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Abstract

The physics-informed neural networks (PINNs) are widely applied in solving
differential equations. However, few studies have discussed their consistency.
In this paper, we consider the consistency of PINNs when applied to second-
order elliptic equations with Dirichlet boundary conditions. We first provide the
necessary and sufficient condition for the consistency of the physics-informed
kernel gradient flow algorithm. And then, as a direct corollary, when the neural
network is sufficiently wide, we derive a necessary and sufficient condition for
the consistency of PINNs based on the neural tangent kernel theory. Additionally,
we provide non-asymptotic loss bounds for physics-informed kernel gradient flow
and PINN under suitable stronger assumptions. Finally, these results inspire
us to construct a notable pathological example in which the PINN method is
inconsistent.

1 Introduction

The basic settings of data-driven scientific computing problem usually start with a PDE problem in
the following form:

T u = f in Ω, Bu = g on ∂Ω, (1)

where Ω ⊂ Rd is the domain of the problem, T is a differential operator, B summarizes the boundary
conditions, and the functions f and g are the non-homogeneous terms of the problem. Assume that
(1) has a unique solution u∗.

Physics-informed machine learning ([33]) searches for numerical estimators of the solution to (1) by
training a network ûθ, called a physics-informed neural network (PINN). Ideally, the network ûθ is
trained to minimize the population PINN loss function, which is defined as the mean square residual
of (1):

L(ûθ) =

∫
∂Ω

|Bûθ(x)− g(x)|2dx+

∫
Ω

|T ûθ(y)− f(y)|2dy (2)

However, this loss function (2) is numerically intractable, as all we can utilize are only finitely many
samples {(Xi, g(Xi) + ηi) : Xi ∈ ∂Ω, i = 1, . . . , Nu} and {(Yj , f(Yj) + εj) : Yj ∈ Ω, j =
1, . . . , Nf}, where ηi and εj are independent noises. Thus, in practice, we train the network to
minimize the following empirical version of PINN loss function:

L̂(ûθ) =

Nu∑
i=1

|Bûθ(Xi)− g(Xi)− ηi|2 +
Nf∑
j=1

|T ûθ(Yj)− f(Yj)− εj |2. (3)
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Compared to traditional deep learning methods, physics-informed neural networks (PINNs) feature a
unique training process that is guided by physical laws described by partial differential equations. This
distinctive approach is expected to combine the impressive approximation power and flexibility of
neural networks with the robustness and intepretability of physics-informed modeling. Consequently,
a thorough theoretical analysis of PINNs is crucial to provide mathematical guarantees for the
efficiency of the corresponding algorithms and to offer guidance for model improvement.

In this paper, we discuss the consistency of PINNs, that is, the convergence of the population PINN
loss to zero under appropriate conditions. We focus primarily on the convergence of PINNs for an
important PDE problem: the second-order elliptic equation with homogeneous Dirichlet boundary
condition. This is a special form of (1) where we take T to be a second-order elliptic operator L,
Bu = u and g = 0. To be more specific, we are mainly interested in the following question:

Question: For the second-order elliptic equation with Dirichlet boundary condition, under what
condition does the PINN ûθ converge to the PDE solution u∗?

In the study of the convergence of PINNs, challenges arise when we analyze the training dynamics of
PINNs, as the optimization of network training is typically a highly non-convex problem. A recent
line of works such as [11, 22, 30, 34] focused on the generalization ability of some sort of empirical
minimizer of the (regularized or non-regularized) PINN loss function. Compared with these prior
works, in order to put the training dynamics of PINNs into consideration, in this paper we introduce
the framework of neural tangent kernel (NTK) ([21]) which connects the network training with
kernel-based algorithm [4, 9]. In this framework, a network trained by gradient flow converges to a
kernel gradient flow estimator [44, 28, 32]) as the width of network goes to infinity. The convexity
of the kernel gradient flow model makes the neural tangent kernel a powerful tool for analyzing
training dynamics of wide networks. For example, [25, 27] proved the minimax optimality of wide
multi-layer ReLU networks on bounded subdomains of Euclidean spaces.

There exist some previous works that applied NTK theory to analyze PINNs. For example, [40, 17]
compute the training gradient flow of infinitely wide PINNs in the form of neural tangent kernel in
order to analyze the spectral bias of PINNs. [5] applied the NTK theory and proved a convergence
result for the empirical loss of wide two-layer PINNs along the training gradient flow. All of these
prior works shed us some light on understanding the dynamics of the training process and analyzing
the convergence of PINNs with great network width.

1.1 Our contributions

Our main theorem (Theorem 3.7) states the necessary and sufficient condition for the consistency of
physics-informed kernel gradient flow. In this paper, the term “consistency” refers to the convergence
of the population PINN loss L to zero, and a formal definition of consistency is given in Definition
3.1. We will show that the physics-informed kernel gradient flow is consistent to the problem (4) if
and only if the solution u∗ lies in an abstract space H̄ (defined in Definition 3.6). Then, using the
technique of NTK (Theorem 5.4), we promote the main theorem to networks, and prove the sufficient
and necessary conditions for the consistency of PINN (Theorem 5.8).

We list our technical contributions as follows, which provide essential details and key components of
our main results:

(1) Although the main theorem is concerned with the convergence of PINN loss (2), we are still
interested in the performance of PINNs in terms of mean square loss. As will be shown in
Lemma 3.9, we prove that the PINN loss can control the mean square loss.

(2) We present novel mathematical techniques to solve the ill-posed convex optimization problems,
which is the key to the estimation for the NTK gradient flow in our main results. To the best of
our knowledge, this is the first convergence result for ill-posed convex optimization on Hilbert
space. See Lemma 4.2 and its remark for details.

(3) As an application, we prove that, in the case of Poisson equations on sphere and torus, H̄ contains
the Sobolev space H1

0 (Ω) ∩H2(Ω), which provides a convenient criterion for verifying whether
the PINN method is consistent in this case. We note that this convergence result does not require
the source-capacity assumption framework which is commonly adopted in prior works.

(4) As an important corollary of the main theorem, in Section 5.2 we construct a pathological
example in which the PINN method is inconsistent.
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involving analysis
of network training

dynamics

involving
NTK

containing convergence
result of the

empirical loss L̂

containing convergence
result of the

population loss L
(consistency)

This paper Yes Yes Yes
(Lemma 4.1 and 4.2)

Yes
(Theorem 3.7 and 5.8)

[11, 22, 30, 34] No No No Yes
[17, 40] Yes Yes No No

[5, 18, 26, 42] Yes Yes Yes No
Table 1: A table comparison between this work and related prior works mentioned above or below.

Remark 1.1. (About the terminology “consistency”) In this paper, we choose to adopt this term
from the learning theory instead of directly using the more common term “convergence” mainly
due to the following reasons: 1. The term “consistency” emphasizes more on the convergence
of the population loss L, and we hope to distinguish the main result (Theorem 3.7) in this work
from the convergence results of the empirical loss L̂ [5, 18, 26, 42]; 2. We hope to distinguish
this work from the existing and forthcoming results that focus on the convergence rate, because the
term “consistency”, in general, emphasizes more on general results about convergence under weak
conditions, while the convergence rates are stronger results under stronger conditions.

2 Background

2.1 Elliptic equations of second order

Our work focuses on the performance of PINNs on the problem of second-order elliptic equation
with homogeneous Dirichlet boundary condition:

Lu(y) = f(y), y ∈ Ω; u(x) = 0, x ∈ ∂Ω, (4)

where Ω is a bounded subdomain of Rd, f ∈ L2(Ω) is the nonhomogeneous term, and L is a second-
order elliptic operator defined in the following divergence form: Lu(y) =

∑d
i,j=1 ∂i (aij(y)∂ju(y)),

aij(y) = aji(y). We assume the strong elliptic condition on L. In other words, there is a positive
constant λ > 0 such that

∑
i,j aij(y)ξiξj ≥ λ > 0 for any ξ ∈ Rd, |ξ| = 1 and y ∈ Ω.

Let H1
0 (Ω) be the closure of C∞

c (Ω) in the Sobolev space H1(Ω). For any f ∈ L2(Ω), the problem
(4) has a unique weak solution u∗ ∈ H1

0 (Ω) (see Section 8.2 of [19]).

Denote as ∂Ω the boundary of Ω, and as Ω̄ the closure of Ω. Assume that ∂Ω is smooth, and
aij ∈ C∞(Ω̄). Then by the regularity theorem (Section 6.3 of [14]), for any f ∈ L2(Ω), the weak
solution u∗ is in the Sobolev space H2(Ω). Moreover, the solution u∗ is also a strong solution
(Chapter 9 of [19]). In other words, u∗ ∈ C(Ω̄), u∗ = 0 on ∂Ω and Lu∗ = f a.e. in Ω.

2.2 Physics-Informed Neural Networks

We train a neural network ûθ to estimate the ground-truth solution u∗. The network ûθ is set in the
following structure:

z0p(x) =W 0
p x+ b0p, W 0

p ∈ Rm1×d, b0p ∈ Rm1 , p = 1, 2;

zl+1
p (x) =

1
√
ml

W l
pσ(z

(l,p)(x)) + blp, W l
p ∈ Rml×ml+1 , blp ∈ Rml+1 , l = 1, . . . , L, p = 1, 2;

ûθ(x) =
1√
2
(zL+1

1 (x)− zL+1
2 (x)), mL+1 = 1.

(5)
When L = 1, ûθ is actually a fully-connected network with one hidden layer with a special initializa-
tion [25]. We also note that the NNK and NTK of ûθ coincide with those of a fully-connected network
(see Appendix F.3 for details). We initialize the parameters θ = (W l

p, b
l
p) of ûθ in the following form
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of mirror initialization, which is suggested in [8, 25, 27]:

(W l
1)i,j = (W l

2)i,j ∼ N(0, 1), (bl1)i = (bl2)i ∼ N(0, 1), l = 0, . . . , L. (6)

This special initialization is adopted in this paper for only one purpose: to ensure that ûθ = 0
at the beginning of training. In fact, the choice of initialization is a delicate matter that needs
careful attention in NTK theory, because it is proved in [8] that an infinitely wide fully-connected
network will not lie in the RKHS of its NTK at initial time, if all parameters are initialized as i.i.d.
standard Gaussian random variables, in which case the NTK kernel gradient flow will no longer be
mathematically well-defined. Thus, we adopted the special initialization (6) to avoid unnecessary
disgression.

We also assume that the activation function σ is sufficiently smooth such that Lûθ is well-defined.

Under the setting of (4), the PINN loss function L defined in (2) is now written in the following form:

L(u) =

∫
∂Ω

|u(x)|2dx+

∫
Ω

|Lu(y)− f(y)|2dy. (7)

(Here we set both the total measures of ∂Ω and Ω to be 1 after necessary rescaling.) The corresponding
empirical loss function is

L̂(u) =
1

Nu

Nu∑
i=1

|u(Xi)|2 +
1

Nf

Nf∑
j=1

|Lu(Yj)− f(Yj)− εj |2, (8)

where Xi and Yj are i.i.d. sample points drawn from the uniform distributions of ∂Ω and Ω,
respectively, and εj are independent noises. (Here we set the noise ηi on the boundary in (3) to be
zero.)

Since the dimension of ∂Ω is smaller than the dimension of Ω, we further assume that Nu ≤ Nf .

2.3 Gradient Flow of Network Training and Neural Tangent Kernel

During training, the network parameter θ evolves along the following gradient flow:

d

dt
θ(t) = −∇θL̂(ûθ(t)). (9)

Equivalently, the gradient flow of the function ûθ is given by

d

dt
ûθ(t)(x) = (∇θûθ(t)(x))

T · d
dt
θ(t)

=− 2

Nu

Nu∑
i=1

Kθ(t)(x,Xi) · ûθ(t)(Xi)−
2

Nf

Nf∑
j=1

LyKθ(t)(x, Yj) · (Lûθ(t)(Yj)− f(Yj)− εj),

(10)
where Kθ(x, y) = (∇θûθ(x))

T · ∇θûθ(y) is called the neural network kernel (NNK) function.

Here, the notation LyKθ(t)(x, y) that means L is operated only on the variable y. The notation Lx is
defined in the similar way, and clearly LxLyKθ(t)(x, y) = LyLxKθ(t)(x, y).

We will show in Section 5 that the NNK function Kθ(t)(x, y) converges to the NTK function
KNT (x, y) along the PINN gradient flow (10). Moreover, the derivatives of Kθ(t) also converges to
the derivatives of KNT respectively. Thus, it is reasonable to consider the following limit gradient
flow:

d

dt
ût(x) =− 2

Nu

Nu∑
i=1

KNT (x,Xi) · ût(Xi)−
2

Nf

Nf∑
j=1

LyKNT (x, Yj) · (Lût(Yj)− f(Yj)− εj).

(11)

2.4 Reproducing Kernel Hilbert Space

Suppose that we have a positive-definite kernel function K(x, y) In other words, the integration
operator T : L2(Ω) → L2(Ω), Tf(x) =

∫
Ω
K(x, y)f(y)dy has eigenvalues λ0 ≥ λ1 ≥ λ2 ≥
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· · · > 0. Let ϕi be the corresponding eigenfunction of the eigenvalue λi. By Mercer decomposition
([38]), K(x, y) =

∑∞
i=0 λiϕi(x)ϕi(y) converges absolutely and uniformly.

Denote Ky(x) = K(x, y), and define an inner product ⟨·, ·⟩H on the space {Ky : y ∈ Ω̄} by
⟨Ky1

,Ky2
⟩H = K(y1, y2). The closure of {Ky} under this inner product is denoted as H, called the

reproducing kernel Hilbert space (RKHS) of K. This space is characterized as

H =

{
f(x) =

∞∑
i=0

fi
√
λiϕi(x) : fi ∈ l2

}
, (12)

and the inner product can be characterized by ⟨f, g⟩H =
∑∞

i=0 figi for f =
∑∞

i=1 fi
√
λiϕi and

g =
∑∞

i=1 gi
√
λiϕi ([9]). Thus, the Hilbert space H has a natural isomorphism to l2.

2.5 Physics-Informed Kernel Gradient Flow

With the language of RKHS, the limit gradient flow (11) can be interpreted in the following sense:
Suppose that we aim to search for an estimator of the ground-truth solution u∗ in the RKHS of
a kernel K(x, y). Give u(x) =

∑∞
i=0 ui

√
λiϕi(x) ∈ H, we will prove later that this expansion

can be differentiated term by term: Lu(x) =
∑∞

i=0 ui
√
λiLϕi(x). Consider H as a parametric

model space with parameters {ui}∞i=0. In other words, we parametrize an estimator ût ∈ H by
ût(x) =

∑∞
i=0 ûi(t)

√
λiϕi(x). Then the gradient flow of the parameters along the time t ∈ [0,∞)

is d
dt ûi(t) =

∂L̂
∂ui

(ût), and equivalently, the gradient flow of the function ût is

d

dt
ût(x) =

∞∑
i=0

∂ût
∂ui

· d
dt
ûi(t) = −

∞∑
i=0

∂ût
∂ûi

· ∂L̂
∂ûi

(ût)

= − 2

Nu

Nu∑
i=1

K(x,Xi) · ût(Xi)−
2

Nf

Nf∑
j=1

LyK(x, Yj) · (Lût(Yj)− f(Yj)− εj).

(13)

We call this method the physics-informed kernel gradient flow. If we set the kernel function K(x, y)
to be the NTK function KNT (x, y), then (13) is precisely the gradient flow (11). Thus, the training
of an infinitely wide PINN can be interpreted as the physics-informed kernel gradient flow of NTK.

3 Main Results

Before we state our main results, we need to define the consistency formally:
Definition 3.1. (1) We say that the physics-informed kernel gradient flow (13) is consistent to the
problem (4), if limNu,Nf→∞ L(ûT ) = 0 for a suitable training stopping time T = T (Nu, Nf )
depending on Nu and Nf .

(2) We say that the PINN method (described in Subsection 2.2) is consistent to the problem (4),
if limNu,Nf→∞ L(ûθ(T )) = 0 for a suitable training stopping time T = T (Nu, Nf ) and suitable
network width mi = mi(Nu, Nf ), i = 1, . . . , L depending on Nu and Nf .

In other words, consistency means that we can select appropriate hyperparameters (network widths
and stopping time) such that the PINN loss can be controlled to be arbitrarily small, provided that the
sample size is sufficiently great.
Remark 3.2. The PINN loss function L defines a natural metric

dpinn(u1, u2)
2 =

∫
∂Ω

|u1 − u2|2 +
∫
Ω

|Lu1 − Lu2|2, (14)

called the PINN distance, and L(u) = dpinn(u, u
∗)2, hence it is reasonable that we use the PINN

loss L(ûθ(t)) in Definition 3.1 to measure the distance between the PDE solution and the solution
estimator. As will be shown in Lemma 3.9, the PINN distance can control the L2 distance.

We list the assumptions required as follows:
Assumption 3.3. The kernel function K(x, y) is positive-definite.
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Assumption 3.4. K(x, y) is smooth enough so that ∂αx ∂
β
yK(x, y) is well-defined for any multi-

indices α, β with |α|, |β| ≤ 2.
Assumption 3.5. Assume that the term f in (4) is measurable and bounded, hence is also L2.
Definition 3.6. Let H be the RKHS of K(x, y), and let H̄ be the closure of H in the Sobolev space
H2(Ω) under the metric defined by (14).

We will show in Theorem A.1 that under Assumption 3.3 and Assumption 5.2, we have H ⊂ C2(Ω̄),
hence H̄ is well-defined.

3.1 Sufficient and necessary conditions of consistency

Now we state our main theorem:
Theorem 3.7. (Consistency of physics-informed kernel gradient flow) Let u∗ be the unique
solution to (4), and let ût be the kernel gradient flow estimator defined in (13. Assume that the
samples {X1, . . . , XNu

} and {Y1, . . . YNf
} are drawn from the uniform distributions of ∂Ω and Ω,

respectively, and Nu ≤ Nf . We further assume that εj are independent sub-Gaussian noises.

Suppose that Assumption 3.3, 3.4 and 3.5 are all satisfied. Let H̄ be the space defined in Definition
3.6. Then we have:

(1) If u∗ ∈ H̄, then by setting the training stopping time to be T = Θ(Nα
u ) for α ∈ (0, 13 ), we have

lim
Nu,Nf→∞

L(ûT ) → 0 (15)

in probability, hence by Definition 5.2, the physics-informed kernel gradient flow is consistent in this
case;

(2) If u∗ /∈ H̄, then
inf

t,Xi,Yj

L(ût) ≥ C > 0 (16)

for some positive constant C depending on Ω, L, f and K. Here, the infimum is taken over all
t ∈ [0,∞) and all possible choices of samples Xi, Yj .

Remark 3.8. A trivial consequence of (16) is that, if u∗ /∈ H̄, then for any possible stopping time
T = T (Nu, Nf ), we have

lim inf
Nu,Nf→∞

L(ûT ) ≥ C > 0; (17)

In other words, the physics-informed kernel gradient flow is always inconsistent in this case. Thus,
Theorem 3.7 indicates that u∗ ∈ H̄ is the necessary and sufficient condition for the consistency of
physics-informed kernel gradient flow.

3.2 The Convergence of Mean Square Loss

It is natural to ask how close ûθ(t) and the solution u∗ are in terms of mean square loss. Fortunately
we have the following L2 norm estimation:
Lemma 3.9. (PINN distance controls L2 distance) For any u ∈ C2(Ω̄), we have

L(u) ≥ C∥u− u∗∥2L2 , (18)

where the constant C > 0 depends only on L and Ω.

Proof. The proof is based on the technique of Green’s function. See Appendix D for details.

Remark 3.10. This estimation for L2 loss is nontrivial, and the standard elliptic estimation for weak
solutions is far from sufficient to obtain Lemma 3.9, because the kernel gradient flow estimator ût or
the PINN estimator ûθ(t) does not satisfy the Dirichlet boundary condition generally.

Since we will shown in Theorem A.1 that H ⊂ C2(Ω̄), then we immediately obtain
Corollary 3.11. (L2 convergence) Under the same assumptions of Theorem 3.7, if PINN is consistent
to (4), i.e. u∗ ∈ H̄, then we also have

lim
Nu,Nf→∞

lim
m→∞

∥ûT − u∗∥L2(Ω) → 0 in probability. (19)
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3.3 Non-Asymptotic Bound

Under the settings of our Theorem 3.7, the condition for consistency we provide is necessary and
sufficient, which means that we characterize all of the cases where L(ût) converges to 0, including
those very bad cases. In other words, the convergence speed can be arbitrarily low, hence it is
impossible to obtain a non-asymptotic bound under the same settings of our main theorem.

However, if suitable stronger assumptions hold, then a non-asymptotic bound is accessible, as is
shown in the following theorem:
Theorem 3.12. Under the same settings of Theorem 3.7, if we further assume that u∗ ∈ H, then with
probability at least 1−O(N−1

u ), we have

L(ûT ) = O
(
N

− 1−3α
2

u

√
logNu +N−α

u

)
, ∥ûT − u∗∥L2(Ω) = O

(
N

− 1−3α
2

u

√
logNu +N−α

u

)
(20)

at stopping time T = Θ(Nα
u ), α ∈ (0, 13 ). Here, the convention O hides all the terms involving K,

Ω, L and f .

Proof. See Appendix E
Example 3.13. A typical example of RKHS is the Sobolev space Hr(Ω̄) for r > d

2 [13]. Thus, a
Sobolev kernel of Hr(Ω̄) with r will satisfy the condition u∗ ∈ H.

4 Proof of the Main Theorem

In contrast with traditional methods such as kernel ridge regression [9] and kernel gradient flow
[44] where estimators can be explicitly computed and directly analyzed, the peculiar form of the
PINN loss function complicates the analysis of the gradient flow of network training. Many previous
works on kernel-based physics-informed modeling such as [24, 10, 41, 31] ignored the boundary
term for convenience, while our work put the boundary condition into consideration. We estimate the
gradient flow of PINN training in an indirect taste by studying the evolution of PINN loss function
and approximating its derivative with respect to training time.

Our proof of Theorem (3.7) is based on the decomposition L(ût) = (L(ût)−L(vt)) +L(vt), where
vt is defined as the kernel gradient flow of the population loss (7):

d

dt
vt(x) = −2

∫
∂Ω

K(x, ξ) · vt(ξ)dξ − 2

∫
Ω

LyK(x, η) · (Lvt(η)− f(η))dη. (21)

The following two lemmata provide estimations for L(ût)− L(vt) and L(vt), respectively:

Lemma 4.1. With probability 1−O(N−1
u +N−1

f ), we have

|L(ût)− L(vt)| = O

(
T

3
2 (

√
logNf

Nf
+

√
logNu

Nu
)

)
(22)

for all t ∈ [0, T ]. Here, the randomness comes from the selection of samples.

Lemma 4.2. Along the gradient flow (21), we have L(vt) → infv∈H L(v) as t → ∞. Thus,
limt→∞ L(vt) = 0 if and only if u∗ ∈ H̄.

The proofs of the two lemmata are delayed to Appendix B and C, respectively.
Remark 4.3. Although Lemma 4.2 looks quite natural at first glance, the convergence of L(vt) is
in fact highly nontrivial. This is because we do not assume that the minimizer u∗ lies in the model
space H, but rather in a larger space H̄, which makes the optimization problem ill-posed. Traditional
results of convex optimization ([6] for example) are usually based on the well-posedness; In other
words, they assume that there exists a minimizer of the target convex function in the interior of the
model domain. Lemma 4.2 shows that the PINN loss still converges to its infimum, even though there
is no minimizer in the RKHS H and the RKHS norm of vt diverges to infinity along the gradient flow
(21). To the best of our knowledge, this is the first convergence result for a specific ill-posed convex
optimization problem on infinite-dimensional Hilbert space. In fact, the convergence of general
ill-posed convex optimization on Hilbert space remains an open problem.
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Now we are ready to prove the main theorem (Theorem 3.7):

Proof. (of the main theorem) If u∗ ∈ H̄, we take the stopping time to be T = Θ(Nα
u ), α ∈

(0, 13 ). By Lemma 4.1, limNu,Nf→∞(L(ûT ) − L(vT ))) = 0 in probability; And by Lemma 4.2,
limNu,Nf→∞ L(vT ) = limt→∞ L(vt) = 0 if and only if u∗ ∈ H̄. Combining the three results above,
we obtain (15).

If u∗ /∈ H̄, since ût ∈ H for any t ≥ 0 and any possible choices of samples Xi, Yj , then L(ût) ≥
infv∈H L(v) > 0. Combining this estimation with Lemma 5.6, we obtain (16).

5 Results on PINN

As was discussed in Section 2, the technique of NTK would help us promote results about kernel
methods to wide neural networks. In this section, we first prove the convergence of NTK (Theorem
5.4), based on which we extend our main theorem (Theorem 3.7) to PINNs (see Theorem 5.8).

The following assumptions are the analogues of Assumption 3.3 and 3.4 with respect to NTK:

Assumption 5.1. Assume that the NTK function KNT (described in 2.3) is positive-definite.

Assumption 5.2. Assume that σ ∈ C3(R). Moreover, the derivatives of σ are polynomially bounded:
|σ(i)(r)| ≤ C(1 + |r|p), i = 0, 1, 2, 3 for some university constants C > 0 and p ≥ 1.

Remark 5.3. Many of the previous works have proposed criteria to verify the positiveness of neural
tangent kernel KNT (x, y), such as [7]. The smoothness of σ is a fundamental assumption to ensure
that the derivatives of the network ûθ(t) are well-defined. The polynomial bound condition is easily
satisfied by various types of activation functions, such as tanh and ReLUk for k > 3.

Theorem 5.4. (Uniform convergence of NTK) Assume that Assumption 5.1 and 5.2 are satisfied.

(I) For a shallow network with only one hidden layer (L = 1 in (145)), as the network widthm1 → ∞,
the NNK function Kθ(t)(x, y) converges in probability to the NTK function K(x, y) uniformly with
respect to x, y ∈ Ω̄ and t ∈ [0, T ]. In other words,

sup
t∈[0,T ], x,y∈Ω̄

|Kθ(t)(x, y)−KNT (x, y)| → 0 in probability (23)

as m→ ∞. Here, the randomness arises from the initialization of network.

Moreover, LxKθ(t)(x, y), LyKθ(t)(x, y), LxLyKθ(t)(x, y) also converge in probability to
LxKNT (x, y), LyKNT (x, y), LxLyKNT (x, y) respectively, and the convergence is uniform with
respect to t ∈ [0, T ], x, y ∈ Ω̄.

(II) Furthermore, if Ω is convex, then the above results also holds for deep neural networks with depth
L ≥ 9 and activation function σ = tanh, as the network widths satisfies cm ≤ m1, . . . ,mL ≤ Cm
for some 0 < c < C and m→ ∞.

Proof. The proof is delayed to Appendix F.

An experimental illustration for Theorem 5.4 (I) is provided in Figure 1.
Remark 5.5. Theorem 5.4 (I) is the uniform version of Theorem 4.4 of [40]. We expect that Theorem
5.4 (II) remains valid for L = 2, 3, . . . , 8, while we defer the detailed proof to future work due to its
technical complexity in computations. We offer numerical results that roughly verify Theorem 5.4
(II) for L = 4 in Appendix I.

Note that both (10) and (11) are finite-order linear ODE systems. With the help of Theorem 5.4 and
ODE theory, we show that the distance between the network ûθ(t) and its corresponding physics-
informed kernel gradient flow ût converges in probability to 0:

Lemma 5.6. Under the same assumptions of Theorem 5.4, given Nu, Nf and T > 0, as m→ ∞,
we have

sup
x∈Ω̄, t∈[0,T ]

sup
Xi,Yj

|ûθ(t)(x)− ût(x)| → 0, sup
x∈Ω̄, t∈[0,T ]

sup
Xi,Yj

|Lûθ(t)(x)− Lût(x)| → 0 (24)
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in probability. Here, the randomness arises from the initialization of network.

Proof. The proof is delayed to Appendix G.

Remark 5.7. Both ûθ(t)(x) and ût(x) depend on the samples Xi, Yj , and the notation supXi,Yj
in

Lemma 5.6 emphasizes the fact that the convergence is uniform with respect to all possible choices
of samples Xi, Yj with sample sizes Nu, Nf fixed.

The experimental illustrations of this lemma can be found in Figure 2 and 3. A quantitative version
of this lemma for shallow networks (L = 1) can be found in (330) in the appendix.

As a direct corollary of Lemma 5.6 and the main theorem (Theorem 3.7), we have the following
theorem, which states the necessary and sufficient condition for the consistency of PINN:

Theorem 5.8. (Consistency of PINN) Let u∗ be the unique solution to (4), and let ûθ(t) be the
neural network in the form (145). Assume that the samples {X1, . . . , XNu} and {Y1, . . . YNf

} are
drawn from the uniform distributions of ∂Ω and Ω, respectively, and Nu ≤ Nf .

Let HNTK be the RKHS of KNT , and let H̄NTK be the closure of HNTK under the metric dpinn
(14). Then PINN is consistent to the problem (4) if and only if u∗ ∈ H̄NTK .

5.1 A Positive Example

Unfortunately, the computation of eigenfunctions of general NTK is still an open problem, hence
Theorem 5.8 is not applicable to general network setting at present. However, we note that in many
previous works on physics-informed modeling such as [24, 10, 41], a co-diagonalization condition,
which states that the kernel function K and the reverse of elliptic operator share the same eigenspaces,
was assumed to simplify the computation. Typical examples of kernel functions satisfying the
co-diagonalization assumption are the inner-product kernels on two-point homogeneous spaces [3],
including spheres, real and complex projective spaces, etc. These previous works inspire us to
construct the following example.

Consider the Poisson equation problem:

∆u = f on M, u(p) = up, (25)

where the manifold M is set to be Sd ⊂ Rd+1, the d-dimensional sphere, or M = Td = S1 × · · · ×
S1 ⊂ R2d, the d-dimensional torus; p is a fixed point on M ; up ∈ R is a fixed value; f is an L2

function on M such that
∫
M
f = 0. ∆ is the Laplace-Beltrami operator on M , and it is a classical

result that the problem (25) has a unique solution u∗ ∈ H2(M) (see [2] for example).

In this case, the PINN loss function of (25) and the corresponding empirical loss are in the form

LM (u) = |u(p)|2 +
∫
M

|∆u− f |2, L̂M (u) = |u(p)|2 + 1

Nf

Nf∑
j=1

|∆u(Yj)− f(Yj)− εj |2, (26)

where Yi are i.i.d. samples on M . Define a metric on C2(M) by setting

dMpinn(u1, u2)
2 = |u1(p)− u2(p)|2 +

∫
M

|∆u1 −∆u2|2, (27)

then L(u) = dMpinn(u, u
∗)2. We still denote the RKHS of NTK function K as H, and the closure of

H in H2(M) under the metric dMpinn as H̄. Since Sd is a bounded smooth subspace of Rd+1 and Td

is a bounded smooth subspace of R2d, all of the results in Section 3 still hold true for this specific
problem (25). Specifically, H is contained in C2(M), hence H̄, the closure of H in H2(M), is
well-defined. Moreover, we can show that for any bounded measurable f , the solution u∗ is in H̄:

Theorem 5.9. Suppose that Assumption 3.3, Assumption 5.2 and Assumption 3.5 are all satisfied.
Then u∗ ∈ H̄NTK , hence PINN is always consistent to the problem (25). In other words, for
T = Θ(Nα

f ), α ∈ (0, 13 ), we have

lim
Nf→∞

lim
m→∞

LM (ûθ(t)) = 0, lim
Nf→∞

lim
m→∞

∥ûθ(t) − u∗∥L2(M) = 0 (28)

in probability, as m, Nf , T → ∞.
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Proof. See Appendix H. An experimental illustration of this theorem can be found in Figure 5.

Remark 5.10. The strength of this theorem lies in its ability to prove consistency even under very
weak assumptions. Specifically, we only require f to be bounded and measurable and do not assume
the typical capacity-source conditions which are adopted in many important prior works such as
[46, 45, 15, 35, 37]. Furthermore, the boundedness assumption of f can be relaxed in some special
cases, as will be shown in an example in H.2. It is worth noting that in this example, the kernel
gradient flow method is consistent while the convergence speed of PINN loss can be arbitrarily low.
Remark 5.11. Although the results in Section 3 requires Nu → ∞, taking only one boundary
sample p does not make any trouble here, because taking Nu = 1, X1 = p is equivalent with taking
Nu = Nf and X1 = · · · = XNf

= p: both can reach the same form of the empirical loss (26).

5.2 A Negative Example

Consider the following Poisson equation problem on the 1-dimensional ring:

∆u = 2 on S1 − {p}; u(p) = 0, (29)

where p = e−i = (−1, 0) is a fixed point on S1. This problem has a unique solution u∗(eiπr) =
π2(r2 − 1), r ∈ (−1, 1). Note that u∗ is in H1(S1) but not in H2(S1), because its first derivative
has a discontinuous point at p. In this case, we can show that the solution u∗ is not in H̄:

Proposition 5.12. The solution u∗ to (29) has a positive distance away from the RKHS H of NTK
function K, hence does not lie in H̄.

Moreover, the infimum of the PINN loss is infu∈H L(u) = L(0) = 4 > 0, and the kernel gradient
flow of the PINN loss (21) is solved as vt(x) = 0 for all x ∈ S1 and t ∈ [0,∞).

The proof can be found in Appendix H.1. An experimental illustration of this result is provided in
Figure 6 in the appendix. Thus, by Theorem 3.7, the PINN method is inconsistent to the problem
(29). To be more explicit, as an immediate corollary, for any fixed time t <∞, the PINN estimator
ûθ(t) converges to 0 as m,Nf → ∞, hence stays away from the PDE solution u∗.
Remark 5.13. The existence of the negative example (29) highlights the risks of directly applying
PINNs to specific problems without theoretical assessment of reliability. We notice that [29] also
provided a negative example of the inconsistency of PINNs. Their example involves an elliptic
equation with discontinuous coefficients: in contrast, the equation in our example has continuous
coefficients, while it is solved on an unusual space (S1 with a point removed).

6 Discussions and Conclusion

In this paper, we establish the sufficient and necessary conditions for the consistency of physics-
informed kernel gradient flow and sufficiently wide PINN in general cases. The NTK framework
serves as a crucial bridge between kernel methods and wide neural networks, while the character-
ization of the eigenspaces of NTK remains an open problem. A deeper understanding of kernel
functions and RKHS will facilitate the extension of our approach to other significant problems in
more general settings. On the other hand, the optimization problem of narrow networks is also a
difficult but important problem which this paper does not involve. We leave these valuable problems
to future research.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
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Answer: [Yes]

Justification: In the abstract and introduction sections, we provide comprehensive summary
of our main results, and list the abstract of our technical contributions as supplement.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Some limitations of our work are discussed in Section 5.1 and 6.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the assumptions required are listed in the paper, and detailed proofs are
demonstrated in the appendix.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
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A Smoothness of RKHS

In this section, we prove an important theorem, which verifies the well-definedness of the physics-
informed kernel gradient flow estimator (13), the population gradient flow (21) and the space H̄
defined in Definition 3.6.

Theorem A.1. (Smoothness of RKHS) Assume that Assumption 3.3 and Assumption 5.2 are satisfied.
Then any u ∈ H is also in C2(Ω̄);

Moreover, if the RKHS expansion of u ∈ H is given by u(x) =
∑∞

i=0 ui
√
λiϕi(x), then u can be

twice differentiated term by term; to be more specific,

∇lu(x) =

∞∑
i=0

ui
√
λi∇lϕi(x), l = 1, 2. (30)

The proof of this theorem is divided into the following series of lemmata:

Lemma A.2. The eigenfunctions ϕi of K are C2(Ω̄).

Proof. It is a direct consequence of the equality

ϕi(x) =
1

λi

∫
Ω

K(x, y)ϕi(y)dy. (31)

Lemma A.3. ∂yiK(·, y) and ∂2yiyj
K(·, y) are in H for any fixed y ∈ Ω̄ and i, j = 1, . . . , d.

Proof. Let vi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd with the i-th component to be 1 and the rest to be 0. We
first show that the difference quotient

∆i(h) =
K(·, y + hvi)−K(·, y)

h
(32)

is a Cauchy sequence in H as h↘ 0.

Recall that by the definition of RKHS, for any y1, y2 ∈ Ω̄,

⟨K(·, y1),K(·, y2)⟩ = K(y1, y2), (33)

hence for any h1, h2 > 0, we have

⟨∆i(h1),∆i(h2)⟩

=
1

h1h2
(K(y1 + h1vi, y2 + h2vi)−K(y1 + h1vi, y2)−K(y1, y2 + h2vi) +K(y1, y2))

→∂xi
∂yi

K(y1, y2)

(34)

as h1, h2 ↘ 0. Thus,

∥∆i(h1)−∆i(h2)∥2H = ⟨∆i(h1),∆i(h1)⟩ − 2⟨∆i(h1),∆i(h2)⟩+ ⟨∆i(h2),∆i(h2)⟩ → 0 (35)

as h1, h2 ↘ 0. This implies that ∆i(h) is a Cauchy sequence in H, hence has a limit ∆i ∈ H. ∆i is
also the L2 limit of ∆i(h) since

∥∆i(h)−∆i∥L2 ≤ ∥∆i(h)−∆i∥H. (36)

However, ∆i(h) converges to ∂yiK(·, y) pointwisely. Thus, ∂yiK(·, y) = ∆i ∈ H.

The proof for ∂2yiyj
K(·, y) is similar.

Lemma A.4. For any y ∈ Ω̄, the sequences√
λi∂yjϕi(y) and

√
λi∂

2
yjyk

ϕi(y) (37)

are in l2.
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Moreover, let vi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd with the i-th component to be 1 and the rest to be 0.
Then √

λiϕi(y + hj)−
√
λiϕi(y)

h
→
√
λi∂yj

ϕi(y) in l2 (38)

and √
λi∂yj

ϕi(y + hk)−
√
λi∂yj

ϕi(y)

h
→
√
λi∂

2
yjyk

ϕi(y) in l2. (39)

Proof. Note that

∆j(h) =
K(x, y + hvj)−K(x, y)

h
=

∞∑
i=0

√
λiϕi(y + hj)−

√
λiϕi(y)

h

√
λiϕi(x). (40)

By Lemma A.3, ∆j(h) converges in H. In other words, the sequence
√
λiϕi(y + hj)−

√
λiϕi(y)

h
(41)

converges in l2. Since
√
λi∂yj is the termwise limit of the above sequence, then

√
λiϕi(y + hj)−

√
λiϕi(y)

h
→
√
λi∂yj

ϕi(y) in l2. (42)

Likewise we have
√
λi∂yjϕi(y + hk)−

√
λi∂yjϕi(y)

h
→
√
λi∂

2
yjyk

ϕi(y) in l2. (43)

As direct consequences of the above lemma, we have the following differentiation properties of kernel
function K and functions in the RKHS of K:

Corollary A.5. For any multi-index α, β with |α|, |β| ≤ 2,

∂αx ∂
β
yK(x, y) =

∞∑
i=0

λi∂
α
xϕi(x)∂

β
y ϕi(y), (44)

converges absolutely and uniformly.

Corollary A.6. For any u ∈ H, u is twice continuously differentiable. Moreover, if the RKHS
expansion of u is

u(x) =
∞∑
i=0

ui
√
λiϕi(x), {ui} ∈ l2, (45)

then for any multi-index α with |α| ≤ 2,

∂αx u(x) =

∞∑
i=0

ui
√
λi∂

α
xϕi(x) (46)

converges absolutely and uniformly.

Corollary A.7. For any u ∈ H,
∥u∥C2(Ω̄) ≤ C∥u∥H. (47)

Proof. Suppose that

u(x) =

∞∑
i=0

ui
√
λiϕi(x), {ui} ∈ l2. (48)

By direct computations, for any x ∈ Ω̄, we have

|u(x)| ≤
∞∑
i=0

∣∣∣ui√λiϕi(x)∣∣∣ ≤ ∥ui∥l2 · ∥
√
λiϕi(x)∥l2 = ∥u∥H ·

√
K(x, x), (49)
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|∂xj
u(x)| ≤

∞∑
i=0

∣∣∣ui√λi∂xj
ϕi(x)

∣∣∣ ≤ ∥ui∥l2 ·∥
√
λi∂xj

ϕi(x)∥l2 = ∥u∥H ·∂xj

√
∂yj

K(x, x), (50)

and

|∂2xjxk
u(x)| ≤

∞∑
i=0

∣∣∣ui√λi∂2xjxk
ϕi(x)

∣∣∣
≤∥ui∥l2 · ∥

√
λi∂

2
xjxk

ϕi(x)∥l2 = ∥u∥H · ∂2xjxk

√
∂2yjyk

K(x, x).

(51)

The above results complete the proof of Theorem A.1.

B Proof of Lemma 4.1

In this section, we analyze the difference between the empirical gradient flow (13)

d

dt
ût(x) = − 2

Nu

Nu∑
i=1

K(x,Xi) · ût(Xi)−
2

Nf

Nf∑
j=1

LyK(x, Yj) · (Lût(Yj)− f(Yj)− εj) (52)

and the population gradient flow (21)

d

dt
vt(x) = −2

∫
∂Ω

K(x, ξ) · vt(ξ)dξ − 2

∫
Ω

LyK(x, y) · (Lvt(y)− f(y))dy. (53)

Lemma B.1. As Nf → ∞, we have

sup
x∈Ω̄,t∈[0,T ]

∣∣∣∣∣∣ 2

Nf

Nf∑
j=1

LyK(x, Yj) · (Lût(Yj)− f(Yj)− εj)− 2

∫
Ω

LyK(x, y) · (Lût(y)− f(y))dy

∣∣∣∣∣∣
= O

(√
T
logNf

Nf

)
(54)

with high probability 1−O(N−1
f ), where the conventions O hide the terms involving Ω, K, f and T .

Proof. Define

Ui(t) =

∫ t

0

ûs(Xi)(s)ds, Fj(t) =

∫ t

0

(Lûs(Yj)− f(Yj)− εj)(s)ds, (55)

then

Lût(x) =
∫ t

0

d

ds
Lûs(x)ds = − 2

Nu

Nu∑
i=1

LxK(x,Xi)Ui(t)−
2

Nf

Nf∑
j=1

LxLyK(x, Yj)Fj(t). (56)

We make the following decomposition:

− 2

Nf

Nf∑
j=1

LyK(x, Yj) · (Lût(Yj)− f(Yj)− εj) = T1 + T2 + T3 + T4 + T5, (57)

where

T1 = − 2

NuNf

Nu∑
i=1

Nf∑
j=1

LxK(Yj , Xi)LyK(x, Yj)Ui, (58)

T2 = − 2

N2
f

∑
j ̸=k

LyK(x, Yj)LxLyK(Yj , Yk)Fk, (59)
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T3 = − 2

N2
f

Nf∑
j=1

LyK(x, Yj)LxLyK(Yj , Yj)Fj , (60)

T4 = − 2

Nf

Nf∑
j=1

LyK(x, Yj)f(Yj). (61)

T5 = − 2

Nf

Nf∑
j=1

LyK(x, Yj)εj . (62)

For brevity, we only prove the estimation for T4. The proofs for T1, T2, T3 and T5 are similar. It is
easy to see that by strong law of large number, for any fixed x ∈ Ω̄,

T4 → −2

∫
Ω

LyK(x, y)f(y)dy (63)

almost surely as Nf goes to infinity. Next, we show that the convergence is actually uniform with
respect to x ∈ Ω̄.

By assumption, f ∈ L2(Ω) is bounded. And by Theorem 5.4, LyK(x, y) is Lipschitz for (x, y) ∈
Ω̄ × Ω̄. Since Ω̄ is a bounded region, the random variables LyK(x, Yj)f(Yj) are sub-exponential
obviously. Then, by Bernstein’s inequality (see Section 2.8 of [39]), we have the following estimation:

P

∣∣∣∣∣∣− 2

Nf

Nf∑
j=1

LyK(x, Yj)f(Yj) + 2

∫
Ω

LyK(x, y)f(y)dy

∣∣∣∣∣∣ > η

 ≤ 2e−cmin{Nfη
2,Nfη}, (64)

where the constant c > 0 depends only on Ω, k and f .

Next, we apply the ε-net argument to x ∈ Ω̄. Without loss of generality, assume that Ω is contained
in the cube [0, D]d. For any n ∈ N, we define

Nε = {(εz1, . . . , εzd) : zi = 0, . . . , n+ 1, i = 1, . . . , d} ⊂ [0, D]d, (65)

then the canonical number of Nε is (n+ 1)d, and

P

max
x∈Nε

∣∣∣∣∣∣− 2

Nf

Nf∑
j=1

LyK(x, Yj)f(Yj) + 2

∫
Ω

LyK(x, y)f(y)dy

∣∣∣∣∣∣ ≤ η


>1− 2(n+ 1)de−cmin{Nfη

2,Nfη}.

(66)

Moreover, for any x ∈ Ω̄, there exists x′ ∈ Nε such that |x− x′| < εd.

For any x, x′ ∈ Ω̄ such that |x− x′| < εd, by applying Bernstein’s inequality again, we obtain that

P

 sup
|x−x′|<εd

∣∣∣∣∣∣ 2

Nf

Nf∑
j=1

LyK(x, Yj)f(Yj)−
2

Nf

Nf∑
j=1

LyK(x′, Yj)f(Yj)

∣∣∣∣∣∣ ≤ η


≥P

∣∣∣∣∣∣2c
′εd

Nf

Nf∑
j=1

f(Yj)

∣∣∣∣∣∣ ≤ η


≥P

∣∣∣∣∣∣ 2

Nf

Nf∑
j=1

f(Yj)− 2

∫
Ω

f

∣∣∣∣∣∣ ≤ η

2c′εd
,

∣∣∣∣2 ∫
Ω

f

∣∣∣∣ ≤ η

2c′εd


=P

∣∣∣∣∣∣ 2

Nf

Nf∑
j=1

f(Yj)− 2

∫
Ω

f

∣∣∣∣∣∣ ≤ η

2c′εd


≥1− 2e−c′′ min{Nfη

2/ε2d,Nfη/ε
d}

(67)

if we select η, ε such that |2
∫
Ω
f | ≤ η

2c′εd
, and the constant c′, c′′ > 0 depends only on Ω, K and f .
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We also have ∣∣∣∣2 ∫
Ω

LyK(x, y)f(y)dy − 2

∫
Ω

LyK(x′, y)f(y)dy

∣∣∣∣ ≤ c′′′εd (68)

where c′′′ > 0 depends only on Ω, K and f .

Combining the estimations above together yields

P

sup
x∈Ω̄

∣∣∣∣∣∣− 2

Nf

Nf∑
j=1

LyK(x, Yj)f(Yj) + 2

∫
Ω

LyK(x, y)f(y)dy

∣∣∣∣∣∣ ≤ (2 + c′′′)η


≥1− P

max
x∈Nε

∣∣∣∣∣∣− 2

Nf

Nf∑
j=1

LyK(x, Yj)f(Yj) + 2

∫
Ω

LyK(x, y)f(y)dy

∣∣∣∣∣∣ > η


− P

 sup
|x−x′|<εd

∣∣∣∣∣∣ 2

Nf

Nf∑
j=1

LyK(x, Yj)f(Yj)−
2

Nf

Nf∑
j=1

LyK(x′, Yj)f(Yj)

∣∣∣∣∣∣ > η


≥ 1− 2(D/ε+ 1)de−cmin{Nfη

2,Nfη} − 2e−c′′ min{Nfη
2/ε2d,Nfη/ε

d}.

(69)

Finally, we select ε2d ≈ 1
Nf

and η2 =
logNf

2cN2
f

, then with high probability 1−O(N−1
f ), we have

sup
x∈Ω̄

∣∣∣∣∣∣− 2

Nf

Nf∑
j=1

LyK(x, Yj)f(Yj) + 2

∫
Ω

LyK(x, y)f(y)dy

∣∣∣∣∣∣ = O

(√
logNf

Nf

)
. (70)

Likewise, we also have the following estimation for T1, T2, T3 and T5:

sup
x∈Ω̄

∣∣∣∣∣∣− 2

Nf

Nf∑
j=1

LxK(Yj , Xi)LyK(x, Yj) + 2

∫
Ω

LxK(y,Xi)LyK(x, y)

∣∣∣∣∣∣
=O

(√
logNf

Nf
)

)
,

(71)

sup
x∈Ω̄

∣∣∣∣∣∣− 2

Nf

∑
1≤j≤d, j ̸=k

LyK(x, Yj)LxLyK(Yj , Yk)−
∫
Ω

LyK(x, y)LyK(y, Yk)dy

∣∣∣∣∣∣
= O

(√
logNf

Nf

)
,

(72)

sup
x∈Ω̄

∣∣∣∣∣∣− 2

N2
f

Nf∑
j=1

LyK(x, Yj)LxLyK(Yj , Yj)

∣∣∣∣∣∣ = O

(
1

Nf

√
logNf

Nf

)
, (73)

sup
x∈Ω̄

∣∣∣∣∣∣− 2

Nf

Nf∑
j=1

LyK(x, Yj)εj

∣∣∣∣∣∣ = O

(√
logNf

Nf

)
(74)

with probability 1−O(N−1
f ). We also note that∫

Ω

LyK(x, y) · (Lût(y)− f(y))dy

=

∫
Ω

LyK(x, y)

− 2

Nu

Nu∑
i=1

LxK(y,Xi)Ui −
2

Nf

Nf∑
j=1

LxLyK(y, Yj)Fj − f(y)

 dy,

(75)
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hence

− 2

Nf

Nf∑
j=1

LyK(x, Yj) · (Lût(Yj)− f(Yj)− εj) + 2

∫
Ω

LyK(x, y) · (Lût(y)− f(y))dy

=

∫
Ω

 1

Nu

Nu∑
i=1

Ui · O

(√
logNf

Nf

)
+

1

Nf

Nf∑
j=1

Fj · O

(√
logNf

Nf

)
+O

(√
logNf

Nf

) dy.

(76)
By Cauchy’s inequality, and by the definition of Ui and Fj , we have∣∣∣∣∣∣− 2

Nf

Nf∑
j=1

LyK(x, Yj) · (Lût(Yj)− f(Yj)− εj) + 2

∫
Ω

LyK(x, y) · (Lût(y)− f(y))dy

∣∣∣∣∣∣
2

≤
∫
Ω

∫ t

0

O

(√
logNf

Nf

)2
 1

Nu

Nu∑
i=1

ûs(Xi)
2 +

1

Nf

Nf∑
j=1

(Lûs(Yj)− f(Yj)− εj)
2

 dsdy

+O

(√
logNf

Nf

)2

=O

(√
logNf

Nf

)2 ∫ t

0

L̂(ûs)ds+O

(√
logNf

Nf

)2

.

(77)
Since L̂(u) decreases along the gradient flow, then L̂(u(t)) ≤ L̂(u(0)) for any t ∈ [0, T ], hence∫ t

0

L̂(ûs)ds ≤ T L̂(û0). (78)

In conclusion, with probability 1−O(N−1
f ), we have

sup
x∈Ω̄,t∈[0,T ]

∣∣∣∣∣∣− 2

Nf

Nf∑
j=1

LyK(x, Yj) · (Lût(Yj)− f(Yj)− εj) + 2

∫
Ω

LyK(x, y) · (Lût(y)− f(y))dy

∣∣∣∣∣∣
= O

(√
T
logNf

Nf

)
.

(79)

Likewise, we also have

Lemma B.2. As Nu → ∞, we have

sup
x∈Ω̄,t∈[0,T ]

∣∣∣∣∣− 2

Nu

Nu∑
i=1

K(x,Xi) · ût(Xi) + 2

∫
∂Ω

K(x, ξ) · ût(ξ)dξ

∣∣∣∣∣ = O

(√
T
logNu

Nu

)
(80)

with high probability 1−O(N−1
u ).

Proof. The proof is similar with that of Lemma B.1.

Lemma B.3. With high probability 1−O(N−1
u +N−1

f ), we have

dpinn(ût − vt) = O

(
T

3
2 (

√
logNf

Nf
+

√
logNu

Nu
)

)
(81)

for any t ∈ [0, T ].
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Proof. Take wt = ût − vt. Then by Lemma B.1 and Lemma B.2, we have

d

dt
wt(x) = −2

∫
∂Ω

K(x, ξ) · wt(ξ)dξ − 2

∫
Ω

LyK(x, η) · Lwt(η)dη +R, (82)

where

R = O

(√
T
logNu

Nu

)
+O

(√
T
logNf

Nf

)
(83)

with probability 1−O(N−1
u )−O(N−1

f ).

Define W (t) = dpinn(ût, vt), then

W (t)2 = dpinn(ût, vt)
2 =

∫
∂Ω

|wt(x)|2dx+

∫
Ω

|Lwt(y)|2dy, (84)

and
d

dt
(W (t)2) = −2Q+R

(∫
∂Ω

wt(x)dx+

∫
Ω

Lwt(y)dy

)
, (85)

where

Q =

∫
∂Ω

∫
∂Ω

K(x, ξ)wt(x)wt(ξ)dxdξ + 2

∫
Ω

∫
∂Ω

LyK(x, η)Lwt(η)wt(x)dxdη

+

∫
Ω

∫
Ω

LxLyK(y, η)Lwt(y)Lwt(η)dydη.

(86)

Assume that the RKHS expansion of wt is

wt(x) =

∞∑
i=0

wi
t

√
λiϕi(x), (87)

and recall that

K(x, y) =

∞∑
i=0

λiϕi(x)ϕi(y), (88)

then by computation, we obtain that

Q =

∞∑
i=0

(∫
∂Ω

wt
iλiϕi(x)dx+

∫
Ω

wt
iλiLϕi(y)dy

)2

≥ 0. (89)

Thus, by Cauchy inequality,

d

dt
(W (t)2) ≤ R

(∫
∂Ω

wt(x)dx+

∫
Ω

Lwt(y)dy

)
≤ 2RW (t), (90)

then
d

dt
W (t) ≤ R. (91)

Therefore, for any t ∈ [0, T ], we have

W (t) =W (t)−W (0) =

∫ t

0

d

ds
W (s)ds ≤ O

(
T

3
2 (

√
logNf

Nf
+

√
logNu

Nu
)

)
. (92)

Proof. (of Lemma 4.1). Note that

|L(ût)− L(vt)| = |dpinn(ût, u∗)2 − dpinn(vt, u
∗)2|

= |(dpinn(ût, u∗)− dpinn(vt, v
∗))2

+ 2dpinn(vt, u
∗)(dpinn(ût, u

∗)− dpinn(vt, u
∗)|

≤ dpinn(ût, vt)
2 + 2dpinn(vt, u

∗)dpinn(ût, vt).

(93)
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Since L(vt) = dpinn(vt, u
∗) is decreasing, then

dpinn(vt, u
∗) ≤ dpinn(v0, u

∗) = dpinn(0, u
∗) =

√∫
Ω

|f |2. (94)

Thus, by Lemma B.3, with great probability 1−O(N−1
u +N−1

f ), we have

|L(ût)− L(vt)| = O

(
T

3
2 (

√
logNf

Nf
+

√
logNu

Nu
)

)
(95)

for all t ∈ [0, T ].

C Proof of Lemma 4.2

In this section, we consider the population gradient flow (21):

d

dt
vt(x) = −2

∫
∂Ω

K(x, ξ) · vt(ξ)dξ − 2

∫
Ω

LyK(x, y) · (Lvt(y)− f(y))dy. (96)

C.1 Diagonalized representation of population gradient flow

Assume that the expansion of v in RKHS is

vt =

∞∑
i=0

vi(t)
√
λiϕi, (97)

then along the gradient flow (21), the evolution ODE of the coefficients vi = vi(t) is

d

dt
vi(t) = −2

∫
∂Ω

√
λiϕi

∞∑
j=0

vj(t)
√
λjϕj − 2

∫
Ω

√
λiLϕi

 ∞∑
j=0

vj(t)
√
λjLϕj − f


= −2

∞∑
j=0

(Sij + Tij)vj(t) +Ri,

(98)

where
Sij =

∫
∂Ω

√
λiλjϕiϕj , Tij =

∫
Ω

√
λiλjLϕiLϕj , Ri =

∫
Ω

√
λiLϕif. (99)

The infinite-dimensional symmetric matrices Sij and Tij are the Gram matrices of the following
self-adjoint operators on H:

S : H → H, Sv =

∞∑
i=0

 ∞∑
j=0

Sijvj

√λiϕi, (100)

T : H → H, T v =

∞∑
i=0

 ∞∑
j=0

Tijvj

√λiϕi. (101)

The population gradient flow (21) can be rewritten as

d

dt
vt = −2(S + T )(vt) +R, (102)

where

R =

∞∑
i=0

Riϕi. (103)

Lemma C.1. S and T are compact.
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Proof. For any v ∈ H, let w = Sv, then

|wi|2 =

∣∣∣∣∣∣
∞∑
j=0

Sijvj

∣∣∣∣∣∣
2

≤
∞∑
j=0

v2j ·
∞∑
j=0

S2
ij = ∥v∥2H

∞∑
j=0

(∫
∂Ω

√
λiλjϕiϕj

)2

≤ ∥v∥2H
∞∑
j=0

∫
∂Ω

λiϕ
2
i ·
∫
∂Ω

λjϕ
2
j = ∥v∥2H

∫
∂Ω

λiϕ
2
i ·
∫
∂Ω

∞∑
j=0

λjϕ
2
j

= ∥v∥2H
∫
∂Ω

λiϕ
2
i ·
∫
∂Ω

K(x, x)dx.

(104)

Thus, S maps the infinite-dimensional ball {v ∈ H : ∥v∥H ≤ B} into the infinite-dimensional cube

QB = {w ∈ H : wi ≤ Bai}, (105)

where
a2i =

∫
∂Ω

K(x, x)dx ·
∫
∂Ω

λiϕ
2
i . (106)

Note that
∞∑
i=0

a2i =

(∫
∂Ω

K(x, x)dx

)2

<∞, (107)

hence {ai} ∈ l2.

It suffices to show that any sequence {wk}∞k=0 ⊂ QB has a convergent sequence in H.

Since {wk
0} is contained in [−Ba0, Ba0], it has a subsequence {wk0(j)

0 } such that wk0(j)
0 → w0 as

j → ∞. Then we select a subsequence of {wk0(j)
1 }, denoted as wk1(j)

1 , such that wk1(j)
1 → w1 as

j → ∞. Iteratively, we select subsequence kl(j) from kl−1(j) such that wkl(j)
l → wl as j → ∞.

Note that |wl| ≤ Bal, hence {wl} ∈ l2. Define

w =

∞∑
l=0

wl

√
λlϕl ∈ H. (108)

Then we claim that
∥wkl(l) − w∥H → 0 as l → ∞. (109)

In fact, for any ε > 0, we can decompose ∥wkl(l) − w∥H into two parts:

∥wkl(l) − w∥2H =
N∑
i=0

(w
kl(l)
i − wi)

2 +
∞∑

i=N+1

(w
kl(l)
i − wi)

2, (110)

where N ∈ N is selected such that
∞∑

l=N+1

a2i < ε. (111)

Then we obtain that
∞∑

i=N+1

(w
kl(l)
i − wi)

2 ≤ 2

∞∑
i=N+1

((w
kl(l)
i )2 + w2

i ) ≤ 4B2
∞∑

i=N+1

a2i < 4B2ε. (112)

Thus,
lim sup
l→∞

∥wkl(l) − w∥H ≤ 4B2ε. (113)

Since ε is arbitrary, we conclude that

lim
l→∞

∥wkl(l) − w∥H = 0. (114)
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Thus, S+T is a self-adjoint compact operator on H. By Riezs-Schauder theory, S+T has eigenvalues
µ0 ≥ µ1 ≥ · · · ≥ 0, µi → 0 as i→ ∞, and {ψi} the corresponding eigenbasis.

Under the new orthonormal basis {ψi}, let ṽi be the coefficients of expansion of vt:

vt(x) =

∞∑
i=0

ṽi(t)ψi(x), (115)

Then under the basis {ψi}, the gradient flow (102) can be rewritten as

d

dt
ṽi(t) = −2µiṽi(t) + R̃i, (116)

where {R̃i} ∈ l2 is determined by

R =

∞∑
i=0

Riϕi(x) =

∞∑
i=0

R̃iψi(x). (117)

Thus, for each i, ṽ2i is increasing along the gradient flow (21).

C.2 Convex optimization

Lemma C.2. ∥∇L(vt)∥H → 0 as t→ ∞.

Proof. It suffices to show that L(vt) is a convex function with respect to t ∈ [0,∞). The convexity
is directly checked by

d2

dt2
L(vt) = − d

dt

∞∑
i=0

(
∂L

∂vi
(vt)

)2

= −2

∞∑
i=0

∂L

∂vi
(vt) ·

∂2L

∂t∂vi
(vt)

= −2

∞∑
i=0

∂L

∂vi
(vt) ·

∂

∂vi

(
∂L

∂t
(vt)

)

= −2

∞∑
i=0

∂L

∂vi
(vt)

∂

∂vi

−
∞∑
j=0

(
∂L

∂vj
(vt)

)2


= 4

∞∑
i=0

∞∑
j=0

∂L

∂vi
(vt) ·

∂2L

∂vi∂vj
(vt) ·

∂L

∂vj
(vt)

≥ 0.

(118)

Proof. (of Lemma 4.2). Along the gradient flow, L is non-increasing, hence L converges to some
constant A ≥ 0. It suffices to prove that A = infv∈H L(v).

Assume otherwise. Then by the convexity of L, for any t > 0, the set {v ∈ H : L(v) < A} must be
contained in one side of the tangent hyperplane at v(t):

⟨w,∇L(vt)⟩H < ⟨vt,∇L(vt)⟩H, ∀w ∈ {w ∈ H : L(w) < A}. (119)

By assumption, L(vt) ≥ A > infv∈H L(v) for any t. Then we can fix one element w ∈ {w ∈ H :
infv∈H L(v) < L(w) < A}, and denote its coefficient series with respect to the basis {ψi} as {w̃i}.
Hence

∞∑
i=0

w̃i ·
∂L

∂ṽi
(vt) <

∞∑
i=0

ṽi ·
∂L

∂ṽi
(vt), (120)

which implies that

d

dt
∥vt − w∥2H = 2

∞∑
i=0

(ṽi(t)− w̃i) ·
dṽi
dt

= −2

∞∑
i=0

(ṽi(t)− w̃i)
∂L

∂ṽi
(vt) ≤ 0. (121)
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Thus, along the gradient flow, the RKHS norm of v(t) is bounded by

∥vt∥2H ≤ ∥w∥2H. (122)

The equation (116) implies that ṽi(t) is monotonic. Thus, ∥vt∥2H increasingly converges to some
C ≥ 0. In other words,

lim
t→∞

∞∑
i=0

ṽi(t)
2 = C. (123)

Let Ṽi = limt→∞ ṽi(t). By monotone convergence theorem, we have

V =

∞∑
i=0

Ṽiψi ∈ H, ∥V ∥2H =

∞∑
i=0

Ṽ 2
i = lim

t→∞

∞∑
i=0

ṽi(t)
2 = C <∞, (124)

hence
∥vt − V ∥H → 0. (125)

By Lemma C.2 and the continuity of ∇L, we obtain that

∥∇L(V )∥2H = lim
t→∞

∥∇L(vt)∥2H = 0. (126)

Then V is in fact a minimizer of L by convexity, hence L(vt) → L(V ) = 0. This contradicts with
the assumption that L(vt) ≥ A > infv∈H L(v) ≥ 0! This completes our proof.

D Norm control

Proof. (of Lemma 3.9). We decompose u− u∗ into v + w, where{Lv = Lu− f in Ω;

v = 0 on ∂Ω,

{Lw = 0 in Ω;

w = u on ∂Ω.
(127)

By the standard elliptic PDE theory, the operator L−1 : L2(Ω) → H1
0 (Ω) is bounded, hence

∥v∥2L2 ≤ C∥Lv∥2L2 = C∥Lu− f∥L2 , (128)

where the constant C > 0 depends only on Ω and L.

For the estimation of w, we first apply Green’s representation formula to w and obtain

w(y) =

∫
∂Ω

K(x, y)u(x)dx, K(x, y) = ⟨A∇xG(x, y), ν(x)⟩ (129)

where A = (aij) is the coefficient matrix of L, G is the Green’s function of L on Ω, and ν(x) is the
outer unit normal vector of ∂Ω at x. It is well-known that (see Theorem 1.2.8 of [23] and its remarks
for example)

K(x, y) = ⟨A∇xG(x, y), ν(x)⟩ ≥ 0, ∀x ∈ ∂Ω, y ∈ Ω (130)
and

|∇xG(x, y)| ≤ C|x− y|1−d (131)
for some C > 0 depending only on Ω and L. Therefore,

|K(x, y)| ≤ |A∇xG(x, y)| ≤ ∥A∥ · |∇xG(x, y)| ≤ C|x− y|1−d, (132)

and ∫
Ω

w(y)2dy =

∫
Ω

(∫
∂Ω

√
K(x, y) ·

√
K(x, y)u(x)dx

)2

dy

≤
∫
Ω

(∫
∂Ω

K(x, y)dx ·
∫
∂Ω

K(x, y)u(x)2dx

)
dy.

(133)

Note that the function
η(y) =

∫
∂Ω

K(x, y)dx (134)
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is the solution to the boundary value problem{Lη = 0 in Ω;

η = 1 on ∂Ω,
(135)

then by the maximum principle, |η| ≤ 1. Thus,∫
Ω

w(y)2dy ≤
∫
Ω

∫
∂Ω

K(x, y)u(x)2dxdy

≤
∫
∂Ω

(∫
Ω

C|x− y|1−ddy

)
u(x)2dx

≤ C ′
∫
∂Ω

u(x)2dx,

(136)

where C ′ > 0 depends only on Ω and L.

In conclusion, we have
∥u− u∗∥L2(Ω) ≤ ∥v∥L2(Ω) + ∥w∥L2(Ω) ≤ C ′′(∥Lu− f∥L2(Ω) + ∥u∥2L2(∂Ω)) = C ′′L(u) (137)

for some C ′′ > 0 depending only on Ω and L.

E Proof of Theorem 3.12

Lemma E.1. If u∗ ∈ H, then
∥u− u∗∥H · ∥∇L(u)∥H ≥ L(u). (138)

Proof. When u = u∗, then ∥∇L(u∗)∥H = L(u) = 0.

When u ̸= u∗, define R = ∥u − u∗∥H and w = (u − u∗)/R. Let ψ(r) = L(u∗ + rw), then
ψ(0) = L(u∗) = 0, ψ(R) = L(u), and

ψ′(r) = ∇wL(u
∗ + rw) = ⟨∇L(u∗ + rw), w⟩H. (139)

Since L is convex, then ψ is also convex on [0, R]. Moreover, since ψ(r) reaches its minimum at
r = 0, then ψ′(r) is increasing. Thus,

L(u) = ψ(R)− ψ(0) =

∫ R

0

ψ′(r)dr ≤ Rψ′(R) = R⟨∇L(u), w⟩H ≤ R∥∇L(u)∥H. (140)

Lemma E.2. Along the gradient flow vt defined by (21), we have

L(vt) ≤
C

t
, (141)

for some constant C > 0 depending only on Ω, L, f and K.

Proof. Without loss of generality, assume that u∗ ̸= 0. Let L(v0) = L(0) = M , then M > 0
depends on Ω, L and f . Along the gradient flow (21), the loss L(vt) is decreasing. By Theorem A.1,
u∗ ∈ C2(Ω̄). Then by Lemma A.7, we obtain that

∥vt − u∗∥H ≤ ∥vt − u∗∥C2 ≤ C ′L(vt) ≤ C ′L(v0) = C ′M (142)
for some C ′ > 0 depending only on Ω and K.

Finally, by Lemma E.1, we have

d

dt
L(vt) = −

∞∑
i=0

(
∂L

∂vi
(vt)

)2

= −∥∇L(vt)∥2H

≥ − 1

(C ′M)2
L(u)2.

(143)

hence
1

L(v0)
− 1

L(vt)
=

∫ t

0

1

L(vt)2
d

dt
L(vt)dt ≤

t

(C ′M)2
. (144)
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Proof. (of Theorem 3.12) The conclusion is immediately obtained by combining Lemma 4.1 and
Lemma E.2.

F Proof of Theorem 5.4

In the rest of this paper, we will discuss the neural tangent kernel KNT , its RKHS HNTK and the
network ûθ(t). For brevity and with no ambiguity, in the following context, we denote the neural
tangent kernel as K instead of KNT , and denote the RKHS of NTK as H instead of HNTK .

We will first prove Theorem 5.4 for shallow networks with only one hidden layer (l = 1) in Section
F.1 and F.2, and then provide proofs for deep neural networks in Section F.3.

When l = 1, the network (5) has the following form:

ûθ(x) =
1√
2m

2m∑
k=1

Akσ(Wk · x+Bk) +D, (145)

where the parameters are initialized in the following way: Ak+m = −Ak, Wk+m =Wk, Bk+m =
Bk,D = 0, andAk,Wk,l, Bk ∼ N(0, 1), k = 1, . . . ,m, l = 1, . . . , d are initialized as i.i.d. standard
Gaussian random variables.

F.1 Convergence at initial time

F.1.1 Pointwise convergence

Since Ω is bounded domain, we assume that Ω̄ is contained in the cube Q(R) = [−R,R]d.

Lemma F.1. For each x, y ∈ Q(R) = [−R,R]d, Kθ(0)(x, y) converges to K(x, y) almost surely.

Proof. By direct computation, we have

Kθ(0)(x, y) =1 +
1

m

m∑
k=1

σ(Wk · x+Bk) · σ(Wk · y +Bk)

+
1

m

m∑
k=1

A2
k(1 + ⟨x, y⟩)σ′(Wk · x+Bk) · σ′(Wk · y +Bk)

(146)

with the parameters initialized as i.i.d. standard Gaussian random variables. Thus, by strong law of
large number (see Section 2.4 of [12] for example), it converges almost surely to

K(x, y) =1 + E [σ(W1 · x+B1) · σ(W1 · y +B1)]

+ (1 + ⟨x, y⟩)E
[
A2

1σ
′(W1 · x+B1) · σ′(W1 · y +B1)

]
.

(147)

Lemma F.2. The limit kernel K(x, y) is C2 with respect to x ∈ Q(R). Thus, LxK(x, y) exists and
is continuous for (x, y) ∈ Q(R)×Q(R).

Proof. For brevity, we only prove that ∇xK(x, y) exists and is continuous with respect to x, y. The
proofs for the second derivatives ∇2

xK(x, y) are similar.

Note that K(x, y) = 1 +G(x, y) +H(x, y), where

G(x, y) = E [σ(W1 · x+B1) · σ(W1 · y +B1)] , (148)

H(x, y) = (1 + ⟨x, y⟩)E
[
A2

1σ
′(W1 · x+B1) · σ′(W1 · y +B1)

]
. (149)

We first prove that the function G(x, y) is C1 with respect to x. Denote v = (1, 0, . . . , 0) ∈ Rd. By
mean value theorem,

σ(W1 · (x+ tv) +B1)− σ(W1 · x+B1)

t
=W11σ

′(W1 · (x+ sv) +B1) (150)
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for some s ∈ [0, t]. Since σ′ is polynomially bounded, then for fixed x, y, the function∣∣∣∣σ(W1 · (x+ tv) +B1)− σ(W1 · x+B1)

t
· σ(W1 · y +B1)

∣∣∣∣ ≤ q(W1, B1) (151)

for some polynomial q, which is integrable. By dominant convergence theorem, we have

lim
t→0

G(x+ tv, y)−G(x, y)

t

=E

(
lim
t→0

σ(W1 · (x+ tv) +B1)− σ(W1 · x+B1)

t
· σ(W1 · y +B1)

)
=E(

∂

∂x1
σ(W1 · x+B1) · σ(W1 · y +B1)),

(152)

which is continuous with respect to x, y. In other words, G(x, y) has a continuous partial derivative in
the direction x1. Likewise, continuous partial derivatives in other directions also exist. Thus, G(x, y)
is differential with respect to x, and

∇xG(x, y) = E(∇xσ(W1 · x+B1) · σ(W1 · y +B1)) (153)

is continuous with respect to x, y.

Likewise, H(x, y) is continuously differentiable for x as well. Thus, K(x, y) is continuously
differentiable for x.

Lemma F.3. For each x, y ∈ Ω̄, ∇xKθ(0)(x, y), ∇2
xKθ(0)(x, y) converge in probability to ∇xk(x, y)

and ∇2
xK(x, y), respectively. Thus, LxKθ(0)(x, y) converges almost surely to LxK(x, y).

Proof. By strong law of large number,

∇xKθ(0)(x, y) =1 +
1

m

m∑
k=1

∇xσ(Wk · x+Bk) · σ(Wk · y +Bk)

+
1

m

m∑
k=1

A2
k(1 + ⟨x, y⟩)∇xσ

′(Wk · x+Bk) · σ′(Wk · y +Bk)

+
1

m

m∑
k=1

A2
ky · σ′(Wk · x+Bk) · σ′(Wk · y +Bk)

(154)

converges almost surely to

∇xK(x, y) =1 + E [∇xσ(W1 · x+B1) · σ(W1 · y +B1)]

+ (1 + ⟨x, y⟩)E
[
A2

1∇xσ
′(W1 · x+B1) · σ′(W1 · y +B1)

]
+ yE

[
A2

1σ
′(W1 · x+B1) · σ′(W1 · y +B1)

]
.

(155)

Proofs for the second derivatives are similar.

So far, we have finished the prove for the existence of K(x, y), LxK(x, y) and the convergence of
Kθ(0)(x, y), LxKθ(0)(x, y) to K(x, y), LxK(x, y), respectively. For LyK(x, y) and LxLyK(x, y),
by following a similar discussion, we can also obtain

Lemma F.4. LyK(x, y) and LxLyK(x, y) both exist and are continuous with respect to (x, y) ∈
Q(R) ×Q(R). And for fixed x, y, LyKθ(0)(x, y) and LxLyKθ(0)(x, y) converge almost surely to
LyK(x, y) and LxLyK(x, y), respectively.

F.1.2 Uniform convergence at initial time

Recall that we assume Ω̄ ⊂ Q(R) = [−R,R]d. We will show that the convergence of Kθ(0)(x, y)
and its derivatives is in fact uniform for x, y ∈ Q(R). The proof is based on a ε-net argument.

For N ∈ N, we set ε = 2R/N and place Nd points in the cube Q(R) = [−R,R]d:

Nε =

{(
R+ (−1 +

2i1
N

), . . . , R+ (−1 +
2id
N

)

)
: ik = 1, . . . , N, k = 1, . . . , d

}
(156)
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For any x ∈ Q(R), there exists some z ∈ Nε such that |x− z| ≤ ε
√
d.

Again, we denote Kθ(0)(x, y) = 1 +Gm(x, y) +Hm(x, y) and K(x, y) = 1 +G(x, y) +H(x, y),
where

Gm(x, y) =
1

m

m∑
k=1

σ(Wk · x+Bk) · σ(Wk · y +Bk), (157)

G(x, y) = E [σ(W1 · x+B1) · σ(W1 · y +B1)] , (158)

Hm(x, y) =
1

m

m∑
k=1

A2
k(1 + ⟨x, y⟩)σ′(Wk · x+Bk) · σ′(Wk · y +Bk), (159)

H(x, y) = (1 + ⟨x, y⟩)E
[
A2

1σ
′(W1 · x+B1) · σ′(W1 · y +B1)

]
. (160)

For any x, y ∈ Q(R), we select z, w ∈ Nε such that |x−z| ≤ ε
√
d, |y−w| ≤ ε

√
d. Using triangular

inequality, we obtain that

|Gm(x, y)−G(x, y)| ≤ |Gm(x, y)−Gm(z, w)|+ |G(z, w)−G(x, y)|+ |Gm(z, w)−G(z, w)|,
(161)

|Hm(x, y)−H(x, y)| ≤ |Hm(x, y)−Hm(z, w)|+ |H(z, w)−H(x, y)|+ |Hm(z, w)−H(z, w)|.
(162)

The following lemmata provide the estimations for the terms on the right hand side.

Lemma F.5. Define the event

B = {|Ak|, |Wk,l|, |Bk| ≤M, k = 1, . . . ,m, l = 1, . . . , d}, (163)

where M =
√
3 logm. Then P(B) ≥ 1− (d+ 2)m−1/2.

Proof. If Z ∼ N(0, 1), then a classical Gaussian tail bound gives

P(|Z| ≥M) ≤ 2e−M2/2

√
2πM

≤ m−3/2, (164)

hence
P(B) ≥ 1−m(d+ 2)P(|Z| ≥M) ≥ 1− (d+ 2)m−1/2 (165)

Lemma F.6. Conditioning on the event B, we have

|Gm(x, y)−Gm(z, w)| < C1(logm)p+
1
2 ε, (166)

|Hm(x, y)−Hm(z, w)| < C1(logm)p+
3
2 ε, (167)

where the constant C1 > 0 depends only on d, R and σ.

Proof. Recall that we assume Ω̄ ⊂ Q(R) = [−R,R]d. Conditioning on B, for any x ∈ Q(R), we
have

|Wk · x+Bk| ≤
d∑

l=1

|Wk,l| · |xl|+ |Bk| ≤ dRM +M. (168)

By Assumption 5.2, |σ(r)| ≤ C ′(1 + |r|p), |σ′(r)| ≤ C ′(1 + |r|p) for some C ′ > 0. Then

|σ(Wk · x+Bk)| ≤ C ′((1 + (dR+ 1)M)p), (169)

hence

∥∇xσ(Wk · x+Bk)∥ = ∥Wk · σ′(Wk · x+Bk)∥ ≤ ∥Wk∥ · |σ′(Wk · x+Bk)|

≤
√
dM · C ′(1 + ((dR+ 1)M)p) ≤ C ′′Mp+1.

(170)
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where C ′′ depends only on σ, R and d. Thus, the Lipschitz constant of Gm is bounded by

sup
x,y∈Q(R)

∥∇Gm(x, y)∥ = sup
x,y

∥∇ 1

m

m∑
k=1

σ(Wk · x+Bk)σ(Wk · y +Bk)∥

≤ sup
x,y,k

∥∇(σ(Wk · x+Bk)σ(Wk · y +Bk))∥

≤
√
2 sup
x,y,k

∥∇x(σ(Wk · x+Bk)σ(Wk · y +Bk))∥

≤
√
2 sup

x,k
∥∇xσ(Wk · x+Bk)∥ · sup

y,k
|σ(Wk · y +Bk)|

≤ C ′′Mp+1 · C ′(1 + ((dR+ 1)M)p)

≤ C ′′′M2p+1

(171)

for some C ′′′ > 0 depending only on d, R and σ. This yields the conclusion.

The proof for Hm is similar.

Lemma F.7. We have
|G(z, w)−G(x, y)| ≤ C2ε, (172)

|H(z, w)−H(x, y)| ≤ C2ε, (173)

where C2 > 0 depends only on d and σ.

Proof. We have proved in Lemma F.3 that ∇xG(x, y) and ∇yG(x, y) is continuous, hence G(x, y)
is Lipschitz on Q(R), and by the explicit expression of ∇G, the Lipschitz constant LG depends only
on σ. Since |x− z| ≤

√
dε, |y − w| ≤

√
dε, we have

|G(z, w)−G(x, y)| ≤ |G(z, w)−G(z, y)|+ |G(z, y)−G(x, y)| ≤ 2LG

√
dε. (174)

The proof for H(x, y) is similar.

Lemma F.8. We have

P

(
sup

z,w∈Nε

|Gm(z, w)−G(z, w)| ≤ C3

√
logm

m

)
≥ 1− 2

(
2R

ε

)2d

m− 1
2−2d, (175)

P

(
sup

z,w∈Nε

|Hm(z, w)−H(z, w)| ≤ C3

√
logm

m

)
≥ 1− 2

(
2R

ε

)2d

m− 1
2−2d, (176)

where C3 > 0 depends only on d, R and σ.

Proof. For x, y ∈ Q(R), the random variable σ(W1 · x + B1) · σ(W1 · y + B1) is polynomially
bounded:

|σ(W1 · x+B1) · σ(W1 · y +B1)| ≤ (1 + (R

d∑
l=1

|W1,l|+B1)
p)2 (177)

hence it is clearly sub-exponential, and its sub-exponential norm has an upper bound c′ > 0 depending
only on σ and d. Thus, by Bernstein’s inequality (Section 2.8 of [39]), we have

P (|Gm(x, y)−G(x, y)| ≥ r) ≤ 2 exp

(
−c′′m ·min{ t

2

r′2
,
r

c′
}
)
, (178)

where c′′ > 0 is a universal constant.

Note that |Nε| = (2R/ε)d, hence

P
(

sup
z,w∈Nε

|Gm(z, w)−G(z, w)| < r

)
≥ 1− 2

(
2R

ε

)2d

exp

(
−c′′m ·min{ r

2

c′2
,
r

c′
}
)
. (179)
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By taking r =
√

(1+4d)c′2 logm
2c′′m , we obtain

P

(
sup

z,w∈Nε

|Gm(z, w)−G(z, w)| < C3

√
logm

m

)
≥ 1− 2

(
2R

ε

)2d

m− 1
2−2d. (180)

The proof for Hm and H is similar, and we also have

P

(
sup

z,w∈Nε

|Hm(z, w)−H(z, w)| < C3

√
logm

m

)
≥ 1− 2

(
2R

ε

)2d

m− 1
2−2d. (181)

Combining the above lemmata together, we obtain

sup
x,y∈Q(R)

|Gm(x, y)−G(x, y)| ≤ C1(logm)p+
1
2 ε+ C2ε+ C3

√
logm

m
(182)

sup
x,y∈Q(R)

|Hm(x, y)−H(x, y)| ≤ C1(logm)p+
3
2 ε+ C2ε+ C3

√
logm

m
(183)

with probability 1− 2
(
2R
ε

)2d
m−1/2−2d − (d+ 2)m−1/2. By taking ε = 1/m, we have

sup
x,y∈Q(R)

|Gm(x, y)−G(x, y)| ≤ C

√
logm

m
, (184)

sup
x,y∈Q(R)

|Hm(x, y)−H(x, y)| ≤ C

√
logm

m
(185)

with probability 1− cm−1/2, where the constants C and c depend only on d, R and σ.

Since Ω̄ ⊂ Q(R), we obtain

Lemma F.9.

sup
x,y∈Ω̄

|Kθ(0)(x, y)−K(x, y)| ≤ C

√
logm

m
(186)

for some constant C > 0 depending only on Ω and σ, with probability 1−O(m−1/2).

The proof for the derivatives of Kθ(0) and K is similar. Following a similar discussion as above, it is
easy to prove

Lemma F.10.

sup
x,y∈Ω̄

|LxKθ(0)(x, y)− LxK(x, y)| ≤ C

√
logm

m
(187)

sup
x,y∈Ω̄

|LyKθ(0)(x, y)− LyK(x, y)| ≤ C

√
logm

m
(188)

sup
x,y∈Ω̄

|LxLyKθ(0)(x, y)− LxLyK(x, y)| ≤ C

√
logm

m
(189)

for some constant depending only on Ω and σ, with probability 1−O(m−1/2).
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F.2 Convergence during training

Lemma F.11. Conditioning on the event B defined in Definition F.5, along the training procedure,
the parameters of the network satisfies:

sup
j

sup
t∈[0,T ]

|θj(t)− θj(0)| = O(
(logm)2p√

m
) (190)

for θj = Ak, Wk,l or Bk, and the constant p ≥ 1 is defined in Assumption 5.2. Here, the convention
O hides the constants depending on d, T , Ω, σ, f and L.

Proof. Recall that the network is set to be

ûθ(t)(x) =
1√
2m

2m∑
k=1

Ak(t)σ(αk(t, x)) +D(t), (191)

where αk(t, x) =Wk(t) · x+Bk(t). Then

Lûθ(t)(x) =
1√
2m

2m∑
k=1

AkLσ(αk(t, x))

=
1√
2m

2m∑
k=1

Ak

 d∑
i,j=1

aijWk,iWk,jσ
′′(αk(t, x))


+

1√
2m

2m∑
k=1

Ak

 d∑
j=1

b̄jWk,jσ
′(αk(t, x)) + cσ(αk(t, x))

 ,

(192)

where b̄j = bj +
∑d

i=1 ∂iaij .

The gradient flow (9) can be explicitly computed as follows:

d

dt
Ak = − 2

Nu

Nu∑
i=1

1√
2m

σ(αk(t,Xi)) · ûθ(t)(Xi)

− 2

Nf

Nf∑
j=1

1√
2m

Lσ(αk(t, Yj)) · (Lûθ(t)(Yj)− f(Yj)),

(193)

d

dt
Wk,l = − 2

Nu

Nu∑
i=1

1√
2m

AkXi,lσ(αk(t,Xi)) · ûθ(t)(Xi)

− 2

Nf

Nf∑
j=1

1√
2m

Ak

(
2

d∑
i=1

ailWk,i · σ′′(αk(t, x)) + b̄lσ
′(αk(t, x))

)
· (Lûθ(t)(Yj)− f(Yj))

− 2

Nf

Nf∑
j=1

1√
2m

Ak

(
d∑

m,n=1

amnWk,mWk,n · Yj,lσ′′′(αk(t, Yj))

)
· (Lûθ(t)(Yj)− f(Yj))

− 2

Nf

Nf∑
j=1

1√
2m

Ak

(
d∑

m=1

b̄mWk,m · Yj,lσ′′(αk(t, Yj))

)
· (Lûθ(t)(Yj)− f(Yj))

− 2

Nf

Nf∑
j=1

1√
2m

Ak (cYj,lσ
′(αk(t, Yj))) · (Lûθ(t)(Yj)− f(Yj)),

(194)
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d

dt
Bk = − 2

Nu

Nu∑
i=1

1√
2m

Akσ(αk(t,Xi)) · ûθ(t)(Xi)

− 2

Nf

Nf∑
j=1

1√
2m

Ak

(
d∑

m,n=1

amnWk,mWk,nσ
′′′(αk(t, Yj))

)
· (Lûθ(t)(Yj)− f(Yj))

− 2

Nf

Nf∑
j=1

1√
2m

Ak

(
d∑

m=1

b̄mWk,m · σ′′(αk(t, Yj)) + cσ′(αk(t, Yj))

)
· (Lûθ(t)(Yj)− f(Yj)).

(195)
If x ∈ Q(R) = [−R,R]d, then we have the following estimation:

|αk(t, x)| = |Wk(t) · x+Bk(t)| ≤ R

d∑
l=1

|Wk,l(t)|+ |Bk(t)|, (196)

hence by Assumption 5.2 and Hölder’s inequality, for some p ≥ 1 depending on σ, we have

|σ(αk(t, x))| ≲ 1 + |αk(t, x)|p ≲ 1 +

d∑
l=1

|Wk,l(t)|p + |Bk(t)|p, (197)

|σ′(αk(t, x))| ≲ 1 +

d∑
l=1

|Wk,l(t)|p + |Bk(t)|p, (198)

|σ′′(αk(t, x))| ≲ 1 +

d∑
l=1

|Wk,l(t)|p + |Bk(t)|p, (199)

and

|Lσ(αk(t, x))|

=

∣∣∣∣∣∣
d∑

i,j=1

aijWk,i(t)Wk,j(t)σ
′′(αk(t, x)) +

d∑
j=1

b̄jWk,j(t)σ
′(αk(t, x)) + cσ(αk(t, x))

∣∣∣∣∣∣
≲

d∑
i,j=1

(
|Wk,i(t)|3 + |Wk,j(t)|3 + |σ′′(αk(t, x))|3

)
+

d∑
j=1

(
|Wk,j(t)|2 + |σ′(αk(t, x))|2

)
+ |σ(αk(t, x))|

≲1 +

d∑
l=1

|Wk,l|3p + |Bk|3p.

(200)
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for some p ≥ 1. Here, we use the mean value inequality x1 . . . xn ≲ xn1+· · ·+xnn for x1, . . . , xn ≥ 0.
Then, by Cauchy’s inequality, we obtain that∣∣∣∣ ddt |Ak(t)−Ak(0)|

∣∣∣∣ ≤ ∣∣∣∣ ddt (Ak(t)−Ak(0))

∣∣∣∣
≤
√

2

m

∣∣∣∣∣∣ 1

Nu

Nu∑
i=1

σ(α(t,Xi)) · ûθ(t)(Xi) +
1

Nf

Nf∑
j=1

Lσ(αk(t, Yj)) · (Lûθ(t)(Yj)− f(Yj))

∣∣∣∣∣∣
≤
√

2

m

√√√√ 1

Nu

Nu∑
i=1

|σ(α(t,Xi))|2

√√√√ 1

Nu

Nu∑
i=1

|ûθ(t)(Xi)|2

+

√
2

m

√√√√ 1

Nu

Nf∑
j=1

|Lσ(α(t, Yj))|2

√√√√ 1

Nu

Nf∑
j=1

|Lûθ(t)(Yj)− f(Yj)|2

≲

√
2

m

(
1 +

d∑
l=1

|Wk,l(t)|p + |Bk(t)|p + 1 +

d∑
l=1

|Wk,l(t)|3p + |Bk(t)|3p
)

·
√
L̂(ûθ(t))

≲

√
2

m

(
1 +

d∑
l=1

|Wk,l(t)|3p + |Bk(t)|3p
)

·
√
L̂(ûθ(t)).

(201)

Likewise, we also have∣∣∣∣ ddt |Wk,l(t)−Wk,l(0)|
∣∣∣∣ ≲ 1√

m

(
1 + |Ak(t)|4p +

d∑
l=1

|Wk,l(t)|4p + |Bk(t)|4p
)

·
√
L̂(ûθ(t)),

(202)∣∣∣∣ ddt |Bk(t)−Bk(0)|
∣∣∣∣ ≲ 1√

m

(
1 + |Ak(t)|4p +

d∑
l=1

|Wk,l(t)|4p + |Bk(t)|4p
)
·
√
L̂(ûθ(t)). (203)

Thus, if we define

Fk(t) = |Ak(t)−Ak(0)|+
d∑

l=1

|Wk,l(t)−Wk,l(0)|+ |Bk(t)−Bk(0)|, (204)

which is a Lipschitz function, then

|Ak(t)|4p +
d∑

l=1

|Wk,l(t)|4p + |Bk(t)|4p ≲ Fk(t)
4p + |Ak(0)|4p +

d∑
l=1

|Wk,l(0)|4p + |Bk(0)|4p.

(205)
Conditioning on the event B which is defined in Lemma F.5, we have

|Ak(0)|4p +
d∑

l=1

|Wk,l(0)|4p + |Bk(0)|4p ≲ (logm)2p, (206)

hence ∣∣∣∣ ddtFk(t)

∣∣∣∣ ≤ (logm)2p√
m

(1 + Fk(t)
4p) ·

√
L̂(ûθ(t)), (207)

where C depends only on d, Ω, L, σ and L̂(0). Since L̂(ûθ(t)) is decreasing along the gradient flow,
then ∣∣∣∣ ddtFk(t)

∣∣∣∣ ≤ (logm)2p√
m

(1 + Fk(t)
4p) ·

√
L̂(uθ(0)) ≲

(logm)2p√
m

(1 + Fk(t)
4p). (208)

Therefore, conditioning on B, for m sufficiently great, we have

F (t) = |F (t)− F (0)| ≲ T (logm)2p√
m

(209)

for t ∈ [0, T ].
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Lemma F.12. Conditioning on the event B, we have

sup
x,y∈Ω̄, t∈[0,T ]

∣∣Kθ(t)(x, y)−Kθ(0)(x, y)
∣∣ = O

(
(logm)

5p+3
2

√
m

)
. (210)

Proof. By definition, we have

Kθ(t)(x, y) = 1 +Gm(t, x, y) +Hm(t, x, y) (211)

where

Gm(t, x, y) =
1

2m

2m∑
k=1

σ(αk(t, x)) · σ(αk(t, y)), (212)

Hm(t, x, y) =
1

2m

2m∑
k=1

Ak(t)
2(1 + ⟨x, y⟩)σ′(αk(t, x)) · σ′(αk(t, y)). (213)

Denote ξk(t) = σ(αk(t, x)), ηk(t) = σ(αk(t, y)), αk(t, x) = Wk · x + Bk. Conditioning on the
event B, we have

|αk(0, x)| ≲
√
logm (214)

and

|αk(t, x)− αk(0, x)| = |(Wk(t)−Wk(0)) · x+Bk(t)−Bk(0))| ≲
(logm)2p√

m
, (215)

then by mean value theorem,

|ξk(t)− ξk(0)| = |σ(αk(t, x))− σ(αk(0, x))|
= |σ′(ζ)| · |αk(t, x)− αk(0, x)|

≲ (1 + ζp)
(logm)2p√

m

(216)

for some value ζ between αk(t, x) and αk(0, x). Then ζ = O(
√
logm), and

|ξk(t)− ξk(0)| ≲ (1 + (
√

logm)p)
(logm)2p√

m
. (217)

The same estimation also holds for |ηk(t)− ηk(0)|. Thus,

|ξk(t)ηk(t)− ξk(0)ηk(0)|
≤|ξk(t)− ξk(0)| · |ηk(t)− ηk(0)|+ |ξk(t)− ξk(0)| · |ηk(0)|+ |ξk(0)| · |ηk(t)− ηk(0)|

≲

(
(1 + (

√
logm)p)

(logm)2p√
m

)2

+ 2(1 + (
√
logm)p)

(logm)2p√
m

·
√
logm

≲
(logm)

5p+1
2

√
m

.

(218)

In other words,

|σ(αk(t, x)) · σ(αk(t, y))− σ(αk(0, x)) · σ(αk(0, y)) ≲
(logm)

5p+1
2

√
m

. (219)

Recall that

Gm(t, x, y) =
1

2m

2m∑
k=1

σ(αk(t, x)) · σ(αk(t, y)), (220)

then

|Gm(t, x, y)−Gm(0, x, y)| ≲ (logm)
5p+1

2

√
m

. (221)
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Similarly with (219), we have

|σ′(αk(t, x)) · σ′(αk(t, y))− σ′(αk(0, x)) · σ′(αk(0, y))| ≲
(logm)

5p+1
2

√
m

, (222)

hence
|Hm(t, x, y)−Hm(0, x, y)|

≤ 1

2m

2m∑
k=1

|Ak(t)|2|1 + ⟨x, y⟩| · |σ′(αk(t, x)) · σ′(αk(t, y))− σ(αk(0, x)) · σ(αk(0, y))|

≲
1

2m

2m∑
k=1

M2(1 + dR2) · (logm)
5p+1

2

√
m

≲
(logm)

5p+3
2

√
m

.

(223)

Combining (221) and (223), we conclude that

sup
x,y∈Ω̄, t∈[0,T ]

∣∣Kθ(t)(x, y)−Kθ(0)(x, y)
∣∣ = O

(
(logm)

5p+3
2

√
m

)
. (224)

Lemma F.13. Conditioning on B, we have

sup
x,y∈Ω̄, t∈[0,T ]

∣∣LxKθ(t)(x, y)− LxKθ(0)(x, y)
∣∣ = O

(
(logm)

5p+5
2

√
m

)
, (225)

sup
x,y∈Ω̄, t∈[0,T ]

∣∣LyKθ(t)(x, y)− LyKθ(0)(x, y)
∣∣ = O

(
(logm)

5p+5
2

√
m

)
, (226)

sup
x,y∈Ω̄, t∈[0,T ]

∣∣LxLyKθ(t)(x, y)− LxLyKθ(0)(x, y)
∣∣ = O

(
(logm)

5p+7
2

√
m

)
. (227)

Proof. For brevity, we only provide the proof for LxKθ(t) here. The proof for LyKθ(t) and
LxLyKθ(t) are exactly the same.

Note that
LxKθ(t)(x, y) = 1 + LxGm(t, x, y) +Hm(t, x, y), (228)

where

Gm(t, x, y) =
1

2m

2m∑
k=1

Lxσ(αk(t, x)) · σ(αk(t, y)), (229)

Hm(t, x, y) =
1

2m

2m∑
k=1

Ak(t)
2Lx[(1 + ⟨x, y⟩)σ′(αk(t, x))] · σ′(αk(t, y)). (230)

By computation, we have

Lxσ(αk(t, x)) =

d∑
i,j=1

aijWk,i(t)Wk,j(t)σ
′′(αk(t, x))+

d∑
j=1

b̄jWk,j(t)σ
′(αk(t, x))+cσ(αk(t, x)),

(231)
where b̄j = bj +

∑d
i=1 ∂iaij . Similarly with (219), for any x, y ∈ Ω̄, t ∈ [0, T ], conditioning on B,

we have

|σ′(αk(t, x)) · σ(αk(t, y))− σ′(αk(0, x)) · σ(αk(0, y)) ≲
(logm)

5p+1
2

√
m

, (232)

|σ′′(αk(t, x)) · σ(αk(t, y))− σ′′(αk(0, x)) · σ(αk(0, y)) ≲
(logm)

5p+1
2

√
m

, (233)
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hence

|Lxσ(αk(t, x)) · σ(αk(t, y))− Lxσ(αk(0, x)) · σ(αk(0, y))|

≤
d∑

i,j=1

|aij ||Wk,i(t)||Wk,j(t)||σ′′(αk(t, x))σ(αk(t, y))− σ′′(αk(0, x))σ(αk(0, y))|

+

d∑
j=1

|b̄j ||Wk,j(t)||σ′(αk(t, x))σ(αk(t, y))− σ′(αk(0, x))σ(αk(0, y))|

+ |c||σ(αk(t, x))σ(αk(t, y))− σ(αk(0, x))σ(αk(0, y))|

≲
d∑

i,j=1

(
√
logm)2

(logm)
5p+1

2

√
m

+

d∑
j=1

√
logm

(logm)
5p+1

2

√
m

+
(logm)

5p+1
2

√
m

≲
(logm)

5p+3
2

√
m

.

(234)

Thus,
|LxGm(t, x, y)− LxGm(0, x, y)|

=
1

2m

2m∑
k=1

|Lxσ(αk(t, x)) · σ(αk(t, y))− Lxσ(αk(0, x)) · σ(αk(0, y))|

≲
(logm)

5p+3
2

√
m

.

(235)

Likewise, we have

|LxHm(t, x, y)− LxHm(0, x, y)| ≲ (logm)
5p+5

2

√
m

. (236)

In conclusion, we have

sup
x,y∈Ω̄, t∈[0,T ]

∣∣LxKθ(t)(x, y)− LxKθ(0)(x, y)
∣∣ = O

(
(logm)

5p+5
2

√
m

)
. (237)

Now we begin to prove Theorem 5.4.

Proof. (of Theorem 5.4). By Lemma F.9 and Lemma F.12, we have

sup
x,y∈Ω̄,t∈[0,T ]

|Kθ(t)(x, y)−K(x, y)| = O

(√
logm

m
+

(logm)
5p+3

2

√
m

)
(238)

with probability 1−O(m− 1
2 ). By Lemma F.10 and Lemma F.13, we have

sup
x,y∈Ω̄, t∈[0,T ]

∣∣LxKθ(t)(x, y)− LxK(x, y)
∣∣ = O

(√
logm

m
+

(logm)
5p+5

2

√
m

)
, (239)

sup
x,y∈Ω̄, t∈[0,T ]

∣∣LyKθ(t)(x, y)− LyK(x, y)
∣∣ = O

(√
logm

m
+

(logm)
5p+5

2

√
m

)
, (240)

sup
x,y∈Ω̄, t∈[0,T ]

∣∣LxLyKθ(t)(x, y)− LxLyK(x, y)
∣∣ = O

(√
logm

m
+

(logm)
5p+7

2

√
m

)
(241)

with probability 1−O(m− 1
2 ).
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F.3 Proofs for deep neural networks

In this section, we prove Theorem 5.4 for deep neural networks, while may omit some tedious
computations in the proof.

In this section, the activation function of the network is set to be σ = tanh, the depth of the network
is L ≥ 9, and the domain Ω is assumed to be convex.

It is easy to see that the NNK of ûθ(x) coincides with that of û′θ(x) defined by

z1(x) =W 0x+ b0, zl+1(x) =
1

√
ml

W lσ(zl(x)) + bl, û′θ(x) = zL+1(x), (242)

wherem0 = d,m1, . . . ,mL,mL+1 = 1 are the widths of the layers of û′θ, andW l ∈ Rml×ml+1 , bl ∈
Rml+1 are initialized as independent standard Gaussian random variable. We also recall that

cm ≤ m1, . . . ,mL−1 ≤ Cm

for some 0 < c < C.

The neural network kernel (NNK) of the l-th layer zl is defined by

Kl
θ,ij(x, y) = ∇θlz

l
i(x) · ∇θlz

l
j(y), (243)

where θl denotes the parameters of the first l layers. As an analogue of (146), the NNK of zl+1(x) is
computed by

Kl+1
θ,ij (x, y) = δij +

δij
ml

ml∑
k=1

σ(zlk(x))σ(z
l
k(y))+

1

ml

ml∑
p,q=1

W l
ipW

l
jqσ

′(zlp(x))σ
′(zlq(y))K

l
θ,pq(x, y).

(244)

Our proof for the convergence of NNK to NTK at initial time (Lemma F.14 and Theorem F.15)follows
the discussions in Section 3.1 of [17].

Lemma F.14. As m → ∞, the l-th layer zl(x) converges weakly in C2 to gl(x), where gl(x) is a
Gaussian process with i.i.d. rows and covariance function Gl given by

G1(x, y) = 1 + ⟨x, y⟩,
Gl+1(x, y) = 1 + Ef∼N(0,Gl)[σ(f(x))σ(f(y))].

(245)

Proof. The smoothness of zl and gl arises from the smoothness of σ = tanh.

Our proof is by induction. The proof for l = 1 is trivial, since

Cov(z1i (x), z
1
i (y)) = Cov(W 0

i x+ b0,W 0
i y + b0) = 1 + ⟨x, y⟩, i = 1, . . . ,m1 (246)

and z1i (x), z
1
j (x) are independent for i ̸= j.

Assume that the statement of this lemma holds for 1, . . . , l − 1. For l ≥ 2, it is well-known (see
Proposition 2.1 of [20] for example) that for every fixed x ∈ Ω̄, zl(x) converges weakly to gl(x). By
Lemma B.1 of [17], in order to complete the proof, it suffices to show that for any δ ∈ (0, 1), there
exists some constant Cl depending on l, δ, σ, ml and Ω such that

∥zl(x)∥C2,1 ≤ Cl. (247)

Define φh(x) = 1√
mh
σ(Wh−1x+ bh−1) and φl(x) =W l−1x+ bl−1. Then

zl(x) = φl ◦ φl−1 ◦ · ◦ φ1(x). (248)

By Lemma B.4 of [17], there exists a constant C1 depending only on Ω, σ and δ such that

P(A1) > 1− δ

l
, where A1 = {∥φ1(x)∥C2,1 ≤ C1}. (249)
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Then, by Lemma B.4 and 2.1 of [17], and using the fact that W 0 and W 1 are independent, we obtain
that there exists some constant C2 depending only on Ω, σ and δ such that

P(∥φ2 ◦ φ1∥C2,1 ≥ C2) ≥ P(∥φ2 ◦ φ1∥C2,1 ≤ C2, A1)

= E(IA1P(∥φ2 ◦ φ1∥C2,1 ≤ C2|A1))

≥ P (A1) · (1−
δ

l
)

≥ 1− 2

l
δ.

(250)

Then, repeating this procedure, we can obtain the conclusion.

Theorem F.15. For any l = 1, . . . , L+ 1 and any multi-indices α and β with |α|, |β| ≤ 2, with ml

fixed, as m→ ∞, we have

∇α
x∇β

yK
l
θ,ij(x, y)

p→ δij∇α
x∇β

yK
l(x, y) (251)

in C0, where the neural tangent kernel Kl(x, y) is determined by

K1(x, y) = 1 + ⟨x, y⟩,
Kl+1(x, y) = 1 +Gl+1(x, y) +Kl(x, y)Ġl+1(x, y),

(252)

and
Ġl+1(x, y) = Ef∼N(0,Gl)[σ

′(f(x))σ′(f(y))]. (253)

Proof. The smoothness of Kl
θ,ij and Kl arises from the smoothness of σ = tanh.

The proof is by induction. For l = 1, the proof is trivial:
K1

θ,ij(x, y) = δij(1 + ⟨x, y⟩) = δijK
1(x, y). (254)

Assume that the statement is true for 1, . . . , l − 1. For l ≥ 2, the following pointwise convergence is
well-known (we refer to [1, 43] for details):

Kl
θ,ij(x, y)

w→ δijK
l(x, y), x, y ∈ Ω̄. (255)

In order to extend this pointwise convergence to the uniform convergence of kernel functions and
their derivatives, by Lemma B.2 of [17], it suffices to verify that for any δ ∈ (0, 1), there exists some
constant Cl depending only on l, δ and Ω such that

P(∥Kθ
l,ij(x, y)∥C(2,1),(2,1)(Ω̄×Ω̄) ≤ Cl) > 1− δ, (256)

where C(2,1),(2,1)(Ω̄× Ω̄) denotes the set of all the functions k(x, y), x, y ∈ Ω̄ such that k(x, y) is
C2,1 for x with y fixed, and is also C2,1 for y with x fixed.

By basic inequality 2ab ≤ a2 + b2 and Proposition B.7 of [17], for any multi indices α, β with
|α|, |β| ≤ 3, we have

E

[
sup

x,y∈Ω̄

∣∣Dα
xD

α
y σ(g

l
k(x))σ(g

l
k(y))

∣∣] < C <∞ (257)

for some constant C > 0 depending only on Ω and l, where gl is the Gaussian process defined in
Lemma F.14. Then, by Lemma F.14 and the induction hypothesis, we obtain that for any M > 0, for
any ml fixed and as cm < m1, . . . ,ml−1 < Cm, m→ ∞, we have

lim
m→∞

E

[
sup

x,y∈Ω̄

∣∣∣∣∣ δijml

ml∑
k=1

Dα
xD

β
yσ(z

l
k(x))σ(z

l
k(y))

∣∣∣∣∣ ∧M
]

≤ lim
m→∞

E

[
sup

x,y∈Ω̄

1

ml

ml∑
k=1

∣∣Dα
xD

β
yσ(z

l
k(x))σ(z

l
k(y))

∣∣ ∧M]

=E

[
sup

x,y∈Ω̄

1

ml

ml∑
k=1

∣∣Dα
xD

α
y σ(g

l
k(x))σ(g

l
k(y))

∣∣ ∧M]

≤E

[
sup

x,y∈Ω̄

1

ml

ml∑
k=1

∣∣Dα
xD

α
y σ(g

l
k(x))σ(g

l
k(y))

∣∣] < C <∞,

(258)
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hence, if m is sufficiently great, then there exists a constant C ′ > 0 depending only on l and Ω such
that

P

(
sup

x,y∈Ω̄

∣∣∣∣∣ δijml

ml∑
k=1

Dα
xD

β
yσ(z

l
k(x))σ(z

l
k(y))

∣∣∣∣∣ > M

)

≤ 1

M
E

[
sup

x,y∈Ω̄

∣∣∣∣∣ δijml

ml∑
k=1

Dα
xD

β
yσ(z

l
k(x))σ(z

l
k(y))

∣∣∣∣∣ ∧M
]
≤ C ′

M
.

(259)

Thus, we can choose M sufficiently great (depending on δ and C ′) such that

P

(
sup

x,y∈Ω̄

∣∣∣∣∣Dα
xD

β
y

(
δij
ml

ml∑
k=1

σ(zlk(x))σ(z
l
k(y))

)∣∣∣∣∣ > M

)
< δ. (260)

Next, for the estimation of the remaining terms of Kl
θ,ij(x, y) in (244), we make the following

decomposition:
1

ml

ml∑
p,q=1

W l
ipW

l
jqσ

′(zlp(x))σ
′(zlq(y))K

l
θ,pq(x, y)

=
1

ml

ml∑
p=1

W l
ipW

l
jpσ

′(zlp(x))σ
′(zlp(y))K

l
θ,pp(x, y)

+
1

ml

∑
p̸=q

W l
ipW

l
jqσ

′(zlp(x))σ
′(zlq(y))K

l
θ,pq(x, y)

(261)

Similarly with (260, we can also prove that for m sufficiently great, we have

P

∥∥∥∥∥ 1

ml

ml∑
p=1

W l
ipW

l
jpσ

′(zlp(x))σ
′(zlp(y))K

l
θ,pp(x, y)

∥∥∥∥∥
C3,3(Ω̄×Ω̄)

> M

 < δ. (262)

For the second term on the right-hand side of (261), we first note that there exists some constant C ′′

depending only on l and Ω such that

P

 sup
x,y∈Ω̄

1

m2
l

∑
p̸=q

(
∇α

x∇β
yσ

′(zlp(x))σ
′(zlq(y))K

l
θ,pq(x, y)

)2
> M

 ≤ C ′′

M
, (263)

for any M > 0 (the proof is similar with (260)). In other words,

P(∥F (x, y)∥C3,3(Ω̄×Ω̄ > M) <
C ′′

M
, (264)

where
F (x, y) : Ω̄× Ω̄ → Rml(ml−1), Fpq(x, y) =

1

ml
σ′(zlp(x))σ

′(zlq(y)). (265)

We also note that, by the tail estimation for Gaussian distributions, the map

φ : Rml(ml−1) → R, φ(x) =
∑
p̸=q

W l
ipW

l
jqxpq (266)

satisfies
P(∥φ∥C3 > C logN) ≤ N−10, ∀N > 0 (267)

for some universal constant C > 0. Thus, by selecting appropriate M and N , we can prove that there
exists some constant C ′′′ depending only on δ, Ω and l such that

P(∥φ ◦ F (x, y)∥C(2,1),(2,1)(Ω̄×Ω̄ > C ′′′) ≤ δ, (268)

in other words,

P

∥∥∥∥∥ 1

ml

ml∑
p,q=1

W l
ipW

l
jqσ

′(zlp(x))σ
′(zlq(y))K

l
θ,pq(x, y)

∥∥∥∥∥
C3,3(Ω̄×Ω̄)

> M

 < δ. (269)
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Combining (260), (269) and (262) together, we obtain (256), hence complete the proof of this
theorem.

In the following results (Lemma F.16, Theorem F.17 and Theorem F.18), we establish convergence
of NNK during training. Since the network ûθ(x) = 1√

2
(zL+1

1 (x) − zL+1
2 (x)) consists of two

independent parts zL+1
1 and zL+1

2 , we only need to prove for the two parts separately. Therefore, for
brevity of computations, we prove the results for the fully-connected network û′θ(x) defined in (242)
instead, and the proofs for ûθ are almost the same.

Lemma F.16. Define B′ to be the event that all the parameters θk = W l
ij or bli are bounded by

M = c
√
logm at the initial time t = 0:

B′ = {|W l
ij |, |bli| ≤M}, (270)

then for some constant c, C > 0, we have P(B) ≥ 1− Cm−1/2.

Proof. The proof is similar with that of Lemma F.5.

Theorem F.17. Conditioning on the event B′, along the training procedure, for any T > 0 fixed, the
parameters θk =W l

ij or bli of the network satisfies

sup
k

sup
t∈[0,T ]

|θk(t)− θk(0)| = O(

√
logm

m
). (271)

Proof. This Lemma is an analogue of Lemma F.11. Recall that the evolution equation of θk is

d

dt
θk = − 2

Nu

Nu∑
i=1

∂zL+1(Xi)

∂θk
· zL+1(xi)−

2

Nf

Nf∑
j=1

∂LzL+1(Yj)

∂θk
· (LzL+1(Yj)− f(Yj)). (272)

For any n = 1, . . . , d, by direct computations we have

∂

∂xn
zL+1(x) =

1
√
m1 · · ·mL

WL · diag(σ̇(zL(x))) · · ·W 1 · diag(σ̇(z1(x))) ·W 0
·,n, (273)

where W 0
·,n is the n-th column of W 0. Next, we compute the derivatives of ∂

∂xn
zL+1(x) with respect

to W l
ij . Note that

∂

∂WL
1k

(
∂

∂xn
zL+1(x)

)
=

1
√
m1 · · ·mL

σ̇(zLk (x)) ·WL−1
k,· · · ·W 1 · diag(σ̇(z1(x))) ·W 0

·,n. (274)

Define the matrix norm ∥ · ∥ by ∥M∥ =
∑

i,j |Mij | for M = (Mij). It is well-known that
∥MN∥ ≤ ∥M∥ · ∥N∥. Also note that σ = tanh has bounded derivative |σ̇| ≤ C. Then we have∣∣∣∣ ∂

∂WL
1k

(
∂

∂xn
zL+1(x)

)∣∣∣∣ ≤ ∥WL−1
k,· ∥ · · · ∥W 0

·,n∥√
m1 · · ·mL

≤ ∥WL−1∥ · · · ∥W 0∥
√
m1 · · ·mL

≤ C
√
m1 · · ·mL

(1 +
∑
l,i,j

|W l
ij |)L

(275)

Likewise, for other parameters W l
ij , l = 0, . . . , L− 1, we can also prove that (we omit the tedious

computations here) ∣∣∣∣∣ ∂

∂W l
ij

(
∂

∂xn
zL+1(x)

)∣∣∣∣∣ ≤ C
√
m1 · · ·mL

(1 +
∑
l,i,j

|W l
ij |)α, (276)

∣∣∣∣∣ ∂

∂W l
ij

(
∂2

∂xn∂xm
zL+1(x)

)∣∣∣∣∣ ≤ C
√
m1 · · ·mL

(1 +
∑
l,i,j

|W l
ij |)α (277)
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for some α depending only on L. Combining (276), (277) with (272), we obtain that∣∣∣∣∣∣ ∂∂t
∑
l,i,j

∣∣W l
ij(t)−W l

ij(0)
∣∣∣∣∣∣∣∣

≤C(mL +mLmL − 1 + · · ·+m1m0 +m0d)√
m1 · · ·mL

(1 +
∑
l,i,j

|W l
ij(t)|)α.

(278)

Recall that L ≥ 9 and cm ≤ m1, . . . ,mL ≤ Cm, hence∣∣∣∣∣∣ ∂∂t
∑
l,i,j

∣∣W l
ij(t)−W l

ij(0)
∣∣∣∣∣∣∣∣ ≤ C

m5/2
(1 +

∑
l,i,j

|W l
ij(t)|)α. (279)

We also note that conditioning on B′, we have∑
l,i,j

|W l
ij(0)| ≤ Cm2

√
logm. (280)

Finally, following the same procedure from (204) to (208) in the proof of Lemma F.11, we can prove
that

F (t) ≲ T

√
logm√
m

(281)

for m sufficiently great, where

F (t) =
∑
l,i,j

|W l
ij(t)−W l

ij(0)|. (282)

This completes the proof.

Since mL+1 = 1, we denote Kθ(x, y) = KL+1
θ,11 (x, y) for simplicity.

Theorem F.18. Conditioning on B′, for l = 1, . . . , L+ 1, we have

sup
x,y∈Ω̄,t∈[0,T ]

|Kθ(t)(x, y)−Kθ(0)(x, y)| → 0 (283)

as m→ ∞.

Proof. We start by estimating the perturbation of zl(θ, x). Note that for l = 1, we have

zl(θ(t), x)− zl(θ(0), x) = (W 0(t)−W 0(0)x+ (b0(t)− b0(0)). (284)

The result (271) in the proof of Lemma F.17 in fact implies that ∥W 0(t) −W 0(0)∥22 ≲ logm
m and

|b0(t)− b0(0)|2 ≲ logm
m , where ∥ · ∥2 is the matrix 2-norm and | · | is the Euclidean norm. Thus, we

obtain that
sup
x

|zl(θ(t), x)− zl(θ(0), x)|2 ≲
logm

m
. (285)

Then, for l = 2, we note that

z2(θ(t), x)− z2(θ(0), x) =
1

√
m1

(W 1(t)−W 1(0))σ(z1(θ(t), x))

+
1

√
m1

W 1(0)(σ(z1(θ(t), x))− σ(z1(θ(0), x))

+ (b1(t)− b1(0)).

(286)

Again, by (271), we have ∥W 1(t)−W 1(0)∥22 ≲ logm
m and |b0(t)− b0(0)|2 ≲ logm

m . Using the fact
that |σ′| is bounded, we also have

|σ(z1(θ(t), x))− σ(z1(θ(0), x)|2 ≤ C|zl(θ(t), x)− zl(θ(0), x)|2 ≲
logm

m
. (287)
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We also note that ∥ 1√
ml
W 1(0)∥22 ≲ logm conditioning on B′. Therefore, we obtain that

sup
x

|σ(z1(θ(t), x))− σ(z1(θ(0), x)|2 ≲
(logm)2

m
. (288)

Repeating this procedure, we can prove that for any l = 1, . . . , L, we have

sup
x

|σ(zl(θ(t), x))− σ(zl(θ(0), x)|2 ≲
(logm)l

m
. (289)

Next, we estimate the perturbation of Dθz
l = (

∂zl
i

∂θj
). Denote θl to be the parameters of the first l

layers.

For l = 1, since zl(θ, x) is linear with respect to θ, we have∥∥Dθ1z1i (θ(t), x)−Dθ1z1(θ(0), x)
∥∥2
2
= 0, i = 1, . . . ,m1. (290)

Moreover, it is easy to see that ∥∥Dθ1z1(θ(0), x)
∥∥2
2
≤ C <∞, (291)

where C > 0 depends only on Ω.

Then, for l = 2, note that
∂z2i (θ, x)

∂W 1
ij

=
1

√
m1

σ(z1j (θ, x)), (292)

Dθ1z2i (θ, x) =
1

√
m1

m1∑
j=1

W 1
ijDθ1σ(z1j (θ, x)). (293)

Thus, using (292), (291) and the fact that ∥ 1
m1
W 1

ij∥22 ≲ logm, it is easy to prove that (with some
tedious computations omitted) conditioning on B′, we have

∥Dθ2z2i (θ(t), x)−Dθ2z2i (θ(0), x)∥22 ≲
logm

m
, (294)

∥Dθ2z2(θ(0), x)∥22 ≲ logm. (295)

Repeating this procedure for l = 1, . . . , L+ 1, we conclude that

|Dθz
L+1(θ(0), x)|2 ≲ (logm)α, (296)

|Dθz
L+1(θ(t), x)−Dθz

L+1(θ(0), x)|2 ≲
(logm)α

m
, (297)

where α > 0 is a constant depending only on L.

Finally, since
Kθ(x, y) = ⟨Dθz

L+1(θ, x), Dθz
L+1(θ, x)⟩, (298)

by (296), (297) and Cauchy-Schwarz inequality, we conclude that conditioning on B′, we have

sup
x,y∈Ω̄,t∈[0,T ]

|Kθ(t)(x, y)−Kθ(0)(x, y)| ≲
(logm)α√

m
. (299)

Similarly with Theorem F.18, we also have

Theorem F.19. Conditioning on B′, for l = 1, . . . , L+ 1, we have

sup
x,y∈Ω̄,t∈[0,T ]

|LxKθ(t)(x, y)− LxKθ(0)(x, y)| → 0, (300)

sup
x,y∈Ω̄,t∈[0,T ]

|LyKθ(t)(x, y)− LyKθ(0)(x, y)| → 0, (301)

sup
x,y∈Ω̄,t∈[0,T ]

|LxLyKθ(t)(x, y)− LxLyKθ(0)(x, y)| → 0, (302)

as m→ ∞.
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Proof. The proof is similar with that of Theorem F.18.

Combining Theorem F.15, F.18 and F.19 together, we complete the proof for Theorem 5.4 (II). We
note that, as discussed earlier in this section, although Theorem F.15, F.18 and F.19 are proved for û′θ,
the proofs for ûθ are almost the same. This is because the network ûθ(x) = 1√

2
(zL+1

1 (x)− zL+1
2 (x))

consists of two independent parts zL+1
1 and zL+1

2 , both of which are fully-connected networks in the
same form of û′θ, and we only need to prove for the two parts separately.

G Proof of Lemma 5.6

Since εj is sub-Gaussian, we have the following tail estimation for εj :

P(|εj | > r) ≤ 2e−ct2 (303)

for some c > 0. Thus, for any n, β > 0, with great probability 1−O(n−β), we have

|Zj | ≲ logn, where Zj = f(Yj) + εj . (304)

Consider the gradient flow (10):

d

dt
ûθ(t)(x) =− 2

Nu

Nu∑
i=1

Kθ(t)(x,Xi) · ûθ(t)(Xi)

− 2

Nf

Nf∑
j=1

LyKθ(t)(x, Yj) · (Lûθ(t)(Yj)− Zj),

(305)

which are both PDEs. To avoid thorny PDE problems, we add the gradient flow of Lûθ into
consideration:

d

dt
Lûθ(t)(x) =− 2

Nu

Nu∑
i=1

LxKθ(t)(x,Xi) · ûθ(t)(Xi)

− 2

Nf

Nf∑
j=1

LxLyKθ(t)(x, Yj) · (Lûθ(t)(Yj)− Zj).

(306)

We also recall the gradient flow (11):

d

dt
ût(x) = − 2

Nu

Nu∑
i=1

K(x,Xi) · ût(Xi)−
2

Nf

Nf∑
j=1

LyK(x, Yj) · (Lût(Yj)− Zj), (307)

d

dt
Lût(x) = − 2

Nu

Nu∑
i=1

LxK(x,Xi) · ût(Xi)−
2

Nf

Nf∑
j=1

LxLyK(x, Yj) · (Lût(Yj)− Zj). (308)

Note that the gradient flows of the following 2 +Nu +Nf functions

ûθ(t)(x),Lûθ(t)(x), ûθ(t)(X1), . . . , ûθ(t)(XNu
),Lûθ(t)(Y1), . . . ,Lûθ(t)(YNf

) (309)

form a linear ODE system, and the gradient flow (10) is completely determined by this system. Thus,
by the uniform convergence of kernel function (Lemma F.12 and Lemma F.13) and the continuous
dependence theorem of ODE (Lemma G.3), we obtain

Lemma G.1. Given T > 0, Nu, Nf fixed, we have

sup
t∈[0,T ],x∈Ω̄

sup
Xi,Yj

|ûθ(t)(x)− ût(x)| → 0, (310)

sup
t∈[0,T ],x∈Ω̄

sup
Xi,Yj

|Lûθ(t)(x)− Lût(x)| → 0 (311)

in probability. The randomness arises from the network initialization.
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Proof. We apply Lemma G.3 by setting k = 2 +Nu +Nf and

A(t) =


01×2 − 2

Nu
Kθ(t)(x,X) − 2

Nf
LyKθ(t)(x, Y )

01×2 − 2
Nu

LxKθ(t)(x,X) − 2
Nf

LxLyKθ(t)(x, Y )

0Nu×2 − 2
Nu
Kθ(t)(X,X) − 2

Nf
LyKθ(t)(X,Y )

0Nf×2 − 2
Nu

LxKθ(t)(Y,X) − 2
Nf

LxLyKθ(t)(Y, Y )

 , (312)

B(t) =


2
Nf

LyKθ(t)(x, Y ) · Z
2
Nf

LxLyKθ(t)(x, Y ) · Z
2
Nf

LyKθ(t)(X,Y ) · Z
2
Nf

LxLyKθ(t)(Y, Y ) · Z

 , (313)

A =


01×2 − 2

Nu
K(x,X) − 2

Nf
LyK(x, Y )

01×2 − 2
Nu

LxK(x,X) − 2
Nf

LxLyK(x, Y )

0Nu×2 − 2
Nu
K(X,X) − 2

Nf
LyK(X,Y )

0Nf×2 − 2
Nu

LxK(Y,X) − 2
Nf

LxLyK(Y, Y )

 , (314)

B =


2
Nf

LyK(x, Y ) · Z
2
Nf

LxLyK(x, Y ) · Z
2
Nf

LyK(X,Y ) · Z
2
Nf

LxLyK(Y, Y ) · Z

 , (315)

where 0m×n denotes the m× n zero matrix, and

Kθ(t)(X,X) = (Kθ(t)(Xi, Xj))Nu×Nu , LyKθ(t)(X,Y ) = (Kθ(t)(Xi, Yj))Nu×Nf
, (316)

LxKθ(t)(Y,X) = (Kθ(t)(Yi, Xj))Nf×Nu , LxLyKθ(t)(Y, Y ) = (Kθ(t)(Yi, Yj))Nf×Nf
, (317)

K(X,X) = (K(Xi, Xj))Nu×Nu
, LyK(X,Y ) = (K(Xi, Yj))Nu×Nf

, (318)

LxK(Y,X) = (K(Yi, Xj))Nf×Nu , LxLyK(Y, Y ) = (K(Yi, Yj))Nf×Nf
, (319)

Kθ(t)(x,X) = (Kθ(t)(x,Xj))1×Nu , LyKθ(t)(x, Y ) = (Kθ(t)(x, Yj))1×Nf
, (320)

LxKθ(t)(x,X) = (Kθ(t)(x,Xj))x×Nu
, LxLyKθ(t)(x, Y ) = (Kθ(t)(x, Yj))1×Nf

, (321)

K(x,X) = (K(x,Xj))1×Nu
, LyK(x, Y ) = (K(x, Yj))1×Nf

, (322)

LxK(x,X) = (K(x,Xj))1×Nu
, LxLyK(x, Y ) = (K(Yi, Yj))1×Nf

, (323)

Z = (Z1, . . . , ZNf
)T . (324)

Note that
|K(x, y)|, |LyK(x, y)|, |LxK(x, y)|, |LxLyK(x, y)|, |f(y)| ≤MK (325)

for x, y ∈ Ω̄, where the bound MK > 0 depends only on σ.

Denote as ∥ · ∥∞ the maximum norm: ∥(aij)∥∞ = maxi,j |aij | for a matrix (aij). Then

∥A∥∞ ≤ 2

(
1

Nu
+

1

Nf

)
MK . (326)

By (304), we also have
∥B∥∞ ≲ logm. (327)

with great probability 1−O(m−1/2).

For shallow networks, by Lemma F.12 and Lemma F.13, we have

max
t∈[0,T ]

∥A(t)−A∥∞ =

(
1

Nu
+

1

Nf

)
O

(
(logm)

5p+7
2

√
m

)
, (328)

max
t∈[0,T ]

∥B(t)−B∥∞ =
1

Nf
O

(
(logm)

5p+7
2

√
m

)
(329)
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with probability P(B) ≥ 1−O(m−1/2).

Finally, by Lemma G.3, we conclude that

sup
t∈[0,T ],x∈Ω̄

sup
Xi,Yj

|ûθ(t)(x)− ût(x)| ≤ Q(m),

sup
t∈[0,T ],x∈Ω̄

sup
Xi,Yj

|Lûθ(t)(x)− Lût(x)| ≤ Q(m),
(330)

with probability 1−O(m−1/2), where

Q(m) = D(T,Nu, Nf )
(logm)

5p+7
2

√
m

(331)

for some constant C > 0, and

D(T,Nu, Nf ) = CT (2+Nu+Nf )(1+T (2+Nu+Nf )e
2T (2+Nu+Nf )(

1
Nu

+ 1
Nf

)MK
)(

1

Nu
+

1

Nf
).

(332)

For deep networks, using Theorem F.15, F.18 and F.19, we can also complete the proof similarly with
the above procedure from (328) to (332).

G.1 Continuous dependence of ODE

Lemma G.2. Assume that X(t) = (x1(t), . . . , xk(t)) is the solution to the following k-order ODE
system:

d

dt
X(t) = A(t)X(t) +B(t), (333)

where A(t) and B(t) are continuous with respect to t ∈ [0, T ]. If X(0) = 0, then

max
t∈[0,T ]

∥X(t)∥∞ ≤ Tk exp

(
Tk max

t∈[0,T ]
∥A(t)∥∞

)
· max
t∈[0,T ]

∥B(t)∥∞. (334)

Proof. Note that∣∣∣∣ ddt |xi(t)|
∣∣∣∣ = ∣∣∣∣ ddtxi(t)

∣∣∣∣ ≤ k∑
j=1

|Aij(t)|·|xj(t)|+|Bi(t)| ≤ ∥A(t)∥∞
k∑

j=1

|xj(t)|+∥B(t)∥∞. (335)

Let M(t) =
∑k

i=1 |xi(t)|, then∣∣∣∣ ddtM(t)

∣∣∣∣ ≤ k∥A(t)∥∞M(t) + k∥B(t)∥∞, (336)

hence by Grönwall’s inequality,

max
t∈[0,T ]

∥X(t)∥∞ ≤ max
t∈[0,T ]

M(t) ≤ Tk exp

(
Tk max

t∈[0,T ]
∥A(t)∥∞

)
· max
t∈[0,T ]

∥B(t)∥∞. (337)

Lemma G.3. Assume that X(t) = (x1(t), . . . , xk(t)) and Y (t) = (y1(t), . . . , yk(t)) are solutions
of the k-order ODE systems

d

dt
X(t) = A(t)X(t) +B(t),

d

dt
Y (t) = AY (t) +B, (338)

respectively. If X(0) = Y (0) = 0, A(t), B(t) are continuous with respect to t ∈ [0, T ], A is a fixed
k × k matrix, B is a constant k-dimensional vector and

max
t∈[0,T ]

∥A(t)−A∥∞ < ε, max
t∈[0,T ]

∥B(t)−B∥∞ < ε (339)

for some ε > 0, then

max
t∈[0,T ]

∥X(t)− Y (t)∥∞ ≤ Tk
(
1 + Tk∥B∥∞eTk∥A∥∞

)
(ε+ ∥A∥∞) ε (340)
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Proof. Denote Z(t) = X(t)− Y (t). Note that

d

dt
Z(t) = A(t)Z(t) +R(t), (341)

where
R(t) = (A(t)−A)Y (t) +B(t)−B. (342)

By Lemma G.2, we have

max
t∈[0,T ]

∥Y (t)∥∞ ≤ Tk∥B∥∞eTk∥A∥∞ (343)

hence
max
t∈[0,T ]

∥R(t)∥∞ ≤
(
1 + Tk∥B∥∞eTk∥A∥∞

)
ε. (344)

Again, by Lemma G.2, we have

max
t∈[0,T ]

∥Z(t)∥∞ ≤ Tk (ε+ ∥A∥∞)
(
1 + Tk∥B∥∞eTk∥A∥∞

)
ε. (345)

H Sphere and Torus

Now we prove Theorem 5.9.

Proof. Let 0 = µ0 < µ1 < . . . be the eigenvalues of (−∆)−1, and Φi,k, k = 0, . . . , N(i) be the
eigenfunctions of µi:

∆Φi,k = −µiΦi,k. (346)

Here, N(i) is the dimension of the eigenspace of µi. If M = Sd, then λi = i(d+ i− 1), and Φi,k

are the spherical harmonics; If M = Td, then Φi,k are products of trigonometric functions. Note that
{Φi,k} forms an orthonormal basis of L2(Sd), and if the Fourier expansion of f is

f =

∞∑
i=1

N(i)∑
k=1

fi,kYi,k, (347)

then the unique solution to (25) is

u = ũp −
∞∑
i=1

N(i)∑
k=1

fi,k
µi

Yi,k, (348)

where the constant ũp is selected such that u(p) = up.

Note that neural tangent kernel K(x, y) is an inner product kernel on M : K(x, y) = F (⟨x, y⟩) for
some function F : [−1, 1] → R, where ⟨·, ·⟩ is the inner product in Rd+1 if M = Sd ⊂ Rd+1,
or the inner product in R2d if M = Td ⊂ R2d. Then by Funk-Hecke formula (see Section 1.8 of
[16] for example), the eigenspaces of K coincide with the eigenspaces of (−∆)−1 , and the Mercer
decomposition of K becomes

K(x, y) =

∞∑
i=0

λi

N(i)∑
k=1

Φi,k(x)Φi,k(y), (349)

where λ0 ≥ λ1 ≥ · · · , λi → 0 as i→ ∞.

For l ∈ N, let

ul = ũp,l −
l∑

i=1

N(i)∑
k=l

fi,k
µi

Yi,k, (350)
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where the constant ũp,l is selected such that ul(p) = up. Then ul ∈ H, and

L(ul) = d(ul, u
∗) = |ul(p)− u∗(p)|2 +

∫
M

|∆ul −∆up|2 =

∞∑
i=l+1

N(i)∑
k=1

|fi,k|2 → 0 (351)

as l → ∞. Thus,
inf
u∈H

d(u, u∗) = 0, (352)

which implies that u∗ ∈ H̄.

H.1 Proof of the negative example

Proof. Recall that u∗(eiπt) = t2 − 1 and ∆u∗(eiπt) = 2 for t ∈ (−1, 1). For any v ∈ H, let ak and
bk be the Fourier series of v:

v(eiπt) = a0 +

∞∑
k=1

(ak cos(kπt) + bk sin(kπt)). (353)

Since v is in the RKHS, then by Theorem 14, we can differentiate v term by term:

∆v(eiπt) =

∞∑
k=1

(−akk2 cos(kπt)− bkk
2 sin(kπt)). (354)

The PINN distance between v and u∗ is

L(v) = d(v, u∗)2 = |v(p)− u∗(p)|2 +
∫
S1
|∆v −∆u∗|2

= |v(p)|2 + 1

2

∫ 1

−1

∣∣∣∣∣
∞∑
k=1

(−akk2 cos(kπt)− bkk
2 sin(kπt))− 2

∣∣∣∣∣
2

dt

= |v(p)|2 +
∞∑
k=1

k4(a2k + b2k) + 4 ≥ 4,

(355)

and the equality holds if and only if v = 0. Thus, 0 is the unique minimizer of the loss function, and
the population gradient flow is solved by vt ≡ 0, t ∈ [0,∞).

H.2 An extra example

In this section, we provide an example where the physics-informed kernel gradient flow is consistent
even though the non-homogeneous term f in the problem (25) is not bounded. It is worth noting that
in this example, the convergence speed of the PINN loss L can be arbitrarily low.

Consider a special case of the equation (25):

∆u = f∗ on S1, u(p) = 0, (356)

where p = (−1, 0) = e−iπ. If f∗(θ) =
∑∞

q=1 fq sin qπθ, then the solution to (356) is u∗(θ) =

−
∑∞

q=1 fqq
−2 sin qπθ.

Consider the physics-informed kernel gradient flow estimator ût of an inner-product kernel k(x, y)
in the form

k(θ, φ) = a0 +

∞∑
q=1

(aq cos qπθ cos qπφ+ bq sin qπθ sin qπφ. (357)

Note that the NTK on S1 will be in this form. In addition, we assume that bq ≍ q−β for some β > 5,
in order to ensure that ∆θ∆φk(θ, φ) is well-defined.

In this case, the evolution equation of ût is

d

dt
∆ût(θ) = −2

Nu∑
j=1

k̃(θ, Yj)(∆ût(Yj)− f∗(Yj)− εj), (358)
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where we set the noise εj to be Gaussian (εj ∼ N(0, σ2) for some σ2 > 0), and

k̃(θ, φ) =

∞∑
q=1

µq sin qπθ sin qπφ, µq = q4bq ≍ γ, γ = β − 4 > 1. (359)

(We choose β sufficiently great such that k(θ, φ) is twice-differentiable and k̃(θ, φ) is well-defined.)
This is exactly the kernel gradient flow equation for classic regression problem (see Example 2 of
[45]). Along the gradient flow, ût(p) = 0 for any t = 0, where p = e−iπ , hence

L(ût) = ∥∆ût − f∗∥2L2 . (360)

It is shown in Section 4 of [45] that the embedding index of k̃ is 1/γ. For any s > 0, let [H]s be the
s-interpolation space of the RKHS of k̃. We refer to Section 2.1 of [45] for more information about
RKHS, interpolation spaces and relative smoothness.

Finally, by Theorem 1 of [45], the kernel gradient flow is consistent for any f∗ ∈ [H]s. We note that
in this circumstance, f∗ is not necessarily bounded.

Moreover, by Theorem 2 of [45], for any δ ∈ (0, 1), when Nf is sufficiently great, there exists a
function f∗ ∈ [H]s such that

L(ût) ≳ N
− sγ

sγ+1

f (361)

with probability at least 1− δ. Since s > 0 can be arbitrarily small, we conclude that the convergence
speed of L(ût) can be arbitrarily low.

I Experimental Results

Although the results of this paper are fully theoretical, we still provide several experimental results to
verify the results. Our small experiments were implemented on a personal computer (Legion Y9000P
2023 with CPU i9-13900HX, RAM of 16GB and GPU RTX-4060 Laptop 8GB). The codes were
written in Python, and the Pytorch package was used. The execution time was less than an hour.

I.1 Experiments on one-dimensional interval

In our first experiment, we focus on the 1-dimensional problem:{
u′′(x) = 2, x ∈ (−1, 1);

u(−1) = u(1) = 0,
(362)

whose solution is
u∗(x) = x2 − 1, x ∈ [−1, 1]. (363)

We select the training sample set to be

X1 = −1, X2 = 1; (364)

Y1 = −0.8, Y2 = −0.6, . . . Y8 = 0.6, Y9 = 0.8. (365)
Hence the sample size is Nu = 2, Nf = 9.

Then we train a network ûmθ (x) in the form (145) depth L = 1 and width m1 = m and activation
function σ = tanh to minimize the empirical loss (8). We use the discrete gradient descent to
approximate the continuous gradient flow. The training time is set to be T = 10, and the learning
rate is set to be 10−4, hence the number of iteration of gradient descent is 105.

Denote as Km
θ(t)(x, y) the NNK of ûmθ(t)(x), and recall that K(x, y) is the NTK. Our goal is to

compare Kθ(t)(x, y) with K(x, y), and compare ûθ(t)(x) with the gradient flow ût(x) defined in
(11) on the test point sets, which is defined by

Ztest = {Z1 = −0.9, Z2 = −0.8, . . . , Z18 = 0.8, Z19 = 0.9}, (366)

Z2
test = Ztest ×Ztest = {(Zi, Zj) : i, j = 1, . . . , 19}, (367)

Ttest = {t1 = 0, t2 = 0.1, t3 = 0.2, , t100 = 9.9, t101 = 1}. (368)
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By our numerical experiment, if we set m = M0 = 10485760, then the NNK function of ûM0

θ(t)(x)

satisfies
1

|Z2
test|

∑
(x,y)∈Z2

test

|KM0

θ(t)(x, y)−K(x, y)|2 ≤ 10−9, (369)

1

|Z2
test|

∑
(x,y)∈Z2

test

|LxK
M0

θ(t)(x, y)− LxK(x, y)|2 ≤ 10−9, (370)

1

|Z2
test|

∑
(x,y)∈Z2

test

|LxLyK
M0

θ(t)(x, y)− LxLyK(x, y)|2 ≤ 10−9, (371)

for any t ∈ Ttest, hence it is reasonable to use ûM0

θ(t)(x) as an approximation of ût(x):

KM0

θ(t)(x, y) ≈ K(x, y), ûM0

θ(t)(x) ≈ ût(x). (372)

For
m = 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, (373)

the figure of the mean square distance between (Km
θ(t)(x, y),LxK

m
θ(t)(x, y),LxLyK

m
θ(t)(x, y)) and

(KM0

θ(t)(x, y),LxK
M0

θ(t)(x, y),LxLyK
M0

θ(t)(x, y)), that is,

t 7→ 1

3|Z2
test|

∑
(x,y)∈Z2

test

|Km
θ(t)(x, y)−KM0

θ(t)(x, y)|
2

+
1

3|Z2
test|

∑
(x,y)∈Z2

test

|LxK
m
θ(t)(x, y)− LxK

M0

θ(t)(x, y)|
2

+
1

3|Z2
test|

∑
(x,y)∈Z2

test

|LxLyK
m
θ(t)(x, y)− LxLyK

M0

θ(t)(x, y)|
2

(374)

for t ∈ Ttest is shown in Figure 1;

The plot of the mean square distance between ûmθ(t)(x) and ûM0

θ(t)(x), that is,

t 7→ 1

|Ztest|
∑

x∈Ztest

|ûmθ(t)(x)− ûM0

θ(t)(x)|
2, t ∈ Ttest, (375)

is shown in Figure 2;

The plot of the mean square distance between Lûmθ(t)(x) and LûM0

θ(t)(x), that is,

t 7→ 1

|Ztest|
∑

x∈Ztest

|Lûmθ(t)(x)− LûM0

θ(t)(x)|
2, t ∈ Ttest, (376)

is shown in Figure 3.

I.2 More experiments on one-dimensional interval for deep networks

Although we only provide proof of Theorem 5.4 (II) for L ≥ 9, in this section we offer experimental
results that verify 5.4 (II) for L < 9.

In particular, we set L = 4, and take the network to be ûθ defined in (145) with activation function
σ = tanh, depth L = 4 and width m1 = m2 = m3 = m4 = m for

m = 80, 160, 240, 320. (377)

The training time is set to be T = 4, and the learning rate is set to be 10−4, hence the number of
iteration of gradient descent is 4× 104. The network is still trained to solve the problem (362) in the
previous subsection.
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Figure 1: Illustration of Theorem 5.4: The evolution of the distance betweenKθ(t)(x, y) andKt(x, y).
See Appendix I.1 for details.
(x-axis: training time t; y-axis: mean square distance between
(Km

θ(t), LxK
m
θ(t), LxLyK

m
θ(t)) and (K, LxK, LxLyK) on the test point set)

Figure 2: Illustration of Lemma 5.6: The evolution of the distance between ûθ(t)(·) and ût(·). See
Appendix I.1 for details.
(x-axis: training time t; y-axis: mean square distance between ûθ(t)(·) and ût(·) on the test point set)

Denote as Km
θ(t)(x, y) the NNK of ûθ(t)(x), and recall that K(x, y) is the NTK. Our goal is to

compare Km
θ(t)(x, y) with K(x, y) on the test point sets, which is defined by

Ztest = {Z1 = −0.9, Z2 = −0.8, . . . , Z18 = 0.8, Z19 = 0.9}, (378)

Z2
test = Ztest ×Ztest = {(Zi, Zj) : i, j = 1, . . . , 19}, (379)

Ttest = {t1 = 0, t2 = 0.1, t3 = 0.2, , t100 = 9.9, t101 = 1}. (380)
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Figure 3: Illustration of Lemma 5.6: The evolution of the distance between Lûθ(t)(·) and Lût(·).
See Appendix I.1 for details.
(x-axis: training time t; y-axis: mean square distance between Lûθ(t)(·) and Lût(·) on the test point
set)

A simple numerical simulation reveals that for M1 = 10240,

1

|Z2
test|

∑
(x,y)∈Z2

test

|KM1

θ(t)(x, y)−K(x, y)|2 ≲ 10−4, (381)

1

|Z2
test|

∑
(x,y)∈Z2

test

|LxK
M1

θ(t)(x, y)− LxK(x, y)|2 ≲ 10−4, (382)

1

|Z2
test|

∑
(x,y)∈Z2

test

|LxLyK
M1

θ(t)(x, y)− LxLyK(x, y)|2 ≲ 10−4, (383)

for any t ∈ Ttest, hence it is reasonable to use KM1

θ(t)(x, y) as an approximation of K(x, y) in the
numerical simulations:

K(x, y) ≈ KM1

θ(t)(x, y). (384)

For m = 80, 160, 240 and 320, the figure of the mean square distance between
(Km

θ(t)(x, y),LxK
m
θ(t)(x, y),LxLyK

m
θ(t)(x, y)) and (K(x, y),LxK(x, y),LxLyK(x, y)), that is,

t 7→ 1

3|Z2
test|

∑
(x,y)∈Z2

test

|Km
θ(t)(x, y)−K(x, y)|2

+
1

3|Z2
test|

∑
(x,y)∈Z2

test

|LxK
m
θ(t)(x, y)− LxK(x, y)|2

+
1

3|Z2
test|

∑
(x,y)∈Z2

test

|LxLyK
m
θ(t)(x, y)− LxLyK(x, y)|2

(385)

for t ∈ Ttest is provided in Figure 4.

As shown in Figure 4, as m increases, the distance between Km
θ(t)(x, y) and K(x, y)(x, y) decreases

approximately to zero.
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Figure 4: Illustration of Theorem 5.4: The evolution of the distance between Kθ(t)(x, y) and K(x, y).
See Appendix I.1 for details.
(x-axis: training time t; y-axis: mean square distance between
(Km

θ(t), LxK
m
θ(t), LxLyK

m
θ(t)) and (K, LxK, LxLyK) on the test point set)

I.3 Experiments on ring

In our second experiment, we consider the following Poisson equation on S1:{
∆u(eiπr) = r3 − r, r ∈ [−1, 1];

u(p) = 0, p = e−iπ = (−1, 0).
(386)

whose solution is
u∗(eiπr) =

1

20
r5 − 1

6
r3 +

7

60
r, r ∈ [−1, 1]. (387)

The network ûθ is set to be in the form (145) with depth L = 1 and width 2m = 3200 fixed and
activation function σ = tanh. The learning rate is set to be 0.01, and the training time is set to be
T = 1000, hence the number of iteration is 105.

We train the network with different sample size. For sample size N , the boundary sample set contains
only one element X1 = p = e−iπ , while the inside sample set contains N − 1 elements:

Yj = exp

(
iπ(−1 +

2j

N
)

)
, j = 1, 2, . . . , N − 1, (388)

hence Nu = 1 and Nf = N − 1. The test point set is set to be

Ztest =

{
exp

(
iπ(−1 +

j

10
)

)
, j = 1, . . . , 20

}
. (389)

For sample size N = 10, 20, 40, 80, 160, the plot of the networks on test point set after training, that
is,

r 7→ ûθ(t)(e
iπr), r ∈ Ztest (390)

is shown in Figure 5.

It is worth noting that in this example, since tanh is a smooth function whose high-order derivatives
are all bounded, then H is contained in C∞(S1) (see Corollary 4.36 of [36] or Theorem A.1). On the
other hand, the solution u∗ is not in C3(S1), hence is not contained in H. However, u∗ lies indeed in
the larger space H̄, and the model can still fit the solution well, as is shown in Figure 5.
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Figure 5: Illustration of Theorem 5.9: The result of PINN trained for Poisson equation problem.
(x-axis: r ∈ [−1, 1]; y-axis: the PINN estimator ûθ(T )(e

iπr).)

It is revealed in Figure 5 that the sufficiently wide PINN estimator can approximate the true solution
u∗ ∈ H̄, even if u∗ does not lie in the RKHS of the NTK.

The third experiment is the same with the second experiment, except that we substitute f(r) = r3− r
with g(r) = 2 in the problem setting (386). This is a numerical simulation of the negative example
discussed in Subsection 5.1. The result is shown in Figure 6.

Figure 6: Illustration of Proposition 29: The result of PINN trained for the negative example. As is
shown in the figure, the estimator converges to 0 as sample size increases, hence keeps distant away
from the true solution. See Appendix I.3 for details.
(x-axis: r ∈ [−1, 1]; y-axis: ûθ(T )(e

iπr).)

Figure 6 reveals that when the network width is sufficiently great (2m = 3200), as the sample size
increases, the PINN estimator gradually converges to 0 and fails to approximate the true solution
successfully.
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I.4 Extra experiments on multi-dimensional torus

In this subsection, we provide extra experiments on multi-dimensional torus that illustrate Theorem
5.9.

Let T3 ⊂ R6 be the three-dimensional torus:

T3 = {(eiπθ1 , eiπθ2 , eiπθ3) : θi ∈ [−1, 1), i = 1, 2, 3}. (391)

Consider the following Poisson equation on T3:{
∆u = f on T3,

u(p) = 0 at p = (e−iπ, e−iπ, e−iπ),
(392)

where

f(θ1, θ2, θ3) =

3∑
i=1

(θ3i − θi). (393)

The solution to this problem is

u∗(θ1, θ2, θ3) =
3∑

i=1

(
1

20
θ5i −

1

6
θ3i +

7

60
θi

)
. (394)

The network ûθ is set to be in the form (145) with depth L = 1 and width 2m = 3200 fixed, and the
activation function is σ = tanh. Note that tanh is smooth, then the NTK function is also smooth.
Since the solution u∗ is not smooth, then u∗ does not lie in the RKHS of NTK by Theorem A.1.

Then we train the network ûθ to learn the solution u∗. We repeat this experiment for 50 times. In
each time, we draw 1000 samples from the uniform distribution of T4, the learning rate is set to be
0.01, and the training time is set to be 100, hence the total number of gradient descent iteration is
104.

Finally, we present the relationship between the training time t and the average PINN loss L(ûθ(t))
of the 50 experiments, as well as the region within two standard deviations, as shown in Figure 7.

Figure 7: Illustration of Theorem 5.9: The result of PINN trained for the problem (392).
(x-axis: training time t ∈ [0, 100]; y-axis: the PINN loss L(ûθ(t))

It is revealed in Figure 7 that PINN can estimate the solution u∗ to the problem well, as long as the
network width and the sample size are sufficiently great, even though the solution u∗ does not lie in
the RKHS of the NTK.
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