffusion models with linear and U-net architecture trained on N training data. Test losses
are averaged over 104 samples from the test set. Training losses are computed using at max(N, 104)
training data. Grey lines show prediction from replica theory. l) Kullback-Leibler divergence between
sample distribution of linear diffusion models with regularization c = 10−4 and N (0,Σ), where the
eigenvalues of Σ follow the same powerlaw as in h). Symbols are averages over 10 random draws of
the training sets, error bars report one standard deviation, but are typically smaller than the symbol
size. m) - o) are equivalent to l), but for Σ originating from the CelebA, MNIST, and CIFAR-10
datasets, respectively. Grey lines show prediction eq. (5) from replica theory.

spread of the data distribution in different directions. For example, the covariance spectra of image
data typically exhibit a power-law behavior, see fig. 1 a), where we show the covariance spectra
for three popular image datasets. This hierarchy in the eigenvalues implies that the few leading
eigen-directions of the covariance matrix account for the bulk of the variability in the data. The
corresponding eigenvectors are often informative features of the data, for example controlling for
background color or the placement of shadows in an image, see fig. 1 d)-f). Furthermore, covariance
spectra are known to affect learning dynamics in diffusion models: leading eigenmodes are typically
learned faster than sub-leading ones [21, 22].

In this work, we investigate how hierarchical covariance spectra affect learning in diffusion models in
the undersampled regime. We investigate how the undersampling of the covariance matrix due to
limited data affects generalization in diffusion models. To this end, we will consider a linear neural
networks that is able to produce samples with arbitrary covariance. Linear neural networks have
helped elucidate overfitting in supervised learning in the past [23, 24] by providing a fully tractable
case in which key mechanisms can be understood. A first analysis of linear diffusion models was
given in [25]. Here, we extend their approach to include a hierarchical covariance structure that we
fit to data. In the next section we give a brief introduction to diffusion models and we the neural
network architecture we will study.
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1 Linear Diffusion Models

Diffusion models consist of an iterative noising and denoising process. The noising process simplifies
the distribution of a sample x0 from ρ through the addition of noise

xt (ϵt) =
√
ᾱtx0 +

√
1− ᾱtϵt, ϵt ∼ N (0, Id) , (1)

for a number of noising steps t ∈ {1, . . . , T} and ᾱt ∈ (0, 1) is a decreasing function in t. As t
increases, the original signal x0 is gradually suppressed compared to the isotropic Gaussian noise, until
one obtains xT whose distribution is assumed to be close to N (0, Id). Diffusion models are neural
networks ϵθ whose parameters θ are then optimized to approximate the score ϵθ(xt, t) ∝ ∇ ln ρt(xt),
where ρt is the density of the noised variables xt
Typical architectures for ϵθ are very complex, including U-nets [26] and transformers. Here, we
consider the case where for each t, the denoiser ϵθ(·, t) is an affine linear mapping, specified in
appendix A whose weights we additionally regularize using a standard L2 penalty whose strength γt
depends on t. Once trained, the denoiser is then used to iteratively generate new samples. We provide
details on the training and generation process in appendicesA and A.2. The learning outcomes of
the linear model can be expressed using only the the empirical mean µ0 and covariance Σ0 of the
training set D and the population mean µ and covariance Σ of ρ, see appendix A. When the number
of training samples, N , is finite, the empirical mean and covariance will deviate from their population
averages µ0 ̸= µ, Σ0 ̸= Σ. The central aim of our work is to predict how this mismatch affects the
diffusion model’s ability to generalize to new data.

2 Results

The nullspace of Σ0 drives overfitting. As a first measure for generalization, we now compare the
minimal training loss R to the test loss Ltest, which quantifies the ability of the denoiser to denoise
an unseen test example from ρ. We first define the eigendecomposition of the empirical covariance
matrix Σ0, with eigenvalues λ0ν , and normalized eigenvectors {e0ν}ν . We find the gap between the R
and Ltest to be

Ltest −R =
∑
t

(
ᾱt − ᾱ2

t

)∑
ν

[ (
e0ν
)T

Σ e0ν − λ0
ν

(ᾱtλ0
ν + (1− ᾱt + γt))

2 +
(µ− µ0)

2
ν

(ᾱtλ0
ν + (1− ᾱt + γt))

2

]
. (2)

This shows shows explicitly that the gap between R and Ltest arises whenever there is a mismatch
between µ0, Σ0 and µ, Σ. The terms that contribute the most strongly to Ltest − R are those for
which the denominator under the sum is minimized. This occurs for the smallest values of λν and
the smallest values of t, as there 1− ᾱt is minimized. When the number of data in the training set,
N , is smaller than the dimension d, at least N − d eigenvalues of Σ0 are exactly zero, giving rise to
large contributions in eq. (2). This is reflected in a very large gap between training and test loss in
fig. 1 h)-j) when N < d. However, this gap can effectively be reduced by regularization, through the
presence of γt in the denominator of 2. We compare our results using linear models to U-nets trained
on image data in fig. 1 h) - j). We find a similar saturation at N ∼ d, but U-nets are naturally able to
outperform linear models at large N .

We now move to a measure which directly compares the distributions of the generated samples ρN ,
and ρ, the Kullback-Leibler divergence (DKL). In appendix B, we show that ρN = N (µ0,Σ0 + cId),
where c is a small parameter. The presence of c can be interpreted as originating either from the
corrections due to the finite number of sampling steps (see appendix B for details), or from the
regularizing with a particular choice γt =

√
ᾱtc for the regularization strength.

We now impose a Gaussian hypothesis on the data ρ = N (µ,Σ). This assumption lets us treat
exclusively the deviations between ρ, ρN which arise due to finite N .To characterize the deviations
due to finite N , we compute the DKL between the distribution of samples and ρ

DKL(ρN |ρ) = 1

2

[
ln

|Σ|
|Σ0 + cId| + (µ− µ0)

TΣ−1(µ− µ0) + TrΣ−1 (Σ0 + cId)− d

]
, (3)

which is a measure of distance between distributions. The most dominant term at small N is
DKL(ρN |ρ) is ln |Σ|

|Σeff.
0 | =

∑
ν ln

λν

λ0
ν+c , where λν are the eigenvalues of Σ. This term in the DKL

heavily penalizes the presence of a nullspace in Σ0 for small c, analogous to the test loss.

3



Hierarchical spectra mitigate overfitting. Eqs. 3 show that the penalty for a nullspace of Σ0 is
less severe when Σ has small eigenvalues, hence when its spectrum is more hierarchical. To capture
the effect of a hierarchical spectrum of Σ, we compute the average of the test loss and DKL in the
average over draws of the training set from which Σ0 is computed. We use the replica trick to evaluate
the necessary averages; the full calculation is in found in appendix D. For brevity, we will focus
on the typical case analysis of the DKL here. Our results depend on a a quantity q which must be
determined self-consistently from the eigenvalues {λν}dν=1 of Σ and c

q =
1

d

∑
ν

λν

1 + λν
N

dq+Ndc

(4)

In the average over draws of the training set, the DKL is given by

1

d
DKL(ρN |ρ) =1

2

q
d
N
q + c

− 1

2d

∑
i

ln

∣∣∣∣∣ cλi
+

1
d
Nc

q + 1

∣∣∣∣∣− N

2d
ln

(
d

Nc
q + 1

)

+
d+ 2

√
cTrΣ− 1

2 + c(N + 1)TrΣ−1

2Nd
(5)

In fig. 1 k) -l) we compare the prediction obtained from eq. (5) to numerical simulations, showing
excellent agreement. The first line in eq. (5) originates from the term ln |Σ|/|Σ0+ cId| and dominates
the expression when c is very small. These terms diminish with q, hence for smaller q, we find that
overfitting is less severe at fixed N/d. In appendix D.8 we also show that

q ≤
(
d

N
λ̄+ c

)
1

d
Tr

Σ

Σ + Id d
N

(
λ̄+ c

) (6)

where λ̄ = 1
dTrΣ is the average over the eigenvalues of Σ. At fixed d/N , the more hierarchical the

spectrum, i.e. the more eigenvalues of Σ are significantly smaller than average, the smaller q will be,
and therefore, the smaller the DKL. We show examples of this both for spectra which are explicitly
powerlaw, λν ∼ ν−k and Σ determined from image data in fig. 1 l)- o). Similar results hold for the
gap between test and training loss, shown in the same setting in 1 h)-k). Since eq. (5) decreases with
q, this demonstrates how a more hierarchical spectrum can lead to a better fit. Intuitively, this is
because the absence of variation in Σ0 is not as significant when the corresponding variation in Σ is
also small. On the other hand, for N > d, the DKL collapses on to the same line independently of
the specifics of Σ. The independence of the DKL on Σ has been noted in [27], who argued that this
makes the DKL a good measure for the similarity of Σ0 to Σ. In D.8.2, we show that when c is much
smaller than the smallest eigenvalue of Σ and N > d the DKL is approximately given by d/(4N),
where we have neglected terms of order (d/N)2 and

√
c. In the N > d regime, we find this scaling

of the DKL across realizations of Σ (see fig. 1 k) - l)), up to deviations which originate from c > 0,
which causes a saturation of the DKL above zero.

Convergence to a reference model. We now turn to a different comparison between diffusion
models which readily evaluated across datasets and architectures:

∆ϵN =
1

T

∑
t

〈
||ϵN (xtest)− ϵ∞(xtest)t)||2

〉
(xtest)

,

where (xtest) are noised test samples, ϵN is the mapping obtained from a finite dataset of N samples
and ϵ∞ is the mapping obtained from an infinite number of samples. This measure compares the
mappings implemented by a diffusion model optimized on finite N to the best reference. In contrast
to the test loss, this measure does not saturated above N ∼ d and can therefore also measure how
non-linear models approach their optima in this regime. In practice, when only finite number of data
are available, we choose ϵ∞ as the mapping optimized on the largest subset of the data. In fig. 2 a),c)
we show ∆ϵN for two image datasets, both for linear and non-linear diffusion models, as well as a
prediction in the average over draws of the dataset from replica theory (for a detailed calculation, see
appendix D.5). We find that both for linear and non-linear diffusion models, this difference from the
reference model decreases significantly at linear sample complexity.

Memorization When N is small, we find that the nonlinear models memorize the data, i.e. that
new samples generated from the trained models are almost identical to training samples. In 2. To
measure memorization, we find the closest training image for each generated image based on a detail-
based similarity measure (defined in appendix E). The similarity between generated and training
set examples is highest at small N and decreases as N increases, see e.g. [28, 12, 14]. We find that
in our experiments, memorization diminishes when N ∼ d. As early stopping has been shown to
prevent memorization [14, 12], the point where we observe memorization to diminish could shift to
larger N when the models are trained longer.
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Figure 2: Left column: a) Difference of denoisers from reference model, trained on increasing
numbers of data, averaged over 100 test data points. Blue squares are linear models, pink diamonds
are U-nets. Blue lines show prediction from replica calculation. b) Similarity between samples
generated from U-net architecture diffusion models and closest training data point, averaged over 400
generated data points. c)-d) are equivalent to a)-b) but for CIFAR-10 data. Right column: compari-
son of generated images vs. closest training example for models trained on inctreasing number of data.

Differences between linear and non-linear models. Recent experimental studies [29, 30]suggest
that diffusion models closely approximate linear models when N is large. In appendix F, we test this
hypothesis for different levels of noise and in different spatial directions ν given by the eigenvectors
of Σ. We find that for a large extent of t, ν, the difference between linear and non-linear models
diminishes with N . However, for leading eigenmodes (small ν), the difference between linear and
non-linear models grows with N . This (small ν, small t) is also the regime where we expect the
non-Gaussianity of the data to have the largest effect.

3 Discussion

We have identified two relevant regimes for generalization in linear diffusion models, N > d and
N < d. At N > d, we observe a saturation in the test loss, and a decay of the Kullback-Leibler
divergence that is independent of the data structure. An in-depth treatment of this regime for energy-
based models is given by Catania et al. [21], who show that early stopping and regularization can
help mitigate overfitting; the same holds also for linear diffusion models. When N < d, the model
overfits due to a lack of variability in the training set, namely the low-rank structure of the empirical
covariance matrix. Both the Kullback-Leibler divergence and test loss strongly penalize this lack of
variability. In this regime, a hierarchical data structure that is typical of image data is beneficial for
learning. The more hierarchical a dataset is, the lower the test error and Kullback-Leibler divergence
will be. The presence of regularization in the form of c can be interpreted as placing a cutoff on the
minimal variation of the data in any direction, below which the structure of the covariance will no
longer be resolved. Hence c plays the role of the relevant scale of the data, a concept that echoes
previous investigations relating principal component analysis and deep learning to the renormalization
group [31, 32, 33, 34, 35].

Intriguingly, we found that a highly hierarchical structure in the data has no significant effect on the
emergence of the two regimes, i.e. the number of data N where these two regimes intersect. This
suggests that diffusion models place emphasis on learning all directions with finite variability, not
only those with the highest levels of variation. A similar effect has previously been observed in [36],
where learning in the supervised setting was contrasted with diffusion models. In the supervised
case, an effect called benign overfitting occurs: if the data consist of a signal that is corrupted by
noise, the model may overfit to the signal, ignoring the noise. In diffusion models, however, both the
signal and the noise are faithfully represented, meaning that all variability in the data is taken into
account. This is intuitive, given that the objective in training diffusion models is precisely to draw
from a distribution with the same level of variability.

5



Acknowledgements

We are grateful to Alessio Giorlandino for helpful discussions. CM and SG gratefully acknowledge
funding from Next Generation EU, in the context of the National Recovery and Resilience Plan,
Investment PE1 – Project FAIR “Future Artificial Intelligence Research” (CUP G53C22000440006).
SG additionally acknowledges funding from the European Research Council (ERC) for the project
“beyond2”, ID 101166056, and from the European Union–NextGenerationEU, in the framework of
the PRIN Project SELF-MADE (code 2022E3WYTY – CUP G53D23000780001).

References
[1] Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep

Unsupervised Learning using Nonequilibrium Thermodynamics.

[2] Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data
Distribution. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[3] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models, December
2020. arXiv:2006.11239 [cs, stat].

[4] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger
Bridge with Applications to Score-Based Generative Modeling. In Advances in Neural Informa-
tion Processing Systems, volume 34, pages 17695–17709. Curran Associates, Inc., 2021.

[5] Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative Modeling with Denoising
Auto-Encoders and Langevin Sampling, October 2022. arXiv:2002.00107 [stat].

[6] Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis,
May 2023. arXiv:2208.05314 [stat].

[7] Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us Build Bridges: Understanding and
Extending Diffusion Generative Models, August 2022. arXiv:2208.14699 [cs].

[8] Holden Lee, Holden Lee, Jhu Edu, Jianfeng Lu, Yixin Tan, and Yixin Tan. Convergence of
score-based generative modeling for general data distributions.

[9] Jakiw Pidstrigach. Score-Based Generative Models Detect Manifolds, October 2022.
arXiv:2206.01018 [stat].

[10] Anand Jerry George, Rodrigo Veiga, and Nicolas Macris. Denoising Score Matching with
Random Features: Insights on Diffusion Models from Precise Learning Curves, February 2025.
arXiv:2502.00336 [cs].

[11] Anand Jerry George, Rodrigo Veiga, and Nicolas Macris. Analysis of Diffusion Models for
Manifold Data, February 2025. arXiv:2502.04339 [math].

[12] Tony Bonnaire, Raphaël Urfin, Giulio Biroli, and Marc Mézard. Why Diffusion Models
Don’t Memorize: The Role of Implicit Dynamical Regularization in Training, May 2025.
arXiv:2505.17638 [cs].

[13] Francesco Cagnetta, Leonardo Petrini, Umberto M. Tomasini, Alessandro Favero, and Matthieu
Wyart. How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model.
Physical Review X, 14(3):031001, July 2024. Publisher: American Physical Society.

[14] Alessandro Favero, Antonio Sclocchi, and Matthieu Wyart. Bigger Isn’t Always Memorizing:
Early Stopping Overparameterized Diffusion Models, September 2025. arXiv:2505.16959 [cs].

[15] Alessandro Favero, Antonio Sclocchi, Francesco Cagnetta, Pascal Frossard, and Matthieu Wyart.
How compositional generalization and creativity improve as diffusion models are trained, March
2025. arXiv:2502.12089 [stat].

6



[16] Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score Approximation, Es-
timation and Distribution Recovery of Diffusion Models on Low-Dimensional Data. ArXiv,
abs/2302.07194:null, 2023.

[17] Beatrice Achilli, Luca Ambrogioni, Carlo Lucibello, Marc Mézard, and Enrico Ventura. Memo-
rization and Generalization in Generative Diffusion under the Manifold Hypothesis, February
2025. arXiv:2502.09578 [cond-mat].

[18] Peng Wang, Huijie Zhang, Zekai Zhang, Siyi Chen, Yi Ma, and Qing Qu. Diffusion
Models Learn Low-Dimensional Distributions via Subspace Clustering, December 2024.
arXiv:2409.02426 [cs].

[19] Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. Modeling the Influence
of Data Structure on Learning in Neural Networks: The Hidden Manifold Model. Physical
Review X, 10(4):041044, December 2020. Publisher: American Physical Society.

[20] Florentin Guth, Zahra Kadkhodaie, and Eero P. Simoncelli. Learning normalized image densities
via dual score matching, June 2025. arXiv:2506.05310 [cs].

[21] Giovanni Catania, Aurelien Decelle, Cyril Furthlehner, and Beatriz Seoane. A theoretical
framework for overfitting in energy-based modeling, June 2025. arXiv:2501.19158 [cs].

[22] Binxu Wang and Cengiz Pehlevan. An Analytical Theory of Spectral Bias in the Learning
Dynamics of Diffusion Models.

[23] Madhu S Advani, Andrew M Saxe, and Haim Sompolinsky. High-dimensional dynamics of
generalization error in neural networks. Neural Networks, 132:428–446, 2020.

[24] Kirsten Fischer, Alexandre René, Christian Keup, Moritz Layer, David Dahmen, and Moritz
Helias. Decomposing neural networks as mappings of correlation functions. Physical Review
Research, 4(4):043143, November 2022. Publisher: American Physical Society.

[25] Giulio Biroli and Marc Mézard. Generative diffusion in very large dimensions. Journal of
Statistical Mechanics: Theory and Experiment, 2023(9):093402, September 2023.

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation, May 2015. arXiv:1505.04597 [cs].

[27] Michele Tumminello, Fabrizio Lillo, and Rosario N. Mantegna. Kullback-Leibler distance as a
measure of the information filtered from multivariate data. Physical Review E, 76(3):031123,
September 2007. Publisher: American Physical Society.

[28] Zahra Kadkhodaie, Florentin Guth, Eero P. Simoncelli, and Stéphane Mallat. Generaliza-
tion in diffusion models arises from geometry-adaptive harmonic representations, April 2024.
arXiv:2310.02557 [cs].

[29] Binxu Wang and John J. Vastola. The Hidden Linear Structure in Score-Based Models and its
Application, November 2023. arXiv:2311.10892 [cs].

[30] Xiang Li, Yixiang Dai, and Qing Qu. Understanding Generalizability of Diffusion Models
Requires Rethinking the Hidden Gaussian Structure. November 2024.

[31] Pankaj Mehta and David J. Schwab. An exact mapping between the Variational Renormalization
Group and Deep Learning, October 2014. arXiv:1410.3831 [stat].

[32] Serena Bradde and William Bialek. PCA Meets RG. Journal of Statistical Physics, 167(3):462–
475, May 2017.

[33] Tanguy Marchand, Misaki Ozawa, Giulio Biroli, and Stéphane Mallat. Multiscale Data-Driven
Energy Estimation and Generation. Physical Review X, 13(4):041038, November 2023.

[34] Zahra Kadkhodaie, Florentin Guth, Stéphane Mallat, and Eero P. Simoncelli. Learning multi-
scale local conditional probability models of images, March 2023. arXiv:2303.02984 [cs].

7



[35] Etienne Lempereur and Stéphane Mallat. Hierarchic Flows to Estimate and Sample High-
dimensional Probabilities, May 2024. arXiv:2405.03468 [stat].

[36] Andi Han, Wei Huang, Yuan Cao, and Difan Zou. On the Feature Learning in Diffusion Models,
December 2024. arXiv:2412.01021 [stat].

A Diffusion models

Diffusion models are designed to reverse the noising process: they implement a mapping ϵθ (xt, t)
whose paramaters θ are optimized to predict the noise vector ϵt. For a dataset D consisting of N
samples in Rd, this amounts to minimizing

L =
1

d T |D|
∑
t

∑
x0∈D

Eϵt ∥ϵt − ϵθ (xt (ϵt) , t)∥2 , (7)

which we will refer to as the training loss.

Here, we consider the case where for each t, the denoiser is implemented by an affine linear mapping

ϵθ (xt, t) =Wt

(
xt −

√
ᾱtbt

)
(8)

where Wt ∈ Rd×d is a weight matrix and bt ∈ Rd a bias term. Training the denoiser then
amounts to optimizing eq. (7) with respect to {Wt, bt}t. We will also add a standard regular-
ization term

∑
t γtTrWtW

T
t to the training objective, where the prefactor γt allows us to apply

different levels of regularization to different noising stages t. With our choice of architecture and
regularization, we find the loss to be

L =
1

d T |D|
∑
t

∑
x0∈D

Eϵt

∥∥ϵt −Wt

(√
ᾱtxt +

√
1− ᾱtϵt −

√
ᾱtbt

)∥∥2 + γtTrWtW
T
t . (9)

A.1 Optimizing the loss

Since Wt, bt are not coupled in eq. (7) across different values of t, we can find their optima
independently for each noising stage. Inserting eq. (8) into eq. (7), we find that the contribution for
each t decomposes into a data-dependent term and one which depends only on the additive noise

Eϵt ∥ϵt − ϵθ (xt, t)∥2 = ᾱt ∥Wt (x0 − bt)∥2 + Eϵt

∥∥(1−√
1− ᾱtWt

)
ϵt
∥∥2 . (10)

We will not consider variations which arise due to the fact that only a finite number of noised samples
are used at each training step, hence in eq. (10) we take the average over infinitely many realizations
of ϵt.

Eq. (10) shows that the loss contains only terms either linear or quadratic in the training data x0.
Consequently, only the first two moments of the data, or, equivalently, the empirical mean µ0 and
covariance Σ0

µ0 :=
1

N

∑
x0∈D

x0 , Σ0 :=
1

N

∑
x0∈D

(x0 − µ0) (x0 − µ0)
T =:

∑
ν

λ0
νe

0
ν

(
e0ν
)T

(11)

of the training data. With this definitions, we now use that eq. (9) is quadratic in Wt, bt, hence it is
convex with the unique minimum

b∗t = µ0 , W ∗
t =

√
1− ᾱt

ᾱtΣ0 + (1− ᾱt + γt) Id
. (12)

At the optimum, W ∗
t , b

∗
t , we find the irreducible, or residual, loss

R =
∑
t

∑
ν

[
ᾱtλ

0
ν + γt

(ᾱtλ0
ν + (1− ᾱt + γt))

]
. (13)

which is the minimal value of the training loss which a linear denoiser can achieve.

Once trained, the denoiser is then used to iteratively generate new samples, we provide a description
of the generation process in the next section.
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A.2 The generation process

The generation process follows the reverse direction to the noising process, starting from pure white
noise u0 ∼ N (0, Id) and culminating in a new sample uT . For sampling, we will use s = T − t as
an iteration index and u as a dynamical variable to distinguish the noising process from the denoising
process. For sampling, we will use s = T − t as an iteration index and u as a dynamical variable to
distinguish the noising process from the denoising process. The iteration reads

us+1 = µθ(us, T − s) + σT−sξ, ξ ∼ N (0, Id) . (14)
where we defined

µθ(xt, t) :=
xt −

√
1− ᾱtϵθ (xt, t)√

αt
+
√

(1− σ2
t )− ᾱt−1ϵθ (xt, t) . (15)

These two equations can be understood as first predicting x0 ≈ xt−
√
1−ᾱtϵθ√
ᾱt

, then adding back

"noise" in the form of σtξ +
√
(1− σ2

t )− ᾱt−1ϵθ.

B Sampling dynamics of affine linear denoisers

Affine linear denoisers sample from Gaussian distributions: Starting from an initial Gaussian random
variable u0 ∼ N (0, Id), uT is a linear map of Gaussian random variables and constants, hence it is
also Gaussian. Up to orders of T−1, affine linear networks reproduce the mean µ0 and covariance
Σ0 of the training data. In this section we compute how the mean and covariance of the samples
evolve under the the iterative denoising process specified in eq. (14). Before we do so, we note that
to sample from a given Gaussian distribution with mean µ0 and covariance Σ0, no iterative process
is necessary. Rather, given u0 ∼ N (0, Id), we can generate a sample u with the aforementioned
statistics with a simple linear transform

uT =
√

Σ0u0 + µ0 . (16)

we will see in the following that the iterative sampling process approaches the same statistics of uT .
In this manuscript, we do not consider the fact that the noising process is discrete, rather we will treat
sampling time as continuous. However, we will highlight corrections which arise due to ᾱ(0) ̸= 1
and ᾱ(T ) ̸= 0.

B.1 Continuous time limit

For the following calculations, it will be useful to write a continuous time version of the denoising
process. To this end, we also consider a rescaled time in which the time arguments in the sampling
process are incremented by h = T−1, rather than increments of 1 as in eq. (14), thus both denoising
time s and noising time t run from zero to one with t = 1 − s. We now assume β(t) = O(h),∀t.
This is reasonable, since we expect the changes in every step of the diffusion process to be small. We
now define

β̂(t) :=
βt
h

σ̂(t) :=
σt√
h
. (17)

For ᾱ(t),we use that ᾱ(t+ h) =
(
1− β̂(t)h

)
ᾱ(t), so in the limit T → ∞, or equivalently h→ 0,

dᾱ(t)

dt
= −β̂(t)ᾱ(t) . (18)

This differential equation admits a formal solution, namely

ᾱ(t) = e−ζ(t), ζ(t) :=

∫ t

0

ds β̂(s) . (19)

B.2 Fokker-Planck equation

With the definition of the continuous noising/denoising time limit in hand, we now write eq. (14) as a
linear stochastic differential equation. We find

du(s) = (m(s)u(s) + c(s)) ds+ σ̂(1− s)dZs

9



where ms, cs are found by inserting eq. (15) and eq. (12) into eq. (14) and Zs is a Wiener process.
We find

m(s) =
β̂(1− s)

2
Id − 1

2

(
σ̂2(1− s) + β̂(1− s)

)
ᾱ(1− s)Σ0 + (1− ᾱ(1− s)) Id

,

c(s) =
1

2

(
σ̂2(1− s) + β̂(1− s)

) √
ᾱ(1− s)

ᾱ(1− s)Σ0 + (1− ᾱ(1− s)) Id
µ0 .

Observe that m(s) is diagonal in the eigenbasis of Σ0. Moving into this basis, we can now solve for
the statistics of the sampling process in a decoupled manner, as in this basis, all entries of u(s) are
statistically independent. In the following calculation, we will keep one direction uν fixed, dropping
the index ν fo brevity. We use the Fokker-Planck equation to write down the differential equation for
the density ρ(u, t) which describes this variable. We have

∂sρ(u, s) = −∂u [(m(s)u(s) + c(s)) ρ(u, s)] +
1

2
∂2u
[
σ̂(1− s)2ρ(u, s)

]
. (20)

Since we know that this is a Gaussian process, we make the following Ansatz for the density

ρ(u, s) =
1√

2πσu(s)2
exp

[
− (u(s)− µu(s))

2

2σu(s)2

]
defining µu(s), σu(s)

2 as the mean and variance of the samples at sampling time s, respectively.
With this Ansatz we find that

∂s(σu(s)
2) = 2m(s)σu(s)

2 + σ̂(1− s)2 ∂sµu(s) = m(s)µu(s) + c(s). (21)

which admit the solutions

µu(s) = exp

(∫ s

0

dvm(v)

)[∫ s

0

dv exp

(
−
∫ v

0

dwm(w)

)
c(v) + µu(0)

]
(22)

σu(s)
2 = exp

(
2

∫ s

0

dvm(v)

)[∫ s

0

dv exp

(
−2

∫ v

0

dwm(w)

)
σ̂(1− v)2 + σu(0)

2

]
(23)

The initial conditions are σu(0) = 1, µu(0) = 0 since u(0) ∼ N (0, Id). We will find closed form
solutions for these integrals for two choices of σ̂ in the next step.

B.3 Solutions for mean and covariance of samples

We will first simplify some of the integrals to solve these two equations. To find the variance σu(s)2,
we first solve ∫ s

0

dvβ̂(1− v) = ln

(
ᾱ(1− s)

ᾱ(1)

)
∫ s

0

dv
−β̂(1− v)

ᾱ(1− v)(λ0 − 1) + 1
= − ln

(
ᾱ(1− s)

ᾱ(1)

)
+ ln

(
ᾱ(1− s)(λ0 − 1) + 1

ᾱ(1)(λ0 − 1) + 1

)

Second, we have c(s) =
√
ᾱ(1− s)

(
m(s)− β̂(1−s)

2

)
µ0. With∫ s

0

dv exp

(
−
∫ v

0

dwm(w)

)√
ᾱ(1− v)

(
m(v)− β̂(1− v)

2

)

=
√
ᾱ(1− s) exp

(
−
∫ s

0

dwm(w)

)
−
√
ᾱ(1)

we then find

µu(s) =
√
ᾱ(1− s)µ0 − exp

(∫ s

0

dvm(v)

)√
ᾱ(1)µ0

We now treat two different scenarios, σ̂2(t) = β̂(t) and σ̂(t) = 0.
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B.3.1 σ̂(t) = 0

In this case, we have
∫ s

0
dvm(v) = 1

2 ln
(

ᾱ(1−s)(λ0−1)+1
ᾱ(1)(λ0−1)+1

)
, hence

µu(s) =
√
ᾱ(1− s)µ0 −

√
ᾱ(1)

ᾱ(1− s)(λ0 − 1) + 1

ᾱ(1)(λ0 − 1) + 1
µ0 (24)

σu(s)
2 =

ᾱ(1− s)(λ0 − 1) + 1

ᾱ(1)(λ0 − 1) + 1

Since ᾱ(1) vanishes exponentially with ζ, and ᾱ(0) = 1 + O(h), we find that for a long noising
trajectory of many steps, Σu = Σ0 +O(h) and µu = µ0 +O(h), reproduce the empirical mean and
covariance of the training set to good approximation.

B.3.2 σ̂2(t) = β̂(t)

In this case
∫ s

0
dvm(v) = ln

(
ᾱ(1−s)(λ0−1)+1
ᾱ(1)(λ0−1)+1

)
+ 1

2 ln
(

ᾱ(1)
ᾱ(1−s)

)
, hence we find the sampling mean

to be

µu(s) =
√
ᾱ(1− s)µ0 −

√
ᾱ(1)2

ᾱ(1− s)

ᾱ(1− s)(λ0 − 1) + 1

ᾱ(1)(λ0 − 1) + 1
µ0 .

To evaluate eq. (23) for the covariance we first solve the following integral∫ s

0

dv exp

(
−2

∫ v

0

dwm(w)

)
β̂(1− v) =

(
ᾱ(1)(λ0 − 1) + 1

)2
ᾱ(1)

·
(

ᾱ(1− s)

ᾱ(1− s)(λ0 − 1) + 1
− ᾱ(1)

ᾱ(1)(λ0 − 1) + 1

)
.

Inserting this into eq. (23), we find for the sampling covariance

σu(s)
2 = ᾱ(1− s)(λ0 − 1) + 1 +

ᾱ(1)2(λ0 − 1)

ᾱ(1− s)

(
ᾱ(1− s)(λ0 − 1) + 1

ᾱ(1)(λ0 − 1) + 1

)2

Again, since ᾱ(1) vanishes exponentially with ζ, and ᾱ(0) = 1 + O(h), we find that for a long
noising trajectory of many steps, Σu(1) = Σ0 +O(h) and µu(1) = µ0 +O(h), meaning that the
sampling mean and covariance reproduce the empirical mean and covariance of the training set to
good approximation.

In the case of finite regularization γt = c
√
ᾱt, we must replace λ0 with λ0 + c in all formulae.

This shows that both regularization ᾱ(0) ̸= 1 bias the sampler towards a covariance matrix with an
additional, spherical term.

C Learning dynamics of linear denoisers

Throughout this section, we will assume that all data sets are centered, hence that µ0 = µ = 0 and
that the bias terms bt are initialized at zero, corresponding to their optimal value in this case. We
introduce a training time τ and a learning rate η. At each training step, we will update the parameters
of the linear network θ according to

θ(τ + dτ)− θ(τ)dτ = −η∇θL

We will treat the dynamics of Wt it in the eigenbasis of the empirical covariance matrix,

Wt(τ) =
∑
ν

wµ,ν,t(τ) e
0
µ ⊗ e0ν

Inserting this expression into the training loss, we find

L =
1

dT

∑
t

∑
µ,ν

[(
ᾱtλ

0
ν + γt + 1− ᾱt

)
w2

µ,ν,t − 2
√
1− ᾱtwµ,ν,t

]
+ d

11



This expression shows that all entries in wµ,ν,t(τ) decouple and we can treat the evolution of the
weight matrices elementwise. Taking the derivative and using the definition of W ∗

T (eq. (12)) we find,
that in the limit dτ → 0

wµ,ν,t(τ) = w∗
µ,ν,t + exp

{
−2

η

dT

[
ᾱtλ

0
ν + (1− ᾱt + γt)

]
τ
}(
wµ,ν,t(0)− w∗

µ,ν,t

)
. (25)

This expression shows that through training, the entries of Wt approach their optimal value exponen-
tially with rate 2 η

dT

[
ᾱtλ

0
ν + (1− ᾱt + γt)

]
.

C.1 The speed of learning and overfitting

The elements ofWt exponentially relax towards 12 at a different rates ᾱtλ
0
ν+1−ᾱt+γt corresponding

to different spatial directions. The rate ᾱtλ
0
ν + 1− ᾱt + γt corresponds precisely to the denominator

of the terms in eq. (2), whose minimal values lead to the most severe overfitting. More precisely, the
gap between training and test loss evolves with the training time for τ as

d (L(τ)−R(τ))

dτ
=

4η

d2T 2

∑
t

(1− ᾱt)
∑
µ

(
1− e−ηµ,tτ

)( ᾱt

(
e0µ
)T

Σ e0µ + (1− ᾱt)

ᾱtλ0
µ + (1− ᾱt + γt)

− 1

)

In particular, starting from initially zero difference between these quantities, modes where(
e0µ
)T

Σ e0µ > ᾱtλ
0
µ + γt will make the gap between training and test loss widen over time. This

means that the most precarious directions in the sense of overfitting are also the ones which are
learned the slowest. At the same time, regularization speeds up the learning process in all directions,
as it increases the rate of convergence to the optimum. This makes early stopping an effective strategy
to prevent overfitting.

D Replica theory for linear denoisers at finite N

In this appendix, we derive summary statistics for linear denoisers optimized using the empirical
covariance matrix Σ0 for different sample sizes N . We will assume that the training data originates
from a centered Gaussian ρ ∼ N (0,Σ), where we define the "true" covariance matrix Σ to be

Σ = RΛRT, Λ =

λ1 . . . 0
...

. . .
...

0 . . . λd

 (26)

with R a fixed rotation matrix, therefore |R| = 1, RTR = Id. We parametrize the empirical
covariance matrix Id + α̂tΣ0 in the following way

Σ0 =
1

N

N∑
β=1

Σ
1
2xβ

(
Σ

1
2xβ

)T
, xβ ∼ N (0, Id) ∀β = 1, . . . , N

We are now interested in statistics of the inverse of the related random matrix Id + α̂Σ0. We define
the following quantities

fg(J) =
1

d

∫ ∏
β

dρ
(
xβ
)
lnZ(J,Σ0)

Z(J,Σ0) :=
∣∣Id + α̂Σ0 +RJg(Λ)RT

∣∣− 1
2

=

∫
dη

√
2π

d
exp

−1

2
ηT

[
Id +

α̂

N

N∑
β=1

Σ
1
2xβ

(
Σ

1
2xβ

)T
+RJg(Λ)RT

]
η

 (27)

The function f then plays the role of a generating functional for the moments of the inverse of
Id + α̂tΣ0, e.g.

1

d

〈
(Id + α̂tΣ0)

−1
〉
Σ0

= R

(
−2

d

dJ
f(J)|J=0,g(Λ)=Id

)
RT

12



For the relevant quantities computed in this manuscript, it will be sufficient to compute f for diagonal
J , Jij := δijJi. This is because all quantities can be written as traces of matrix products, and
choosing J thus corresponds to choosing the basis in which we evaluate the trace to be given by R.

The difficulty in computing f then arises from the fact that all the integrals in xβ are coupled in the
logarithm. To evaluate the integral, we now use the replica trick, which consists of re-writing the
logarithm as

⟨lnZ(J,Σ0)⟩Σ0
= lim

n→0

1

n

(
⟨Z(J,Σ0)⟩nΣ0

− 1
)

(28)

The replica trick then consists of evaluating ⟨Z(J,Σ0)⟩nΣ0
for integer values of n and then taking the

limit n→ 0. To compute ⟨Z(J,Σ0)⟩nΣ0
, we first write the power as an integral over n independent

variables ηα, where α is the replica index,

⟨Z(J,Σ0)⟩nΣ0
=

∫ ( n∏
α=1

dηα
√
2π

d

)〈
exp

(
n∑

α=1

−1

2
(ηα)

T
(Id + α̂tΣ0 +RJRTf(Σ))ηα

)〉
Σ0

(29)
In the following section, we will simplify this expression via a change of variables to a set of summary
statistics.

D.1 Introducing auxiliary variables

We first isolate the terms depending on xβ from the expression.

⟨Z⟩nΣ0
=

∫ ( n∏
α=1

dηα
√
2π

d

)
exp

(
n∑

α=1

[
−1

2
(ηα)

T (Id +RJf(Λ)RT
)])

·
∫  N∏

β=1

dxβ
√
2π

d

 exp

−1

2

∑
β

(
xβ
)T( α̂

N

∑
α

Σ
1
2 ηα

(
Σ

1
2 ηα

)T
+ Id

)
xβ


(30)

To simplify the expression a bit, we now change variables to µα = Σ
1
2 ηα, we then find that we can

isolate one factor in which Σ appears, but not the samples xβ , and vice versa. Additionally, note
that for given µα, the second line is just the N−th power of the first line. Both factors are coupled
together by the fact that µα appear in both factors. We thus simplify to

⟨Z⟩nΣ0
=

∫ ( n∏
α=1

dµα

√
2π

d

)
exp

(
−1

2

n∑
α=1

(
RTµα

)T
Λ− 1

2 (Id + Jg(Λ))Λ− 1
2

(
RTµα

)
− n

2
ln |Λ|

)

·


∫

dx
√
2π

d
exp

(
−1

2
xT

(
α̂

N

∑
α

µα (µα)
T
+ Id

)
x

)
︸ ︷︷ ︸

=:G


N

Another rotation of both xβ and µα by RT then eliminates R from the expression, leaving all other
terms unchanged. We now simplify the latter integral, G. Our goal is to have all directions i of µα

decouple. To this end, we define our first auxiliary variable

Rα =
1√
d
xTµα (31)

and enforce this definition with a Dirac delta in the integral, using that δ(r − m) =
1
2π

∫
dr̃ exp (ir̃ [r −m]). This yields

G =

∫
dx

√
2π

d

∏
α

dRαdR̃α

2π
exp

(
−1

2

dα̂

N

∑
α

R2
α − x2

2
+ iR̃α

(
Rα − 1√

d
xTµα

))

=

∫ ∏
α

dRα
dR̃α

2π
exp

(
−1

2

dα̂

N

∑
α

R2
α + iR̃αRα

)∫
dx

√
2π

d
exp

(
−x

2

2
− i

1√
d
R̃αx

Tµα

)
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We see that the integral over x is a Gaussian integral which can be solved exactly, yielding

G =

∫ ∏
α

dRα
dR̃α

2π
exp

(∑
α

(
−1

2

dα̂

N
R2

α + iR̃αRα

)
−
∑
α1,α2

R̃α1
R̃α2

2d
(µα1)

T
µα2

)
Importantly, this quantity depends only on the replica overlaps (µα1)

T
µα2 , which brings us to our

second auxiliary variable:

Qα1,α2
:=

1

d
(µα1)

T
µα2 (32)

Using the Hubbard-Strantonivic transform backwards to also eliminate the integrals over all Rα, we
find

G =

∫ √
N

dα̂

n ∫ ∏
α

dR̃α√
2π

exp

(
−1

2
R̃T

(
Q

d
+ Id

N

dα̂

)
R

)
=

√
N

dα̂

n ∣∣∣∣Q+ Id
N

dα̂

∣∣∣∣− 1
2

Inserting the result for G into the expression as well as enforcing the definition of Q with another
Dirac delta, we find

⟨Z⟩nΣ0
=
∏
i

dρi(λi)

(
n∏

α1=1

dµα1

α1∏
α2=1

dQα1,α2

dQ̃α1,α2

2π

)
exp

(
S
(
λ, {µα}α, Q, Q̃

))

S
(
λ, {µα}α, P, P̃

)
=− 1

2

∑
i

[
λ−1
i (1 + Jig(λi))

∑
α

(µα
i )

2

]

+ i
∑

α1≤α2

Q̃α1,α2

(
Qα1,α2

− 1

d
(µα1)

T
µα2

)
+N lnG(Q)− n

2
ln |λi|

Here we have also explicitly used the fact that we chose J to be diagonal in the eigenspace of Σ.
We now also solve the integral over µα by exploiting that all spatial directions in the expression are
decoupled. The µα dependent part of the integral is then given by

Si(Q̃) = ln

∫ ∏
α

dµα
i√
2π

exp

− 1

2λi
(1 + Jif(λ))

∑
α

(µα
i )

2 − n

2
ln |λi| −

i

d

∑
α1≤α2

Q̃α1,α2
µα1
i µα2

i


= ln

√
λi

−n
∣∣∣∣λ−1

i Id (1 + Jig(λi)) +
i

d
diagQ̃+

i

d
Q̃

∣∣∣∣− 1
2

With this, we find that the only remaining integrals are in Q and Q̃. Assuming that N, Q̃ = O(d), we
now pull out a factor d

Z̄n(j) =

∫ n∏
α1≤α2

dQα1,α2
dQ̃α1,α2

2π
exp

(
dS
(
Q, Q̃

))

S
(
Q, Q̃

)
=

i ∑
α1≤α2

1

d
Q̃α1,α2Qα1,α2 +

1

d

∑
i

Si(Q̃) +
N

d
lnG(Q)

 (33)

We will not solve these integrals explicitly. Rather, we will approximate the integral by
exp

(
dS
(
Q∗, Q̃∗

))
, where Q∗, Q̃∗ are the maxima of S. This is because due to the common

prefactor d, the integral is assumed to concentrate around a single point for d→ ∞, the saddle point.

D.2 Saddle point approximation for any n

Before we find Q∗, Q̃∗, we introduce simplification in the form of a replica symmetric Ansatz
Qα1,α2

= qδα1,α2
+ p(1− δα1,α2

) (34)
i

d
Q̃ = q̃δα1,α2

+ p̃(1− δα1,α2
) . (35)
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ParameterizingQ, Q̃ in this way implicitly assumes all replicas are equivalent. With this simplification,
we can explicitly diagonalize Q = npe1e

T
1 + (q − p)Id with ∀i = 1, . . . , n, where eα1 = 1√

n
∀α =

1, . . . n. Likewise we find i
d diagQ̃ + i

d Q̃ = np̃e1e
T
1 + (2q̃ − p̃)Id. Inserting this into the matrix

determinant, we find

G =

√
N

dα̂

n(
q − p+

N

dα̂

)−n
2

(
1 +

np

q − p+ N
dα̂

)− 1
2

and

Si(Q̃) = −n− 1

2
ln |1 + Jig(λi) + λi (2q̃ − p̃)| − 1

2
ln |1 + Jig(λi) + λi (2q̃ + (n− 1)p̃)| − n lnλi

We now find and solve the saddle point equations: d
daS = 0 for a ∈ {q, p, q̃, p̃} for n ∈ (0,∞). This

yields the following four conditions:

q̃ =
N

2dn

(
(n− 1)

q − p+ N
dα̂

+
1

q + (n− 1)p+ N
dα̂

)

p̃ =
N

dn

(
− 1

q − p+ N
dα̂

+
1

q + (n− 1)p+ N
dα̂

)

q =
1

dn

∑
i

[
(n− 1)λi

1 + Jig(λi) + λi (2q̃ − p̃)
+

λi
1 + Jig(λi) + λi (2q̃ + (n− 1)p̃)

]
p =

1

nd

∑
i

[
−λi

1 + Jig(λi) + λi (2q̃ − p̃)
+

λi
1 + Jig(λi) + λi (2q̃ + (n− 1)p̃)

+

]
To simplify these expressions, we make the following observations. First q̃, p̃ only depend on
u := q− p and w := q+ (n− 1)p. Second q, p only depend on ũ = 2q̃− p̃ and w̃ = 2q̃+ (n− 1)p̃.
It is hence possible to re-parametrize the problem and thereby decouple some of the variables.
Concretely, using the first two equations, we find

ũ =
N

d

1

u+ N
dα̂

w̃ =
N

d

(
1

w + N
dα̂

)
The second two equations yield

u =
1

d

∑
i

[
λi

1 + Jig(λi) + λiũ

]
w =

1

d

∑
i

[
λi

1 + Jig(λi) + λiw̃

]
This defines a self-consistency equation each for u,w. Interestingly, both pairs of self-consistency
equations are the same. Assuming that the solution is unique, we find that u = w,ũ = w̃ and hence
p, p̃ = 0. With this, we find that q must be found self-consistently from

q(J) =
1

d

∑
i

 λi

1 + Jig(λi) + λi

(
N
d

1
q+ N

dα̂

)
 (36)

and
q̃ =

N

2dn

1

q + N
dα̂

D.3 Taking the limit n→ 0

Inserting the saddle-point values for q, q̃, p, p̃, we find

ln Z̄n(J) =dn

[
N

2d

q(J)

q(J) + N
dα̂

− 1

2d

∑
i

[
ln

∣∣∣∣∣1 + Jig(λi) + λi

(
N

d

1

q(J) + N
dα̂

)∣∣∣∣∣
]

+
N

2d
ln
N

dα̂
− N

2d
ln

(
q(J) +

N

dα̂

)]
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Figure 3: Relation between ḡ and q. Full lines are predictions using eq. (43), markers show
simulations for different fractions of N/d, and varying values of α̂ between 2−9, 29. Colors and
marker styles distinguish and different spectra of the true covariance matrix Σ, namely λi = i−k ∀i =
1, . . . , d.

Due to the linear appearance of n in ln Z̄n(J), we can finally take the limit n → 0 in eq. (28) and
find the expression for f

f(J) =
N

2d

q(J)

q(J) + N
dα̂

−

[
1

2d

∑
i

ln

∣∣∣∣∣1 + Jig(λi) + λi

(
N

d

1

q(J) + N
dα̂

)∣∣∣∣∣
]
− N

2d
ln

(
dα̂

N
q(J) + 1

)
.

(37)

Before we move on to take the derivative of f with respect to J , we now check that our result is
consistent with one result from random matrix theory. To do so, we will first make a relation between
q and the following expression

−2
∑
i

df

dJi

∣∣∣∣∣
J=0,g(x)=x

=
1

d

〈
TrΣ

1

Id + α̂Σ0

〉
Σ0

=
1

d

∑
i

λi

1 + λi

(
N
d

1
q+ N

dα̂

) = q (38)

where the first equality follows from the definition of f , see eq. (27), the second follows from eq. (37)
and the final equality is a consequence of eq. (36).

D.4 Consistency checks

To validate our result, we perform a consistency check, using on prior knowledge on the Stieltjes
transform g of the random matrix Σ0 = Σ

1
2WΣ

1
2 , defined by

g(z) = lim
d→∞

1

d
Tr

1

zId − Σ
1
2WΣ

1
2

where W is a Wishart with parameter d
N . It is known that in this case, g fulfills the following

self-consistency equation:

g(z) =

∫
dρΣ (λ)

1

z − λ
(
1− d

N + d
N zg(z)

) (39)

where ρΣ (λ) is the spectral density of Σ, ρΣ (λ) = 1
d

∑
i δ(λ− λi) in our case. Defining

ḡ = − 1

α̂
g

(
− 1

α̂

)
= lim

d→∞

1

d
Tr

1

Id + α̂Σ
1
2WΣ

1
2

this variable then fulfills the self-consistency equation

ḡ =
1

d

∑
i

1

1 + α̂λi
(
1− d

N + d
N ḡ
) . (40)

We will now relate the self-consistency relation for g to the self-consistency equation for q. Observe
that, from the replica calculation, it follows that

ḡ =
∑
i

d

dJi
f(J)

∣∣∣∣∣
J=0

=
1

d

∑
i

1

1 + λi

(
1

α̂ d
N q+1

) =: s(q)
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Using the replica self-consistency relation for q, for J = 0,eq. (36), we find

s(q) :=
α̂
(

d
N − 1

)
q + 1

α̂ d
N q + 1

, (41)

Furthermore, it follows from the definition eq. (41), that

1− d

N
+

d

N
s(q) =

1

α̂ d
N q + 1

which, inserted into the definition of s, yields a self-consistency equation for s(q),

s(q) =
1

d

∑
i

1

1 + α̂λi
(
1− d

N + d
N s(q)

) (42)

which is identical to the self-consistency equation for ḡ, eq. (40), meaning that the replica cal-
culation produces a variant of the known self-consistency relation eq. (39) for the Stieltjes trans-
form. Furthermore the replica calculation yields a relation between q = 1

d

〈
Tr
(
Σ 1

1+α̂Σ0

)〉
Σ0

and

ḡ = 1
d

〈
Tr
(

1
1+α̂Σ0

)〉
Σ0

which is independent of the spectrum of Σ, namely

ḡ = s(q) (43)

We test this relation in fig. 3, finding excellent agreement with simulations.

D.5 Squared difference on test examples

We compute the generalization measure for fixed t:

⟨
∣∣∣∣(W ∗

t −W oracle
t

)
xt
∣∣∣∣2⟩xt,Σ0 =

1− ᾱt

(1− ᾱt + γt)

(
ψ1,1 + ψ1,2

(1− ᾱt + γt)
− 2ψ2 + ψ3

)
where we defined

ψt
1,1 =

〈
Tr

[
1− ᾱt

(Id + α̂tΣ0)
2

]〉
ψt
1,2 =

〈
Tr

[
ᾱt

(Id + α̂tΣ0)
2Σ

]〉
ψt
2 =

〈
Tr

[
1

(Id + α̂tΣ0)

]〉
(44)

We first compute ψ2, using that

ψ2 = −2
∑
i

d

dJi
f(J)

∣∣∣∣∣
J=0,g=1

We now find ∂f(J)
∂q = 0, hence df

dJi
= ∂f(J)

∂Ji
, which is equal to

df

dJi
= − 1

2d

g(λi)

1 + Jig(λi) + λi

(
N
d

1
q+ N

dα̂

)
Where q is found, e.g. by solving eq. (40).

For ψ1,1and ψ1,2, we first note that for precision matrix A, and diagonal J,Λ, we have that

d2

dJidJj
ln

∫
dη

√
2π

d
exp

(
−1

2
ηT [A+ Jg(Λ)] η

)∣∣∣∣∣
J=0

=
f(Λ)iif(Λ)jj

2

(
A−1

ij

)2
Where we used Wick’s theorem to evaluate the Gaussian moments. For the specific functions of
interest eq. (44), we find

ψ1,1 = 2
∑
ij

(
d2

dJidJj
f(J)

) ∣∣∣∣∣
J=0,g(x)=1

ψ1,2 = 2
∑
ij

(
d2

dJidJj
f(J)

) ∣∣∣∣∣
J=0,g(x)=

√
x
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the only difference between the two being the function g. Hence, we compute the second derivatives

d2f

dJidJj

∣∣∣∣
J=0

= δij
1

2d

g2(λi)(
1 + λi

(
N
d

1
q+ N

dα̂

))2 − N

2d2
g(λi)λi(

q + N
dα̂ + N

d λi
)2 dq

dJj

∣∣∣∣∣∣∣
J=0

Using the self-consistency equation, we find

dq

dJi

∣∣∣∣
J=0

= −
(
q + N

dα̂

)2
d
(
1− N

d R2(q)
) λig(λi)(
q + N

dα̂ + N
d λi

)2
where we defined

Rk(q) =
1

d

∑
j

λkj(
q + N

dα̂ + N
d λj

)2 .
Putting it all together, for the specific functions of interest, we find

ψ1,1 =

(
q +

N

dα̂

)2
[
R0 +

N

d

R1(q)
2(

1− N
d R2(q)

)] ψ1,2 =

(
q +

N

dα̂

)2
[
R1 +

N

d

R 3
2
(q)2(

1− N
d R2(q)

)]

and
ψ2 =

1

d

∑
i

1

1 + λi

(
N
d

1
q+ N

dα̂

) .
D.6 Residual and test loss at finite N

To compute the residual loss, we employ the following identity:

df

dα̂t

∣∣∣∣
J=0,g=1

= − 1

2Nd

N∑
β=1

〈∑
ij

(
Σ

1
2xβ

)
i

(
1

1 + α̂Σ0

)
ij

(
Σ

1
2xβ

)
j

〉

= − 1

2d

〈
TrΣ0

1

Id + α̂Σ0

〉
Inserting this into the equation for the residual loss, eq. (13), which yields

R =
−2

T

∑
t

ᾱt

1− ᾱt + γt

df

dα̂t

∣∣∣∣
J=0,g=1

+
γt

1− ᾱt + γt
ψ2

=
1

T

∑
t

ᾱt

1− ᾱt + γt

q
dα̂t

N q + 1
+

γt
1− ᾱt + γt

1

d

∑
i

1

1 + λi

(
N
d

1
q+ N

dα̂t

) (45)

Second, we find that the test loss simplifies to

Ltest = 1 +
1

T

∑
t

1− ᾱt

(1− ᾱt + γt)

(
ψ1,1 + ψ1,2

(1− ᾱt + γt)
− 2ψ2

)

which contains only functions which we have already computed in appendix D.5.

D.7 Kullback-Leibler divergence

We compare ρ = N (µ,Σ) to ρN = N (µ0,Σ0 + γId) The DKL between two Gaussians is given by

DKL(ρN |ρ) = 1

2

[
ln

|Σ|
|Σ0 + cId|

+ (µ− µ0)
TΣ−1(µ− µ0) + TrΣ−1 (Σ0 + cId)− d

]
, (46)
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We now average this expression over draws of the data set term by term. First, note that
TrΣ−1 (⟨Σ0⟩+ cId)− d = cTrΣ−1 (47)

Second, we compute〈
(µ− µ0)

TΣ−1(µ− µ0)
〉
=

1

N2

d∑
i,j,k,l=1

N∑
β1,β2=1

〈
xβ1

i x
β2

j

〉(
Σ

1
2 +

√
cId
)
ki
Σ−1

kl

(
Σ

1
2 +

√
cId
)
lj

=
d+ 2

√
cTrΣ− 1

2 + cTrΣ−1

N

with xβ ∼ N (0, Id). Finally, we have that when c = 1
α̂

−1

2
⟨ln |Σ0 + cId|⟩ = d f(J = 0) +

d

2
ln α̂ (48)

we now evaluate eq. (37) at J = 0 to find

−1

2

〈
ln
∣∣Σ0 + α̂−1Id

∣∣〉 =N

2d

q

q + N
dα̂

−

[
1

2d

∑
i

ln

∣∣∣∣∣ 1α̂ + λi

(
N

d

1

qα̂+ N
d

)∣∣∣∣∣
]
− N

2d
ln

(
dα̂

N
q + 1

)

such that all in all, the DKL simplifies to eq. (5).

D.8 Bounds and approximations of q

D.8.1 Bounding q from above

We now use two different approaches to bound q from above. Defining

h(q) =
1

d
N q +

1
α̂

we find that

q =
1

d

d∑
ν=1

λν
h(q)λv + 1

= h−1(q)
1

d

d∑
ν=1

λν
λv + h−1(q)

First, note that from eq. (38) follows that q > 0 hence, h−1(q) > 0. With this, we can make a very
coarse approximation that

q ≥ 1

h(q)
⇒
(
1− d

N

)
q ≥ 1

α̂
For d < N , this bounds q from above via

d < N ⇒ q ≤ 1

α̂
(
1− d

N

) (49)

For α̂ very large, one can show that the difference to the right hand side (see appendix D.8.2) is
of order O

(
α̂−2

)
. This bound is only valid when N > d, additionally, it does not depend on the

dimension. When N < d, we may instead use

q ≤ 1

d
TrΣ (50)

this approximation itself is quite coarse. However, we may reinsert it into the equation for q to obtain
a smaller upper bound

h(q) ≥ 1
d
N

1
dTrΣ + 1

α̂

⇒ q ≤
(
d

N

1

d
TrΣ +

1

α̂

)
1

d
Tr

Σ

Σ + Id
(

d
N

1
dTrΣ + 1

α̂

)
which is a slightly tighter bound on q, which we can reinsert into the expression for q again to obtain
an even smaller upper bound. We may alternatively define the following series

q0 =
1

d
TrΣ, qn+1 =

(
d

N
qn +

1

α̂

)
1

d
Tr

Σ

Σ + Id
(

d
N qn + 1

α̂

) (51)

we then find that q ≤ qn∀n. We compare numerical simulations of eq. (38) to the bound on q obtained
thus in fig. 4, finding that the bound becomes increasingly tight as we increase n.
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Figure 4: Comparison of q to the upper bound. a) shows the spectra of the covariances we consider,
λν = ckν

−k where we choose ck such that 1
d

∑
ν λν = 1. b)-f) compare numerical values of q

found using eq. (38) with d = 100. Dots and error bars denote mean and standard deviations over
ten realizations of Σ0, respectively. Dotted, dashed and full lines show upper bounds eq. (51) for
increasing n.

D.8.2 q at N ≫ d and large α̂

We now seek an approximation for q in the regime N ≫ d and large α̂. To do so, we first examine
ḡ = 1

d

〈
Tr
(

1
1+α̂Σ0

)〉
Σ0

, which we found to relate to q via the relation eq. (43). We now additionally

assume that α̂ is much larger than
(
λ0min

)−1
, where λ0min is the smallest eigenvalue in Σ0. This

assumption is only valid for at least N ≥ d as otherwise Σ0 has zero eigenvalues. Then it follows
that ḡ is of order α̂−1. We now invert the relation between q and ḡ, finding that

q =
1

α̂ d
N

(
1

1− d
N + d

N ḡ
− 1

)
≈ 1

α̂ d
N

(
1

1− d
N

− 1

)
(52)

which is independent of Σ. Inserting this into eq. (5), we find

DKL(ρN |ρ)
d

=
1 + N

d ln(1− d
N ) + ln(1− d

N ) + N
d2

2
+O

(√
α̂−1

)
, (53)

which, for N ≫ d, scales as d
4N .

E A detail-based similarity measure for CelebA and CIFAR-10

For the models trained on image data, computing the cosine similarity c(x, y) = xTy
|x||y| between

a generated sample and one from the training set yields a very high similarity ∼ 0.9, even if the
generated images are genuinely different. Upon manual inspection of the corresponding images, we
find that this occurs due to a large portion of the image, such as the background, being uniformly
dark or light.

In fig. 5 we compare the eigenvectors of the covariance matrix of the CelebA data to their correspond-
ing Fourier spectra. We find that leading eigenvectors ν = 1, . . . , 5 have a more homogeneous spatial
distribution of light and dark pixels, correspondingly their Fourier spectra are concentrated around
small frequencies (small |ω|). As ν increases, however, the spectra of the eigenvectors become more
broad, and small frequencies are suppressed.

On the basis of these observations, we construct a similarity measure which is oriented more towards
the details of the images: We first project the images into the space spanned only by sub-leading
eigenvectors ν > 5. We then compute the cosine similarities of the resulting vectors. We find that this
measure is then more sensitive to changes in the details of the images, which leave the background
uniform (e.g. for the generated image and closest training set examples in fig. 1 for N ≥ 6400).

F Differences between linear and non-linear models

We now test whether the mappings encoded by different architectures are indeed similar. Prior studies
have observed increasing similarity between non-linear and linear models with t, see [29, 30]. We
compute the relative distance of their mappings in the eigen-space of Σ. We define a direction - and t
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Figure 5: a) First five leading eigenvectors ν = 1, . . . , 5 of the covariance matrix of the CelebA data,
as well as sub-leading eigenvectors ν = 400, . . . , 6400. b) Corresponding Fourier spectra of the
eigenvectors.
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Figure 6: Relative difference of non-linear denoisers from best linear model, per noising step t and
direction ν, trained on increasing numbers of data. a) averaged over ν and t, b) averaged over t, c) -
e) log dt,ν per ν, t. All data are averaged over 102 test samples from CIFAR-10 per t, ν.

dependent distance dt,ν measure

dt,ν =

(
ϵN (xt, t)− ϵ∗∞ (xt, t)

)2
ν∣∣(ϵN (xt, t) + η)ν (ϵ

∗
∞ (xt, t) + η)ν

∣∣ (54)

where ϵN is a U-net trained on N examples and ϵ∗∞ is a linear model with modest regularization
c = 10−2, trained on the maximal amount of available data and η = 10−3 prevents divergences.
In fig. 6, we show dt,ν for the CIFAR-10 dataset, the same is reported for the CelebA dataset in
fig. 7 Overall, we find that the relative error decays with N , ν and t. Indeed for a large extent of
t, ν, the difference between linear and non-linear models becomes very small. However, for leading
eigenmodes (small ν), the differences between linear and non-linear models grow with N . This
(small ν, small t) is also the regime where we expect the non-Gaussianity of the data to have the
largest effect.

In fig. 7 we report the difference in the mapping of the CelebA compared to the best linear model. We
observe qualitatively the same behavior as in the CIFAR-10 data: overall, the relative error decays
with N , ν and t. Indeed for a large extent of t, ν, the difference between linear and non-linear models
becomes very small. However, for leading eigenmodes (small ν), the differences between linear and
non-linear models grow with N .
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Figure 7: Relative difference of non-linear denoisers from best linear model, per noising step t and
direction ν, trained on inecreasing numbers of data. a) averaged over ν and t, b) averaged over t, c) -
e) log dt,ν per ν, t. All data are averaged over 100 test samples per t, ν.
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