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Abstract
Distributed data analysis is a large and growing
field driven by a massive proliferation of user
devices, and by privacy concerns surrounding
the centralised storage of data. We consider two
adaptive algorithms for estimating one quantile
(e.g. the median) when each user holds a sin-
gle data point lying in a domain [B] that can
be queried once through a private mechanism;
one under local differential privacy (LDP) and
another for shuffle differential privacy (shuffle-
DP). In the adaptive setting we present an ε-
LDP algorithm which can estimate any quan-
tile within error α only requiring O( logB

ε2α2 ) users,
and an (ε, δ)-shuffle DP algorithm requiring only
Õ(( 1

ε2 + 1
α2 ) logB) users. Prior (nonadaptive)

algorithms require more users by several logarith-
mic factors in B. We further provide a match-
ing lower bound for adaptive protocols, showing
that our LDP algorithm is optimal in the low-ε
regime. Additionally, we establish lower bounds
against non-adaptive protocols which paired with
our understanding of the adaptive case, proves a
fundamental separation between these models.

1. Introduction
A strong trend in recent years has been towards federated
computations (Kairouz et al., 2021) in which algorithms are
run on a distributed dataset rather than by collecting data and
performing the computation in a centralized manner. This
trend is motivated by the wish to protect individuals’ data,
as well as organizations’ wish steer clear of liability issues
stemming from collecting and handling private data. The
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leading approach to federated computations with formal pri-
vacy guarantees is to use differential privacy (DP) (Dwork
et al., 2006) which limits the amount of information that
can be inferred about a given user’s input by selecting the
output from a suitable probability distribution defined by
the inputs. A particularly simple and appealing setup is
local differential privacy (LDP), in which each user individ-
ually sends the output of a differentially private algorithm
to a central “analyzer”, who in turn uses all the user out-
puts to approximate a function of the inputs. Though LDP
is not the only approach to federated computations with
differential privacy, it has been influential. For example,
LDP has been used in industrial deployments of differen-
tial privacy (Cormode et al., 2018; Erlingsson et al., 2014;
Differential Privacy Team, 2017), and there is a rich theory
showing both upper and lower bounds on the privacy-utility
trade-offs that are possible under LDP. When giving pri-
vacy guarantees under LDP it is common to consider pure
differential privacy since it is known that any non-adaptive
protocol satisfying approximate differential privacy can be
converted into an equivalent one satisfying pure differential
privacy (Bun et al., 2019). An interesting aspect of LDP
algorithms is that they can be used as building blocks of
more sophisticated algorithms offering better privacy utility
trade-offs (with stronger trust assumptions), for example
in the shuffle model (Bittau et al., 2017; Cheu et al., 2018;
Erlingsson et al., 2019).

Quantile Estimation In this paper we study the problem
of quantile estimation under local differential privacy con-
straints. Specifically, we consider the setting of a dataset X
of n datapoints x1, . . . , xn ∈ [B] := {1, . . . , B}, where B
is an integer parameter. We note that some works on quantile
estimation consider another setting where the input points
are real numbers, e.g., from [0, 1], but this requires assump-
tions on the data distribution – in Appendix H, we will
discuss how our algorithms can be brought to work in the
continuous setting under mild assumptions on the distribu-
tion of the input data. Given the dataset X , we define the
empirical CDF FX : [B]→ [0, 1] by

FX(i) =
1

n
|{j ∈ [n] | xj ≤ i}|, (1)

that is, FX(i) is the fraction of elements in the dataset that
are smaller than or equal to i. Given q ∈ (0, 1) we would
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ideally like to output an approximate qth quantile of the
dataset, that is, a value m ∈ [B] such that FX(m) is approx-
imately equal to q. Such a value m may not always exist, for
example if all xi are equal. Instead, we measure the approx-
imation guarantee in terms of a parameter α ∈ (0, 1) and
we are happy to report a value m such that q is contained in
the interval [FX(m)− α, FX(m+ 1) + α].

Adaptive Local Differential Privacy In this paper we
consider LDP algorithms that work in rounds, making adap-
tive choices of what information should be released in each
round. An adaptive LDP protocol involves n users indexed
by i = 1, . . . , n, with user i holding a data item xi, and
an aggregator that coordinates the protocol. In round t the
aggregator queries a set It ⊆ {1, . . . , n} of one or more
users, asking them to run a differentially private mechanism
Mt on their data. The output of Mt(xi) is then sent to
the aggregator for each i ∈ It. Protocols in this model
can be adaptive in the sense that the choice of mechanism
Mt can depend on the results of mechanisms in rounds
1, . . . , t − 1. We consider sequentially adaptive protocols
in which the query sets I1, I2, . . . are disjoint, such that the
privacy guarantee for each user is simply determined by the
privacy guarantee of the mechanism that was used for the
LDP report on their data (if any). In contrast non-adaptive
LDP protocols can be run in a single round. The private
mechanismMt is predetermined and does not depend on
the outputs ofM1, . . . ,Mt−1. It is often the case that all
Mt are the same. Adaptive mechanisms often offer much
improved utility/privacy tradeoffs compared to their non-
adaptive counterparts (Acharya et al., 2022; Joseph et al.,
2020) but they are harder to coordinate and thus less desir-
able from a practical perspective.

For quantile estimation, each user i holds the datapoint
xi ∈ [B] and our goal is to estimate a quantile, with error
described as above, such that Mt satisfies LDP. It is not
hard to see that an algorithm for estimating the median, that
is q = 1/2, can be used to estimate any quantile of the
dataset with only a constant factor increase of the approxi-
mation guarantee. This is because we can reduce the general
case to the median by introducing n additional, virtual users
holding data, (1− q)n users each holding the value 1 and
qn users holding the value B (see Lemma B.1). Thus, for
our algorithm we focus on estimating the median. We refer
to this problem with desired accuracy α and LDP privacy
parameter ε as LDPemp-median({xi}ni=1, α, ε) (see Sec-
tion 2 for the formal definition). We derive a sequentially
adaptive algorithm with the following guarantee:

Theorem 1.1. For all α ∈ (0, 1
4 ), and ε ∈ (0, 1), there

exists a sequentially adaptive ε-LDP protocol solving
LDPemp-median({xi}ni=1, α, ε) with probability at least
1 − 1

B for any dataset with n ≥ c logB
ε2α2 for a universal

constant c.

The algorithm queries one user at a time (so each |It| = 1)
and proceeds for n rounds. In terms of communication and
run time, our algorithm is efficient: each user communi-
cates just 1 bit to the server, and each round has update time
O(logB). In addition, we show that the error of our pro-
tocol is optimal up to constant factors under (sequentially-
adaptive) LDP:

Theorem 1.2. Suppose that B is sufficiently large, α ≤
1
2 , and ε < 1. Any sequentially adaptive LDP protocol
solving LDPemp-median({xi}ni=1, α, ε) with probability
at least 3/4 for any dataset of size n ≥ n0 must have

n0 = Ω
(

logB
ε2α2

)
.

Remark: The above theorem is stated for the median, but
as we will see, the same lower bound holds for estimating
any quantile q ∈ (2α, 1 − 2α). Note that for q ≤ α or
q ≥ 1 − α, there is a trivial protocol that outputs either
1 or B. Combined with the above observation for reduc-
ing a general quantile to the median, our results therefore
show that Θ( logB

ε2α2 ) is essentially the correct bound for quan-
tile estimation under sequentially-adaptive LDP in the high
privacy regime.

Non-Adaptive Protocols Theorems 1.1 and 1.2 settle the
optimal privacy/utility tradeoffs for adaptive LDP protocols
in the high privacy regime. As we will discuss in Section 1.1,
all non-adaptive mechanisms that we are aware of require a
polylog(B) factor more users to solve LDPemp-median,
which can be significant as B is typically a large parameter
such as 232. Our privacy/utility tradeoff in the adaptive case
is therefore much better than for known non-adaptive pro-
tocols, but as discussed, non-adaptive protocols are more
practically appealing. A natural question is thus if the gap
is inherent. We settle this question in the positive essen-
tially showing that any non-adaptive protocol must incur an
additional logarithmic factor in B in the number of users
required for a desired accuracy. Thus, non-adaptivity, while
practically desirable, comes at a significant price in utility.
Our result is as follows.

Theorem 1.3. Suppose B is sufficiently large, B−Ω(1) ≤
α ≤ c for a universal constant c, and ε ≤ 1

log(1/α) . Sup-
pose that there exists a non-adaptive ε-LDP algorithm
solving LDPemp-median({xi}ni=1, α, ε) with probabil-
ity at least 3

4 for any dataset of size n ≥ n0. Then

n0 = Ω
(

log2(B)
α2ε2 log(1/α)4

)
.

In particular, when ε, α = Θ(1), the number of users must
be Ω(log2 B) whereas our previous theorems show that
O(logB) suffices for adaptive protocols. The authors be-
lieve that the high logarithmic dependence on 1/α is an
artifact of the proof.
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The Shuffle Model Shuffle differential privacy (shuffle-
DP) (Bittau et al., 2017; Cheu et al., 2019) captures the idea
that using a random permutation to shuffle a large enough
set of somewhat private user messages, thus making their
origins indistinguishable, boosts the privacy guarantee for
each user. More precisely, in shuffle-DP, each user applies
a LDP protocol to their data and then sends the output to a
trusted shuffler whose only task is to randomly permute the
users data before forwarding it to a central data curator. The
privacy boost achieved from shuffling was analysed in (Feld-
man et al., 2021) (see Theorem G.4). To gain the privacy
boost, the batch of users shuffled can not be too small. This
makes it fundamentally incompatible with highly adaptive
protocols having n rounds of adaptivity, and each batch of
size one. To bypass this, we consider protocols which run
in a bounded number of rounds, shuffling the users queried
in each round, simultaneously obtaining both the benefits of
adaptivity and the boosted privacy from shuffling.

We refer to the problem of estimating the median of n users
within accuracy α using r adaptive rounds of shuffling under
(ε, δ)-DP as shuffle-emp-median({xi}ni=1, α, ε, δ, r)
(see Section 2 for a formal definition). We provide a
protocol for this problem with r = log2 B and n =

(logB) · Õ
(

1
ε2 + 1

α2

)
.

Theorem 1.4. Let r = log2 B and ε, α < 1. There exists a
protocol for shuffle-emp-median({xi}ni=1, α, ε, δ, r)
in the sequentially interactive model which requires

n = O

((
1

α2
+

1

ε2

)
logB

√
log(1/δ) log

logB

β

)

users, and succeeds with probability 1 − β. The protocol
queries shuffled batches of n/ log2(B) users.

We believe that the framework of combining shuffling with
rounds of adaptivity might be of interest for many other
problems. On the one hand, we could use a non-adaptive
protocol with shuffling, getting better dependence on ε and
α, but this would incur additional logarithmic factors in B.
On the other hand, we could use a sequentially adaptive
algorithm like in Theorem 1.1, but then we lose the bene-
fits of shuffling since each batch has size 1. Theorem 1.4
demonstrates that protocols having several adaptive rounds
using shuffling of each batch, can provide the best of both
worlds.

Experiments In Section 5, we demonstrate that the al-
gorithm in Theorem 1.1 performs favorably compared to
known non-adaptive mechanisms as well as a more naive
noisy binary search mechanism.

1.1. Related Work

Differential Privacy Differential privacy is considered the
gold standard in private data analysis due to its rigorous guar-
antees, e.g., immunity to side information, and other useful
properties (Dwork et al., 2006; Dwork & Roth, 2014). A
number of mechanisms exist for releasing medians and gen-
eral quantiles for centralized DP. First, one may instantiate
mechanisms based on local sensitivity (Nissim et al., 2007;
Dwork & Lei, 2009; Asi & Duchi, 2020), since quantiles
often have low local sensitivity for many datasets. More re-
cently, specialized mechanisms for medians (Tzamos et al.,
2020; Drechsler et al., 2022; Aliakbarpour et al., 2024) and
quantiles (Wilson et al., 2020; Gillenwater et al., 2021; Al-
abi et al., 2023) have been proposed to obtain even lower
error but they require certain mild assumptions on the dis-
tribution of the data points. The case where data points can
be arbitrary from some discrete domain [B], like for us, has
been well studied in the central setting. The sequence of
works, (Beimel et al., 2016; Bun et al., 2015; Kaplan et al.,
2020; Cohen et al., 2023) gradually reduced the number of
users needed for accuracy α to Õ

(
1
αε log

∗(B) log2(1/δ)
)

for (ε, δ)-privacy. This almost matches the the Ω(log∗(B))
lower bound from (Alon et al., 2019). A corollary of this
lower bound is that even with central DP, no algorithm can
achieve o(1) quantile error in the continuous setting regard-
less of how many users there are.

Local Differential Privacy There is increasing interest in
local differential privacy (LDP), where the central aggrega-
tor is not trusted, and each user applies a DP mechanism to
their data before broadcasting it. LDP mechanisms for many
problems and accompanying lower bounds were shown
in (Duchi et al., 2013). A ubiquitous LDP protocol that
we will utilize is randomized response (See Lemma A.1),
where answers to a binary query are flipped with probability

1
1+eε ≈

1
2 − ε. For the median problem, an LDP algo-

rithm was found in (Duchi et al., 2018) under a different
loss function, the difference between the estimate and the
median in the data domain. This loss function is subject to
strong lower bounds (a linear dependence on the domain
size). The most relevant work to our setting is the so-called
hierarchical mechanism (Cormode et al., 2019).

Hierarchical Mechanism The hierarchical mechanism
uses the b-adic decomposition of the interval [0, B] (which
is a b-ary tree of depth Θ(logb(B)) whose nodes at level
ℓ correspond to intervals of length B

bℓ
). Each participant

uniformly selects a level ℓ at random and employs stan-
dard frequency LDP oracles (Bassily & Smith, 2015; Wang
et al., 2017) to disclose which node at level ℓ their data
belongs to. The central aggregator may then combine the
frequency oracles at each level to answer any range query.
A particular use of range queries with relative error α is for
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constructing an α-approximate CDF of the data set, which
in turn can be used to approximate every quantile within
error α. Unfortunately, dividing the user data among levels
worsens the dependence on log(B). In Appendix D, we
demonstrate that the hierarchical mechanism can be used
to solve LDPstat-median with n = O( log

3 B
ε2α2 ) users.

In terms of the polynomial dependence on logB, there is
still a multiplicative logB gap between this upper bound
and the lower bound of Theorem 1.3 which would be very
interesting to close.

Shuffle Differential Privacy The central model of DP
requires that data be collected non-privately by the curator,
which results in extremely accurate protocols. On the other
hand, in the local model users do not trust anyone, and
the response to any query must be privatized before it is
broadcast by the user. In shuffle-DP, each user applies a
LDP protocol to their data and then sends the output to a
trusted shuffler whose only task is to randomly permute
the users data before forwarding it to a central data curator.
This places shuffling as a middle ground between these two
models in terms of both trust and accuracy.

Understanding the separation between the local, shuffle, and
central models of privacy, and therefore the trade-offs be-
tween trust and accuracy, is of both theoretical, and practical
interest. For a survey of such separations, see (Cheu, 2021).

Noisy Binary Search and Threshold Queries Consider
an algorithm that sequentially picks a threshold query
m ∈ [B], then samples a user from the database X and
receives the bit y = [x ≤ m]. Since Pr[y = 1] = FX(m),
finding an integer m such that FX(m) ≈ q reduces to the
noisy binary search problem. This search over a CDF with
threshold query sample access, exactly mirrors searching
over a monotonically increase sequence of coins. Noisy
binary search was introduced by (Karp & Kleinberg, 2007)
with a tight bound of Θ(log(B)/α2), later improved by
constant factors by (Gretta & Price, 2024), which holds
for the non-private median when samples are accessed via
threshold queries in the statistical setting.

Structure of the Paper In Section 2, we introduce neces-
sary preliminaries for our theoretical analyses. In Section 3,
we provide an overview of our main ideas and technical con-
tributions. Section 4 is dedicated to proving Theorem 1.1.
In Appendix F, we prove the lower bounds of Theorems 1.2
and 1.3. In Appendix G, we provide the proof of Theo-
rem 1.4. Finally, in Section 5 we present our experimental
results.

2. Preliminaries
In local differential privacy, we assume that each of n users
hold a data point x in the discrete and ordered domain
[B] = {1, 2, . . . , B} for a positive integer B. Each user
will communicate to a central (untrusted) aggregator using a
differentially private mechanism. We consider sequentially
adaptive protocols: In round t the aggregator queries a set
It ⊆ {1, . . . , n} of one or more parties, asking them to
run a differentially private mechanism Mt on their data.
The output ofMt(xi) is then sent to the aggregator for each
i ∈ It. In general, any sequentially adaptive protocol may be
implemented by querying one new user over n rounds1. Let
us label the users 1, . . . , n in the order in which the protocol
queries them and denote the data of user i by xi ∈ [B]. Also
denote the the private mechanism that user i uses byMi

and the output yi =Mi(xi)

Given the outputs {yi}ni=1 where yi = Mi(xi), the data
aggregator makes an estimate of the qth quantile with a
post-processing function F :

m̃q = F(y1, . . . , yn).

We require that eachMi satisfy local differential privacy:

Definition 2.1. We sayMi satisfies (ε, δ)-local DP if for
all x, x′ ∈ [B], and all outputs y, we have

Pr[Mi(x) = y] ≤ eε Pr[Mi(x
′) = y].

We say thatMi satisfies ε-local DP if it satisfies (ε, 0)-DP.

In the adaptive setting, we allow Mi to depend on
y1, . . . , yi−1; i.e.

yi =Mi(xi, y1, . . . , yi−1). (2)

where eachMi satisfies Definition 2.1 in xi (for any fixed
choice of y1, . . . , yi−1). In contrast, in a non-adaptive pro-
tocol, eachMi is fixed in advance (and usually allMi are
the same mechanism).

To measure the utility of m̃q , we use the quantile error. For
a given data set X = (xi)

n
i=1 define FX as in Equation 1.

We say m̃q is an α-approximate quantile estimate on X if

Pr[[FX(m̃q), FX(m̃q +1)]∩ (q−α, q+α) ̸= ∅] ≥ 1−β,

where the above probability is over the randomness in m̃q.
We are typically interested in the high-probability setting,
where β = 1

poly(B) .

Now, we formally define the LDP median problems in both
the statistical and empirical settings:

1Rounds which query multiple new users may be split into
many rounds, each querying one user.
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Definition 2.2 (LDPstat-median). In
LDPstat-median(D, n, α, ε),D is an unknown distribu-
tion over [B]. Users 1, . . . , n sample x1, . . . , xn according
to D. Each user i outputs yi = Mi(xi, y1, . . . , yi−1)
where the Mi’s are ε-LDP mechanisms. The goal is to
output an m̃ = m̃(y1, . . . , yn) ∈ [B] such that m̃ is an
α-approximate median of D.

Definition 2.3 (LDPemp-median). In
LDPemp-median({xi}ni=1, α, ε), there are users
1, . . . , n (where the ordering is chosen by the pro-
tocol) with data points (xi)

n
i=1 ∈ [B]n. User i

outputs yi = Mi(xi, y1, . . . , yi−1) where the Mi’s
are ε-LDP mechanisms. The goal is to output an
m̃ = m̃(y1, . . . , yn) ∈ [B] such that m̃ is an α-approximate
empirical median of {xi}ni=1.

For shuffle DP, we assume that the protocol partitions the
users {1, . . . , n} into r disjoint subsets I1, . . . , Ir and that
each user i ∈ It applies the same mechanismMt to their
data xi where Mt may be chosen adaptively based on
(Mj(xi))1≤j≤t−1,i∈Ij . We assume that πt : It → It is
a uniformly random permutation for each t ∈ [r]. Given the
outputs (yt)t∈[r] where, yt = (Mt(xπt(i)))i∈It (in shuffled
order), the data aggregator outputs

m̃q = F(y1, . . . , yt),

for a post-processing function F . We say that the pro-
tocol satisfies (ε, δ)-shuffle DP if for any t ∈ [r], any
(xi)i∈It , (x

′
i)i∈It differing only in a single coordinate, and

any set S,

Pr[(Mt(xπt(i)))i∈It ∈ S]

≤eε Pr[(Mt(x
′
πt(i)

))i∈It ∈ S] + δ.

Definition 2.4 (shuffle-emp-median). In
shuffle-emp-median({xi}ni=1, α, ε, δ, r), there
are users 1, . . . , n (where the ordering is chosen by the
protocol) with data points (xi)

n
i=1 ∈ [B]n. Using an

(ε, δ)-shuffle DP mechanism with r rounds of adaptivity,
the goal is to output an m̃ = m̃(y1, . . . , yr) ∈ [B] such that
m̃ is an α-approximate empirical median of {xi}ni=1.

3. Technical Contribution
In this section we give a high-level discussion our technical
contribution for designing algorithms and proving lower
bounds. For simplicity, we focus on the high privacy setting
ε ≤ 1.

3.1. Adaptive LDP Median Estimation via Noisy Binary
Search (Theorem 1.1)

At the heart of our LDP median protocol of Theorem 1.1 is
an algorithm for the noisy binary search problem from (Karp

& Kleinberg, 2007): Given an ordered set of B coins with
unknown head probabilities {pi}Bi=1 such that p1 ≤ · · · ≤
pB , a target τ ∈ (0, 1), and an error α > 0, our goal is to
find any coin i such that

[pi, pi+1] ∩ (τ − α, τ + α) ̸= ∅, (3)

which intuitively means that the desired probability τ lies
between coin i and i+ 1 (up to error α). We refer to a coin
satisfying the above property as (τ, α)-good. At each round,
we may query a coin with index j, and we receive the result
of the flipped coin. This problem generalizes classic binary
search, where for the query t, one would have pi = 0 for
all i ≤ t and pi = 1 for all i > t. We will denote the gen-
eral problem as MonotonicNBS({pi}ni=1, τ, α) (omitting
{pi}ni=1 when they are clear from context). The state-of-the-
art algorithm for MonotonicNBS is the Bayesian Screen-
ing Search (BayeSS) due to (Gretta & Price, 2024). Their
algorithm finds a (τ, α)-good coin using O( logB

α2 ) samples
with high probability in B 2.

To see how noisy binary search algorithms relate to me-
dian estimation under LDP, it is instructive to consider
LDPstat-median(D, n, α, ε). Concretely, any sample
x from D gives a coin flip with head probability pi =
Prx∼D[x ≤ i] for any i ∈ [B]. It is a useful warmup
problem, to show that one can solve LDPstat-median
using an algorithm for MonotonicNBS. Plugging in
the algorithm of Gretta and Price gives an algorithm for
LDPstat-median(D, n, α, ε) if n ≥ C logB

ε2α2 for a con-
stant C. We show the precise details in Appendix C.

For LDPemp-median, the situation is more complicated.
A first idea is to reduce to the statistical setting by sampling
users with replacement, thus sampling i.i.d from the empiri-
cal distribution. However, in sequentially adaptive protocols,
users may only be queried once but sampling with replace-
ment may sample a single user many times3. To resolve this
issue, our main idea is to go through the users in a random
order or equivalently sample users without replacement.
Ideally, we would like to maintain the guarantees of algo-
rithms for MonotonicNBS, but this problem assumes that
the coin probabilities are unchanging over time. However,

2In fact, they obtain stronger guarantees. For any α, τ , their al-
gorithm uses 1

Cτ,α

(
logB +O(log2/3 B log1/3( 1

δ
) + log( 1

δ
))
)

where Cτ,α = Θ
(

α2

τ(1−τ)

)
for sufficiently small α. Moreover,

by information theoretic lower bounds, any algorithm must use
1

Cτ,α
logB coin flips.

3If we allow for multiple queries to the same user, we can
indeed reduce to the statistical setting by sampling users with
replacement. However, some users would then be sampled up
to O(logn/ log logn) times and to maintain ε-LDP, their reports
would have to be made more noisy, thereby increasing the number
of users needed to get an α-approximate median. Thus, even
allowing for users to be queried multiple times, it is unclear how
to get optimal bounds via algorithms for MonotonicNBS.
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when sampling without replacement, the empirical CDF of
the remaining users, and thus the coin probabilities, change
over time. Our main technical contribution is two-fold. We
first show that throughout the process, no coin probability
is altered too much.
Lemma 3.1. Let x1, . . . , xn ∈ [B] and let yi = xπ(i) where
π : [n] → [n] is a random permutation. For 0 ≤ t < n

and j ∈ [B], we define ptj = |{t<i≤n|yi≤j}|
n−t . Suppose that

n ≥ C logB
α2 for a sufficiently large constant C. Then with

high probability in B, we have for all 0 ≤ t ≤ n/2 and all
j ∈ [B] that |ptj − p0j | ≤ α.

Then, we show that the algorithm by Gretta and Price in
fact also solves an adversarial version of MonotonicNBS
which we denote AdvMonotonicNBS. Here, in each
round, if coin j is selected to be flipped, an adversary may
instead flip a coin with a bias p such that |pj − p| ≤ cα for
some c. The goal is to return a (τ, α(1 + c))-good coin. A
formal definition can be found in Definition E.1. Our result,
which may be of independent interest is as follows.
Theorem 3.2. Let 0 < α ≤ 1

4 and suppose c ≤ 1. There
exists an algorithm for AdvMonotonicNBS(1/2, α, c)
which uses O( logB

α2 ) coin flips and returns an (1/2, α(1 +
c))-good with high probability in B.

Now by Lemma 3.1, as we sample users without replace-
ment, the CDF of the remaining users never changes by
more than α at any point. In particular, for the data xj of a
newly sampled user and a threshold t ∈ [B], the probability
of observing a one when applying randomized response
to [xj ≤ i] never varies by more than αε. Denoting this
probability pi, we are exactly in a position to apply Theo-
rem 3.2 to conclude that O( logB

α2ε2 ) users suffices to find a
(1/2, 2αε) good coin. But this translates exactly to i being
an O(α)-approximate median.

The proof of Lemma 3.1 and Theorem 3.2 can be found
in Section 4 and Appendix E.

3.2. Lower bounds for Adaptive and Non-Adaptive
Median Estimation (Theorems 1.2 and 1.3)

We next describe the main ideas for the lower bounds of The-
orems 1.2 and 1.3, full proofs can be found in Appendix F.

Lower Bound for Adaptive Protocols (Theorem 1.2) In
fact, we provide a lower bound for the general quantile
estimation problem, demonstrating that all quantiles (not
too close to the 0 or 1) are as hard as the median. To
prove this lower bound, we first prove a lower bound in the
statistical setting of Definition 2.2 and then reduce to the
empirical setting of Definition 2.3. Our building block for
the statistical lower bound is the framework in (Duchi et al.,
2013), which uses the fact that a protocol attaining low error
on the quantile problem, can distinguish distributions with

different qth quantiles from each other, even from a “hard”
family of distributions. Our hard family of distributions
will be close in statistical distance, but still has different qth
quantiles:

Pβ(i) =


q − 2α i = 1

4α i = β

1− q − 2α i = B,

for β ∈ {2, . . . , B−2}. If β is chosen uniformly at random,
then our LDP distinguishing mechanism will be able to de-
liver log(B) bits of information (measured with the mutual
information), by Fano’s inequality. However, there is an
upper bound on the amount of mutual information possible
with an LDP protocol, as first established in (Duchi et al.,
2013) and this leads to our desired result.

To get a lower bound in the empirical setting, we observe
that a low-error algorithm for empirical quantile estimation
can be applied to also get low-error in the statistical setting
by just applying it on the data sampled fromD. The approxi-
mation guarantee follows from the fact that we have enough
users that the empirical q-quantile of the samples is an α/2
approximation to the true q-quantile of the distribution D.

Lower Bound for Non-Adaptive Protocols (Theorem 1.3)
It turns out more challenging to obtain a lower bound for
non-interactive protocols. Our proof is via a reduction to the
problem of privately learning a CDF under non-interactive
LDP with ℓ∞-error below α. For small ε and α, it is
known (Edmonds et al., 2020) that any such algorithm re-
quires Ω( log2 B

ε2α2 log2(1/α)
) users4.

Our reduction works as follows: Given a non-interactive
ε-LDP algorithm for median estimation which succeeds
with probability 2/3, we first boost this success proba-
bility to 1 − α2 with O(log 1/α) independent repetitions
and the median trick. The privacy of this protocol is thus
ε1 = O(ε log(1/α)). Second, assuming access to such an
algorithm succeeding with high probability, we design a
non-interactive CDF approximation algorithm as follows.
First, we add 2n dummy users n of which are 0 and n
of which are 1. We run the LDP median estimation algo-
rithm on this new set of users and by selecting how many
dummy users to include from the left and from the right,
we can use their responses to estimate any quantile with
error probability α1 = O(α) with probability 1 − O(α2).
Union bounding over the equally spread O(1/α) quantiles
α, 2α, . . . , ⌊1/α⌋·α, we obtain a CDF estimation algorithm
which has error α1 with probability 1−O(α). In particular,
the expected error of this non-interactive protocol is O(α).
Now the lower bound from (Edmonds et al., 2020) kicks in

4In fact, their bound is Ω(log2 B), but it is relatively simple
to check that their proof extends to general ε, α ≤ 1 with mild
assumptions on these parameters.
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which in turn gives the lower bound for median estimation,
with the log4(1/α) stemming from the fact that we have to
apply their lower bound with ε1 = O(ε log(1/α)).

3.3. Shuffle DP for Median Estimation (Theorem 1.4)

Our core contribution with Theorem 1.4 is to demonstrate
explicit trade-offs that exist when considering trust models
and rounds of adaptivity. While adaptive algorithms that
query O(1) users per round are extremely sample efficient,
they remain fundamentally incompatible with the shuffle
model. We introduce protocols that exchange the benefits of
faster learning for larger groups amenable to shuffling, and
show that such protocols can compete in practical parameter
regimes.

Karp & Kleinberg (2007) introduced a naı̈ve “binary search
with repetitions” algorithm as a baseline. This algorithm
follows the natural approach of a standard binary search:
query the midpoint, then recurse on either the left or right
half of the array. However, since queries are noisy, each
point must be queried a logarithmic number of times to
achieve accuracy α, and failure probability β′.

Building on the “near-optimal” analysis of (Feldman et al.,
2021), we prove a shuffle-DP upper bound in Theorem 1.4
on the sample complexity of this “binary search with repeti-
tions” algorithm with only r = log2 B rounds of adaptivity.
Sampling batches of n/r users at each round we shuffle
their private outputs, to learn one of the r pivots up to ac-
curacy α and failure probability β/r. Union bounding over
all r steps ensures we return an α-approximate quantile with
probability 1− β.

The full proof of Theorem 1.4 can be found in Appendix G.

4. Median Estimation with Adaptive LDP
In this section we prove Lemma 3.1 and Theorem 1.1, post-
poning the proof of Theorem 3.2 to Appendix E. We start
with the following technical lemma.

Lemma 4.1. Let b1, . . . , b2n ∈ {0, 1}, π : {1, . . . , 2n} →
{1, . . . , 2n} a random permutation, and ci = bπ(i) for 1 ≤
i ≤ 2n. Let Yi = |{j ∈ [2n] \ [i] | cj = 0}|, and Xi =
Yi

2n−i −
Y0

2n . For any t ≥ 0,

Pr

[
max
1≤i≤n

|Xi| ≥ t

]
≤ 2 exp

(
−t2n

2

)
.

Proof. We first note that (Xi)
n
i=0 forms a martingale. To

see this, first observe that

E[Yi+1 | (Xj)j≤i] = Yi −
Yi

2n− i
.

Indeed, conditioning on (Xj)j≤i, the probability that

ci+1 = bπ(i+1) = 0 is exactly Yi

2n−i . Thus,

E[Xi+1 | (Xj)j≤i] =
1

2n− i− 1

(
Yi −

Yi

2n− i

)
− Y0

2n

=
Yi

2n− i
− Y0

2n
= Xi

Moreover, writing Yi+1 = Yi − b where b ∈ {0, 1} for a
given i < n, we have

|Xi+1 −Xi| =
Yi

(2n− i)(2n− i− 1)
,

if b = 0, and

|Xi+1 −Xi| =
2n− i− Yi

(2n− i)(2n− i− 1)
,

if b = 1. Now, Yi is exactly the number of zeros among the
2n − i values π(i + 1), . . . , π(2n), so trivially 0 ≤ Yi ≤
2n − i. It follows that for i < n, in either of the cases
b ∈ {0, 1},

|Xi+1 −Xi| ≤
1

2n− i− 1
≤ 1

n
.

Finally, X0 = 0, so we may apply Azuma’s inequality
(Theorem A.2 of Appendix A) with an appropriate rescaling
of the Xi’s to obtain that

Pr

[
max
1≤i≤n

|Xi| ≥ t

]
≤ 2 exp

(
−t2n
2

)
,

as desired.

It is now easy to obtain Lemma 3.1.

Proof of Lemma 3.1. Suppose without loss of generality
that n = 2n′ is even. Fix j ∈ B and define bi = [xi ≤ j]
and ci = bπ(i) = [yi ≤ j] for i ∈ [n]. Let Yt = |{t < i ≤
2n | ci = 0}|. Then ptj =

Yt

n−t , so plugging into Lemma 4.1,
we find that,

Pr

[
max

0≤t≤n′
|ptj − p0j | ≥ α

]
≤ 2 exp

(
−α2n

2

)
≤ 2 exp

(
−C logB

2

)
≤ 2B−C/2.

Choosing C sufficiently large and union bounding over all
j ∈ [B], the result follows.

Finally, assuming Theorem 3.2, we can prove our main
theorem Theorem 1.1.

Proof of Theorem 1.1. We pick a random permutation π :
[n] → [n] and define yt = xπ(t), the input of user π(t).
For j ∈ [B] and t < n, we define qtj =

|{t<i≤n|yi≤j}|
n−t and
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qt0 = 0. Thus the map j 7→ qtj is the empirical CDF of the
users yt+1, . . . , yn.

Our algorithm uses the algorithm of Theorem 3.2 to solve
AdvMonotonicNBS(1/2, αε/8, 1) with the adversarial
probabilities {ptj}Bj=1 to be described shortly. To do so,
whenever the algorithm calls for flipping a coin j at step t,
we sample a new user xπ(t) and apply randomized response
to the variable [xπ(t) ≤ j], retaining the bit with probabil-
ity eε

1+eε and flipping it otherwise, to get a variable ztj . By
standard properties of randomized response, this protocol
satisfies the ε-LDP requirement. Moreover, the probability
ptj that ztj = 1 is ptj = qtj · eε

1+eε + (1− qtj) · 1
1+eε and so

|ptj − 1/2| =
∣∣∣∣λt

j ·
eε − 1

1 + eε

∣∣∣∣ ≥ ε|λt
j |

4
, (4)

where we have written qtj = 1/2 + λt
j . Using that n ≫

logB
ε2α2 ≫ logB

α2 , it follows from Lemma 3.1, that |qtj − q0j | ≤
α/5 for all t ≤ n/2 and 0 ≤ j ≤ B with high probability
in B. Thus,

|ptj − p0j | =
|qtj − q0j |(eε − 1)

1 + eε
≤ εα

10
,

where the bound eε−1
1+eε ≤ ε/2 follows from a second degree

Taylor expansion of the maps f : ε 7→ eε−1
1+eε observing that

f ′(0) = 1/2 and f ′′(ε) < 0.

It now follows from Theorem 3.2, that using the noisy feed-
back from at most n/2 of the users, the algorithm finds an
(1/2, αε

4 )-good coin j∗ with high probability in B. In par-
ticular p0j∗ ≤ 1

2 + αε
4 and p0j∗+1 ≥ 1

2 −
αε
4 . It thus follows

from equation (4) that q0j∗ ≤ 1/2+α and q0j∗+1 ≥ 1/2−α.
Therefore j∗ + 1 is an α-approximate median of {xi}ni=1

completing the proof.

5. Experiments
We compared three mechanisms for median estimation in
the empirical setting: DpNaiveNBS (binary search with
randomized response), Hierarchical Mechanism
from (Cormode et al., 2019), which serves as the state of the
art for non-adaptive protocols, and our sequentially adaptive
algorithm, DpBayeSS, introduced in Theorem 1.1 (Algo-
rithm 4 in Appendix I illustrates the pseudocode). Further
details of the implementation, extensive experimental analy-
sis, and experimental results for our algorithm in the shuffle
model appear in Appendix I. Experiments were conducted
on data generated from two distributions: a Pareto distribu-
tion over [B], often used to model quantities like income
and population (Arnold, 2014), and a uniform distribution
over a random interval [l, r] with 1 ≤ l ≤ r ≤ B, ensuring
that the position of the median is not straightforward.

We evaluated the mechanisms using two metrics: the success
rate, computed as the fraction of times a ( 12 , αtest)-good
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(b) Uniform data with n = 2500 and ε = 1

Figure 1. Plots 1a compare the three algorithms on the Pareto-like
dataset: the left plot shows the success rate for αtest = 0.04 across
ε ∈ [0.1, 5], and the right plot shows the c.d.f. of the absolute error
for ε = 0.57. Plots 1b compare DpBayeSS and DpNaiveNBS
on a uniform dataset with ε = 1: the left plot shows the success
rate for different coin domains B for αtest = 0.04, and the right
plot shows the c.d.f. of the absolute error for B = 106. The
error bars on the left plots are standard deviation, computed as
the sample average over 200 trials. The decrease in accuracy
observed in Figure 1b at B = 105 is likely attributable to a random
generation of a more challenging dataset.

coin is returned with αtest = 0.04, and the absolute quantile
error, |FX(m̃)− FX(m)|, where m̃ is the returned median.
We run each algorithm 200 times and computed the standard
deviation of the success rate as the sample average of a
Bernoulli random variable.

In Figure 1a, we plot the success rate of the three privacy
mechanisms for a fixed B = 49, and n = 2500, with ε vary-
ing from 0.1 to 5, for the synthetic Pareto-like dataset. We
also plot the cumulative distribution of the absolute quantile
error, showing the distribution of the quantile error over 200
trials, for ε = 0.57. These parameter settings are typical
values encountered in real applications; we test many more
parameter values in Appendix I with similar results. The
plots illustrate that DpBayeSS always achieves far higher
success rate than the other two mechanisms, and is statisti-
cally significant as the confidence intervals are far from over-
lapping. Correspondingly, the CDF of the absolute quan-
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tile error shows this value is much lower for DpBayeSS.
Also, we observe that the number of users is insufficient
to obtain a meaningful median using the Hierarchical
Mechanism, which aligns with our theoretical predictions.

In Figure 1b, we plot the succes rate of DpBayeSS and
DpNaiveNBS with a fixed privacy budget ε = 1 over vary-
ing domain sizes B from 103 to 106 using the uniform
distribution data set with 2500 users. We also plot the CDF
of absolute quantile error for a large domain of B = 106.
We observe again that DpBayeSS achieves superior perfor-
mance in all the values of B tested. Due to implementa-
tion constraints, Hierarchical Mechanism was not
tested on this dataset, but results in Figure 1a indicate its
error is generally higher than binary search-based methods.
Our code is freely available 5.

6. Conclusion
Our starting observation is that approximating a quantile
with limited information is essentially a noisy binary search.
Based on this we introduced a novel adaptive local dif-
ferentially private algorithm for estimating a quantile in
both statistical and empirical settings. We have shown that
this algorithm, which uses a private implementation of the
Bayesian Screening Search of Gretta & Price (2024), is opti-
mal up to constant factors. In proving this, we demonstrated
that the original algorithm is robust to a limited form of
adversarial noise addition, which may be of independent
interest.

As adaptivity can be expensive, we also proposed a shuffle-
DP mechanism that uses fewer rounds of communication
by “batching” users and shuffling their private responses.
We showed that this approach is competitive in practical
parameter regimes and evaluated the effectiveness of these
approaches through experiments on synthetic data designed
to mimic real-world scenarios.

Several open questions remain. Absent privacy constraints
in the statistical setting, one can estimate the median with
O(1/α2) samples (trivially, in the empirical setting, one
simply outputs the median of the data set), so finding a
protocol that converges to this as ε → ∞ is of particular
theoretical interest.
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A. Additional Definitions
Lemma A.1 (Binary Randomized Response (Warner, 1965; Dwork et al., 2006)). For a binary input x ∈ {0, 1}, and
privacy parameter ε, the following protocolM→ {0, 1} satisfies ε-LDP:

M(x) =

{
x, w.p. eε

eε+1

1− x, otherwise.

Azuma’s inequality We will use the following version of Azuma’s inequality which bounds the maximum deviation of a
martingale (Xi)

n
i=0 at any time t = 0, . . . , n. See Theorem 2.1 in (Fan et al., 2012) for a stronger and more general bound.

Theorem A.2 (Azuma’s inequality). Let (Xi)
n
i=0 be a martingale such that X0 = 0 and |Xi+1−Xi| ≤ 1 for all 0 ≤ i < n.

For any t ≥ 0,
Pr[ max

1≤i≤n
|Xi| ≥ t] ≤ 2 exp

(
−t2

2n

)
.

Bernstein’s Inequality We use the following variant of Bernstein’s Inequality in the proof of Theorem 1.4, see Wainwright
(2019, Proposition 2.10) for a detailed overview.
Theorem A.3 (Bernstein’s Inequality). Let {Xi}ni=1 be independent random variables that are bounded almost surely by 1.
Let σ2 = 1

n

∑n
i=1 Var[Xi] be the average variance. We then have,

Pr

[∣∣∣∣ 1n
n∑

i=1

Xi −
1

n

n∑
i=1

E [Xi]

∣∣∣∣ > α

]
≤ exp

(
−nα2

2σ2 + 2α
3

)
.

B. Reduction to the Median
Consider the simple case where we are given an algorithm A which returns the median of n samples in the most natural
sense, by returning the n/2’th index of their sorted representation. Without changing this algorithm we can have it return
any arbitrary index by adding elements to the beginning or the end of this sorted array. For example, adding two elements to
the beginning of the array will create a new array with n′ = n+2 elements where the n′/2’th index will be the (n/2− 1)’th
index of the original array. The padding argument below formalizes this notion, demonstrating that any algorithm for an
α-approximation of the median can be used to obtain a 2α-approximation of any quantile.
Lemma B.1 (Padding Argument). Any α-approximation algorithm for the median, with α ∈

(
0, 1

2

)
, can be used to construct

a 2α-approximation for any quantile τ ∈ (0, 1).

Proof. Consider a dataset D = {x1, . . . , xn} where each element is such that xi ∈ {1, . . . , B}. LetM be an algorithm for
the α-approximation of the median then for m = A(D) we have by definition

PrD[x ≤ m] <
1

2
+ α and PrD[x ≤ m+ 1] >

1

2
− α. (5)

where PrD[x ≤ m] =
∑

x∈D[x≤m]

n , and [x ≤ m] is an indicator function. Consider now a padded dataset DP =

D ∪ {1}(1−τ)n ∪ {B}τn, where {a}x indicates the multi-set containing the a element x times 6. The new empirical
cumulative distribution of the data set for y ∈ {1, . . . , B − 1}, is

PrDP
[x ≤ y] =

(1− τ)n+
∑

x∈D[x ≤ y]

|DP |
=

1− τ

2
+

1

2
PrD[x ≤ y],

as we have |DP | = 2n. Thus
PrD[x ≤ y] = 2PrDP

[x ≤ y] + τ − 1. (6)

The application of A to the padded data set DP returns a α-approximate median mP = A(DP ). Therefore, for mP ∈
{1, . . . , B − 1}, from Equation 6 and Equation 5 it follows that

PrD[x ≤ mP ] < τ + 2α and PrD[x ≤ mP + 1] > τ − 2α. (7)

Notice that mp ̸= B, as PrDP
[x ≤ B] = 1 < 1

2 + α iff α > 1
2 . This concludes the proof.

6We consider (1− τ)n and τn integers.
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C. Statistical Private Median Estimation
In this section, we will provide an algorithm for LDPstat-median using the state-of-the-art algorithm for
MonotonicNBS. We prove the following:

Theorem C.1. Let α ∈
(
0, 1

4

)
and ε > 0. Suppose that the number of users n ≥ C logB

α2

(
eε+1
eε−1

)2
for a sufficiently large

constant C. Then there exists an algorithm solving LDPstat-median(D, n, α, ε) with high probability in B.

In this section, we prove Theorem C.1. For this, we recall the following result which is a corollary of the main result
in (Gretta & Price, 2024). Recall the definition of an

(
1
2 , α

)
-good coin in (3).

Theorem C.2 ((Gretta & Price, 2024)). For any α ∈
(
0, 1

4

)
, there exists an algorithm for MonotonicNBS(τ, α) which

uses O( logB
α2 ) coin flips and outputs an

(
1
2 , α

)
-good coin with high probability in B.

Proof of Theorem C.1. For i ∈ [B], we define qi =
∑

j≤iD[j] with the convention that q0 = 0. Thus j 7→ qj is the CDF
of D. Consider sampling X ∼ D and let Y be the random variable obtained by applying randomized response to the
indicator variable [X ≤ j] retaining the bit with probability eε

1+eε and flipping it otherwise. Then Pr[Y = 1] = pj where
pj = qj · eε

1+eε + (1− qj) · 1
1+eε . Then,

qj =

(
pj −

1

eε + 1

)
eε + 1

eε − 1
, (8)

We use the the algorithm in Theorem C.2 to solve MonotonicNBS
(

1
2 , α

eε−1
eε+1

)
when the inputs are the unknown {pi}Bi=1.

To do so, whenever the algorithm calls for flipping a coin j, we sample a new user X ∈ D and apply randomized response
to the variable Y = [X ≤ j]. By standard properties of randomized responze, this protocol satisfies the ε-LDP requirement.
Moreover, by Theorem C.2, the algorithm finds an

(
1
2 , α

eε−1
eε+1

)
-good coin j∗ with high probability in B. In particular

pj∗ ≤ 1
2 + α eε−1

eε+1 and pj∗+1 ≥ 1
2 − α eε−1

eε+1 . It thus follows from Equation (8) that qj∗ ≤ 1/2 + α and qj∗+1 ≥ 1/2− α.
Therefore j∗ is an α-approximate median of D completing the proof.

In the high privacy regime, i.e. for ε < 1 , the sample complexity of Theorem C.1 becomes n = Ω
(

logB
ε2α2

)
, matching our

lower bound up to a constant factor. 00

D. The Hierarchical Mechanism
The algorithm was presented in (Cormode et al., 2019) and can be used to approximately answer general range queries. It
comes in several variants but here will show how it can be used to reconstruct the CDF of a distribution D on [B] within
ℓ∞-error α under ε-LDP in a non-adaptive fashion using O( (logB)3

ε2α2 ) users sampled i.i.d from D with high probability in B.
In particular, this implies that it can solve LDPstat-median (in fact approximate any quantile) within the same sample
complexity with high probability in B.

The main idea is to construct a b-ary tree of depth Θ(log(B)) on [B]. For the below, we will assume that B is a power
of 2 and that b = 2 (although for the experiments, we use a different constant b). The nodes on level i (where level 0
is the root) corresponds to the 2i dyadic intervals of B. Namely, in the binary representation of elements of B, there
is an interval corresponding to each prefix of length i in the binary representation. The non-adaptive protocol we will
consider is as follows. The n samples x1, . . . , xn ∼ D are partitioned into batches of size k := n/(logB + 1), one for
each level ℓ = 0, . . . , logB of the binary tree. Namely, for ℓ = 0, . . . , logB, define Sℓ = (xkℓ+1, . . . , xk(ℓ+1)). A user i
with kℓ + 1 ≤ i ≤ k(ℓ + 1) writes a one-hot encoding z of which node they belong to on level ℓ and uses randomized
response on each of the 2ℓ bits of z retaining them with probability eε

1+eε and flipping them with probability 1
1+eε . This is

the message y, they send to the central server. This is the unary encoding mechanism; see (Cormode et al., 2019) for more
sophisticated solutions, that require less communication but nonetheless have the same approximation errors. The combined
algorithm is denoted Hierarchical Mechanisms.

Analysis sketch of Hierarchical Mechanism We here analyse the performance of Hierarchical
Mechanism for approximating the CDF FD(i) ofD at any point i ∈ [B]. We assume that ε ≤ 1. Denote by I = {1, . . . , i}
and let I = I1 ∪ · · · ∪ It be the unique partition of I into t ≤ logB dyadic intervals such that for each a, at most one of
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Algorithm 1 BayeSS main steps

Input: {xi}i=1,...,n, α ∈ (0, 1/4), n ≥ C logB
α2

L← BayesLearn(B, {xi}i=1,...,n/4, α)

R← 1
γ -quantiles(L) {for γ = O(1)}

return TestCoins(R, {xi}n/4+1,...,n/2, α)

the intervals have length 2a. For a sample x ∼ D, denote by λj = Pr[x ∈ Ij ] such that λ :=
∑t

j=1 λj is exactly equal to
FD(i). Let ℓ1, . . . , ℓt be the levels of the tree corresponding to I1, . . . , It. For 1 ≤ j ≤ t, the bit corresponding to Ij of the
randomized response vectors obtained from Sℓj constitute k i.i.d random {0, 1} variables Xj

1 , . . . , X
j
k each attaining the

value 1 with probability λie
ε

1+eε + (1−λi)
1+eε . Namely, they can attain the value 1 exactly if the sample is in Ij (which happens

with probability λj) and the bit is retained, or if the sample is not in Ij (which happens with probability 1− λj) but the bit
is flipped. For r = 1, . . . , k, define

Y j
r =

1

k

(
Xj

r −
1

1 + eε

)
· e

ε + 1

eε − 1
,

so that E[Y j
r ] = λj/k. Since ε ≤ 1, we have |Y j

r | ≤ C/(εk) for some universal constant C. Define,

X =

t∑
j=1

k∑
r=1

Y j
r

which is a sum of tk independent (but not necessarily i.i.d) random variables. Then E[X] = λ, and it follows from
Hoeffding’s inequality that

Pr[|X − λ| ≥ α] ≤ 2 exp

(
− 2α2

kt(2C/(kε))2

)
= 2 exp

(
−α2ε2k

2C2t

)
.

Since t ≤ logB, it follows that if k = O((logB)2/(ε2α2)) is sufficiently large, then

Pr[|X − λ| ≥ α] ≤ B−γ

for any desired constant γ. In particular, it suffices to have k = O((logB)2/(ε2α2)) users at each level of the tree to
approximate the CDF with high probability within α under ε-LDP. Since n = k(logB + 1), the claim on the sample
complexity follows.

E. Proof of Theorem 3.2
The goal of this section is to prove Theorem 3.2. We first define the adversarial setting.

Definition E.1. Let 0 < α < 1 and B a positive integer. Let p0, . . . , pB ∈ [0, 1] be unknowns with 0 = p0 ≤ · · · ≤ pB = 1.
In AdvMonotonicNBS(τ, α, c), for c > 0, our goal is to identify an (τ, α(1 + c))-good coin (defined in Equation 3). To
do so, we may iteratively pick indices i ∈ B. Then an adversary selects a probability p̃i such that |p̃i − pi| ≤ cα, and we
observe the outcome of a coin flip with heads probability p̃i.

We show that the BayeSS algorithm (BayeSS abbreviates Bayesian Screening Search) from (Gretta & Price, 2024)(Algo-
rithm 3) solves the AdvMonotonicNBS(τ, α, c) problem returning the a (τ, α(1 + c))-good coin with high probability in
B using O( τ(1−τ) logB

α2 ) coin flips. We actually prove a stronger theorem which immediately implies Theorem 3.2.

Theorem E.2. Suppose that c ≤ 1 and α ≤ 1
2 min{τ, 1 − τ}. There exists an algorithm (Gretta & Price, 2024)

for AdvMonotonicNBS(τ, α, c) which uses 1
Cτ,α

(logB + O(log2/3 B log1/3 1
β + log 1

β )) coin flips7 and returns a
(τ, α(1 + c))-good coin with probability at least 1− β.

7Namely, Cτ,α is the information capacity of the Binary Asymmetric Channel (BAC) with crossover probabilities {τ + α, τ − α}.
Concretely, Cτ,α = maxq H((1− q)(τ −α) + q(τ +α))− (1− q)H(τ −α)− qH(τ +α) with H being the binary entropy function,
and Cτ,α = Θ( α2

τ(1−τ)
) for α ≤ 1

2
min(τ, 1− τ).
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Note that Theorem 3.2 follows directly from Theorem E.2 by setting τ = 1/2 and β = B−λ for any constant λ. With this,
the proof of Theorem 1.1 is complete.

Before we delve into the proof of Theorem E.2, let us first describe the idea behind BayeSS, described shortly in Algorithm
1. At a high level BayeSS proceeds in two steps allocating a portion of the coin flips for each step. The first step is a Bayes
learner algorithm, called BayesLearn. It starts by assigning a uniform prior w(Ii) to each coin interval Ii = [i, i+ 1]
for any i ∈ [B − 1], then takes the τ -quantile interval under the posterior w(Ii), selects a coin from this interval, flips
it, and updates each w(Ii) according to the result of the coin flip and the error α. This procedure is repeated iteratively.
The sampled intervals are collected in a multiset L, with the guarantee that, after O

( (1+γ) logB
Cτ,α

)
coin flips, a γ-fraction of

intervals in L contains a (τ, α)-good coin with high probability in B (referred to as good intervals). In the second step, this
property is used to narrow the set of possible coins to O(1/γ), ensuring that it contains at least one (τ, α)-good coin. Each
coin in the candidate set can be individually tested, up to error α, with high probability using O( 1

γα2 log(
B
γ )) coin flips.

It is easy to see that in the adversarial setting, the coins can be tested up to error α(1 + c) in the second step. Our main
challenge in proving Theorem E.2, is analyzing the first part of the algorithm, BayesLearn, in the adversarial setting.
The authors in (Gretta & Price, 2024) used a stopping time argument to analyze BayesLearn. They defined a potential
function Φ, with an initial negative value, constructed so that a positive potential implies finding at least a γ fraction of good
intervals. The stochastic process describing the evolution of the potential {Φi}i=1,... is then modeled with a submartingale
that can be used to bound, using Azuma’s inequality, the probability that the process crosses zero after a sufficient number
of iterations. We prove that we can use the same argument for the case of adversarial probabilities if we allow the potential
to catch approximate good intervals, namely intervals containing (τ, α(1 + c))-good coin.

New Potential Let {ℓ, . . . , r} be the set of (τ, α(1 + c))-good intervals. Let a be the maximum i ∈ [B − 1] such that
p1i ≤ τ . Let L be the list of intervals visited in BayesLearn. We define the potential function as

Φ(w,L) := log2 w(a) + 12Cτ,α(|{x ∈ L : x ∈ [ℓ, r]}| − γ|L|),

where w(a) is the Bayesian posterior weight associated to the best interval a and Cτ,α is a concrete function of τ and
α. Notice that a positive potential implies |{x ∈ L|x ∈ [ℓ, r]}| > γ|L|, hence indicating the presence of a γ fraction
(τ, α(1 + c))-good intervals in L. The following Lemma generalises Lemma 7 of (Gretta & Price, 2024) and allows the
construction of a submartingale.

Lemma E.3 (Adaptation of Lemma 7 in (Gretta & Price, 2024) for adversarial probabilities). For c ≤ 1 and α ≤
1
2 min{τ, 1− τ}, the expected variation of the potential is

E[Φt+1 − Φt|y1, . . . , yt] ≥ (1− 12γ)Cτ,α, (9)

where (y1, . . . , yt) are the results of the coin toss up to t+ 1-th sample, and Cτ,α = Θ
(

τ(1−τ)
α2

)
.

Proof. The proof for the adversarial setting, which allows an adversary to alter the head coin probability at each iteration up
to cα, while preserving their order, closely resembles the proof of Lemma 7 in (Gretta & Price, 2024), which addresses
the case of fixed coin probabilities. We will go through the steps of the proof highlighting the main differences. An
implementation of BayesLearn for empirical quantile estimation, where each user is used at most once, can be found in
Algorithm 2.

Let’s define the capacity of the (τ, α)-BAC (Binary Asymmetric Channel) as

Cτ,α = max
q

H((1− q)(τ − α) + q(τ + α))− (1− q)H(τ − α)− qH(τ + α),

q = argmax
x

H((1− x)(τ − α) + x(τ + α))− (1− x)H(τ − α)− xH(τ + α),

where H(p) is the binary entropy. Let’s define the multiplicative Bayes weights dx,y : {0, 1} × {0, 1} → R, they indicates
the multiplicative effect of a flip resulting x (1=Heads, 0=Tails) on the density of an interval on side y (1=Right, 0=Left) of
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Algorithm 2 BayesLearn for empirical quantile estimation, from Algorithm 2 in (Gretta & Price, 2024)

1: function GetIntervalFromQuantile(w, q)
2: return min i ∈ [B] s.t. W (i) ≥ q with W (x) =

∑
i∈{1,...,x} w(i)

3: end function

4: function RoundIntervalToCoin(i, w, q)
5: return i if q−W (i−1)

w(i) ≤ q else i+ 1 with W (x) =
∑

i∈{1,...,x} w(i)

6: end function

7: function BayesLearn({xi}i=1,...,n, B, τ, α,M)
8: w1 ← uniform([B − 1])
9: q ← argmaxx H((1− x)(τ − α) + x(τ + ε))− (1− x)H(τ − α)− xH(τ + α)

10: I ← {} {Multiset}
11: for i ∈ [M ] do
12: ji ← GetIntervalFromQuantile(wi, q)
13: ci ← RoundIntervalToCoin(ji, wi, q) {Gets the coin from the selected interval}
14: L← L ∪ {ji}
15: xi ∼ {xk}k=1,... {Sample a user}
16: {xk}k=1,... ← {xk}k=1,... \ {xi} {Remove the user from the dataset}
17: yi ← [xi ≤ ci] {Flip the coin}

18: wi+1(x)←


wi(x)dỹi,0 if x ∈ {1, . . . , ji − 1}
dỹi,0(q −Wi(ji − 1)) + dỹi,1(Wi(ji)− 1) if x = ji

wi(x)dỹi,1 if x ∈ {ji + 1, . . . , B − 1}
19: end for
20: return L {Return a multiset of intervals}
21: end function

the flipped coin.

d0,0 =
1− τ − α

1− τ − (2q − 1)α

d0,1 =
1− τ + α

1− τ − (2q − 1)α

d1,0 =
τ + α

τ + (2q − 1)α

d1,1 =
τ − α

τ + (2q − 1)α
.

We will mainly use the results from Lemma 9 in (Gretta & Price, 2024) that states that

Cτ,α = (τ + α) log2 d1,0 + (1− τ − α) log2 d0,0, (10)
Cτ,α = (τ − α) log2 d1,1 + (1− τ + α) log2 d0,1, (11)

with the fact that d1,0 ≥ d0,0 and d1,1 ≤ d0,1. Recall the potential function: let {ℓ, . . . , r} be the set of (τ, α(1 + c))-good
intervals. Let a be the maximum i ∈ [B − 1] such that p1i ≤ τ . Let L be the list of intervals visited in BayesLearn.

Let jt be the interval chosen at t-th round, and let ct be the index of the coin flipped. Let ptct = pt (we will discard the coin
subscript) the probability of the selected coin at time t. We split the potential in two addend

12Cτ,α(|{x ∈ L|x ∈ [ℓ, r]}| − γ|L|) (12)
log2 w(a) (13)

The main difference with the proof in (Gretta & Price, 2024) is that a good coin is defined on the initial probabilities
{p1i }i=1,...,B , but at the t-th iteration we only have access to coin with probability {pti}i=1,...,B . However, they are
concentrated around α, so |pt − p1| ≤ cα for c ≤ 1.
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Bad Queries: Consider jt /∈ [ℓ, r]. If jt > r, then p1 ≥ τ + (1 + c)α. As we have that |pt − p1| ≤ cα we also have
pt ≥ p1 − cα ≥ τ + (1 + c)α− cα = τ + α. The expected change in the weights is

E[log2 wt+1(a)− log2 wt(a)] = pt log2 d1,0 + (1− pt) log2 d0,0 ≥ Cτ,α.

Where the last inequality comes from the fact that the expression is minimized as pt = τ + α, and Equation 10. Consider
now jt < L, then p1 ≤ τ − (1 + c)α, which means pt ≤ p1 + cα ≤ τ − (1 + c)α+ cα = τ − α, then

E[log2 wt+1(a)− log2 wt(a)] = pt log2 d1,1 + (1− pt) log2 d0,1 ≥ Cτ,α,

where we reach the minimum Cτ,α when pt = τ − α, due to Equation 11. As jt /∈ [ℓ, r] the change in Equation 12 is
−γ · 12Cτ,α. Therefore, on bad queries the expected change in Φ is at least (1− 12γ)Cτ,α.

Good Queries: Let’s consider the expected change in Equation 13 when jt ∈ [ℓ, r]. Consider the case where jt ̸= a, then
the expected change is either

pt log2 d1,0 + (1− pt) log2 d0,0 if a is on the left of jt, so p0 ≥ τ ⇒ pt ≥ τ − cα

pt log2 d1,1 + (1− pt) log2 d0,1 if a is on the right of jt, so p0 ≤ τ ⇒ pt ≤ τ + cα

The first expression is increasing in pt while the second is decreasing, therefore the expected change is at least

min {(τ − cα) log2 d1,0 + (1− τ + cα) log2 d0,0 ; (τ + cα) log2 d1,1 + (1− τ − cα) log2 d0,1} (14)

Let’s consider the first argument of the previous expression

(τ − cα) log2 d1,0 + (1− τ + cα) log2 d0,0 = (τ + α) log2 d1,0 + (1− τ − α) log2 d0,0 − α(1 + c)(log2 d1,0 − log2 d0,0)

= Cτ,α − α(1 + c) (log2 d1,0 − log2 d0,0)︸ ︷︷ ︸
≥0

(as d1,0 ≥ d0,0)

≥ Cτ,α − 2α(log2 d1,0 − log2 d0,0) (as c ≤ 1)
≥ Cτ,α − 2(6 log 2)Cτ,α

≥ −11Cτ,α,

where in the first inequality we used the fact that c ≤ 1⇒ (1 + c)α ≤ 2α, while in the second inequality we used Lemma
10 and Lemma 13 in (Gretta & Price, 2024), valid for α ≤ 1

2 min(τ, 1 − τ). Analogously, for the second argument of
Equation 14 we get

(τ + cα) log2 d1,1 + (1− τ − cα) log2 d0,1 = (τ − α) log2 d1,1 + (1− τ + α) log2 d0,1 − (1 + c)α (log2 d0,1 − log2 d1,1)︸ ︷︷ ︸
≥0

≥ −11Cτ,α,

where the inequality follows by an analogous computation. Therefore, the change of the weights when jt ̸= a is in
expectation at least −11Cτ,α when c ∈ [0, 1] and α ≤ 1

2 min(τ, 1 − τ). Let’s consider now the case where jt = a, the
expected change is

pt log2(d1,0k + d1,1(1− k)) + (1− pt) log2(d0,0k + d0,1(1− k)), (15)

for some k ∈ [0, 1]. We have two cases: k ≤ q or k > q. When k ≤ q the coin flipped is a then p1 ≤ τ and so pt ≤ τ + cα,
in (Gretta & Price, 2024) it was shown that in this case Equation 15 is decreasing in pt, then the minimum is

(τ + cα) log2(d1,0k + d1,1(1− k)) + (1− τ − cα) log2(d0,0k + d0,1(1− k)) if k ≤ q. (16)

Conversely, when k > q the coin flipped is a + 1 and then p1 ≥ τ so pt ≥ τ − cα. In this case the expression (15) is
increasing in pt so the minimum is

(τ − cα) log2(d1,0k + d1,1(1− k)) + (1− τ + cα) log2(d0,0k + d0,1(1− k)) if k > q. (17)

In (Gretta & Price, 2024) the authors demonstrated that the minimum are obtained when k ∈ {0, 1}. Therefore, for
k = 1 > q we have Equation 17 while for k = 0 < q we have instead Equation 16, which means that the minimum is

min {(τ − cα) log2 d1,0 + (1− τ + cα) log2 d0,0 ; (τ + cα) log2 d1,1 + (1− τ − cα) log2 d0,1} ,
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which is at least −11Cτ,α as demonstrated for the case jt ̸= a. To conclude, the expected change in Equation 12 is at least
12Cτ,α(1 − γ), then the overall expected change for the potential is at least 12Cτ,α(1 − γ) − 11Cτ,α = (1 − 12γ)Cτ,α,
cocnluding the proof.

The previous Lemma is the building block for the analysis of BayesLearn, as it allows the construction of a submartingale
{Yt}t=1,... with Yt+1 = Φt+1− gt, for g = (1− 12γ)Cτ,α, that can be used to bound the probability to have a γ fraction of
good intervals, hence a positive potential. The analysis then follows directly from (Gretta & Price, 2024) with the distinction
that the algorithm now with high probability in B returns a (τ, α(1 + c))-good coin, so proving Theorem E.2. Since the
proof is identical (see Lemma 6 and Theorem 1 of (Gretta & Price, 2024)), we omit it. However, in order to make this paper
self-contained, we will show a simple proof of Theorem 3.2 (which is much less general than Theorem E.2). We restate the
theorem here.

Theorem E.4. Let 0 < α ≤ 1
4 and suppose c ≤ 1 There exists an algorithm for AdvMonotonicNBS(1/2, α, c) which

uses O
(

logB
α2

)
coin flips and returns an (1/2, α(1 + c))-good with high probability in B.

Proof. Let Φ be the potential function in Lemma E.3 in the case τ = 1/2. Given Lemma E.3, by choosing g =
(1− 12γ)C1/2,α equal to the lower bound of the lemma, we have that {Yt}t=1,..., for Yt+1 = Φt+1− gt , is a submartingale
as

E[Yt+1|y1, . . . , yt] = E[Φt+1|y1, . . . , yt]− gt = E[Φt+1 − Φt|y1, . . . , yt]︸ ︷︷ ︸
≥g

−g + Yt ≥ Yt

The difference of the martingale sequence |Yt+1 − Yt| is

|Yt+1 − Yt| ≤ | log2 wt+1(a)− log2 wt(a)|+ 12C1/2,α + g ≤ | log2 wt+1(a)− log2 wt(a)|+O(α2),

by triangle inequality and C1/2,α = Θ(α2) for α ∈ (0, 1/4) due to Lemma 10 (Gretta & Price, 2024). The remaining term
is | logwt+1(a)− logwt(a)| ≤ max{log d1,0, log d0,1} ≤ O(α) for Lemma 13 (Gretta & Price, 2024), thus |Yt+1 − Yt| ≤
O(α). We can use Azuma’s inequality to bound the probability of having a negative potential

Pr[Φt+1 ≤ 0] = Pr[Φt+1 − gt− Φ1 ≤ −gt− Φ1]

= Pr[Yt+1 − Y0 ≤ −gt− Φ1]

≤ exp

(
− (gt+Φ1)

2

t ·O(α2)

)
for gt ≥ −Φ1.

Note that Φ1 = − log(B − 1). Therefore, picking T = O
(

logB
g

)
sufficiently large, we get that (gT+Φ1)

2

T ·O(α2) ≥ λ logB for
any desired constant λ > 0. Thus,

Pr[ΦT+1 ≤ 0] ≤ B−λ.

On the other hand, note that if ΦT+1 > 0, then

0 <
ΦT+1

12C1/2,α
≤ (|{x ∈ L : x ∈ [ℓ, r]}| − γ|L|),

and so, a γ fraction of the intervals in L are (1/2, α(1 + c))-good. Now we can order the intervals in L in sorted order
according to their indices i of the corresponding coins. By picking a subset S of every (1/γ)th of them, we are ensured that
one of them will be good (conditional on the high probability event ΦT+1 > 0). For each interval in S, we can test whether
it is (1/2, α(1 + c))-good with high probability using O( logB

α2 ) coin flips of each of the coins at its endpoints. Therefore,
we successfully determine an (1/2, α(1 + c))-good coin with high probability in B. If we pick γ = 1/13, the total number
of coins flipped is

T + |S|O
(
logB

α2

)
= O

(
logB

g

)
+O

(
logB

α2

)
= O

(
logB

α2

)
,

where the final bound uses that g = (1− 12γ)C1/2,α = 1
13C1/2,α = Θ(α2). This completes the proof.
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F. Lower Bounds
In this section, we give the proof of our lower bounds: Theorem 1.2 for adaptive mechanisms, and Theorem 1.3 for non-
adaptive mechanisms. Since an algorithm for the median problem implies an algorithm for a general quantile by inserting
dummy elements, we will correspondingly show a lower bound for the general quantile problem, demonstrating that all
quantiles (not too close to the minimum or maximum) are as hard as the median. We use the notation LDPstat-quantile
and LDPemp-quantile with the additional parameter q to describe the corresponding generalizations.

F.1. Adaptive Mechanisms

In the statistical setting, our building block will be the lower bound framework in (Duchi et al., 2013), which turns the
estimation problem into a distinguishing problems. In our setting, it means that if a mechanism attains low error on the
quantile problem, then it is good at distinguishing distributions with different qth quantiles from each other, even from a
“hard” family of distributions. Our hard family of distributions will be close in statistical distance, but still have different qth
quantiles:

Pβ(i) =


q − 2α i = 1

4α i = β

1− q − 2α i = B,

for β ∈ {2, . . . , B − 2}. If β is chosen uniformly at random, then our LDP distinguishing mechanism will be able to deliver
log(B) bits of information (measured with the mutual information), by Fano’s inequality. However, there is an upper bound
on the amount of mutual information possible with an LDP protocol, as first established in (Duchi et al., 2013). This gives
us the following bound:

Theorem F.1. Let B ≥ 4, α < 1
2 , ε < 1, and q ∈ (2α, 1−2α). Suppose there is a sequentially interactive ε-LDP algorithm

that for any distribution D solves LDPstat-quantile(D, n, α, ε, q) with probability at least 1
2 . Then

n ≥ Ω

(
logB

ε2α2

)
.

Proof. Let M = (M1, . . . ,Mn) be a sequentially interactive ε-LDP protocol which solves
LDPstat-quantile(D, n, α, ε, q) with probability ≥ 1/2, i.e., for a distribution D and n samples x1, . . . , xn

from D, it outputs an estimate m̃ =M(x1, . . . , xn) which is an α-approximation to the true median of D with probability
at least 1/2. Consider the following collection of distributions {Pβ}β∈[B] indexed by a parameter β ∈ {1, . . . , B − 1}, with
probability mass functions defined by

Pβ(i) =


q − 2α i = 0

4α i = β

1− q − 2α i = B − 1.

Let β∗ be uniformly at random from {1, . . . , B − 1}, and generate n samples x1, . . . , xn from Pβ∗ . Let yi =
Mi(xi, y1, . . . , yi−1) be the ε-differentially private output of user i generated in the manner of in the manner of (2).
Finally, let m̃β∗ = F(y1, . . . , yn) be the estimated median output by our protocol. By Fano’s inequality,

I(β∗; y1, . . . , yn) ≥ H(β∗)−H(1[m̃β∗ = β∗])+

− Pr[m̃β∗ ̸= β∗] log2(B − 1)

≥ log2(B)− 1− 1

2
log(B − 1)

≥ 1

4
log2(B),

where I denotes the mutual information and H denotes the binary entropy.

However, using the fact that our mechanism is ε-LDP, we can use the upper bound from (Duchi et al., 2013) on the mutual
information between {y1, . . . , yn} and β∗. According to their bound (see the calculations following Corollary 1 of (Duchi
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et al., 2013)) for all ε < 1, we have

I(β∗; y1, . . . , yn) ≤ 4(eε − 1)2
n

B2

∑
β,β′∈[B]

∥Pβ − Pβ′∥2TV .

Note that the total variation distance between Pβ and Pβ′ for Pβ ̸= β′ is 4α. It follows that,

I(β∗; y1, . . . , yn) ≤ 256ε2nα2.

Combining inequalities, we see that log(B) ≤ 1024ε2α2n which implies that n = Ω( logB
ε2α2 ), as desired.

To adapt this to the empirical setting, observe that any algorithm for the empirical problem can be used to solve the statistical
problem by sampling, and then applying the empirical algorithm.

Theorem F.2. Let B ≥ 4, α < 1
2 , and q ∈ (2α, 1 − 2α). If ε ≤ min{1, 1

64

√
logB}, then any sequentially interactive

ε-LDP algorithm that solves LDPemp-quantile({xi}ni=1, α, ε, q) with probability 3
4 requires n ≥ Ω( logB

ε2α2 ).

Proof. We will first show any algorithmM which solves LDPemp-quantile({xi}ni=1, α, ε, q) with probability 3
4 can

be used to solve LDPstat-quantile(D, n, 2α, ε, q) with probability 1
2 . The algorithm will simply applyM to the

sampled dataset {x1, . . . , xn}ni=1 from D. Using Hoeffding’s bound, together with the fact that n ≥ 2
α2 , the qth quantile

x(q) of the sampled dataset will have quantile error at most α from the true qth quantile of D with probability at least 3
4 .

Thus, the correctness guarantee ofM carries over, with success probability at least 1
2 by the union bound.

Using the above reduction, we are able to show a lower bound of n ≥ Ω( logB
ε2α2 ) so long as these log(B)

1024ε2α2 ≥ 4
α2 is satisfied.

Theorem 1.2 follows directly from Theorem F.2. These lower bounds establish that our algorithm in Theorem 1.1 is tight in
the ε = O(1) regime.

F.2. Non-Adaptive Mechanisms

In order to prove non-adaptive lower bound of Theorem 1.3, we will apply a lower bound for learning a cumulative
distribution function from (Edmonds et al., 2020). The CDF learning problem is defined as follows:

Definition F.3. Given a dataset X = {x1, . . . , xn} ⊆ [B], let FX(t) denote its c.d.f. (given by FX(t) = 1
n

∑n
i=1 1[xi ≤ τ ].

In the LDPemp-cdf({xi}ni=1, α, ε) problem, the task is to output a function F̃ under ε-LDP which approximates the c.d.f.
up to error alpha at all points; i.e.

E[∥F̃ − FX∥∞] ≤ α.

Observe the above definition considers the expected error, which different from applying Definitions 2.3 or 2.2 with constant
probability of failure. We change to expectation because it is the setting considered by (Edmonds et al., 2020), but may
easily convert between the two types of guarantees (since the maximum c.d.f. error is 1, we only need failure probability of
α to obtain a bound on the expectation).

A lower bound on n for learning a c.d.f. was shown in (Edmonds et al., 2020) for ε < 1:

Theorem F.4. (Theorem 23 in (Edmonds et al., 2020)) There exists a constant C such that, for all α sufficiently small, and all
ε < 1 and B satisfying log2(B)

ε2α2 log(1/α)2 ≥
C log(2B)

α2 + C
ε2α2 any ε-LDP algorithm which solves LDPemp-cdf({xi}ni=1, α, ε)

requires

n ≥ Ω

(
log2(B)

ε2α2 log(1/α)2

)
.

In particular, it is sufficient to satisfy Theorem F.4 when α ≥ B−Ω(1) and ε ≤
√
logB

log(1/α) , which is a mild assumptions as α, ε
are constants typically significantly less than B.

To apply this theorem, we prove a reduction from LDPemp-quantile for constant q to LDPemp-cdf. The c.d.f.
may be solved to accuracy α by computing the α, 2α, . . . , 1 − α quantiles. With correct padding, we may use our
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LDPemp-quantile algorithm to answer any of these quantiles. To answer all 1
α quantiles, our reduction uses non-

adaptivity in a crucial way: it is only necessary to collect responses once, add in the proper amount of responses for padded
elements, and then post-process them into a response. By boosting the accuracy of the quantile with log( 1

α ) runs, each
quantile estimate will have success probability at least 1− α2. We may then apply a union bound to obtain a bound on the
expected error on all quantiles (giving the desired c.d.f. error).
Lemma F.5. Suppose there is a non-adaptive algorithm solving LDPemp-quantile({xi}ni=1, α, ε, q) with probability 3

4 ,
for all datasets of size n ≥ n0. Then, there is a non-adaptive algorithm solving LDPemp-cdf({xi}ni=1, α(1+

1
q ), 2ε log(

1
α ))

with probability 3
4 for any datasets of size n ≥ n0 .

Proof. WLOG, we may assume that q ≤ 1
2 . Suppose we are given a dataset {x1}ni=1. We will first show how to estimate

any quantile q′ with success probability at least 3
4 and error α

q . We may do this by adding padded elements to the dataset.

Specifically, if q < q′, then adding q′−q
q n padded Bs to the dataset will ensure that the qth quantile will match the q′th

quantile of the original dataset. If q′ < q, then adding q−q′

1−q n padded 1s to the dataset will ensure the qth quantile will match
the q′th quantile of the original dataset. Observe that quantile error of α in the padded dataset corresponds to quantile error
α
q in the original dataset.

Next, observe that computing the quantiles {α, 2α, . . . , 1− α} with error α gives a 2α c.d.f. estimation. We will simulate
running the above procedure on all 1

α quantiles by collecting the responses r1 =M1(x1), . . . , rn =Mn(xn), and then
r0i = Mi(1), r

1
i = Mi(B) for n + 1 ≤ i ≤ n + n

q . By picking the correct padded elements, we may post-process
the response to obtain an estimate of any q′th quantile with error at most α

q . This crucially uses the fact that theM are
non-interactive, as any state shared between theMi could not be simulated for all runs at once.

Each of the above estimated quantiles has error α
q with probability at least 3

4 . We may boost the success probability by
running the above procedure independently 2 log( 1

α ) times and taking the median quantile estimate; by Chernoff’s bound,
we are guaranteed that each quantile estimate is at most α

q from the true q′ quantile with probability 1− α2. By the union
bound all quantile estimates will have error α

q with success probability at least 1− α, and the expected c.d.f. error is at most
α+ (1− α)αq ≤ α(1 + 1

q ). Finally, the privacy parameter is 2ε log( 1
α ) by simple composition.

Theorem F.4 and Lemma F.5 together give us a lower bound on the median error under LDP:
Theorem F.6. For any constant q ∈ (0.1, 0.9), any α sufficiently small, ε < 1

log(1/α) , and B such that α ≥ B−Ω(1)

and ε ≤
√
logB

log(1/α)2 , any ε-LDP algorithm which solves LDPquantile-emp({xi}ni=1, α, ε, q) with probability at least 3
4

requires

n ≥ Ω

(
log2(B)

ε2α2 log(1/α)4

)
.

Theorem 1.3 follows directly from this result.

G. Naive Shuffle-DP binary Search for the Median
This section is dedicated to proving Theorem 1.4.

The naive binary search with errors algorithm Algorithm 3 tests each coin up to α-accuracy and a β/ logB failure probability,
such that a simple union bound over all logB steps of binary searching will yield an (α, β)-accurate estimate. This algorithm
is suboptimal up to logarithmic factors, although there are indications that its strong constant factors can make up the
difference in some parameter regimes (Karp & Kleinberg, 2007; Gretta & Price, 2024). The simple fact that this algorithm
runs in deterministic number of rounds, with a deterministic number of samples per round, allows for a straightforward
application of amplification by shuffling (Feldman et al., 2021), something we could not achieve with the fully adaptive
Bayesian updates algorithm.

Algorithm 3 provides the functional details of this algorithm, which we analyze below to find the necessary sample
complexity n for a desired accuracy α and failure probability β. The shuffler is not included in the pseudocode, as it has no
effect on the accuracy of the algorithm. To compute the final sample complexity, it will be most important to prove how
accurately we can learn the bias of one coin at each step of the algorithm. We give a tight characterisation in Lemmas G.1
and G.2
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We consider both statistical error, where samples are assumed to be drawn from some unknown distribution with mean
p, and we are interested in an estimate p̂ which is close to that true mean, and the empirical setting where we make no
assumption on the distribution of the samples, and are interested in how close our estimate p̂ is to the “best-case” sample
mean 1

n

∑n
i=1 xi.

Lemma G.1 (Sample complexity of learning one coin to its statistical mean.). Given samples {xi}ni=1 from a Bernoulli
random variable X with mean p received through a binary randomized response channelM such that yi ∼M(xi), we can
estimate p̂ = 1

n
eε+1
eε−1

∑n
i=1 yi −

1
eε−1 . In order to learn an (α, β)-estimate of p, Pr[|p̂− p| > α] < β it suffices to use n

samples where,

n ≤
(
2p(1− p)

α2
+

eε

α2(eε − 1)2
+

2(eε + 1)

4α(eε − 1)

)
log(1/β).

In other words, the sample complexity of learning one coin to its statistical mean with constant failure probability is
O
(

1
α2ε2 + p(1−p)

α2

)
, when ε < 1, or O

(
1

α2eε + p(1−p)
α2

)
, when ε ≥ 1.

Proof. Given a Bernoulli random variable x with mean p, and a binary randomized response channelM (see Lemma A.1)
the distribution induced by applyingM to x is:

y =M(x) ∼ Bern

(
eε

eε + 1
p+ (1− p)

1

eε + 1

)
= Bern

(
eε − 1

eε + 1
p+

1

eε + 1

)
.

The variance of this distribution is

σ2 = Var(y) =

(
1

eε + 1
+

eε − 1

eε + 1
p

)(
eε

eε + 1
− eε − 1

eε + 1
p

)
=

(
eε − 1

eε + 1

)2

p(1− p) +
eε

(eε + 1)2
.

We then proceed by simple rearranging, substitution, and application of Bernstein’s inequality Theorem A.3.

Pr [|p̂− p| > α] = Pr

[∣∣∣∣ 1n eε + 1

eε − 1

n∑
i=1

yj −
1

eε − 1
−
(
eε + 1

eε − 1
E [y]− 1

eε − 1

) ∣∣∣∣ > α

]

= Pr

[∣∣∣∣eε + 1

eε − 1

(
1

n

n∑
i=1

yi − E [y]

)∣∣∣∣ > α

]

= Pr

∣∣∣∣ 1n
n∑

j=1

y − E [y]

∣∣∣∣ > t

 (
t = α eε−1

eε+1

)
β ≤ exp

(
−nt2

2σ2 + 2t
3

)
(Bernstein’s Inequality)

n ≤
(
2σ2

t2
+

2

3t

)
log(1/β)

=

(
2p(1− p)

α2
+

2eε

α2(eε − 1)2
+

2(eε + 1)

3α(eε − 1)

)
log(1/β). (Substituting t and σ2)

Lemma G.2 (Sample complexity of learning one coin to its sample mean.). Given samples {xi}ni=1 where each xi ∈ {0, 1},
and private outputs yi ∼M(xi), the true sample mean is P = 1

n

∑n
i=1 xi. Denote the sample mean of the collected private

outputs Y = 1
n

∑n
i=1 yi. Our estimator of the sample mean will be similar to the statistical case, where P̂ = eε+1

eε−1Y −
1

eε−1 .
In order to learn an (α, β)-estimate of P it is sufficient to use n samples such that

n ≤
(

2eε

α2(eε − 1)2
+

2(eε + 1)

3α(eε − 1)

)
log(1/β).
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Therefore, the sample complexity of learning the sample mean with constant failure probability is O
(

1
α2ε2

)
, when ε < 1, or

O
(

1
α2eε

)
, when ε ≥ 1. It is pleasing to note that this recovers the sample complexity of learning in the statistical case, up

to the additive sampling error.

Proof. The proof will proceed similarly to the statistical case. The key difference will be the variance of y in this case which
is

σ2 = σ2(M(0)) = σ2(M(1)) =
eε

(eε + 1)2
.

The derivation then proceeds as in the statistical case.

Pr[|P̂ − P | > α] = Pr

[∣∣∣∣eε + 1

eε − 1
Y − 1

eε − 1
− P

∣∣∣∣ > α

]
= Pr

[∣∣∣∣eε + 1

eε − 1
Y − 1

eε − 1
−
(
eε + 1

eε − 1
E [Y ]− 1

eε − 1

) ∣∣∣∣ > α

]
= Pr

[
eε + 1

eε − 1

∣∣∣∣ (Y − E [Y ])

∣∣∣∣ > α

]
= Pr

[∣∣∣∣Y − E [Y ]

∣∣∣∣ > t

] (
t = α eε−1

eε+1

)
≤ exp

(
−nt2

2σ2 + 2t
3

)
(Bernstein’s Inequality)

n ≤
(
2σ2

t2
+

2

3t

)
log(1/β)

=

(
2eε

α2(eε − 1)2
+

2(eε + 1)

3α(eε − 1)

)
log(1/β). (Substituting t and σ2)

With this we can now formally state the sample complexity of a naive binary search for the median under local differential
privacy. We will focus on the empirical case for this result.

Theorem G.3 (Naive Binary Search for the Median under Local Differential Privacy). The naive algorithm as described
by Karp & Kleinberg (2007), under the constraints of ε-local differential privacy, has sample complexity

n ≤
(

2eε

α2(eε − 1)2
+

2(eε + 1)

3α(eε − 1)

)
log(B) log

(
logB

β

)
.

We can therefore say that for ε < 1, the naive approach has sample complexity O
(

logB
α2ε2 log

(
logB
β

))
, and for ε ≥ 1 it has

sample complexity O
(

logB
α2eε log

(
logB
β

))
.

Proof. Given n total users, let n′ = n/ log(B) and let β′ = β/ log(B), apply Lemma G.2 with n′, β′ to get sample
complexity.

n ≤
(

2eε

α2(eε − 1)2
+

2(eε + 1)

3α(eε − 1)

)
log(B) log

(
logB

β

)
.

By a union bound over all logB rounds of the binary search, the final estimate will be an (α, β)-approximate median.

As stated in the introduction, the primary motivation for this approach is that by dividing the algorithm into a few deterministic
stages, with many samples tested at each stage, we can hope to apply amplification by shuffling (Feldman et al., 2021). We
state the amplification by shuffling result here, and a subsequent lemma that will be useful to our analysis.

Theorem G.4 (Feldman, McMillan, and Talwar (2021, Theorem 3.1)). For any domainX , letMt :M1×. . .×Mt−1×X →
Y for t ∈ [n] be a sequence of randomizers such thatMt(y1:t−1, ·) is εL-local DP; and let S be the algorithm that given
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a tuple of n messages, outputs a uniformly random permutation of said messages. Then for any δ ∈ (0, 1] such that
εL ≤ log n

16 log(2/δ) , S ◦ Yn is is (ε, δ)-DP, where

ε ≤ log

(
1 + 8

eεL − 1

eεL + 1

(√
eεL log(4/δ)

n
+

eεL

n

))

This implies the following useful lemma,

Lemma G.5 (Amplification by shuffling). Fix any δ ∈ (0, 1], ε ∈ (0, 1], and n such that ε > 16
√
log(4/δ)/n. Then, for

εL := log
ε2n

80 log(4/δ)

Shuffling the messages of n users using the same εL-LDP randomizer satisfies (ε, δ)-shuffle differential privacy.

Proof. For ε, δ and εL as above we have 0 < εL ≤ log n
16 log(2/δ) . Applying Theorem G.4, we get (ε′, δ)-differential

privacy for

ε′ ≤ log

1 + 8
eεL − 1

eεL + 1︸ ︷︷ ︸
<1

(
ε√
80

+
ε2

80 log(4/δ)

)
︸ ︷︷ ︸

<ε/8

 ≤ ε

Proving the lemma.

We can now prove Theorem 1.4.

Theorem G.6 (Restatement of Theorem 1.4). Let r = log2 B. There exists a protocol for shuffle-emp-
-median({xi}ni=1, α, ε, δ, r) with success probability 1− β provided that

n = O

((
1

α2
+

1

ε2

)
logB

√
log(1/δ) log

logB

β

)
.

The protocol has r = log2 B rounds of adaptivity and queries shuffled batches of n/ log2(B) users.

Proof of Theorem 1.4. Take the sample complexity achieved in Theorem G.3, and note that we are in the ε≫ 1 regime as
we will be applying taking εL ∈ O(log n). We therefore have

n = O

(
logB

α2eεL
log

logB

β

)
We apply Lemma G.5 while noting that at each stage we shuffle n′ = n/ log(B) users. Setting εL = log ε2n

80 log(B) log(4/δ)

and rearranging gives that for each step of the binary search we have enough users to accurately learn the CDF of the
remaining suffix of users within error α/2 with probability β/ logB. Union bounding over all logB steps of the binary
search, we conclude that with probability 1− β, every step succeeds. This gives sample complexity,

n = O

(
logB

αε

√
log(1/δ) log

logB

β

)
,

but we are not finished. We have to handle the multiple restrictions on parameter regimes

O

(
logB

αε

√
log(1/δ) log

logB

β

)
≥ n > max

{
logB

α2
,
logB log(1/δ)

ε2

}
.
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Algorithm 3 Shuffled Noisy Binary Search for quantile estimation.

1: function RRε(X)
2: return X w.p. eε

eε+1 otherwise ¬X
3: end function

4: function Shuffled Noisy Binary Search({xi}ni=1, B, τ, ε)
5: X ← π({xi}ni=1 {Random permutation of the users}
6: ε′ ← log ε2n

80 log(4/δ)

7: r ← ⌈log2 B⌉ {Number of rounds}
8: s← ⌊n/r⌋ {Batch size}
9: L← 1

10: R← B
11: for j = 1, 2, . . . , r do
12: m← L+ ⌊(R− L)/2⌋
13: Sj ← Xjs

l=(j−1)s+1 {Sample one batch}
14: ξ ← 0
15: for k = 1, 2, . . . , s do
16: yk ← [Sj,k ≤ m] {Query}
17: ỹk ← RRε′(yi) {Apply Randomized Response with ε′}
18: ξ ← ξ + ỹk
19: end for
20: p̂← 1

s
eε

′
+1

eε′−1
ξ − 1

eε′−1

21: if p̂ < τ then
22: L← m+ 1
23: else
24: R← m− 1
25: end if
26: end for
27: return m
28: end function

The right hand side of this inequality comes from restrictions present in Lemmas 3.1 and G.5 on n and ε respectively, the
latter comes from using n′ = n/ log(B) in the restriction on ε. A trivial solution is be to take 1/(αε) and replace it with
1/min{α2, ε2}, which gives

n = O

((
1

α2
+

1

ε2

)
logB

√
log(1/δ) log

logB

β

)
.

This result has an improved dependence in ε and α, and could be preferable from a communication perspective. Rounds
of adaptivity are a restricting factor in distributed learning, and our goal was to understand the trade offs possible under
privacy constraints. It is of practical interest to know whether the constraint on n in Lemma G.5 can be improved from
n = Ω

(
log(1/δ)/ε2

)
to Ω (log(1/δ)/ε). This, in combination with a strengthening of Lemma 3.1 to have a linear

dependence on α, would allow the analysis to go through with only a 1/(αε) dependence.

H. A Note on the Continuous Case
If we replace the discrete domain [B] with a continuous one, say [0, 1], it is generally impossible to obtain quantile error
o(1) using a finite number of samples under LDP. This follows from our lower bounds by discretizing [0, 1] into [B] buckets
and letting B →∞. In fact, this is a general issue for quantile or range estimation problems in DP (even beyond the local
model), which is why related work studies the discrete setting (Beimel et al., 2016; Bun et al., 2015; Kaplan et al., 2020;
Cormode et al., 2019). On a more positive note, if we impose mild guarantees on the family of possible distributions the
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Algorithm 4 DPBayeSS for empirical quantile estimation with local differential privacy, from Algorithm 3 in (Gretta &
Price, 2024)

1: function ReductionToGamma({xi}i,...,M , B, α, ε, γ)
2: L← DPBayesLearn({xi}i,...,M , B, 1

2 , α,M, ε) {From Algorithm 2 with ε-RR on each coin flip}
3: R← {}{Get the γ-quantiles of L}
4: for i ∈

[⌊
|L|

⌈γ|L|⌉

⌋]
do

5: append L⌈γ|L|⌉i to R
6: end for
7: return Sorted(RemoveDuplicates(R))
8: end function

9: function DPBayeSS({x}i,...,n, B, ε)

10: MB1 ←
⌊

n log(B)
log(B)+log log(B)+1

⌋
11: MB2

←
⌊

n log log(B)
log(B)+log log(B)+1

⌋
12: α̃← 0.6

√
logB
n {Hyper-parameter obtained empirically in Section I.1}

13: R← ReductionToGamma({xi}i=1,...,MB1
, B, α̃, ε, 1

log2 B
)

14: if |R| > 13 then
15: R← [1] +R+ [n] {Pad R with the extremes of the initial problem.}
16: R← ReductionToGamma({xi}i=MB1

+1,...,MB1
+MB2

, R, α̃, ε, 1
13 ) {Reducing R to fixed size |R| ≤ 13}

17: return Apply NoisyBinarySearch with ε-RR over the coins in R using dataset {xi}i=MB1
+MB2

+1,...,n to
find probability closest to 1

2
18: else
19: return Apply NoisyBinarySearch with ε-RR over the coins in R using dataset {xi}i=MB1

+1,...,n to find
probability closest to 1

2
20: end if
21: end function

samples can come from, our result has implications in the continuous setting as well. For instance, if we assume that there
are (known) numbers −∞ = y0 < y1 < · · · < yB =∞ such that in any interval [yi, yi+1], the emperical CDF increases
by at most α/2, then we can again obtain quantile error α with O( logB

ε2α2 ) users using our algorithm and bucketing users in
the same interval [yi, yi+1). As the dependency on B in the number of samples is logarithmic, this might allow B to be
quite large, with a correspondingly small quantile error α. We note that if the assumption on the CDF is incorrect, only the
accuracy is affected while the algorithm remains private.

I. Experiments
All experiments were carried out using an Intel Xeon Processor W-2245 (8 cores, 3.9GHz), 128GB RAM, Ubuntu 20.04.3,
and Python 3.11. We considered the success rate for an error α

success rate := Pr
[
FX(m̃) <

1

2
+ α ∧ FX(m̃+ 1) >

1

2
− α

]
,

where FX is the CDF of the sensitive dataset and m̃ is the median released by the algorithm, and the absolute quantile error

error := |FX(m̃)− FX(m)|,

as the main metrics for our evaluation. Each algorithm was executed 200 times to compute the empirical cumulative
distribution of the absolute quantile error. As error we opted for the standard deviation of the sample average success rate,
calculated as:

σ =

√
p̃(1− p̃)

200
where p̃ =

1

200

200∑
i=1

[
FX(m̃i) <

1

2
+ α ∧ FX(m̃i + 1) >

1

2
− α

]
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Data Generation The income dataset was generated using a Pareto distribution p(x) ∼ 1
xγ+1 , a well studied distribution

to model income data (Arnold, 2014). We generate n = {2500, 5000, 7500} positive integers by sampling from the
continuous Pareto distribution with shape γ = 1.5 and multiplicative factor 2000 and then rounding them. For different coin
domains [B] we clip the dataset to get integer values in [B]. To compare DpBayeSS and DpNaiveNBS across various
coin domains [B] for a fixed privacy budget, we generated n = 2500 integers by sampling from a uniform distribution over
a random interval within [B]. This approach avoids having the median around B/2, which would make the problem too
straightforward.

Implementation Details These mechanisms are run across the entire data set, which means that each user is sampled
once.

• DpNaiveNBS is a standard differentially private implementation of noisy binary search introduced in (Karp &
Kleinberg, 2007), where each coin flip is privatized using randomized response with ε privacy budget, which we call
RRε. It searches for the coin with probability closest to 1

2 using a standard binary search. To estimate a coin probability,
it samples without replacement batches of size b = ⌊ n

⌈log2 B⌉⌋, then redistributes the remaining samples n− ⌈log2 B⌉b
by adding one sample to each batch starting from the first. Due to randomized response, any empirical probability
pc =

1
b

∑
x∈batch RRε

(
[x ≤ c]

)
is unbiased p̃c =

eε+1
eε−1 (pc −

1
eε+1 ) before confronting it with 1

2 .

• DpBayeSS is a implementation of Algorithm 3 in (Gretta & Price, 2024), with some minor changes (γ is set to
1/13 in line 11 of Algorithm 3), where each coin flip is privatized using randomized response. The algorithm runs at
most two DpBayesLearn (a differentially private implementation of Algorithm 2 where each coin flip is privatized
using randomized response) and further makes use of DpNaiveNBS on the remaining coins to get the one with
head probability closest to 1

2 . The sample budget n is divided into MB1
, MB2

for the two DpBayesLearn and MS

for the DpNaiveNBS. The split satisfies the following ratios suggested in (Gretta & Price, 2024) MB1

MB2
= logB

log logB ,
MB1

MS
= logB, and MB2

MS
= log logB.

BayesLearn is designed to take α as an input for updating the weights during the Bayesian learning step (see
Algorithm 2), hence it assumes a sufficiently large number of users. To reverse this approach, so using n as input,
we empirically determine the minimum value of α achievable by the algorithm. For DpBayesLearn and ε < 1 we
showed that to get an error α we need to solve for an error α̃ = αε

8 . For a fixed n, the error cannot be smaller than

α ≥ 8c
√
logB
ε
√
n

for some constant c > 0, therefore we have that α̃ ≥ c
√

logB
n . We analyze different values of c in the

hyper-parameter selection section in order to get a value of c such that the algorithm, run with α̃ = c
√

logB
n , gives

better results. For completeness and full reproducibility we provide a pseudocode of our implementation in Algorithm 4

• Hierarchical Mechanism is built according to (Cormode et al., 2019). Essentially, we constructed a tree with
branching factor equal to 4 and at each level we store the 4-adic decomposition of [B]. For example, if B = 49 at the
first level of the tree, composed by four nodes, is stored {[1, . . . , 48], [48 + 1, . . . , 2 · 48], [2 · 48 + 1, . . . , 3 · 48], [3 ·
48 + 1, . . . , 49]}, while on the leaves are stored all the possible singletons. Each user selects a random level of the tree
and reports its position using unary encoding (Wang et al., 2017; Cormode et al., 2021). For this LDP protocol we
used the public library at the following GitHub repository8. After filling the tree, we computed the whole cumulative
distribution and released the coin with closest value to 1

2 .

8https://github.com/Samuel-Maddock/pure-LDP
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(a) Experiments for n = 2500 and B = 49
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(b) Experiments for n = 5000 and B = 48

Figure 2. Experiments to estimate the best constant c to compute αupdate = c
√

logB
n

.

I.1. Hyper-Parameter Selection

To determine the optimal parameter for updating DpBayesLearn given a fixed number of users n, coins B, and varying
privacy budgets ε ∈ {0.5, 1, 1.5}, we conducted experiments using DpBayeSS with different update parameters αupdate =

c
√

logB
n . These experiments were performed on two distinct datasets generated by sampling from a Pareto distribution,

the outcomes are illustrated in Figure 2. By analyzing different αtest values and the error distribution across various
privacy budgets, we observed that the algorithm performs poorly at c = 0.1. However, within the range c ∈ [0.3, 0.7], the
performance stabilizes and the precision decreases for c > 0.7. Therefore, an effective range for the parameter c is [0.3, 0.7].
Based on this analysis, we chose to use c = 0.6. We note that our analysis is tailored to the high-privacy regime; however, in
practice, this constant also yields a well-performing algorithm for ε < 5.
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(a) Experiments for n = 2500 and ε = 0.5
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(b) Experiments for n = 2500 and ε = 1

Figure 3. Experiments run over a dataset obtained by sampling n random integers over a random subset of [B].

I.2. Comparison Analysis

In Figure 5 we run the three algorithms two Pareto like dataset with n = {2500, 7500} and B = {49, 48} with various
privacy budgets ε ∈ [0.1, 5]. We observed how the adaptive mechanisms DpBayeSS and DpNaiveNBS outperform a
non adaptive mechanism such as Hierarchical Mechanism. This superior performance is not surprising as the
former algorithms are tailored specifically for median estimation. In contrast, Hierarchical Mechanism constructs a
differential private data structure capable of answering any range queries with an error of polylog(B). From our results it is
clear the DpBayeSS is more likely to return a coin with low quantile error than DpNaiveNBS, both for ε < 1 and ε > 1.
This result aligns with the findings in (Gretta & Price, 2024), where the authors conducted experiments demonstrating that
BayeSS can achieve the same error rate as NaiveNBS (algorithms without randomized response) using fewer coin flips
and, consequently, fewer user samples.

We conducted further experiments to evaluate the behavior of DpBayeSS and DpNaiveNBS for different coin domains
[B]. The dataset is obtained by sampling n = 2500 integers uniformly from a random interval in [B], for any B ∈
{103, 104, 105, 106}. The main results are listed in Figure 3 for two different privacy budgets ε ∈ {0.5, 1}. We observed
that DpBayeSS is more stable than DpNaiveNBS for different coin domains, and offers good utility for realistic privacy
budget and error (e.g. for αtest = 0.05, ε = 1, and n = 2500, DpBayeSS returns a αtest-good median with probability
higher than 0.8).
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Figure 4. Experiments for n = 107 and B = 48, with δ = 10−8 for shuffle DP

I.3. Noisy Binary Search with Shuffling

When the number of users n is sufficiently large, noisy binary search with shuffling, as described in Section G, can be
implemented. The implementation mirrors that of DpNaiveNBS, but the privacy budget εRR for randomizing the coin
flip is determined as εRR = log

(
ε2

80 log(4/δ)

(⌊
n

⌈log2 B⌉

⌋
+ 1
))

to achieve (ε, δ)-differential privacy (DP) under shuffling,
as established in Lemma G.5. Since εRR ≥ 0 is required, the user population n must be sufficiently large to enable this
amplification technique. In particular, for δ = 10−8, ε ∈ {0.1, 0.5, 1}, and B = 48, it is necessary to have n greater
than 2.5 · 107, 7.8 · 104 and 1.3 · 104, respectively, making a direct comparison with the previous experiments impossible.
However, we note that the required number of users can be significantly reduced in practice by employing a tighter numerical
upper bound for privacy amplification by shuffling (Feldman et al., 2021).

We generated a Pareto-like dataset (as described in the Data Generation section) with n = 107 and conducted experiments
using δ = 10−8 and various privacy budgets ε ∈ [0.1, 5]. Due to limited computational resources and the non optimal
implementation of DpBayesSS and Hierarchical Mechanism, we restricted our comparison to DpNaiveNBS
and its variant implemented with privacy amplification through shuffling. The results are shown in Figure 4. For small
privacy budgets, shuffling-based amplification provides higher utility, whereas for ε > 3, the performance of the algorithms
converges and becomes comparable.
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(a) Experiments for n = 2500 and B = 49
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(b) Experiments for n = 7500 and B = 48

Figure 5. Comparison analysis.
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