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ABSTRACT

Neural fields are an emerging paradigm that represent data as continuous functions
parameterized by neural networks. Despite many advantages, neural fields often
have a high training cost, which prevents a broader adoption. In this paper, we
focus on a popular family of neural fields, called sinusoidal neural fields (SNFs),
and study how it should be initialized to maximize the training speed. We find
that the standard initialization scheme for SNFs—designed based on the signal
propagation principle—is suboptimal. In particular, we show that by simply mul-
tiplying each weight (except for the last layer) by a constant, we can accelerate
SNF training by 10×. This method, coined weight scaling, consistently provides
a significant speedup over various data domains, allowing the SNFs to train faster
than more recently proposed architectures. To understand why the weight scaling
works well, we conduct extensive theoretical and empirical analyses which reveal
that the weight scaling not only resolves the spectral bias quite effectively but also
enjoys a well-conditioned optimization trajectory.

1 INTRODUCTION

Neural field (NF) is a special family of neural networks designed to represent a single datum (Xie
et al., 2022). Precisely, NFs parametrize each datum with the weights of a neural net which is
trained to fit the mapping from spatiotemporal coordinates to corresponding signal values. Thanks
to their versatility and low memory footprint, NFs have been rapidly adopted in various domains,
including high-dimensional computer vision and graphics (Sitzmann et al., 2019; Mildenhall et al.,
2020; Poole et al., 2023), physics-informed machine learning (Wang et al., 2021; Serrano et al.,
2023), robotics (Simeonov et al., 2022), and non-Euclidean signal processing (Rebain et al., 2024).

For neural fields, the training speed is of vital importance. Representing each datum as an NF
requires tedious training of a neural network, which can take up to several hours of GPU-based
training (Mildenhall et al., 2020). This computational burden becomes a critical obstacle toward
adoption to tasks that involve large-scale data, such as NF-based inference or generation (Ma et al.,
2024; Papa et al., 2024). To address this issue, many research have been taken to accelerate NF
training, including fast-trainable NF architectures (Sitzmann et al., 2020b; Müller et al., 2022), meta-
learning (Sitzmann et al., 2020a; Chen & Wang, 2022), and data transformations (Seo et al., 2024).

Despite such efforts, a critical aspect of NF training remains understudied: How should we initialize
NFs for the fastest training? While the importance of a good initialization has been much contem-
plated in classic deep learning literature (Glorot & Bengio, 2010; Zhang et al., 2019), such under-
standings do not immediately answer our question, for many reasons. First, conventional works
mostly focus on how initialization affects the signal propagation properties of deep networks with
hundreds of layers, while most NFs use shallow models with only a few layers (Mildenhall et al.,
2020). Second, conventional works aim to maximize the model quality at convergence, while in
NFs it is often more important how fast the network achieves certain fidelity criterion (Müller et al.,
2022). Lastly, NFs put great emphasis on how the model performs on seen inputs (i.e., training loss)
and leaves how well it interpolates between coordinates (i.e., generalizability) as a secondary issue,
while conventional neural networks care exclusively on the test performance.

To fill this gap, in this paper, we investigate how the initialization affects the training efficiency of
neural fields. In particular, we focus on initializing sinusoidal neural field (SNF) architectures, i.e.,
multilayer perceptrons with sinusoidal activation functions (Sitzmann et al., 2020b). SNF is one of
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Figure 1. A simple weight scaling accelerates training. The proposed weight scaling scales up the initial
weights of an SNF by the factor of α, except for the last layer (left panel). The weight scaled SNF significantly
speeds up training across a variety of methods (right panel: train PSNR curve for a single Kodak image).

the most widely used NFs, due to its versatility and parameter-efficiency; the architecture works as
a strong baseline in a wide range of data modalities (Grattarola & Vandergheynst, 2022; Kim et al.,
2024; Rußwurm et al., 2024) and is used as an indispensable building block of many state-of-the-art
neural field frameworks (Guo et al., 2023; Schwarz et al., 2023; Pal et al., 2024).

Contribution. We first discover that the current practice of SNF initialization is highly suboptimal
in terms of the training speed (Sitzmann et al., 2020b). Precisely, we find that one can accelerate
the training speed of SNFs by up to 10×, simply by scaling up the initial weights of all layers by
a well-chosen factor. This extremely simple tuning, coined weight scaling (WS), provides a much
greater speedup than the conventional SNF tuning strategy, i.e., scaling up the frequency multiplier
of the activation functions (called ω0 in Sitzmann et al. (2020b)). Furthermore, this speedup can
be achieved without any degradation in the generalization capabilities of the model, if we keep the
scaling factor at a moderate level. Interestingly, experiments suggest that the optimal scaling factor,
which strikes the balance between speedup and generalization, mainly depends on the physical scale
of the NF workload (e.g., data resolution and model size) and remains similar over different data.

To demystify why the weight scaling accelerates the SNF training, we conduct an in-depth analysis.
In particular, we focus on understanding how the effects of WS on SNFs are similar yet different
from ReLU nets, where the so-called lazy training phenomenon takes place (Chizat et al., 2019)—
weight-scaled ReLU nets behave similarly to kernels, enjoying exponential convergence in theory
for shallow nets but failing to achieve good accuracy at practical scales due to ill-conditioned tra-
jectories. Our theoretical and empirical analyses highlight several key differences that sinusoidal
activations bring, such as: (1) Weight-scaled SNFs also preserve activation distributions over lay-
ers, facilitating the gradient propagation when training a deep model (Proposition 1). (2) Weight
scaling increases not only the frequency of each basis, but also increases the relative magnitude of
higher-order harmonics, which helps fit the high-frequency components abundant in natural signals
(Lemma 3 and Section 4.2). (3) Weight-scaled SNFs enjoy even better-conditioned trajectories than
the unscaled models, as captured by the eigenspectrum analysis (Section 4.3).

In a sense, our study constitutes a call for rethinking the role of the initialization for neural fields, by
demonstrating how dramatically suboptimal the current schemes can be in key performance metrics
for NFs. We hope that our work will further inspire more sophisticated initialization algorithms.

2 RELATED WORK

Training efficiency of neural fields. There are two prevailing strategies to accelerate NF training.
The first approach is to adopt advanced NF architectures (Fathony et al., 2021; Dou et al., 2023),
which mitigate the spectral bias of neural nets that hinders fitting high-frequency signals (Rahaman
et al., 2019; Basri et al., 2019; Xu et al., 2020; Cao et al., 2021; Choraria et al., 2022). Popular
examples include utilizing specially designed positional encodings (Tancik et al., 2020; Müller et al.,
2022) or activation functions (Sitzmann et al., 2020b; Ramasinghe & Lucey, 2022; Liu et al., 2024;
Saratchandran et al., 2024c). Another strategy is to amortize the training cost via meta-learning, e.g.,
by training a fast-trainable initialization (Sitzmann et al., 2020a; Tancik et al., 2021) or constructing
an auxiliary model that predicts NF parameters from the datum (Chen & Wang, 2022). This work
aims to accelerate NF training through a better initialization. Unlike meta-learned initializations,
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however, our aim is to understand how the initialization (its scale, specifically) can facilitate training
by analyzing how it affects optimization dynamics, without meta-learning involved.

Neural network initialization. Early works on network initialization focus on preserving the sig-
nals through layers to facilitate training deep networks. This is typically done via principled scaling
of the initial weights (Glorot & Bengio, 2010; He et al., 2015), or by ensuring isometries in each
layer through orthogonalization (Xiao et al., 2018). Recent works focus on the relationship between
the initialization and the implicit bias of SGD (Vardi, 2023). In particular, the initialization scale
determines whether the training takes place in the rich regime or kernel regime, which correspond
to stronger and weaker influence of implicit bias, respectively (Woodworth et al., 2020; Varre et al.,
2023). Empirically, weak implicit bias leads to the models trained from larger initialization to gener-
alize poorly (Mehta et al., 2021). Our analyses share some spirit with the latter line of the literature.
Distinct from the works, however, we put our main focus on how initialization affects the training
speed, specifically targeting the neural fields.

Initializing sinusoidal neural fields. There is a limited number of works that study the initializa-
tion for SNFs. Sitzmann et al. (2020b) proposes an initialization scheme for SNF, designed in the
signal propagation perspective. Tancik et al. (2021) develops a meta-learning algorithm to learn
initializations for SNFs. Lee et al. (2021) extends the algorithm for sparse networks. Most related to
our work, Saratchandran et al. (2024b) proposes an initialization scheme that aims to facilitate the
parameter-efficiency of SNFs. Different from this work, our work primarily focuses on the training
efficiency, and achieves much faster training speed empirically.

3 NEURAL FIELDS INITIALIZATION VIA WEIGHT SCALING

In this section, we formally describe the weight scaling for a sinusoidal neural field initialization,
and briefly discuss the theoretical and empirical properties of the method.

3.1 NETWORK SETUP AND NOTATIONS

We begin by introducing the necessary notations and problem setup. A sinusoidal neural field is a
multilayer perceptron (MLP) with sinusoidal activation functions (Sitzmann et al., 2020b). More
concretely, suppose that we have an input X ∈ Rd0×N , where N is the number of d0-dimensional
coordinates. Then, an l-layer SNF can be characterized recursively via:

f(X;W) = W (l)Z(l−1) + b(l), Z(i) = σi(W
(i)Z(i−1) + b(i)), i ∈ [l − 1], (1)

parametrized by W = (W (1), b(1), . . . ,W (l), b(l)), where each W (i) ∈ Rdi×di−1 denotes the weight
matrix, b(i) ∈ Rdi denotes the bias, and Z(i) ∈ Rdi×N denotes the activation of the ith layer. Here,
we let Z(0) = X , and the activation function σi : Rdi → Rdi are the sinusoidal activations applied
entrywise, with some frequency multiplier ω. The standard practice is to use a different frequency
multiplier for the first layer. Precisely, we apply the activation function σ1(x) = sin(ω0 · x) for the
first layer, and σi(x) = sin(ωh · x) for all other layers, i.e., i ̸= 1.

The SNF is trained using the gradient descent, with the mean-squared error (MSE) as a loss function.
We assume that the input coordinates of the training data (i.e., the column vectors of the input data)
have been scaled to lie inside the hypercube [−1,+1]d0 , as in Sitzmann et al. (2020b).

3.2 STANDARD INITIALIZATION

The standard initialization scheme for the sinusoidal neural fields independently draws each weight
entry from a random distribution (Sitzmann et al., 2020b). Precisely, the weight matrices are initial-
ized according to the scaled uniform distribution as

w
(1)
j,k

i.i.d.∼ Unif

(
− 1

d0
,
1

d0

)
, w

(i)
j,k

i.i.d.∼ Unif

(
−

√
6

ωh

√
di−1

,

√
6

ωh

√
di−1

)
, (2)

where w
(i)
j,k denotes the (j, k)-th entry of the ith layer weight matrix W (i).

Importantly, the range of the uniform initialization (Eq. (2)) is determined based on the distribution
preserving principle, which aims to make the distribution of the activation Zi similar throughout all
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(b) Tradeoff curve of WS vs. frequency tuning

Figure 2. Scaling factors and the speed-generalization tradeoff. (a) As we increase the scaling factor
α, the training speed (◦) tends to become faster while the interpolation performance (◦) gets lower. Notably,
however, there exists some range of α where we enjoy acceleration with negligible degradation in test PSNR. (b)
Comparing with the frequency tuning (□), the weight scaling (◦) achieves a better tradeoff. Further experimental
details about the tradeoff curve is provided in Appendix F.1.

layers. In particular, Sitzmann et al. (2020b, Theorem 1.8) formally proves that the choice of the
numerator (i.e.,

√
6) ensures the activation distribution to be constantly arcsin(−1, 1) throughout all

hidden layers of the initialized sinusoidal neural field.

Frequency tuning. A popular way to tune the initialization (Eq. (2)) for the given data is by mod-
ifying the frequency multiplier of the first layer ω0. This method, which we call frequency tuning,
affects the frequency spectrum of the initial SNF, enhancing the fitting of signals within certain fre-
quency range. It is not typical to tune ωh, as changing its value does not change the initial SNF; the
effects are cancelled out by the scaling factors in the initialization scheme.

3.3 INITIALIZATION WITH WEIGHT SCALING

In this paper, we develop a simple generalization of the standard initialization scheme. In particular,
we consider weight scaling, which multiplies a certain scaling factor α ≥ 1 to the initialized weights
in all layers except for the last layer. More concretely, the initialization scheme is

w
(1)
j,k

i.i.d.∼ Unif

(
− α

d0
,
α

d0

)
, w

(i)
j,k

i.i.d.∼ Unif

(
− α

√
6

ωh

√
di−1

,
α
√
6

ωh

√
di−1

)
, (3)

where we let α = 1 for the last layer; this design is due to the fact that any scaling in the last layer
weight leads to a direct scaling of the initial function f 7→ αf , which is known to be harmful for the
generalizability, according to the theoretical work of Chizat et al. (2019). Empirically, we observe
that this weight scaling is much more effective in speeding up the training than a recently proposed
variant which scales up only the last layer of the NF (Saratchandran et al., 2024b); see Section 5.

There are two notable characteristics of the weight-scaled initializations.

(1) Distribution preservation. An attractive property of the proposed weight scaling is that, for
SNFs, any α ≥ 1 also preserves the activation distribution over the layers.1 In particular, we provide
the following result, which shows that the activation distributions will still be an arcsin(−1, 1).
Proposition 1 (Informal; extension of Sitzmann et al. (2020b, Theorem 1.8)). Consider an l-layer
SNF initialized with the weight scaling (Eq. (3)). For any α ≥ 1, we have, in an approximate sense,

Z(i) ∼ arcsin(−1, 1), ∀i ∈ {2, . . . , l − 1}. (4)

The detailed statement of this proposition and the numerical derivation will be given in Appendix A.

The proposition implies that we can tune the scaling factor α within the range [1,∞) without any
concerns regarding preserving the forward propagation signal. Thus, we can safely adopt the weight
scaling for training a very deep sinusoidal neural field.

1This point has also been noted in Sitzmann et al. (2020b), but has not been discussed quantitatively for
α ≥ 1. We make this point concrete via numerical analyses on the large α case.
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(2) Speed vs. generalization. Empirically, we observe that the weight scaling (Eq. (3)) allows us to
explore for the “sweet spot” region, where we can enjoy the accelerated training, while not suffering
from any degradation in the generalization performance on unseen coordinates.

The Fig. 2 illustrates this phenomenon for the case of image regression, where we train an SNF to
fit a downsampled image until some desired peak signal-to-noise ratio (PSNR) is met, and then use
the model to interpolate between seen pixel coordinates.

We observe that by increasing α from 1, the loss on unseen coordinates increase, and the training
speed increases as well. Notably, there exists some α > 1 where the test PSNR remains similar
while the training speed has strictly increased.

3.4 THE PARADIGM OF EFFICIENCY-ORIENTED INITIALIZATION

The latter phenomenon motivates us to develop an alternative perspective on a goodness of a neural
field initialization, which may replace or be used jointly with the distribution preservation principle.
More specifically, we consider an optimization problem

max
α≥1

speed(α)/speed(1) subject to TestLoss(α)− TestLoss(1) ≤ ε, (5)

where speed(α) denotes the training speed (e.g., a reciprocal of the number of steps required) of SNF
when initialized with α weight scaling, and TestLoss(α) denotes the loss on the unseen coordinates
when trained from the initialization. Given this objective, the key questions we try to address are:

• Why does the weight scaling accelerate the training of SNFs? ▷ See Section 4
• Is weight scaling generally applicable for other data modalities? ▷ See Section 5.1
• How can we select a good α, without expensive per-datum tuning? ▷ See Section 5.2

4 UNDERSTANDING THE EFFECTS OF THE WEIGHT SCALING

We now take a closer look at the weight scaling to understand how it speeds up the training of
sinusoidal neural fields. Before diving deeper into our analyses, we first discuss why a conventional
understanding does not fully explain the phenomenon we observed for the case of SNF.

Comparison with lazy training. At the first glance, it is tempting to argue that this phenomenon
is connected to the “lazy training” (Chizat et al., 2019; Woodworth et al., 2020): Scaling the initial
weights (W 7→ αW) amplifies the initial model functional (f 7→ αlf ) (Taheri et al., 2021), which in
turn leads to the model to be linearized; then, one can show that the SGD converges at an exponential
rate, i.e., the fast training, with the trained parameters being very close to the initial one. However,
there is a significant gap between this theoretical understanding and our observations for the SNFs:

• The proposed weight scaling does not amplify the initial functional, as sinusoidal activations are
not positively homogeneous (i.e., σ(ax) ̸= a · σ(x), even for positive a, x), unlike ReLU. In fact,
WS keeps the last layer parameters unscaled, making it further from any functional amplification,
and empirically works better than a direct amplification of functional (Saratchandran et al., 2024b).

• At a practical scale, a naı̈ve scaling of initial weights for ReLU networks leads to both high training
and test losses, due to a high condition number (Chizat et al., 2019, Appendix C). In contrast, the
training loss of the WS remains very small even at the practical tasks.

In light of these differences, we provide alternative theoretical and empirical analyses that can help
explain why the WS accelerates training, unlike in ReLU nets. In particular, we reveal that:

• WS on SNFs has two distinctive effects from ReLU nets, in terms of the initial functional and the
layerwise learning rate; the former is the major contributor to the acceleration (Section 4.1).

• At initialization, WS increases both (1) the frequency of each basis, and (2) the relative power of
the high-frequency bases (Section 4.2).

• WS also results in a better-conditioned optimization trajectory (Section 4.3).

4.1 TWO EFFECTS OF WEIGHT SCALING ON SINUSOIDAL NETWORKS

There are two major differences in how the weight scaling impacts SNF training compared to its
effect on conventional neural networks with positive-homogeneous activation functions, e.g., ReLU.

5
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(c) Early layer gradients only

Figure 3. Decoupling the effects of weight scaling on SNF. We decouple the effect of weight scaling on how it
amplifies the early layer gradients, from the effects of having a higher-frequency initial functional. We observe
that the initial functional itself plays the key role, resulting in a much greater acceleration.

(1) Initial functional: Larger weights lead to higher frequency (low-level) features in SNF, whereas
in ReLU nets scaling up does not change the neuronal directions (more discussions in Section 4.2).
(2) Larger early layer gradients: Unlike ReLU nets, scaling up SNF weights has a disproportionate
impact on the layerwise gradients; earlier layers receive larger gradients (see remarks below).

Motivated by this insight, we compare which of these two elements play a dominant role in speeding
up the SNF training by decoupling these elements (Fig. 3). In particular, we analyze how changing
only the initial weights—with the layerwise learning rates that are scaled down to match the rates of
unscaled SNF—affects the speed-generalization tradeoff; we also compare with the version where
the initial function stays the same as default, but the learning rates on early layers are amplified.
From the results, we observe that the effect of having a good initial functional, with rich high-
frequency functions, play a dominant role on speeding up the SNF training. The disproportionate
learning rate also provides a mild speedup, while requiring less sacrifice in the generalizability.

How are the early layer gradients amplified? Essentially, this is also due to the lack of positive-
homogeneity of the activation function. To see this, consider a toy two-layer neural net with width
one f(x) = w(2)σ(w(1)x). The loss gradient for each layer weight is proportional to the layerwise
gradients of the function, which is ∇wf =

(
w(2)xσ′(w(1)x), σ(w(1)x)

)
. For ReLU activations,

both entries of ∇wf grow linearly as we increase the scale of both weights. For sin activations,
on the other hand, the first entry scales linearly, but the scale of the second entry remains the same.
Following a similar line of reasoning, we can show that the first layer of a depth-l sinusoidal network
has a gradient that scales as αl, while the last layer gradient scales as 1. We provide a more detailed
discussion on the α-dependency of layerwise gradients in Appendix B.3.

4.2 FREQUENCY SPECTRUM OF THE INITIAL FUNCTIONAL

We have seen that the initial functional has a profound impact on the training speed, but how does
the weight scaling affect the functional? The answer is easy for two-layer nets; the weight scaling
amplifies the frequency of each hidden layer neuron, enabling the model to cover wider frequency
range with hardly updating the features generated by the first layer.

How about for deeper networks? Our theoretical and empirical analyses reveals that, for deeper
SNFs, the weight scaling also increases the relative power of the higher-frequency bases. Thus, the
weight-scaled networks may suffer less from the spectral bias, and can easily represent signals with
large high-frequency components (Rahaman et al., 2019).

Theoretical analysis. We now show theoretically that the weight scaling increases the relative
power of the higher-frequency bases. For simplicity, consider again a three-layer bias-free SNF

f(x;W) = W (3) sin(W (2) sin(W (1)x)), (6)

with sinusoidal activation functions. Then, it can be shown that the overall frequency spectrum of
the function f(·;W) can be re-expressed as the multiples of the first layer frequencies, via Fourier
series expansion and the Jacobi-Anger identity (Yüce et al., 2022).
Lemma 2 (Corollary of Yüce et al. (2022)). The network Eq. (6) can be rewritten as

f(x;W) = 2W (3)
∑
ℓ∈Zodd

Jℓ(W
(2)) sin(ℓW (1)x), (7)

where Jℓ(·) denotes the Bessel function (of the first kind) with order ℓ.
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Given the Bessel form (7), let us proceed to analyze the effect of weight scaling. By scaling the first
layer weight, i.e., W (1) 7→ αW (1), we are increasing the frequencies of each sinusoidal basis by the
factor of α. That is, each frequency basis becomes a higher-frequency sinusoid.

Scaling the second layer weight, on the other hand, acts by affecting the magnitude of each sinu-
soidal basis, i.e., Jℓ(W (2)). For this quantity, we can show that the rate that the Bessel function
coefficients evolve as we consider a higher order harmonics (i.e., larger ℓ) scales at the speed pro-
portional to α2. That is, the relative power of the higher-order harmonics becomes much greater as
we consider larger scaling factor α. To formalize this point, let us further simplify the model (6) to
have width one. Then, we can prove the following sandwich bound:
Lemma 3 (Scaling of harmonics). For any nonzero W (2) ∈ (−π/2, π/2), we have:

(W (2))2

(2ℓ+ 2)(2ℓ+ 4)
<

Jℓ+2(W
(2))

Jℓ(W (2))
<

(W (2))2

(2ℓ+ 1)(2ℓ+ 3)
. (8)

In other words, replacing W (2) 7→ α · W (2) increases the growth rate Jℓ+2/Jℓ by α2. We note
that there exists a restriction in the range W (2) which prevents us from considering very large α.
However, empirically, we observe that such amplification indeed takes place for the practical ranges
of α where the generalization performance remains similar.
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Figure 4. Spectrum of initialized SNFs.
1D-FFT of an initialized 5-layer SNF, with
various levels of weight scaling factors.

Summing up, the weight scaling has two effects on SNFs
with more than two layers. First, the WS increases the fre-
quencies of each sinusoidal basis by scaling the first layer
weights. Second, the WS increases the relative weight of
higher-frequency sinusoidal bases, by scaling the weight
matrices of the intermediate layers.

Empirical analysis. To demonstrate that the increase of
coefficients in the higher-order harmonics takes place in-
deed, we conduct a spectral analysis of an initialized SNF
for natural image (Fig. 4). From the plot, we observe that
the initialized SNFs with larger scaling factor α has a
richer higher frequency spectrum. Moreover, the decay
rate of the higher-frequency components, as we consider
increase the frequency level, is much smaller for larger α; as a consequence, weight-scaled SNFs
tend to have non-zero coefficients for very high frequency ranges, enabling a faster fitting to the
natural audio signals (gray) with rich high-frequency components.

4.3 OPTIMIZATION TRAJECTORIES OF WEIGHT-SCALED NETWORKS

Now, we study the optimization properties of SNFs through the lens of the empirical neural tangent
kernel (eNTK). We empirically analyze two properties of the eNTK eigenspectrum of the SNF,
which are relevant to the training speed: (1) condition number, and (2) kernel-task alignment.

Condition number. Roughly, the condition number denotes the ratio λmax/λmin of the largest and
the smallest eigenvalues of the eNTK; this quantity determines the exponent of the exponential con-
vergence rates of the kernelized models, with larger condition number meaning the slower training
(Chizat et al., 2019). In Fig. 5a, we plot how the condition numbers of the eNTK evolve during the
training for SNFs, under weight scaling or frequency tuning; for numerical stability, we take an aver-
age of top-5 and bottom-5 eigenvalues and take their ratio. We observe that the weight-scaled SNFs
tend to have a much smaller condition number at initialization, which becomes even smaller during
training. On the other hand, the SNF with the standard initialization suffers from a high condition
number, which gets even higher during training. More discussion can be found in Appendix C.3.

We note that this behavior is in stark contrast with ReLU neural networks, where the weight scaling
leads to a higher condition number, leading to a poor convergence (Chizat et al., 2019).

Kernel-task alignment. The kernel-task alignment—also known as the energy concentration—is
the cumulative sum of the (normalized) dot products

E(t) =
∑

i:λi/λ0≥t

(ϕ⊤
i e)

2/∥e∥22 (9)
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(a) Condition number (b) Kernel-task alignment

Figure 5. Eigenanalyses with eNTK. (a) Weight scaling improves the conditioning of the SNF optimization
at all SGD steps, greatly reducing the condition number. (b) Weight-scaled SNF enjoys a better kernel-task
alignment throughout the training; darker lines indicate later iterations.

Table 1. Weight scaling in various data domains. We compare the training speed of the weight-scaled SNF
against other baselines in various data domains. To evaluate the training speed, we train for a fixed number
of steps and compare the training loss achieved. Bold denotes the best option, and underlined denotes the
runner-up. We have experimented with five random seeds, and report the mean and the standard deviation.

Image (PSNR) Occ. Field (IoU) Spherical (PSNR) Audio (PSNR)

Activation KODAK DIV2K Lucy ERA5 Bach

Xavier Uniform (Glorot & Bengio, 2010) Sinusoidal 0.46±0.10 0.39±0.10 0.0000±0.0000 4.11±0.66 7.77±0.20
ReLU + P.E. (Mildenhall et al., 2020) ReLU 18.60±0.08 16.72±0.08 0.9896±0.0003 33.30±0.54 24.98±0.19
FFN (Tancik et al., 2020) ReLU 20.52±0.60 19.81±0.48 0.9843±0.0020 38.69±0.27 16.66±0.28
SIREN init. (Sitzmann et al., 2020b) Sinusoidal 24.58±0.05 22.86±0.06 0.9925±0.0001 38.72±0.07 37.37±3.11
GaussNet (Ramasinghe & Lucey, 2022) Gaussian 21.94±2.48 19.22±0.14 0.9914±0.0005 38.56±0.51 27.47±2.10
MFN (Fathony et al., 2021) Wavelet 28.54±0.12 26.42±0.10 0.9847±0.0003 36.89±0.80 16.16±0.05
WIRE (Saragadam et al., 2023) Wavelet 28.94±0.21 28.20±0.13 0.9912±0.0005 31.27±0.53 16.83±1.85
NFSL (Saratchandran et al., 2024b) Sinusoidal 24.93±0.07 23.39±0.09 0.9925±0.0001 38.92±0.07 37.17±2.88
Sinc NF (Saratchandran et al., 2024c) Sinc 27.73±0.27 26.42±0.24 0.9936±0.0002 36.15±0.51 23.03±0.40
Weight scaling (ours) Sinusoidal 42.83±0.35 42.03±0.41 0.9941±0.0002 45.28±0.03 45.04±3.23

where ϕi denotes the i-th eigenvector of the kernel and e = Y − f(X) denotes the vector of
prediction errors in the pixels (Kopitkov & Indelman, 2020). This quantity measures how much of
the residual signal is concentrated in the directions of large eigenvalues, which is theoretically easier
to be expressed or optimized by kernel learning (Baratin et al., 2021; Yüce et al., 2022). In Fig. 5b,
we compare the kernel-task alignments during the SNF training trajectories. We observe that the
weight scaling gives a highly optimizable kernel throughout all stages of training.

5 EXPERIMENTS

In this section, we first address whether the weight scaling is effective in other data domains (Sec-
tion 5.1); our answer is positive. Then, we discuss the factors that determine the optimal value of
scaling factor α for the given target task (Section 5.2); we find that the optimal value does not depend
much on the nature of each datum, but rather relies on the structural properties of the workload.

5.1 MAIN EXPERIMENTS

We validate the effectiveness of WS in different data domains by comparing against various neural
fields. To compare the training speed, we compare the training accuracy for equivalent steps. In par-
ticular, we consider the following tasks and baselines. Other details can be found in Appendix F.4.

Task: Image regression. The network is trained to approximate the signal intensity c, for each
given normalized 2D pixel coordinates (x, y). For our experiments, we use Kodak (Kodak, 1999)
and DIV2K (Agustsson & Timofte, 2017) datasets. Each image is resized to a resolution of 512×512
in grayscale, following Lindell et al. (2022); Seo et al. (2024). We report the training PSNR after a
full-batch training for 150 iterations. For all NFs, we use five layers with width 512.

Task: Occupancy field. The network is trained to approximate the occupancy field of a 3D shape,
i.e., predict ‘1’ for occupied coordinates and ‘0’ for empty space. We use the voxel grid of size 512×
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512× 512 following Saragadam et al. (2023). For evaluation, we measure the training intersection-
over-union (IoU) after 50 iterations on the ‘Lucy’ data from the ’Standard 3D Scanning Repository,’
with the batch size 100k. We use NFs with five layers and width 256.

Task: Spherical data. We use 10 randomly selected samples from the ERA5 dataset, which con-
tains temperature values corresponding to a grid of latitude ϕ and longitude θ, using the geographic
coordinate system (GCS). Following Dupont et al. (2022), the network inputs are lifted to 3D coor-
dinates, i.e., transforming (ϕ, θ) to (cos(ϕ) · cos(θ), cos(ϕ) · sin(θ), sin(ϕ)). We report the training
PSNR after 5k iterations of full-batch training. For NFs, we use five layers with width 256.

Task: Audio data. Audio is a 1D temporal signal, and the network is trained to approximate the
amplitude of the audio at a given timestamp. We use the first 7 seconds of “Bach’s Cello Suite No.
1,” following Sitzmann et al. (2020b). We report the training PSNR after 1k iterations of full-batch
training. For NFs, we use five layers with width 256.

Baselines. We compare the weight scaling against seven baselines; we have selected the versatile
neural field methods, rather than highly specialized and heavy ones, such as Instant-NGP (Müller
et al., 2022). More concretely, we use the following baselines: (1) Xavier uniform: the method by
(Glorot & Bengio, 2010) applied on SNF, (2) SIREN init.: SNF using the standard initialization of
SIREN (Sitzmann et al., 2020b), (3) NFSL: A recent initialization scheme motivated by scaling law
(Saratchandran et al., 2024b). (4) ReLU+P.E.: ReLU nets with positional encodings (Mildenhall
et al., 2020). (5) FFN: Fourier feature networks (Tancik et al., 2020). (6) MFN: multiplicative filter
networks (Fathony et al., 2021). (7) GaussNet: MLP with Gaussian activations (Ramasinghe &
Lucey, 2022). (8) WIRE: MLP with Gabor wavelet-based activations (Saragadam et al., 2023). (9)
Sinc NF: MLP with sinc (i.e., sin(ωx)/ωx) activations (Saratchandran et al., 2024c). The baselines
(1-3) use SNFs, while (4-9) uses other architectures with different activation functions.

Result. Table 1 reports the comprehensive results across various data domains. We observe that
the weight scaling significantly outperforms all baselines throughout all tasks considered. In Ap-
pendix F.9, we provide further qualitative results on various modalities, where we find that the
weight scaling enhances capturing the high frequency details. These results support our hypoth-
esis that the richer frequency spectrum provided by the weight scaling mitigates the spectral bias
(Section 4.2), thereby enabling a faster training of neural fields.

Additional experiments. We have also conducted experiments on the NF-based dataset construc-
tion tasks (Papa et al., 2024), novel view synthesis via neural radiance fields (NeRFs) (Mildenhall
et al., 2020), and solving partial differential equations. We report the results and details in Ap-
pendix F.5, Appendix F.7, and Appendix F.8 respectively.

5.2 ON SELECTING THE OPTIMAL SCALING FACTOR

Now, we consider the problem of selecting an appropriate scaling factor without having to carefully
tune it for each given datum. In particular, we are interested in finding the right α that maximizes the
training speed yet incurs only negligible degradations in generalizability. More concretely, consider
the task of Kodak image regression and seek to select the α that approximately solves

maximize
α

speed(α) subject to TestPSNR(α) ≥ 0.95 · TestPSNR(1). (10)

where (again) the speed is the reciprocal of the number of steps required until the model meets the
desired level of training loss, which we set to be the PSNR 50dB. Note that this optimization is
similar to what has been discussed in Section 3.4.

In a nutshell, we observe in this subsection that this optimal scaling factor is largely driven by the
structural properties of the optimization workload (such as model size and data resolution), and
remains relatively constant over the data. This suggests that the strategy of tuning α on a small
number of data and transferring it to other data in the same datasets can be quite effective.

Structural properties. In Fig. 6, we visualize how changing the data resolution (512 × 512 by
default), model width (512 by default), and model depth (4 by default) affects the value of optimal
scaling factor. We observe that the higher data resolution and shallower model depth lead to a need
for a higher scaling factor, with the width having very weak correlation. Commonly, we find that the
resolution and depth are both intimately related to the frequency spectrum; higher resolution leads
to a need for a higher frequency, and deeper networks can effectively utilize the relatively smaller

9
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Figure 6. Optimal scaling factor vs. structural properties of the optimization workload. The data resolu-
tion, model width, and model depth have positive, no, and negative correlations with the optimal scaling factor.
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Figure 7. Scaling factor vs. the first 8 Kodak images. The behavior of each datum with respect to the scaling
factor α is quite similar, in both acceleration and generalization performances.

scaling factors to represent high-frequency signals. In a similar context, we provide an analysis of
the impact of the learning rate in Appendix E.5.

Data instances. In Fig. 7, we observe that both curves are strikingly quite similar in shape, having
saturation and inflection points at the similar scaling factor. This may be due to the fact that natural
images tend to exhibit a similar frequency distribution.

6 CONCLUSION

In this paper, we revisit the traditional initialization scheme of sinusoidal neural fields, and propose
a new method called weight scaling (WS), which scales the initialized weights by a specific factor.
In practice, WS significantly accelerates the training speed of SNF across various data modalities,
even outperforming recent neural field methods. We have discovered that the difference between
the traditional and WS initialization comes from both the change in the frequency spectrum of
the initial functional and the change in the layerwise learning rates. Through extensive theoretical
and empirical analyses, we have revealed that the WS positively impacts the learning dynamics by
maintaining a well-conditioned optimization path throughout the training process.

Limitations and future directions. The limitations of our work lie in the fact that the analysis
has been conducted for only neural fields using sinusoidal activation functions, rather than general
neural field architectures; how the WS affects on other architectures remains an open question (see
Appendix E.4). Also, from a theoretical perspective, our analyses does not provide a definitive
answer on the acceleration mechanisms, lacking an explicit convergence bound. As a final remark,
our work is closely related to the implicit bias of initialization scale (Azulay et al., 2021), which is an
emerging topic in understanding the neural network training. However, there remains a significant
gap between theory and practice in this area, as the current interpretation is limited to shallow
and homogeneous (or linear) networks (Varre et al., 2023; Kunin et al., 2024). The next step is
to understand the implicit bias in networks with general activation functions, where the scale of
initialization is not necessarily equivalent to output scaling. We leave this as future work.
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REPRODUCIBILITY STATEMENT

Most experiments in our work are based on widely used neural field baselines, whose official source
codes are publicly available online. The only new part, i.e., our proposed algorithm, is rather simple
and only requires multiplying constants to the initial weights. While the implementation is quite
simple, we will also release our code for our algorithm and the experiments as a public repository,
upon the preparation of the camera-ready version of the paper.
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A DETAILED STATEMENT AND THE DERIVATION OF PROPOSITION 1

In this section, we provide a more detailed statement and derivation of Proposition 1, where we have
extended the distribution-preserving claims of Sitzmann et al. (2020b) on α = 1 to the cases of
α ≥ 1, thus covering the initialization with weight scaling.

We note that we generally follow the approach of Sitzmann et al. (2020b) in terms of the formalisms;
we provide rough approximation guarantees (Lemmas 4 and 5), one of which relies on a numerical
analysis of a function that is difficult to be expressed in a closed form (Lemma 5).

In particular, we are concerned with showing the following two points:

• Activations to pre-activations. We show that, for α ≥ 1, the pre-activation of a layer with
weight-scaled uniform activations and arcsin input distributions are approximately distributed as
a Gaussian distribution with variance scaled by α (Lemma 4).

• Pre-activations to activations. Then, we show that, for α ≥ 1, post-activation distribution of the
Gaussian distribution with α-scaled variance is distributed as an arcsin distribution (Lemma 5).

More formally, our lemma are as follows.
Lemma 4 (Arcsin to Gaussian distributions). Let the weights Wl of the l-th layer be sampled
i.i.d. from Unif(−c/

√
n, c/

√
n), and the activation of the (l − 1)-th layer Zl−1 follow the i.i.d.

arcsin(−1, 1). Then, the distribution of the pre-activation of the l-th layer Yl converges in distribu-
tion to a Gaussian distribution N (0, c2/6) as the number of hidden units n tends to infinity.
Lemma 5 (Gaussian to arcsin distributions, with numerical proof). Let the pre-activation distri-
bution X has a Gaussian distribution N (0, α2) for some α ≥ 1. Then the activation distribution
Y = sin(X) is distributed as arcsin(−1, 1).

Note that, by plugging in c = α
√
6 to the Lemma 4 as in the proposed weight scaling, we get the

normal distribution N (0, α2) as an output distribution.

We provide the proofs of these lemma in Appendices A.1 and A.2, respectively. For all derivations,
we simply ignore the issue of the frequency scaling term ω0, and simply let it equal to 1.

A.1 PROOF OF LEMMA 4

For simplicity, let us denote a pre-activation of a neuron in the lth layer by y. Let the weight
vector connected to this output neuron as w ∈ Rn, with each entries drawn independently from
Unif(−c/

√
n, c/

√
n). Also, let the corresponding input activation from the (l − 1)th layer be de-

noted by z ∈ Rn, with each entry drawn independently from arcsin(−1, 1). Now, it suffices to show
that y = w⊤z converges in distribution to N (0, c2/6) as n goes to infinity.

To show this point, we simply invoke the central limit theorem for the i.i.d. case. For CLT to hold,
we only need to check that each summand (wizi) of the dot product w⊤z =

∑
wizi has a finite

mean and variance.

w⊤z =

d∑
i=1

wizi (11)

has a finite mean and variance w⊤z has a zero mean and a finite variance. We know that E[wizi] = 0,
as two random variables are independent and E[wi] = 0. To show that the variance is finite, we can
proceed as

Var(wizi) = Var(wi)Var(zi) =
c2

3n

1

2
=

c2

6n
, (12)

where the first equality holds as each variables are independent and zero-mean. Summing over n
indices, we get what we want.

A.2 PROOF OF LEMMA 5

By the 3σ rule, 99.7% of the mass of the Gaussian distribution N (0, α2) lies within the finite support
[−3α, 3α]. The CDF of Y can be written as

FY (y) = P (Y ≤ y) = P (sin(X) ≤ y). (13)
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Figure 8. Visualization of the cases in Lemma 5. In y = sin(x), Red line : x = 3α and Black line : x = π
2

Different from the settings of Sitzmann et al. (2020b), the sinusoidal activation is not a bijection in
general within the support [−3α, 3α], i.e., not directly invertible. Thus, we break it down into three
cases (Fig. 8): Case 1, where the endpoint 3α is less than π/2, Case 2, where 3α is in the increasing
region of sin(·), and Case 3, where 3α is in the decreasing region. We study each case:

Case 1 (α < π/6). Here, we have

FY (y) = P (X ≤ arcsin y) = FX (arcsin y) ≈ 1

2
+

1

2
tanh

(
β

α
arcsin y

)
, (14)

where the last approximation invokes the Gaussian CDF approximation (Bowling et al., 2009). In
this case, the CDF of Y does not approximate the CDF of arcsin(−1, 1). That is, the second-order
derivative of F decreases in [−1, 0] and increases in [0, 1], while the CDF of the arcsin distribution
behaves in an opposite way.

Now, suppose that α is sufficiently large (α ≥ π/6), i.e., case 2 or case 3. Here, we will consider
the nearest peak/valley that falls outside the [−3α, 3α] interval. More concretely, let γ be defined as
the period index of such peak/valley, i.e.,

γ = min{γ1, γ2}, where (15)

γ1 = min

{
n ∈ N | (4n+ 1)π

2
≥ 3α ∩ sin

(
(4n+ 1)π

2

)
= +1

}
(peak; case 2) (16)

γ2 = min

{
n ∈ N | (4n− 1)π

2
≥ 3α ∩ sin

(
(4n− 1)π

2

)
= −1

}
(valley; case 3) (17)

By considering the range up until such peaks/valleys, we can ensure that the probability of X lying
within this range is greater than 0.997.

Now, let’s proceed to analyze the case 2; the case 3 can be handled similarly.

Case 2. We break down the CDF of Y as

FY (y) = FY,center(y) + FY,inc(y) + FY,dec(y). (18)

Here, FY,center(y) denotes the CDF of the bijective region, i.e., x ∈ [−π/2, π/2], and FY,inc(y)
denotes the region where the sin(·) is increasing and FY,dec(y) denotes where sin(·) is decreasing.
Then, each of these components can be written as2:

FY,center(y) = P (−π/2 ≤ X ≤ arcsin y) = FX(arcsin y)− FX(−π/2) (19)

FY,inc(y) =

γ1∑
n=1

[
FX(arcsin y + 4nπ/2)− FX((4n− 1)π/2)

+ FX(arcsin y − 4nπ/2)− FX (−(4n+ 1)π/2)
]

(20)

FY,dec(y) =

γ1∑
n=1

[
FX((4n− 1)π/2)− FX(− arcsin y + (4n− 2)π/2)

+ FX(−(4n− 3)π/2)− FX(− arcsin y − (4n− 2)π/2)
]

(21)

2For notational brevity, we set α = 1 just for a moment. It will appear again in Eq. (23).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 9. Approximated CDF with increasing in α. Red line indicates the reference error. When α goes
larger, the error converges to limit near zero.

Combining these terms, we get:

FY (y) = FX (arcsin y)− FX (−π/2)

+

γ1∑
n=1

[
FX(−(4n− 3)π/2)− FX(−(4n+ 1)π/2)

+ FX(arcsin y + 4nπ/2) + FX(arcsin y − 4nπ/2)

− FX(− arcsin y + (4n− 2)π/2)− FX(− arcsin y − (4n− 2)π/2)
]

(22)

Using the logistic approximation and Taylor’s first-order expansion at z = arcsin y = 0, i.e., f(z) ≈
f ′(z)
1! (z − 0) + f(0), this can be further approximated by

FY (y) =

[
β

2α
h′(0) +

γ1∑
n=1

(
β

α

(
h′
(
4nβπ

2α

)
+ h′

(
(4n− 2)βπ

2α

)))]
z

− 1

2
h

(
−βπ

2α

)
+

γ1∑
n=1

[
1

2
h

(
− (4n− 3)βπ

2α

)
− 1

2
h

(
− (4n+ 1)βπ

2α

)]
, (23)

where h is the tanh function. The above equation has variables γ1 and α. Thus, we can rewrite it
as:

FY (y) = f(α) · arcsin y + g(α), (24)

f(α) =
β

2α
h′(0) +

β

α

γ1∑
n=1

[
h′
(
4nβπ

2α

)
+ h′

(
(4n− 2)βπ

2α

)]
, (25)

g(α) = −1

2
h

(
−βπ

2α

)
+

1

2

γ1∑
n=1

[
h

(
− (4n− 3)βπ

2α

)
− h

(
− (4n+ 1)βπ

2α

)]
. (26)

Now, we compare the FX(x) to ground truth CDF of arcsin(−1, 1), i.e., 2
π arcsin

√
x+1
2 . As the

closed form solution is not obtainable, we numerically compute the difference in integration over
input domain:

α̂ ∈

{
α

∣∣∣∣∣
∫ 1

−1

∣∣∣∣∣FX(x, α)− 2

π
arcsin

(√
x+ 1

2

)∣∣∣∣∣ dx (27)

≤
∫ 1

−1

∣∣∣∣∣FX(x, 1)− 2

π
arcsin

(√
x+ 1

2

)∣∣∣∣∣ dx
}
. (28)
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This indicates that the RHS term represents the cumulative error from the default initialization,
which is assumed to be valid for preserving the forward signal. If the LHS is smaller than the RHS
for some value of α̂ that satisfies the inequality, it intuitively follows that the elements in α̂ provide
a valid scale. In Fig. 9, we empirically demonstrate that as the scaling factor α increases, the error
between the ground truth and the approximated CDF decreases with some limit near zero, which
implies α̂ ∈ [1,∞).
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B PROOFS IN SECTION 4

B.1 PROOF OF LEMMA 2

To formally prove this lemma, we first bring the generalized form from Yüce et al. (2022).
Lemma 6 (From Yüce et al. (2022, Appendix A.2)). Suppose that the model can be written as
f(x) = W (3) sin

(
W (2) sin(W (1)x)

)
, where W (1) ∈ Rd1 , W (2) ∈ Rd2×d1 , and W (3) ∈ R1×d2 .

Then, the model can be equivalently written as:

f(x) =

d2−1∑
m=0

∞∑
i1,··· ,id1=−∞

(
d1−1∏
k=0

Jk

(
w

(2)
k

))
w(3)

m sin

((
d1−1∑
k=0

ik · w(1)
k

)
x

)
, (29)

where the lowercase w
(i)
k denotes the k-th column of the matrix W (i).

We specialize this lemma to the case of width-one SNF, i.e., d1 = d2 = 1. We proceed as

f(x) = W (3) sin(W (2) sin(W (1)x)) (30)

= 2

∞∑
k=0

J2k+1(W
(2)) sin((2k + 1)W (1)x), (31)

where the second equality is due to the Jacobi-Anger identity. By restricting the sum to l ∈ Zodd,
we can further simplify as

f(x;W) = 2
∑
ℓ∈Zodd

Jℓ(W
(2)) sin(ℓW (1)x). (32)

B.2 PROOF OF LEMMA 3

For notational simplicity, we denote x := W (2).

First, we note that the first root of the ℓth order Bessel function, denoted by jℓ,1, satisfies the in-
equality jℓ,1 > π/2 for all ℓ ∈ N. Next, recall the results of Ifantis & Siafarikas (1990) that

x

2(ℓ+ 1)
<

Jℓ+1(x)

Jℓ(x)
<

x

2ℓ+ 1
, ∀x ∈ (0, π/2). (33)

Similarly, for Jℓ+2(x), we have

x

2(ℓ+ 2)
<

Jℓ+2(x)

Jℓ+1(x)
<

x

2ℓ+ 3
, ∀x ∈ (0, π/2). (34)

Multiplying two inequalities, we get the desired claim.

B.3 DETAILS OF SECTION 4.1

In this subsection, we provide more precise details of gradient bound of SNFs, with simple L-layer,
1-width network. Note that the bound can be generalized to arbitrary width, with matrix product
computation.

Let L-layer simple SNF, f(x), as in the main paper:

f(x) = W (L) sin(W (L−1) sin(· · · sin(W (1)x) · · · )). (35)

The network is trained with MSE loss function with gradient-based method, then the gradient of
weight of each layer is computed as:

∂L

∂W (k)
=

∂L

∂f
· ∂f

∂W (k)
= R0 ·

∂f

∂W (k)
, for k ∈ [1, L], (36)

where R0 denotes the initial residual, i.e., f(x) − Ytrue. We additionally assume that R0 is in-
dependent from various initalizations techniques. Then, ∂f/∂W (k) only effects to gradients. By
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the simple property of sine function: maxx sin(x) = maxx(d sin(x)/dx) = 1 , the gradients are
bounded with:∣∣∣∣ ∂L

∂W (k)

∣∣∣∣ = Rt=0

L−k∏
m=1

(
1L>kW

(L−m+1) ·Gk(x) · xL−k−1 + 1L=kGk(x)
)

(37)

≤ Rt=0

L−k∏
m=1

(
1L>kW

(L−m+1) ·max
x

Gk(x) · xL−k−1 + 1L=k max
x

Gk(x)
)

(38)

= Rt=0

L−k∏
m=1

(
1L>kW

(L−m+1) · xL−k−1 + 1L=k

)
(39)

≤ Rt=0

L−k∏
m=1

(
1L>kW

(L−m+1) + 1L=k

)
, (40)

where Gk(x) denotes a composite sinusoidal function from the gradient derivation process and 1 is
a indicator function. Since the maximum value of a composite sinusoidal function is always equal
to or less than 1, |Gk(x)| is bounded by 1. Note that Eq. (40) is satisfied due to the bounds on input
domain, i.e., x ∈ [−1, 1].
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C DETAILS OF NTK ANALYSIS AND BEYOND

C.1 PRELIMINARIES

The Neural Tangent Kernel (NTK) framework views neural networks as kernel machines, where the
kernel is defined as the dot-product of the gradients from two different data point (Jacot et al., 2018).
In other words, each element of NTK can be expressed as K(xi, xj) = ⟨∇Wf(xi),∇Wf(xj)⟩.
Assuming an infinitely wide network trained with an infinitesimally small learning rate (i.e., gradient
flow) and using a specific parameterization (i.e., NTK parameterization), the NTK converges to a
deterministic kernel that does not evolve during training. However, in practice, neural networks are
composed of finite-width layers, which introduces challenges for analysis using NTK-style theory.
In this context, we study the empirical Neural Tangent Kernel (eNTK), where we do not require the
assumption of a stationary kernel. Recent researches (Kopitkov & Indelman, 2020; Ortiz-Jiménez
et al., 2021; Baratin et al., 2021) show that, with eNTKs non-linearly evolve during training, this
kernel can serve as a measure of the difficulty of learning a particular task.

C.2 KERNEL REGRESSION WITH GRADIENT FLOW

First, we provide a well-founded spectral analysis of NTK regression. Assuming the network is
trained with a constant training set X and their label set Y (i.e., ((x1, y1), · · · , (xN , yN )) , x, y ∈
R), where f(X;Wt) = f(Wt), and the loss function L is defined as MSE. We can then express the
time-dependent dynamics of the function using the NTK. To begin, we start with the equation for
vanilla GD:

Wt+1 = Wt − η∇WL(Wk) (41)
Wt+1 −Wt

η
= −∇WL (Wk) . (42)

With infinitesimally small learning rate, i.e., gradient flow, then:
dWt

dt
= −∇WL(Wt)

= −∇W f(Wt) · (f(Wt)− Ytrue). (43)
Eq. 43 indicates the dynamics of the weights. Using a simple chain rule, we can modify the equation
to represent the dynamics of the function, with the definition of NTK (i.e., Kt ∈ RN×N ):

df(Wt)

dt
=

df(Wt)

dWt
· dWt

dt
= −⟨∇W f(Wt),∇W f(Wt)⟩(f(Wt)− Ytrue)

= −Kt · (f(Wt)− Ytrue). (44)
Note that the element-wise representation of NTK is can be written as Kt(xi, xj) =
⟨∇W f(xi,Wt),∇W f(xj ,Wt)⟩ ∈ R, where xk denotes k-th data point in the entire training set
X . Now, let g(Wt) := f(Wt)− Ytrue, then Eq. 44 can be rewritten as:

dg(Wt)

dt
= −Kt · g(Wt). (45)

Eq. 45 is a simple ordinary differential equation (ODE) and can be solved in the form of exponential
growth by assuming the NTK is constant during update; Kt = K0:

g(Wt) = e−t·Kt · g(W0) (46)

f(Wt)− Ytrue = e−t·Kt · (f(W0)− Ytrue) (47)

f(Wt)− Ytrue = Qe−ΛtQT · (f(W0)− Ytrue) (48)

QT (f(Wt)− Ytrue) = e−ΛtQT · (f(W0)− Ytrue), (49)
where Q is matrix of concatenation of eigenfunctions, which behaves a projecting operator, and Λ
is diagonal matrix contains non-negative eigenvalues. Additionally, equality in Eq. 48 is due to the
property of spectral decomposition, i.e., eKt = QeΛQT .

Eigenvectors compose orthonormal set in RN , and each residual components projected in each
eigendirection. This directly indicates the convergence speed in each direction in RN . For example,
we can explictly compute the remained error in direction qi, denoted as vi, at timestep t:

vt,i = e−λit · v0,i (50)
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• We can observe that once the eigenspace is defined (at the initial state), the eigenvalue
governs the training speed in each direction of the basis. Specifically, after an arbitrary
time step t, the projected error in the direction corresponding to large eigenvalues decreases
exponentially faster than in the case of small eigenvalues.

• Another important aspect is understanding the characteristics of each direction. Empirical
and theoretical evidence has shown that the NTK eigenfunctions corresponding to large
eigenvalues are low-frequency functions. As a result, neural network training is biased
towards reducing error in low-frequency regions (Basri et al., 2019; 2020; Wang et al.,
2021), providing strong evidence of spectral bias (Rahaman et al., 2019).

• A natural question arises, “what happens if the eigenvalue is large but the dot product
between the corresponding eigenfunction and the residual is small?” This indicates that,
despite the large eigenvalue, it contributes less to the reduction of the overall loss. This
directly implies that we should consider not only the absolute scale of the eigenvalues
but also the dot product (or alignment) between the eigenfunctions and the residual. In
summary, we can conclude: if there is high alignment in directions with large eigenvalues,
training will be faster.

Based on this analysis, let the timestep t̂ that we want to evaluate the loss, then:

Q̂T (f(Wt−t̂)− Ytrue) = e−Λ̂(t−t̂)Q̂T (f(Wt̂)− Ytrue). (51)

We evaluate the eNTK at every discrete timestep until the training ends. Specifically, we approxi-
mate the flow of error over the interval t− t̂ ∈ [0, 1]. This setting allows the kernel to evolve during
training and enables us to further explore the evolution of its eigenspace. For computation of NTKs
in our work, we use ‘Neural Tangent Library’ (Novak et al., 2020).
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C.3 INSIGHTS INTO ENTK EIGENVALUE

In this subsection, we focus on two layer eNTK of sinusoidal networks (i.e., f(x;W) =
W2 sin(αW1x)) with scaling factor α; sum of two dot-product kernel. Which is:

KNTK(x, x
′) = ⟨sin(αW1x), sin(αW1x

′)⟩︸ ︷︷ ︸
K

+ ⟨αW2x cos(αW1x), αW2x cos(αW1x
′)⟩︸ ︷︷ ︸

K′

. (52)

More specifically, we focus on condition number and eigenvalue decay rate (EDR), in a following
sequence.

• Eigenvalue gap of eNTK. We start by approximating the sinusoidal eNTK as a Gaussian
kernel (Rahimi & Recht, 2007; Mehta et al., 2021), which allows for an analytic form of
the spectral decomposition. Using this approximation, we can also estimate the EDR. Here,
we observe that an increase in the scaling factor α directly leads to a decrease in the EDR.

• Condition number. Building on recent studies of the condition number of the NTK, which
significantly affects the convergence rate of neural networks (particularly in the kernel
regime) (Xiao et al., 2020; Liu & Hui, 2023), we demonstrate that WS-SNF approximately
achieves a low condition number for the eNTK, with the scaling factor α playing a crucial
role due to the lower EDR.

We start by the results from Mehta et al. (2021).
Theorem 7 (Theorem 1 in Mehta et al. (2021).). Suppose each entry of W1 is initialized with a
Gaussian distribution of mean 0 and variance σ2. Then for any x and x′, we have

|EW1
[⟨sin(W1x), sin(W1x

′)⟩]| ≤ C1 exp

(
−σ2∥x− x′∥22

2

)
, (53)

Theorem 7 states that the expectation over the first-layer weights can be bounded by Gaussian ker-
nels, where the bandwidth is determined by the initialization variance σ. The scaling factor in
Eq. (52) directly affects the variance term, which can be replaced with α2σ2, without loss of gener-
ality. Note that it can be handled similarly in the case of cosine activation function.

Returning to the eNTK, we start by analyzing K. From Eq. (53), the kernel element can be approx-
imated as

K(xi, xj) ≤ C1 exp

(
−α2σ2∥xi − xj∥2

2

)
= K∗(xi, xj). (54)

Assuming K∗−K ⪰ 0, then λ∗
i ≥ λi holds for all eigenvalue indices i, where λ∗

i and λi denote the i-
th eigenvalues of the kernels K∗ and K, respectively. Next step is to compute the eigenvalues of K∗

(i.e., eigenvalue upper bound of the K). The eigenvalues of K∗ can be represented as (Rasmussen
& Williams, 2006):

λi ≤ λ∗
i = C1

√
2

1 + 2α2σ2 +
√
1 + 4α2σ2

(
2α2σ2

1 + 2α2σ2 +
√
1 + 4α2σ2

)i

, (55)

and K ′ can be handled similarly (i.e., almost same upper bound). In Eq. (55), we assume that
x ∼ N (0, σ2

x), and set σx = 1 without loss of generality. Note that the eigenfunctions of the
Gaussian kernel K∗ can be computed via Hermite polynomial expansion; however, this does not
guarantee characteristics of the eigenfunctions of K, so we do not take into account. In Eq. (55),
we can compute the eigenvalue decay rate (EDR) from arbitrary index k to k + 1 by examining the
base number. Intuitively, we can see that the larger the α, the smaller the EDR. Considering both
kernels K and K ′, characterizing the exact eigenvalue of KNTK = K +K ′ is open problem in the
field of random matrix theory (Tao, 2012). However, we analyze the spectrum indirectly through the
Courant-Fisher theorem. Let λk(K) and λk(K

′) the k(≤ n)-th largest eigenvalue of each kernel.
Then:

λk(K
′) + λ1(K)ρn−1 ≤ λk(KNTK) ≤ λk(K

′) + λ1(K). (56)
Here, ρ denotes the EDR of K. In other words, the bound of λk(KNTK) is determined by the EDR
of K, where a lower EDR (i.e., a larger scaling factor) contributes to an increase in the lower bound
of the eNTK eigenvalue for each index.
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This theoretical analysis aligns with our empirical observations. Specifically, as shown in Fig. 5b,
the x-axis represents the distribution of normalized eigenvalues. The eigenvalues of the weight-
scaled network are more densely distributed compared to the default case (i.e., no weight scaling
applied), indicating that the EDR of the weight-scaled network is lower. Intuitively, a smaller EDR
corresponds to a smaller condition number, further suggesting that the optimization trajectory of
weight scaling is relatively well-conditioned.

Recently, Saratchandran et al. (2024a) theoretically derived the minimum eigenvalue of the eNTK
in periodically activated MLPs of general depth. Under certain assumptions, the minimum eigen-
value is shown to be asymptotically bounded, involving the variance of the initialization distribution
(specifically, larger the variance, larger the minimum eigenvalue), which also supports our results.
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C.4 NON-KERNEL APPROACH: ANALYSIS VIA HESSIAN EIGENVALUES

Understanding the structure of the Hessian is a crucial aspect in the field of optimization. The
Hessian matrix represents the second-order derivatives of the loss function with respect to each
parameter, and its eigenvalues provide insights into the local curvature of the model’s parameter
space. The condition number of the Hessian, defined as λmax/λmin, directly affects the convergence
rate in gradient-based convex optimization problems, which is provable (Nesterov et al., 2018).

On the other hand, in deep learning, the Hessian is also widely studied to gain a better under-
standing of the complex optimization trajectories and characteristics of deep neural networks. For
instance, Ghorbani et al. (2019) examined the outlier eigenvalues of the Hessian in neural networks
(i.e., eigenvalues detached from the main bulk) and demonstrated through comprehensive empirical
analyses that these outliers can slow down the network’s convergence.

Building on this line of research, in this subsection, we plot the condition number (CN) of the
Hessian during training in three different settings. Fig. 10 illustrates that the CN3 of WS-SNF
remains significantly lower than that of other comparison models throughout training. This suggests
that WS initialization leads to a better-conditioned Hessian not only in the kernel-approximated
regime but also in the nonlinear regime, contributing to more efficient training dynamics.

To provide deeper insights and establish connections with related work on spectral analyses of the
Hessian in neural networks, we plot the eigenspectrum snapshot of the Hessian during training in
Fig. 11. In both networks, we observe the occurrence of ‘outlier eigenvalues’ during training. How-
ever, the default setting exhibits a much more extreme value (even at initialization), which serves as
a proxy for poorly conditioned optimization and slow convergence, aligning with the observations
in Ghorbani et al. (2019) and Rathore et al. (2024).
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Figure 10. Condition number of Hessian. The WS initialization consistently results in a lower condition
number compared to other models, indicating that without the approximation of kernelized networks, the opti-
mization path of WS-SNF is well-conditioned.

3For numerical stability, similar to Section 4.3, we compute the average of the top 3 eigenvalues for λmax

and the bottom 3 eigenvalues for λmin, where the scale of the eigenvalues are considered in terms of their
absolute values. For Hessian computation, we use ‘PyHessian’ (Yao et al., 2020).
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Default (0 step) Default (600 step) Default (1339 step)

Weight scaling (0 step) Weight scaling (35 step) Weight scaling (79 step)

Figure 11. Eigenspectrum of the Hessian during training: The first column represents the eigenspectrum at
initialization, the second column corresponds to the eigenspectrum at mid-term training, and the third column
shows the eigenspectrum at the end of training.

D FREQUENCY SPECTRUM OF 2D IMAGES

Fig. 4 presents a comparative analysis of the frequency spectrum between weight-scaled SNF and
1D audio signals. To further validate our findings, we extend our analysis to Kodak image dataset.
Following the methodology of Shi et al. (2022), we partition the frequency map into several discrete
bands and compute the mean values within each band.

kodak01
kodak02
kodak03
Standard
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10−1

1
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103

104
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Figure 12. Frequency distribution of SNFs and 2D signals. We partition the frequency map into 100 sub-
groups to facilitate the visualization of 2D signals in a 1D format. Natural images consistently exhibit sim-
ilar frequency distribution patterns. Notably, WS-SNF demonstrates a better capability in representing high-
frequency components, even in its initial state.

Fig. 12 illustrates the frequency distributions across three distinct images from Kodak dataset, as
well as the initial output of SNFs. Our analysis reveals that natural images exhibit consistent spectral
characteristics across the dataset, providing empirical support for our claim presented in Section 5.2.
Moreover, we observe that the initial functional generated by weight-scaled SNF demonstrates a
notably higher frequency distribution, consistent with our theoretical analysis.
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E MORE DISCUSSION

E.1 THE EFFECT OF WEIGHT SCALING IN MINI-BATCH TRAINING

Most of our primary experiments were conducted under a full-batch training to prioritize fast con-
vergence. In this section, we provide supplementary experiments on mini-batch training for image
regression to further investigate the effect of weight scaling.
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Figure 13. PSNR curves for mini-batch training. PSNR curves for default and weight scaled SNFs with
various batch sizes. Darker colors represent larger batch sizes.

We trained SNFs on a 512×512 sized single image using five different batch sizes
{217, 216, 215, 214, 213} over 500 iterations. Fig. 13 demonstrates that weight scaling is also ef-
fective in mini-batch training, achieving significant acceleration compared to standard SNFs. These
results emphasize the robustness and applicability of the proposed method.
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E.2 TRAINABLE SCALING PARAMETER VS. FIXED SCALING PARAMETER
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(a) The value of α
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(b) PSNR curve

Figure 14. Training with a learnable scale parameter α. (a) α requires a independent rate to exert a mean-
ingful impact on the training. (b) Our method (weight scaling) outperforms alternative approaches.

While α was treated as a fixed value in the paper, this section extends the discussion to explore α as
a trainable parameter. To investigate this, we train SNFs with a new trainable parameter αt, which
dynamically adjusts the overall scale of network weights (i.e., jointly optimized with the weights
and biases during training). Fig. 14a visualizes the value of αt during training with an independent
learning rate ηα employed. We observed that when αt was trained with the same learning rate
(0.0001) as other parameters, it failed to update effectively. Therefore, we adopted an independent
learning rate, which introduces an additional hyperparameter requiring careful tuning.

Fig. 14b presents the PSNR curves under different ηα. While making α trainable slightly improves
performance, it still achieves lower PSNR compared to our main proposed method. Moreover, the
training dynamics with αt are more sensitive, due to its influence on all other parameters, leading to
unstable convergence.
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E.3 THE ROLE OF ωh

The frequency parameter for hidden layers, ωh, plays an important role in boosting gradients, as
noted by Sitzmann et al. (2020b). As shown in Eq. (3), ωh and α are closely related; dividing ωh by
α scales the weight initialization similar to our proposed method. However, this adjustment does not
alter the output of the layer or the functional frequency of the network. Instead, lower ωh hinders
training by slowing down gradient updates.
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Figure 15. PSNR curves varying ωh.

Fig. 15 presents the PSNR curves for ωh = ωh/α and ωh/α with weight scaling only applied to
the first layer. We observe that larger ωh leads to slower training compared to the standard SNF
configuration. Although applying weight scaling to the first layer provides slight acceleration, it
remains significantly less effective than full weight scaling.
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E.4 ON THE EFFECT OF WEIGHT SCALING ON OTHER ACTIVATION FUNCTIONS
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Figure 16. Weight scaling in various architectures. WS substantially affects training of the neural field with
periodic activations. We present curves for PSNR (first column), as well as Test PSNR (second column).
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We extend our investigation to examine the effect of weight scaling on different activation functions.
Specifically, we evaluate ReLU, the most commonly used homogeneous activation function, along
with other periodic activations beyond sinusoidal. Fig. 16 depicts the train and test PSNR curves over
500 iterations with varying values of α. As expected, neural networks with ReLU activations are
minimally affected by the scale of weight initialization. In contrast, architectures, such as GaussNet,
WIRE, and Sinc NF are significantly influenced by weight scaling. This is because the weight
distribution in non-homogeneous networks has a substantial impact on their performance, primarily
through its effect on the functional frequency, as discussed in our manuscript.

We observe that weight-scaled GaussNet and Sinc NF also enjoy better performance in terms of the
training PSNR, but their test PSNR degrades more severely than in SNFs. Moreover, WIRE shows
a degraded performance with weight scaling. While our analysis primarily focused on sinusoidal
neural fields, we emphasize that initialization for other periodic activations also impacts acceleration
and generalization of neural field training. We leave this as future work, aiming to provide valuable
insights into the role of weight initialization in enabling faster convergence.

E.5 THE OPTIMAL SCALING FACTOR ACCORDING TO THE LEARNING RATE
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Figure 17. Optimal scaling factor vs. learning rate.

We discussed the relationship between the optimal scaling factor and structure properties of neural
fields in Section 5.2. However, the learning rate significantly influences training dynamics, poten-
tially leading to instability within the hyperparameter space. Fig. 17 illustrates the optimal weight
scaling factor α for different learning rates η ∈ {10−3, 10−4, 10−5}. Our observations indicate that
weight scaling consistently accelerates training across all tested learning rates. Furthermore, a clear
trend emerges: smaller values of α are optimal for larger η. This trend highlights the predictability
of the optimal α, consistent with other structural properties discussed in our main section.
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F EXPERIMENTAL DETAILS AND QUALITATIVE RESULTS

F.1 EXPERIMENTAL DETAILS ABOUT FIG. 2B

Fig. 2b presented the tradeoff between acceleration and generalization when tuning ω or α. There-
fore, we have chosen the ranges of ω and α that can help us capture the full tradeoff curve. Specifi-
cally, for frequency tuning, we explored a broad range, ω ∈ [30, 6510], with intervals of 270, while
also including smaller values (ω = 10 and 20) in the search space. On the other hand, weight scaling
required a narrower search range, with α ∈ [0.4, 40] with the grid 0.2.

F.2 EXPERIMENTAL DETAILS ABOUT FIG. 3

For the kth layer of an l-layer SNF, weight scaling increases the gradient magnitude by αl−k com-
pared to standard setting. By scaling down the learning rate of each layer by η · αl−k, the gradient
update magnitudes become similar to those of the default while preserving the initial functional of
weight scaling (Fig. 3b). In contrast, for Fig. 3c, the learning rate of kth layer is amplified by η ·αl−k

to only utilize the effect of larger gradients. This is inspired by our analytic derivations at the end of
Section 4.1 (and Appendix B.3).

F.3 EXPERIMENTAL DETAILS ABOUT EQ. (10)

We clarify that the optimization Eq. (10) is solved by a simple grid search. That is, we have trained
SNFs with many different values of α and selected the value which maximizes the training speed
and meets the constraint. We have tried all α within the range [1.0, 4.0] with the grid size 0.2.

F.4 TRAINING SETTINGS AND BASELINES

In this section, we provide detailed information about our experiments. For data fitting tasks, we
used the Adam optimizer (Kingma, 2015) with a learning rate of 1e-04 (except spherical data, in this
case we use a learning rate of 1e-05), without any learning rate scheduler, except for the occupancy
field experiments (in which case, we use PyTorch learning rate scheduler). Each experiment was
conducted with 5 different seeds, and we report both the average and standard deviation of the eval-
uation metric. We note that all baselines in this work are MLP architectures, with slight modifica-
tions to the input features or activation functions. We used NVIDIA RTX 3090/4090/A5000/A6000
GPUs for all experiments. Additionally, we set the hyperparameters of each network using a grid
search, as shown in Table 2.

ReLU + P.E. (Mildenhall et al., 2020): For this architecture, we use fixed positional encoding
applied to the input x, with K frequencies that lift the dimension of the inputs, i.e., γ(x) =(
sin(20π · x), cos(20π · x), . . . , sin(2K−1π · x), cos(2K−1π · x)

)
.

FFN (Tancik et al., 2020): For this architecture, we use Gaussian positional encoding applied to the
input x, i.e., γ(x) = [sin(2πG · x), cos(2πG · x)], where G defines the variance of the Gaussian
distribution.

MFN (Fathony et al., 2021): For this architecture, we use MLP with multiple Gabor filters, which
achieves superior results than Fourier filter networks (Fathony et al., 2021).

GaussNet (Ramasinghe & Lucey, 2022): For this architecture, we use the Gaussian activation func-
tion, i.e., σ(Z) = exp

(
−(s · Z)2

)
, where Z denotes the pre-activation matrix and s is a hyperpa-

rameter that defines the bandwidth of the Gaussian function.

WIRE (Saragadam et al., 2023): For this architecture, we use a Gabor wavelet-based activation
function, i.e., σ(Z) = exp(jω · Z) exp(−(s · Z)2), where ω and s are hyperparameters.

SIREN (Sitzmann et al., 2020b): We use the sine activation function σ(z) = sin(ω ·Z), where ω in
the first layer is a tunable hyperparameter.

Neural field scaling law (NFSL) (Saratchandran et al., 2024b): We modify the initialization distri-
bution of the last layer of SIREN, i.e., W (L) ∼ U

(
−
√
6/
(
n
3/4
L−1ω

)
,
√
6/
(
n
3/4
L−1ω

))
, where nL−1

denotes the width of the (L− 1)-th layer.
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Sinc NF (Saratchandran et al., 2024c): In this case, we use activation function as a sinc function,
i.e., σ(Z) = sin(ωx)/ωx, where ω is the fixed parameter. We use ω = 8 for all experiments, except
for audio fitting (in this case, we use ω = 16).

Xavier uniform initialization (Glorot & Bengio, 2010): In this case, we use
the standard Xavier uniform initialization for the SNF architecture, i.e., W (l) ∼
U
(
−
√
6/
√
nl−1 + nl,

√
6/
√
nl−1 + nl

)
, l ∈ [1, L]. We note that the Xavier uniform ini-

tialization in SNF does not yield reasonable results. However, the purpose of presenting it is to
highlight the initialization principle of SNFs (Appendix A), which guarantees stable training.

Table 2. Detailed information about hyperparameters. We provide the exact hyperparameter settings for
each domain in the table below. ‘default’ in ReLU+P.E. denotes the using nyquist sampling methods (Sara-
gadam et al., 2023).

ReLU+P.E. FFN SIREN GaussNet WIRE Weight scaling

k σ m ω s ω s α

Image 10 10 256 30 10 20 10 2.37
Occ. Field default 2 10 10 10 10 40 3.7
Spherical Data default 2 256 30 10 10 20 2.5
Audio default 20 20 3000 100 60 10 2.0
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F.5 NEURAL DATASET EXPERIMENTS

In recent research on constructing large-scale NF datasets (Ma et al., 2024; Papa et al., 2024), there
has been growing interest in this area. However, no studies have investigated how initialization
schemes affect the overall process, from constructing SNF-based neural datasets to their application
in downstream tasks. To address this gap, we first measure the time required to fit the entire dataset
to NFs and then report the classification accuracy on the neural dataset while varying the scale factor
α. The results are shown in Table 3.

Analysis. Interestingly, despite the efficiency of WS-SNFs in terms of training time (i.e., the time
required to fit each datum into an individual NF until reaching the target PSNR), the test accuracy
(i.e., classification accuracy on the test set SNFs), specifically for the case of α = 1.5, does not
significantly decrease. Moreover, we observed that, in the case of α = 2.0, test accuracy dropped
by an average of 5 percentage points across all PSNR values. This mirrors a similar phenomenon
discussed in Papa et al. (2024), where constraining the weight space of NFs was identified as a key
factor in downstream task performance. More precisely, scaling initialization distributions causes the
neural functions to lie in a larger weight space, making it harder to learn features from the weights.
Furthermore, we propose an interesting research direction: can we create a neural dataset quickly
without compromising the performance of downstream tasks and without incurring additional cost?

Experimental details. For training, we used ‘fit-a-nef’ (Papa et al., 2024), a JAX-based library
for fast construction of large-scale neural field datasets. We used the entire dataset for NF dataset
generation (i.e., 60,000 images for MNIST and CIFAR-10, respectively). Additionally, we used an
MLP-based classifier targeted at classifying each NF’s class, which consists of 4 layers and a width
of 256, and was trained with cross-entropy loss for 10 epochs.

Table 3. Neural dataset experiments. Each neural dataset is trained until it reaches the batch-averaged target
PSNR. The training time refers to the total time required to construct the entire INR dataset. A classifier is
then trained on the neural dataset, and the resulting test accuracy is reported for each configuration. We use
SIREN as the NF architecture, which is a widely used baseline in this area.

Neural MNIST Neural CIFAR-10

Target PSNR Training time Test accuracy Training time Test accuracy

SIREN
35 14m 23s 97.95±0.00 19m 14s 47.98±0.01
40 18m 20s 97.76±0.00 29m 45s 48.46±0.01
45 23m 23s 97.53±0.01 47m 54s 48.09±0.01

WS (× 1.5)
35 7m 22s 97.56±0.00 10m 52s 47.15±0.02
40 8m 22s 97.81±0.00 17m 21s 47.72±0.01
45 10m 41s 97.02±0.01 25m 52s 46.08±0.03

WS (× 2.0)
35 5m 25s 97.48±0.01 8m 26s 43.30±0.02
40 5m 32s 97.06±0.01 9m 20s 42.86±0.02
45 5m 41s 97.49±0.00 10m 51s 42.70±0.01

F.6 TRAINING FOR ADDITIONAL ITERATIONS

Weight scaling initialization primarily focuses on the training efficiency of neural fields. In other
words, the experiments in the main paper were conducted over a limited number of epochs. In this
subsection, we provide qualitative results from models trained for additional iterations. As shown in
Table 4, networks with WS initialization continue to outperform other networks, suggesting that its
effectiveness is consistently preserved throughout the training process.

Image (300 iterations) Occ. Field (100 iterations) Spherical Data (15k iterations) Audio (5k iterations)

Activation KODAK DIV2K Lucy ERA5 Bach

Xavier Uniform (Glorot & Bengio, 2010) Sinusoidal 2.31 2.20 0.0706 7.10±1.02 16.16
ReLU + P.E. (Mildenhall et al., 2020) ReLU 21.77 19.60 0.9920 41.32±0.16 32.40
FFN (Tancik et al., 2020) ReLU 26.51 25.62 0.9874 45.27±0.12 17.54
SIREN init. (Sitzmann et al., 2020b) Sinusoidal 26.01 24.76 0.9926 44.42±0.32 46.78
GaussNet (Ramasinghe & Lucey, 2022) Gaussian 21.90 20.22 0.9935 44.15±0.12 34.65
WIRE (Saragadam et al., 2023) Wavelet 31.47 30.89 0.9939 45.13±0.42 20.17
NFSL (Saratchandran et al., 2024b) Sinusoidal 26.91 25.97 0.9933 45.10±0.08 45.70
Weight scaling (ours) Sinusoidal 52.73 53.10 0.9950 49.63±0.14 54.04

Table 4. Quantitative results: training for additional iterations.
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F.7 NEURAL RADIANCE FIELDS EXPERIMENTS

In this subsection, we provide details and quantitative results of novel view synthesis via neural
radiance fields (NeRFs) (Mildenhall et al., 2020). Neural radiance fields (NeRFs) represent scenes
using neural fields. More specifically, NeRF employs neural fields (i.e., MLPs) with finite amount
of training data to capture the scene, aiming to recover the scene in a continuous manner. At the
end, we input unseen coordinates into the model and evaluate the test PSNR.

Datasets. We use the ‘Lego’ and ‘Drums’ data from the ‘NeRF-synthetic’ dataset (Mildenhall et al.,
2020), which is publicly available online. Each dataset contains 100 training images, 100 validation
images, and 200 test images, along with their corresponding camera directions.

Implementation details. We mainly follow the settings of WIRE (Saragadam et al., 2023), using
the ‘torch-ngp’ codebase. Specifically, we use a 4-layer volume density network and a 4-layer color
network, each with a width of 182, except for WIRE. This exception is due to the complex-valued
weights of WIRE, where we use a width of 128 for fair comparison. For the WS network, we apply
weight scaling only to the volume density network.

Task 1: training with 800×800 images. In this case, we use ω0 = 15 and ωh = 5 for the SNF
family, frequency lifting factor k = 10 for ReLU + P.E., s = 20 for GaussNet, and ω = 5, s = 10 for
WIRE. Additionally, we use positional encoding scheme only for ReLU networks. We use learning
rate 1e− 02 for ReLU+P.E., 1e− 03 for FFN, 3e− 04 for SNF family, 1e− 03 for GaussNet, and
6e − 04 for WIRE. We train all models until 300 epochs. We train the model with 100 images and
evaluate the test PSNR with 100 untrained images.

Task 2: training with 200×200 images, with longer epochs. Additionally, as in Saragadam et al.
(2023), we train model with 200×200 images, and trained until further epochs (600 epochs). In this
case, we use ω0 = 15 and ωh = 3 for the SNF family, frequency lifting factor k = 10 for ReLU +
P.E., s = 20 for GaussNet, and ω = 20, s = 40 for WIRE. Also, we use positional encoding scheme
only for ReLU networks. We use learning rate 6e− 03 for ReLU + P.E., 3e− 03 for FFN, 9e− 04
for SNF family, 1e− 03 for GaussNet, and 9e− 04 for WIRE. We train the model with 100 images
and evaluate the test PSNR with 100 untrained images.

Results. We report the test PSNR and learning curve in Table 5 and Fig. 18 respectively. For
both datasets and both training resolutions, WS achieves a higher test PSNR compared to other
baselines. We emphasize that WS primarily focuses on fast training of neural fields, but here we
also demonstrate its good generalization quality. Qualitative results can be found in Fig. 23.

Method 800×800 (300 Epochs) 200×200 (600 Epochs)

Lego Drums Lego Drums

ReLU + P.E. (Mildenhall et al., 2020) 26.02 20.97 31.57 26.21
SIREN (Sitzmann et al., 2020b) 27.68 24.05 32.02 27.73
FFN (Tancik et al., 2020) 26.96 22.10 30.40 24.68
GaussNet (Ramasinghe & Lucey, 2022) 25.95 22.42 30.61 26.24
WIRE (Saragadam et al., 2023) 26.71 23.62 32.09 27.73
NFSL (Saratchandran et al., 2024b) 27.79 24.04 32.10 27.64
Weight Scaling (ours) 28.17 24.10 32.48 27.86

Table 5. Quantitative results: test PSNR for NeRF experiments.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

ReLU + P.E.
FFN
SIREN
GaussNet
NFSL
Weight Scaling (Ours)

PS
N

R

16

18

20

22

24

26

28

30

steps
0 50 100 150 200 250 300

(a) Lego (800 × 800 images, 300 epochs)

ReLU + P.E.
FFN
SIREN
GaussNet
NFSL
Weight Scaling (Ours)

PS
N

R

16

18

20

22

24

steps
0 50 100 150 200 250 300

(b) Drums (800 × 800 images, 300 epochs)

ReLU + P.E.
FFN
SIREN init.
GaussNet
WIRE
NFSL
Weight Scaling (Ours)

Te
st

 P
SN

R

15

20

25

30

Steps
0 100 200 300 400 500 600

(c) Lego (200 × 200 images, 600 epochs)
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Figure 18. Test PSNR curves for NeRF experiments under different settings. The first row represents experi-
ments conducted with 800 × 800 images over 300 epochs, while the second row shows experiments conducted
with 200 × 200 images over 600 epochs. WS initialization consistently achieves better test PSNR compared to
the baselines.

F.8 SOLVING DIFFERENTIAL EQUATIONS WITH PARTIAL OBSERVATIONS

In this subsection, we provide details about solving wave equation: a type of second order time-
dependent partial differential equation (PDE) describing wave propagation in time t. The initial
conditions are only the given information, neural fields aim to extrapolate the equation in timescale
domain. We use the same formulation as in Sitzmann et al. (2020b).

Datasets and training details. We set f(x) (i.e., neural network) to reconstruct and extrapolate
Gaussian pulse wave equation, same setup as in Sitzmann et al. (2020b). Input coordinates are 3-
dimensional (i.e., 2-dimensional spatial and 1-dimensional temporal timescale from t = 0 to 4), and
outputs 1-dimensional Gaussian pulse value for each spatiotemporal coordinate. Other hyperparam-
eters are set the same as in Sitzmann et al. (2020b), except for the number of iterations (we trained
for up to 40k iterations).

Results. We present the qualitative results in Fig. 24. However, in Fig. 24, the WS network consis-
tently predicts the boundary of the Gaussian, compared to other architectures4. Qualitative compar-
isons are provided using coordinate-wise error (i.e., MSE) at t = 0. It can be seen that WS-SNF not
only faithfully reconstructs the given observation but is also able to generalize accurately to further
timesteps. For WIRE and MFN, they failed to reconstruct the pulse; therefore, we do not provide
the results.

4Since the ground truth Gaussian pulses for t > 0 are unavailable, they can only be reconstructed using a
PDE solver or utilizing finite element method.
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F.9 QUALITATIVE RESULTS

In this subsection, we provide qualitative results of experiments in Section 5.1. We do not pro-
vide reconstructed results for occupancy field reconstruction with Xavier initialization case due to
training failure.

Ground truth

ReLU + P.E. FFN SIREN

MFN GaussNet WIRE

NFSL Sinc NF WS (ours)

Figure 19. Image reconstruction: qualitative results.
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ReLU + P.E. FFN SIREN

Ground Truth MFN GaussNet WIRE

NFSL Sinc NF WS (ours)

Figure 20. Occupancy field experiments: qualitative results.
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Ground truth

ReLU + P.E. FFN SIREN

MFN GaussNet WIRE

NFSL Sinc NF WS (ours)

Figure 21. Audio reconstruction: qualitative results.
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Ground truth

ReLU + P.E. FFN SIREN

MFN GaussNet WIRE

NFSL Sinc NF WS (ours)

Figure 22. Spherical data reconstruction: qualitative results. The top figure of each index shows the recon-
structed results, while the bottom figure of each index shows the error map.
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Lego (ground truth) ReLU + P.E. SIREN GaussNet

FFN WIRE NFSL WS (ours)

Drums (ground truth) ReLU + P.E. SIREN GaussNet

FFN WIRE NFSL WS (ours)

Figure 23. Novel view synthesis: qualitative results (800× 800 images).
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Ground truth (t = 0, which is the only one given).

ReLU + P.E. (7.7e-03)

SIREN (1.8e-02)

GaussNet (4.3e-03)

NFSL (7.8e-04)

WS (2.8e-05)

Figure 24. Solving PDE from partial observation: qualitative results. Each column represents t = 0, 0.07,
0.14, and 0.21 from left to right. The parentheses in the caption* represent the MSE at t = 0.
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F.10 TRAINING FOR SIGNIFICANTLY LARGER ITERATIONS

In this section, we present the learning curves for Kodak image dataset over significantly longer
iterations. We report the average train and test PSNR values for 5000 training steps, in which most
methods converge to saturation. The learning rate scheduler is employed, resulting in improved
performance across most methods under extended training setting, and the learning rates are tuned
for each architecture to work well with a scheduler.
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(a) Train PSNR curves for Kodak dataset
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(b) Test PSNR curves for Kodak dataset

Figure 25. PSNR curves over 5000 iterations. We compared the PSNR of weight scaling to other baselines.

Weight scaling demonstrates superior train accuracy, achieving higher PSNR with substantial accel-
eration. Moreover, even at saturation, weight scaling outperforms other methods, with the highest
PSNR. Notably, our methods maintain its generalization ability even for extended training. Weight
scaling reaches its peak test PSNR (37.45 dB), which is comparable to or exceeds that of other
methods, much faster, demonstrating the fastest convergence in both train and test performance.

We utilize learning rate 1e − 02 for Xavier initialized SNF, 1e − 03 for ReLU + P.E., 1e − 03 for
FFN, 1e− 04 for SNF family, 1e− 03 for GaussNet, 1e− 02 for MFN, and 1e− 04 for WIRE, with
Adam optimizer.
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