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Abstract

Long-distance depth imaging holds great promise for applications such as au-
tonomous driving and robotics. Direct time-of-flight (dToF) imaging offers high-
precision, long-distance depth sensing, yet demands ultra-short pulse light sources
and high-resolution time-to-digital converters. In contrast, indirect time-of-flight
(iToF) imaging often suffers from phase wrapping and low signal-to-noise ratio
(SNR) as the sensing distance increases. In this paper, we introduce a novel ToF
imaging paradigm, termed Burst-Encodable Time-of-Flight (BE-ToF), which fa-
cilitates high-fidelity, long-distance depth imaging. Specifically, the BE-ToF sys-
tem emits light pulses in burst mode and estimates the phase delay of the reflected
signal over the entire burst period, thereby effectively avoiding the phase wrap-
ping inherent to conventional iToF systems. Moreover, to address the low SNR
caused by light attenuation over increasing distances, we propose an end-to-end
learnable framework that jointly optimizes the coding functions and the depth
reconstruction network. A specialized double well function and first-order dif-
ference term are incorporated into the framework to ensure the hardware imple-
mentability of the coding functions. The proposed approach is rigorously vali-
dated through comprehensive simulations and real-world prototype experiments,
demonstrating its effectiveness and practical applicability. The code is available
at: https://github.com/ComputationalPerceptionLab/BE-ToF.

1 Introduction

Achieving high-precision depth imaging over long distances has remained a fundamental objective
in fields such as computer vision, robotics, and autonomous systems. Time-of-flight (ToF) imag-
ing [1, 2, 3], as a key approach to depth imaging, can be further categorized into direct ToF (dToF)
and indirect ToF (iToF) based on differences in working principles. Direct ToF imaging [4] estimates
depth by directly measuring the round-trip time of light, enabling high-precision and long-range
sensing. Despite its advantages, this approach requires ultra-short pulsed light sources and high-
resolution time-to-digital converters (TDCs), imposing stringent hardware demands that increase
system complexity and cost, thereby limiting its practicality for widespread deployment. Indirect
ToF systems [5, 6, 7, 8, 9], in contrast, emit amplitude-modulated continuous wave (AMCW) sig-
nals and infer depth by analyzing the phase shift between the transmitted and received signals. Due
to their relatively lower hardware complexity and cost, iToF systems offer a more practical and
hardware-friendly solution. Nevertheless, existing iToF technologies face significant challenges in
long-range imaging, primarily due to phase wrapping [10] and low signal-to-noise ratio (SNR) re-
sulting from optical attenuation [11]. To address the phase wrapping, dual-frequency modulation
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techniques [12, 13] have been proposed, albeit at the cost of increased computational complexity
and stricter hardware synchronization requirements. Alternative approaches have sought to mitigate
phase wrapping under single-frequency modulation by incorporating scene priors [5, 14], however,
these methods do not fundamentally resolve the intrinsic ambiguity introduced by periodic modula-
tion.

In this paper, we propose a novel ToF imaging paradigm termed Burst-Encodable Time-of-Flight
(BE-ToF). Our BE-ToF system operates in a low-frequency burst mode for light pulse modulation
and demodulation, such that the phase of the reflected signal sweeps the entire range [0, 27r] within
a single, long burst period. This facilitates high-fidelity, long-distance depth imaging using only
single frequency modulation. Moreover, considering the significant variation in SNRs caused by
the light-falloff, we propose an end-to-end learnable framework that jointly optimizes the coding
functions and the depth reconstruction network, thereby ensuring high-precision depth estimation.
In particular, we incorporate constraints based on double well function and first-order difference to
ensure the hardware implementability of the learned coding functions. We evaluate our method on a
synthetic dataset and compare it with conventional iToF approaches, including single-frequency and
multi-frequency modulation techniques. Finally, we built a prototype system to prove the effective-
ness of our method in real-world experiments.

In general, we make the following contributions:

* We present a novel Burst-Encodable Time-of-Flight imaging system that enables high-
fidelity long-distance depth sensing using only a single modulation frequency, thereby fun-
damentally mitigating the issue of phase wrapping inherent in traditional iToF systems.

* We propose an end-to-end learnable framework that jointly optimizes the coding functions
and the depth reconstruction network to ensure high-precision depth estimation across vary-
ing distances.

* We uniquely incorporate double well function and first-order difference as loss function to
ensure the hardware implementability of the learned coding functions.

* We develop a prototype of our BE-ToF system and demonstrate its superior performance
on both synthetic datasets and real-world scenarios.

2 Related Work

ToF imaging. Time-of-flight (ToF) imaging has become a widely adopted and effective modal-
ity for depth acquisition. Direct ToF (dToF) enables long-range depth estimation by measuring the
round-trip time of short optical pulses [15]. However, attaining high precision with dToF places
stringent demands on the illumination and timing hardware, typically requiring nanosecond- or even
picosecond-scale pulse widths [4, 16, 17] as well as TDCs with tens-of-picoseconds resolution and
low timing jitter [18, 19]. These requirements substantially hinder practical implementation and
large-scale deployment. In contrast, indirect ToF (iToF) imaging leverages cost-effective CMOS
sensors to achieve high-resolution depth estimation, yet it is inherently susceptible to phase ambi-
guity due to phase wrapping in long-range scenarios. A common strategy to alleviate this issue is
multi-frequency modulation [12, 20, 21], where low modulation frequencies extend the maximum
unambiguous range and high frequencies preserve depth precision. For example, Hanto et al. [22]
developed a ToF LiDAR range finder based on dual-modulation frequency switching to extend the
imaging range, and Su ef al. [23] proposed an end-to-end ToF framework for high-quality depth
reconstruction under multi-frequency modulation. Nevertheless, multi-frequency operation often
increases hardware complexity and computational cost. Alternatively, single-frequency phase un-
wrapping has been explored using amplitude correction [5], surface normal constraints [14], and
RGB fusion [24], but such approaches typically rely heavily on scene priors and may degrade under
challenging conditions. In this paper, we propose Burst-Encodable Time-of-Flight Imaging (BE-
ToF) to fundamentally address phase wrapping in iToF, enabling high-fidelity, long-distance depth
estimation.

End-to-end learning. End-to-end learning is a method aimed at jointly optimizing optical sys-
tems and reconstruction algorithms. Metzler et al. [25, 26] obtained high dynamic range (HDR)
images from a single-shot by jointly optimizing the optical encoder and the electronic decoder. Nie
et al. [27] leveraged an end-to-end network for hyperspectral reconstruction, enabling simultaneous



learning of optimized camera spectral response functions and a mapping for spectral reconstruction.
For dense 3D localization microscopy, Nehme et al. [28] proposed a deep STORM-based method to
achieve end-to-end optimization of point spread function engineering and accurate 3D localization.
To achieve extended depth of field (EDOF), Sitzmann et al. [29] proposed to jointly optimize the
optical system and the reconstruction algorithm’s parameters to achieve achromatic EDOF imaging.
Guo et al. [30] put forward an end-to-end framework capable of jointly optimizing the coding func-
tions and the exposure time to improve the accuracy of fluorescence lifetime imaging. Moreover,
in iToF imaging, Chugunov et al. [31] proposed to jointly learn a microlens amplitude mask and
an encoder-decoder network to reduce flying pixels in depth captures. Li et al. [11] put forward
a Fisher-information-guided framework for the joint optimization of the coding functions and the
reconstruction network. Given the remarkable potential of end-to-end learning in elevating imaging
performance, we propose an end-to-end learnable framework that jointly optimizes the coding func-
tions and the depth reconstruction network of our BE-ToF, ensuring high-quality depth performance
across varying distances.

3 Learnable Burst-Encodable Time-of-Flight Imaging
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Figure 1: Comparison between iToF and BE-ToF. (a) Principle of iToF imaging, which suffers from
a trade-off between sensing distance and precision; (b) Principle of BE-ToF imaging, enabling long-
distance and high-fidelity depth sensing through modulation and demodulation in burst mode.

In this section, we first introduce the working principle of our BE-ToF. As shown in Fig. 1(a), con-
ventional iToF is fundamentally constrained by a trade-off between maximum unambiguous range
and depth precision, governed by the modulation period 7},,. To handle this, our BE-ToF performs
short-period light pulse modulation/demodulation in a low-frequency burst mode. As illustrated in
Fig. 1(b), within each long burst period Ty, a single modulated signal is emitted. When the
reflected signal returns with a phase shift ¢, it can be demodulated by coding functions with con-
trollable time delay 7. Specifically, the total phase shift ¢» can be decomposed into two components:
¢1, which is primarily determined by the controllable time delay 7, and ¢2, which can be recovered
using demodulation techniques like 4-step phase shift [5] or deep learning [23, 11]. In summary, the
depth d can be defined as Eq. 1
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where c is the light speed and D(¢2) represents the demodulation process of ¢s.

Thus, in our BE-ToF system, the maximum unambiguous range d,,,, is primarily determined by
burst period Tp,,.st, as defined in Eq. 2

c c: Tburst
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Regarding depth precision, since we divide the phase delay ¢ into two components ¢1 and ¢2, where
¢1 is entirely determined by the time delay 7. Consequently, the depth error in our BE-ToF system
mainly arises during the demodulation of ¢5. Thus, the depth error ¢4 of our BE-ToF system can be
represented as Eq. 3
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where €, is the phase error due to several factors like photon noise, readout noise, and multi-path in-
terference. For fixed phase error, the depth error is chiefly governed by the modulation/demodulation
period T7,,.

Based on the above analysis, BE-ToF substantially extends the maximum unambiguous range while
maintaining the same depth precision as conventional iToF, thereby enabling long distance and high-

fidelity depth imaging. Moreover, the depth sensing range of our BE-ToF spans from <5~ to C'(%T’”),
which can be flexibly adjusted by tuning the time delay 7.

3.1 Differential BE-ToF Imaging Model
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Figure 2: (a) End-to-end BE-ToF imaging framework for jointly optimizing the coding functions
and reconstruction network, (b) The differentiable physical model of the BE-ToF system.

Based on the operating principle of BE-ToF, which can be realized with a pulsed laser and an
exposure-encodable camera [32], we propose an end-to-end imaging framework to ensure high-
quality reconstruction across varying distances and SNRs. As shown in Fig. 2(a), the framework
comprises two components: a differentiable forward model that synthesizes BE-ToF measurements
in our simulation pipeline, and a reconstruction network that estimates depth from multiple mea-
surements. By jointly optimizing the coding functions and the reconstruction network, the system
delivers accurate depth reconstructions under challenging conditions.

In this section, we first establish the differentiable forward model of our BE-ToF for end-to-end
optimization, as illustrated in Fig. 2(b). Assuming M (t) is the modulated signal emitted by pulse
laser, the reflected signal of scene point s € R3 can be defined as Eq. 4

d(s)

R(S,t) = psM(t_2T) +Iamb7 (4)

where p; is the inherent reflectance of the scene point s, I, is the ambient light, d(s) denotes
the depth value of point s. Furthermore, considering the attenuation of light intensity with distance
during propagation, we incorporate the attenuation function into our model as Eq. 5

d(s)

R(S,t) :Fd(s)psM(t_QT)"_Iamb; (5)

where F) is the attenuation coefficient of the emitted light M (¢) at depth d(s), which is typically
inversely proportional to the square of the distance [33]. Finally, the whole BE-ToF imaging process
can be formulated as Eq. 6

T+Thm
Ii(s):/ R(s,t)Di(t)dt, iel,..K, ©®)

where I;(s) is the measurement value of the camera, D;(t) denotes the coding functions and K
denotes the number of measurements. Taking into account the inherent noise of the sensor, the final
measurement can be expressed as Eq. 7

X,(S) = Ii(s) +ng+mng, nNg~ P(E(nd))v Ny~ N(0,0’?) ) @)



where ng is the dark noise following the Poisson distribution with expectation E(n4) and n,. is the
readout noise following Gaussian distribution with standard deviation o,.

Considering that X;(s) contains three unknowns: ps, Iomp, d(s). Therefore, at least K > 3 mea-
surements are required to solve for the depth d(s).

3.2 Reconstruction Network
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Figure 3: Architecture of the Restormer-based Spatial-Channel Fusion Network(RSCF-Net), (a)
Channel Feature Extraction Block(CFEB), (b) Multi-scale Feature Fusion Block(MFFB).

With the proposed differentiable forward model, we can simulate the K measurements of the BE-
ToF imaging process. To recover high-fidelity depth map from this set of measurements, we propose
a Restormer-based Spatial-Channel Fusion Network(RSCF-Net). As shown in Fig. 3, our network
adopts Restormer [34] as the backbone, featuring a four-level encoder-decoder structure in which
each level comprises multiple Restormer blocks. In contrast to the conventional skip connections
used in the original Restormer, we integrate an Efficient Channel Attention (ECA) module [35] to
enhance the fusion of features between encoder and decoder branches. Furthermore, recognizing
the inherent differences between depth reconstruction and the image restoration tasks for which
Restormer was originally designed, we augment our network with two additional components: the
Channel Feature Extraction Block (CFEB) and the Multi-scale Feature Fusion Block (MFFB). The
CFEB is composed of multiple residual-connected 1x1 convolutional layers, designed to extract
inter-channel relationships across multiple per-pixel measurements. On the other hand, the MFFB
emphasizes spatial structure by performing preliminary depth estimation at each decoder level and
progressively integrating features from multiple scales in a coarse-to-fine manner. The outputs of
CFEB and MFFB are subsequently fused to produce the final high-fidelity depth map.

3.3 Loss Function

During the training process, we jointly optimize the coding functions and the reconstruction net-
work. Given that our exposure encodable camera supports only binary coding functions, we enforce
hardware implementability by applying constraints based on a double well function and first-order
difference. Additionally, Fisher information is incorporated into the loss to improve reconstruction
quality, while Mean Squared Error (MSE) is used as the objective to guide the final output. Here we
give more details about these losses.

Mean Squared Error Loss. We employ MSE as the fidelity loss to supervise the predicted depth
map, as defined in Eq. 8

Lyse = Z”dpre(s) —dg(s)]3- ®)



Fisher Guidance Loss. The SNR is one of the key factors influencing the quality of ToF imag-

ing. Inspired by [11], we introduce the fisher guidance loss to enhance the quality of our depth

reconstruction, which can be summarized as Eq. 9

K 2
1 1 OE(I;(s))

Lfisher = — , 9

porer =23 st + ) | ®

s 4=

where E(I;(s)) is the expectation of I;(s) and o;(s) = \/E(I;(s)) + E(ng) + o2.

Double Well Function Loss. To enable the optimization
of binary coding functions within the differentiable physical
model. We introduce the double well function from quantum
mechanics [36], which is formulated in Eq. 10

faw(r) = 4(x — 0.5)* — 2(z — 0.5). (10)
As shown in Fig. 4, this function has two valleys at x = 0 and

x = 1, thereby encouraging the coding functions to converge
toward binary states during the optimization process. There-

fore, our double well function loss can be defined as Eq. 11 -0.5
K M . .
Figure 4: Demonstration of the
Law = Z Z faw(Di(t5)) , (1D gouble well function with two iden-
i=175=1 tical minima located at x = 0 and
where M is the sampling points on each coding function. x =1

First-order Difference Loss. Although the double well function effectively constrains the coding
functions to a binary state, we observe that the learned functions often exhibit extremely narrow
peaks, which pose challenges for practical hardware implementation. To mitigate this issue, we in-
troduce a first-order difference loss, as defined in Eq. 12. By minimizing the first-order difference
loss, narrow peaks can be effectively suppressed, thus ensuring feasibility for hardware implementa-

tion.
K M-1

Lise=Y_ Y [Di(tyy) — Dilty)] - (12)

i=1 j=1
Finally, our complete loss can be summarized as Eq. 13
L=Lyse+YLrfisher + V2Lagw + 13L1st (13)

where 1, 2 and 3 are loss balance coefficients.

4 Synthetic Assessment

4.1 Implementation Details

Dataset. We use the NYU-V2 dataset [37] to train and test our end-to-end framework. The NYU-
V2 dataset is a high-quality RGB-D dataset captured by Kinect. It contains a total of 1449 pairs
of precisely aligned RGB and depth images collected from 464 indoor scenes, which enables its
extensive application in academic research. For each RGB-D pair, we first apply intrinsic image
decomposition [38] to the RGB image to obtain reflectance and ambient light maps. Subsequently, as
detailed in Sec. 3.1, given the reflectance p,, ambient light I,,,,,5, and depth d(s), we can synthesize
multiple BE-ToF measurements. We divide the dataset in detail, using 1000 pairs of data as the
training set and the remaining 449 pairs as the test set [39, 40].

Incremental Training Method. In our BE-ToF system, the SNR varies not only with distance but
also significantly under the same distance due to ambient light I,,,;. Therefore, we introduce an
incremental training strategy [41] to ensure robust depth estimation of our network under varying
SNR levels. Specifically, for each distance, we define three distinct SNR scenarios arranged from
high to low. The network is trained with input data of varying SNRs, progressively transitioning
from high to low every 10 epochs. When data of all SNRs are traversed, samples with random SNR
are generated and fed to the network for the convergence of the network.
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Figure 5: Overall comparisons with traditional iToF methods under various distances and SNRs,
including FisherToF [11] under single frequency modulation; Sine/Square + PS algorithm [5] and
Sine + DeepToF [23] under dual frequency modulation.

Training Parameters. We choose K in Eq. 6 as 4 and M in Eq. 11 as 1000. The number of
restormer blocks in the network is set to [4, 6, 6, 8]. We train the network for 200 epochs using the
ADAM optimizer [42] with a batch size of 20. The learning rate is initialized at 0.01 and decays
by a factor of 0.7 every 10 epochs. The loss balance coefficients v; and ~- are empirically set
to Se-4 and 5e-2 initially, and are updated to 5e-5 and 1 after 40 epochs. ~3 is always set to 5.
Xavier initialization is used for the learnable coding functions. All experiments are conducted on
the PyTorch platform [43], using an NVIDIA GeForce RTX 4090 GPU.



Table 1: Quantitative comparison of overall performance, coding schemes, and reconstruction net-
works. All metrics are reported as MAE (mm).

0-3m \ 30-33m \ 60-63m \ 90-93m
HSl'll' MSI‘II’ Lsm ‘ Hsnr Msnr Lsnr ‘ HSI'II' MSnl' Lsnr HSl'll' Msnr LSI‘II’

(a) Overall Performance

FisherToF [11] 7.19 1046 1691 | 20.80 24.54 31.61 34.58 4243 54.73 75.19 77.68 138.11
Sine+PS [5] 4326 58.08 78.09 | 5696 77.89 10725 | 79.20 111.49 15840 | 117.21 170.76  244.29
Square+PS [5] 3321 40.64 51.29 | 4006 51.19 66.90 51.90 69.12 93.62 72.16 100.12 14098
DeepToF [23] 1776~ 19.19  29.51 | 26.54 29.25 37.49 31.50 35.02 45.54 42.64 45.12 56.97

(b) Coding Scheme
Square | 1266 1518 2135 | 1682 2210  29.05

20.85 24.54 32.77 25.51 30.08 44.47

(c) Reconstruction Network

DeepToF [23] 1476 1620 20.32 | 1825 23.30 34.12 24.95 31.50 37.90 28.12 38.17 48.55
MaskToF [31] 1173 12.89 1741 | 1472 1944  26.73 15.94 21.38 33.55 25.71 27.86 38.60
FisherToF [11] 6.94 8.10 16.26 | 1022 1571 21.68 14.62 18.31 29.73 22.60 24.89 31.83

Ours ‘ 5.90 6.95 12.71 ‘ 8.03 12.25 18.29 ‘ 11.93 16.60 26.08 18.96 21.99 29.58

4.2 Comparison with the State-of-the-art Methods

To demonstrate the superiority of our method, we conduct a detailed comparison with traditional
iToF approaches, including single frequency modulation and dual frequency modulation. The sce-
narios encompass multiple distance ranges (0-3m, 30-33m, 60-63m, and 90-93m) combined with
varying SNRs, specifically high (Hs,, =22 dB), medium(Ms,,, = 19 dB) and low (L, = 16 dB).
As shown in Fig. 5, we first compare our method with FisherToF [11] under single frequency mod-
ulation. While FisherToF achieves precise depth reconstruction at close range, it still suffers from
the rapid decline in imaging quality over distance. We then compare our method with a variety of
dual frequency modulation approaches, including sinusoid and square coding functions with Phase
Shift (PS) algorithm [5] and the learning-based DeepToF [23] method. Our method achieves the
best performance across various distances and SNRs, using only single frequency modulation. We
present a detailed quantitative comparison in Tab. 1 (a), with Mean Absolute Error (MAE) as the
evaluation criterion.

We further substantiate the superiority of our method through an analysis of the learnable coding
function and the proposed RSCF-Net. As for the coding function, considering the practical hardware
implementability, we compare our learnable coding functions with the square coding function with
the same RSCF-Net. The quantitative results presented in Tab. 1 (b) prove that our learnable coding
functions provides superior depth reconstruction and enhanced robustness to noise. Additionally,

Scene Square Learned Codes Learned Codes Learned Codes
+ RSCF-Net + DeepToF + MaskToF + FisherToF

Ours GT

Figure 6: Comparisons with different coding scheme and reconstruction networks.



we perform a thorough comparison of our RSCF-Net with existing depth reconstruction networks
with the same learned coding functions, including DeepToF [23], MaskToF [31] and FisherToF [11].
The quantitative results in Tab. 1 (c) confirm the effectiveness of our network. Fig. 6 presents
the visual results of different methods across four distances under low SNR conditions, intuitively
demonstrating the advantages of our approach.

4.3 Ablation Study

Ours wio Law wlo Lyt with Law wio Ligt Table 2: Quantitative ablations with

MAE(mm) as the evaluation metric.

DI LI

wW/o Lisher 1536 1941  27.02 3745

w/o CFEB 58.69 73.64 7856 86.94

N . Mardware ® Madware ® w/o MFFB 9.8 1577 2336 28.40
Implementable Unimplementable Unimplementable w/o ECA 10.22 13.01 21.41 26.06
Ours 852 1286 1820 23.51

Figure 7: Visual ablations on Lg,, and L1 ;.

We first perform ablations on the proposed double well function loss L, and first-order difference
loss L15;. Since the learned coding functions are primarily used to control the camera’s exposure,
they must be strictly binary. As illustrated in Fig. 7, the absence of L4, and £, results in coding
functions that are entirely impractical to implement in hardware. With only the L4, the coding
functions do converge to binary states; however, the proliferation of narrow peaks still makes them
impossible to implement on real hardware.

In the next, we present a quantitative analysis to evaluate the impact of the fisher guidance loss
and different network blocks. The values in Tab. 2 represent the average MAE measured under
different SNRs at the same distance. The experimental results demonstrate the effectiveness of the
introduced Fisher loss in guiding the network to learn an optimal coding functions. The ablation
studies on different network blocks further validate the significant improvement in reconstruction
quality brought by the proposed CFEB and MFFB.

5 Physical Experiment Results

Hardware Prototype. As shown in Fig. 8, to validate the effectiveness of our BE-ToF approach
in real world scenarios, we built a prototype system comprising a solid-state pulsed laser and an
exposure-encodable ICMOS sensor. The laser operates at 532 nm with a 5 ns pulse width, a fixed 1
kHz repetition rate, and up to 1 mJ single-pulse energy. To realize area illumination, we homogenize
the beam with a diffuser and expand it using a beam expander. The ICMOS is fitted with a zoom lens
(300-800 mm) and supports a minimum exposure gate of 3 ns. Timing synchronization is provided
by a fast photodiode that detects each laser pulse and issues a hardware trigger to a signal generator,
which then drives the ICMOS with the learned coding functions. This hardware chain achieves
picosecond-scale synchronization, ensuring high-quality imaging.

Experimental Results. As shown in Fig. 9, we evaluate our approach across diverse indoor and

outdoor scenarios, including a hand model and a kettle indoors and a stone model and a stair out-

Table 3: Quantitative results on real world experiments with
MAE(cm) as the evaluation metric.

Signal Square Square Learned Codes Learned Codes

Geneator +PS +RSCF-Net +DeepToF  + FisherToF O\
Hand  10.57 3.96 473 247 1.78
Kettle 9.13 3.51 4.14 1.99 1.41
Stone  12.16 4.76 5.94 3.78 2.50
Stair  15.79 592 6.70 426 3.83

Figure 8: System Prototype.
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Figure 9: Real world experiments across indoor and outdoor scenarios.

doors. All experiments use the same settings as in simulation: we apply the coding functions learned
in simulation and reconstruct with RSCF-Net. The modulation period 7, is fixed at 20 ns, and the
burst period Ty,,-s¢ 1S set to 1ms, corresponding to the laser repetition rate of 1 kHz. We perform
a detailed comparison against other methods, including square coding function and several recon-
struction networks. Quantitative results are summarized in Tab. 3. Ground truth is acquired via a
time-delay scan at the minimum exposure time (3 ns) with a 1 ns step. Both qualitative and quantita-
tive results demonstrate that our system consistently achieves centimeter-level depth accuracy across
these scenarios and outperforms existing methods.

6 Conclusion, Limitations, and Broader Impact

In conclusion, we propose a novel ToF imaging paradigm, termed BE-ToF. The BE-ToF system
enables long-distance high-fidelity depth imaging by modulating and demodulating pulsed signals
in burst mode using only single-frequency modulation. Additionally, we introduce a learnable end-
to-end framework that jointly optimizes binary coding functions and the reconstruction network to
effectively handle varying SNRs across different distances, achieving state-of-the-art performance.

Limitations. Despite achieving both long-distance and high-fidelity depth imaging, our BE-ToF
system is subject to limitations in its imaging range. As shown in Fig. 1, the operational range is

confined between and w, with higher precision resulting in a narrower imaging range.
We are currently exploring several promising directions to mitigate these limitations. First, we can
exploit BE-ToFs flexible time-delay control to perform temporal scanning and synthesize a wide-
range depth map. Second, because temporal scanning can incur significant latency, we favor a
coarse-to-fine strategy: first capture a wide-range, low-resolution depth map, then use BE-ToF to
selectively acquire high-precision depth in regions of interest (ROIs).

cT

Broader Impact. The proposed BE-ToF system demonstrates strong potential for applications
such as autonomous driving and topographic surveying, offering enhanced reconstruction quality
and improved processing efficiency. However, its ability to perform long-distance depth imaging
raises potential privacy concerns, particularly in scenarios where individuals may be unknowingly
captured. Addressing these concerns responsibly is essential for real-world deployment.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction are consistent with the con-
tributions of this paper and align with both the simulation and real-world experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our proposed method in detail in Sec. 6.
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* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All the theories in the paper are provided with complete and correct proofs.
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of our experimental setup in Sec. 4.1, which
will facilitate the reproducibility of our main experimental results by others.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will provide our dataset and code with sufficient instructions.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide a detailed description of training and test details in Sec. 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The error bars reported in this paper are suitably and correctly defined.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

 Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experiments compute resources are detailed descried in Sec. 4.1.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Research conducted in the paper conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts of the proposed method in detail in Sec. 6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original authors of the code are properly credited, and the dataset used in
this paper is properly cited.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper are well documented and accompanied by
appropriate documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

¢ Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Comparison with Other Coding Functions

To fully highlight the advantages of our learnable binary coding functions, we conduct a detailed
comparison against alternative coding functions, including sinusoid, square, Hamiltonian [44], and
M-sequence [45]. To ensure a fair comparison of coding functions, we employ the same imaging
setup (with K = 4 measurements) and reconstruction network, varying only the coding functions.
The quantitative results, evaluated using Mean Absolute Error (MAE) in millimeters, are summa-
rized in Tab. 4. It can be observed that, under the same reconstruction network, our coding functions
delivers the best performance. Notably, although we compare multiple coding functions in simula-
tion, only the square coding function and our learnable binary coding functions are implementable
on actual hardware. The sinusoidal coding function is excluded due to its non-binary nature, while
Hamiltonian codes and M-sequences contain narrow peaks that are impractical to implement given
hardware constraints on minimum exposure time.

To further demonstrate the advantages of optimizing coding functions using neural networks, we
use Fisher information to evaluate the quality of each coding function. As discussed in [1 1], Fisher
information can be used as a metric to assess the optimality of different coding schemes a higher
Fisher Information value indicates a more optimal coding scheme. Therefore, we list the Fisher
Information of different coding functions in Tab. 5 for a straightforward comparison. It can be
observed that our learnable binary coding functions achieves the highest Fisher information, which
demonstrates its optimality.

Table 4: Quantitative comparison with other coding functions.
0-3m  30-33m 60-63m 90-93m

Sinusoid 24.67  31.12 39.80 45.39
Square 1640  22.66 26.05 33.35
Hamiltonian [44] | 11.28 14.53 21.74 27.11
M-sequence [45] | 15.19  21.24 28.33 38.81
Ours 8.52 12.86 18.20 23.51

Table 5: Quantitative comparison of Fisher Information with other coding functions.

Sinusoid Square Hamiltonian M-sequence Ours
Fisher Information | 1.27 x 10° 2.29 x 105  2.92x 10° 218 x 10°  3.93 x 10°

A.2 Experiments with Fewer Measurements

As discussed in Sec. 3.1, at least X' > 3 measurements are required to recover depth. In our work,
we choose K = 4 to ensure high reconstruction quality and robustness to noise. In Tab. 6, we
present quantitative results for cases with K < 4, evaluated using Mean Absolute Error (MAE) in
millimeters. When K < 3, the reconstruction quality significantly degrades, which is reasonable
given the limited information available for depth recovery. With K = 3, depth can be reasonably
reconstructed, though still slightly inferior to ' = 4, where the additional measurement improves
robustness to noise and other perturbations.

Table 6: Quantitative comparison with different measurements.
0-3m  30-33m  60-63m  90-93m

133.22 16690  156.18  198.19
37.84 42.94 51.96 49.18
14.58 17.59 21.64 29.88
8.52 12.86 18.20 23.51
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A.3 Ablations on Loss Balance Coefficients

In the loss defined in Eq. 13, the MSE term is the principal objective driving accurate depth recon-
struction, while the three additional regularization terms serve as auxiliary constraints that guide
the learning of the binary coding functions. To validate our choice of loss weights, we conduct a
comprehensive ablation over the coefficients and report the results. All experiments are performed
at distances of 0-3 m.

For coefficient v; before 40 epochs, as shown in Tab. 7, setting v; < 5 X 10~% makes its effect
too weak for the network to learn effective coding functions, leading to performance drop. When it
exceeds 5 x 1074, it disrupts the double-well and first-order difference losses, resulting in coding
functions unimplementable for hardware. Thus, we set 1 to 5 x 10~* during the first 40 epochs.

Table 7: Ablations on ~; before 40 epochs.
71 Before 40 Epochs | 5 x 1077 5x 107% 5x 107° 5 x 107* 5x 1073 5x 1072

Hardware Hardware

MAE(mm) 17.23 12.47 9.76 8.52 Unimplementable Unimplementable

For coefficient v, in epochs after 40, as shown in Tab. 8, we find that the value of ~y; has little
impact on the final performance. However, setting it too high can slow down the convergence of
the network. Therefore, we set y; to 5e-5 after 40 epochs to balance performance and convergence
speed.

Table 8: Ablations on y; after 40 epochs.
71 After 40 Epochs | 5x 1077 5x107° 5x107° 5x107* 5x107° 5x107?

MAE(mm) 9.94 8.73 8.52 14.58 11.62 10.17
Convergence Epochs 107 103 112 123 133 137

For coefficient 5 in epochs before 40, we set 2 to a small value so that the first-order difference
loss dominates and helps suppress narrow peaks. As shown in Tab. 9, when =5 exceeds 1, the learned
coding functions exhibit narrow peaks and become unsuitable for hardware implementation. Thus,
we set v to 5 x 10~2 during the first 40 epochs of training.

Table 9: Ablations on 7, before 40 epochs.

72 Before 40 Epochs | 5x 107" 5x107° 5x107% 5x 107" 1 5
Hardware
MAE(mm) 11.98 12.35 8.52 12.67 10.27 Unimplementable

For coefficient 2 in epochs after 40, we increase the value of 7, to encourage the coding functions to
converge more rapidly to a binary state. As shwon in Tab. 10, setting the coefficient below 5 x 1072
prevents the coding functions from reaching a binary state, while values above 30 cause noticeable
performance degradation. Therefore, we set 3 to 1 after 40 epochs.

Table 10: Ablations on vy, after 40 epochs.

72 After 40 Epochs | 5x 1073 5x1072 5x107t 1 12 20 30 40
MAE(mm) _Hardware 1026 9.02 852 929 1141 1068 17.92
Unimplementable

For coefficient 73, as shown in Tab. 11, when the coefficient is too small, narrow peaks appear,
making hardware unimplementable. Conversely, a large coefficient results in degraded depth recon-
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struction quality. A balanced performance is achieved with values between 0.05 and 10; we set it to
5 in our experiments.

Table 11: Ablations on 3.
~3 \ 5x 1074 5x 1073 5x1072 1 5 10 20 30

Hardware Hardware
Unimplementable Unimplementable

MAE(mm) 9.02 898 852 853 1688 2376

A.4 Simulation Method for the Long-Range Indoor Dataset

We use the NYU Depth V2 RGB-D dataset to train and evaluate our network. First, we scale the
depth values to a fixed maximum range of 3 m (corresponding to 7},,=20ns), and apply this setting
consistently across all simulation experiments for fairness. As discussed in Sec. 3.1, ToF imaging
is principally affected by ambient light, scene reflectance, and depth. To model these factors, we
perform intrinsic image decomposition [38] on the RGB images to separate ambient light and re-
flectance components, and we calibrate a distance-dependent attenuation curve under long-range
conditions within the simulation environment. Because ambient illumination and scene reflectance
are depth-invariant in this model, variations across distance are primarily attributed to attenuation.
Accordingly, given a fixed emitted signal, we apply distance-dependent attenuation coefficients to
the reflected signal and then synthesize the corresponding ToF measurements. In addition, we ex-
plicitly model sensor noise as in Eq. 7, incorporating both dark current and readout noise to obtain
more realistic measurements.

It is worth noting that our setting still differs from real long-range outdoor scenarios in several
respects: (i) the current simulation does not model atmospheric effects, which can significantly in-
fluence ToF imaging outdoors; and (ii) beam divergence remains a key factor affecting image quality.
To mitigate the latter, we employ a laser beam expander to generate area illumination, though some
deviation from ideal uniform lighting persists. In future work, we plan to incorporate atmospheric ef-
fects into the simulation framework to better align with real-world experiments; meanwhile, spatial
filtering is used to further improve illumination uniformity.

A.5 Precision of Binary Coding Function Optimization

In this work, we adopt a differentiable double well function to drive the coding functions toward 0 or
1, thus ensuring that our end-to-end framework is fully differentiable. While the optimized coding
functions are effectively binary, they do not attain exact binary values in floating-point arithmetic.
Empirically, the learned coding functions lie extremely close to the binary extremes (e.g., around
0.0001 or 0.999), and we regard such deviations as negligible for our network. To validate our
conclusion, we apply a round function during testing to convert coding functions into strict binary
states(0 or 1) and compare results without it. The quantitative results in Tab. 12 show that strict bina-
rization does not cause performance degradation; on the contrary, it slightly improves performance.

Table 12: Quantitative comparison of coding functions with/without round function with MAE(mm)
as the evaluation metric.

0-3m 30-33m 60-63m 90-93m

Without Round Function | 8.52 12.86 18.20 23.51
With Round Function 8.51 12.78 17.97 21.97

A.6 Additional Results on Other Datasets

To rigorously assess the generalization capability of our method, we conduct experiments on the 4D
Light Field [46] and SUN RGB-D [47] datasets, selecting 16 scenes from the former and 298 scenes
from the latter as the test sets. Both datasets are processed according to the approach detailed in
the main manuscript: each RGB-D pair undergoes intrinsic image decomposition to separate it into
an albedo map and a shading map. Specifically, the R-channel of the albedo map is utilized as the
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albedo component, while the average of its three RGB channels serves as the ambient illumination.
The network, trained exclusively on the NYU-V2 [37] dataset, is then evaluated on these datasets
without any fine-tuning. For comparison, we include several baseline methods: FisherToF [ 1] under
single frequency modulation, and sinusoidal and square coding functions combined with the Phase
Shift (PS) algorithm [5], as well as the learning-based DeepToF [23], all under dual-frequency mod-
ulation. The quantitative results are summarized in Tab. 13. As shown, our method exhibits strong
generalization performance across both datasets and achieves the highest reconstruction accuracy
among all compared approaches. Additionally, we present qualitative results on the 4D Light Field
and SUN RGB-D datasets in Fig. 10 and Fig. 11, respectively. The visualizations further confirm
that our method delivers robust reconstruction performance, even under challenging conditions such
as long-range scenes or low signal-to-noise ratios.

Table 13: Quantitative comparison of overall performance on 4D Light Field [46] and SUN RGB-
D [47] dataset.

0-3m \ 30-33m \ 60-63m \ 90-93m
HSl'll' ]\/ISHI' LSl'll' ‘ HS“I' MSnl’ LSl'll' ‘ HSnl’ MS"I' LS"I’ ‘ HSm’ MSI’“’ LSm’

(a) Overall Performance on 4D Light Field Dataset

Sine+PS [5] 4339 5820 78.10 | 57.07 78.01 106.93 | 79.37 111.08 15791 116.95 170.50  247.06
Square+PS [5] 33.15 4058  51.20 | 39.99 51.11 66.80 51.83 69.04 93.32 72.05 99.72 140.14
DeepToF [23] 19.16 2327  40.73 | 34.10 3691 45.53 38.48 42.08 52.98 54.44 55.25 66.11
FisherToF [11] 8.83 12.81 19.19 | 27.19 3199 39.04 44.72 52.95 65.41 83.79 98.05 140.15

Ours 6.79 11.06  19.64 | 11.35 1629  26.75 15.11 21.13 32.25 26.78 28.78 34.17
(b) Overall Performance on SUN RGB-D Dataset
Sine+PS [5] 4046  54.10 7239 | 53.06 7220 98.64 7339 10239 14444 | 107.51 155.64 224.36

Square+PS [5] 31.90 38059  48.25 | 38.06 48.15 62.44 48.79 64.46 86.58 67.20 92.42 129.06
DeepToF [23] 1647 2345 3071 | 25.12  32.67 36.78 2791 35.80 40.99 36.07 45.11 55.05
FisherToF [11] 8.08 11.80 1896 | 21.35 2539 31.83 3334 40.62 51.86 74.61 76.92 132.77
Ours 6.63 7.53 12.11 9.00 12.55 18.03 11.59 16.85 29.20 17.93 21.62 31.70
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Figure 10: Overall comparisons with traditional iToF methods under various distances and SNRs on

4D Light Field dataset, including FisherToF [1 1] under single frequency modulation; Sine/Square +
PS algorithm [5] and Sine + DeepToF [23] under dual frequency modulation.
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Figure 11: Overall comparisons with traditional iToF methods under various distances and SNRs on
SUN RGB-D dataset, including FisherToF [11] under single frequency modulation; Sine/Square +
PS algorithm [5] and Sine + DeepToF [23] under dual frequency modulation.
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