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Abstract

A recent work by Schlisselberg et al. (2025) stud-
ies a delay-as-payoff model for stochastic multi-
armed bandits, where the payoff (either loss or
reward) is delayed for a period that is propor-
tional to the payoff itself. While this captures
many real-world applications, the simple multi-
armed bandit setting limits the practicality of their
results. In this paper, we address this limitation
by studying the delay-as-payoff model for con-
textual linear bandits. Specifically, we start from
the case with a fixed action set and propose an
efficient algorithm whose regret overhead com-
pared to the standard no-delay case is at most
D∆max log T , where T is the total horizon, D is
the maximum delay, and ∆max is the maximum
suboptimality gap. When payoff is loss, we also
show further improvement of the bound, demon-
strating a separation between reward and loss sim-
ilar to Schlisselberg et al. (2025). Contrary to
standard linear bandit algorithms that construct
least squares estimator and confidence ellipsoid,
the main novelty of our algorithm is to apply a
phased arm elimination procedure by only pick-
ing actions in a volumetric spanner of the action
set, which addresses challenges arising from both
payoff-dependent delays and large action sets. We
further extend our results to the case with varying
action sets by adopting the reduction from Hanna
et al. (2023). Finally, we implement our algo-
rithm and showcase its effectiveness and superior
performance in experiments.

1. Introduction
Stochastic multi-armed bandit (MAB) is a well-studied theo-
retical framework for sequential decision making. In recent
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years, considerable investigation has been given to the real-
istic situations where the agent observes the payoff (either
reward or loss) of an arm only after a certain delayed period
of time. However, most work assumes that the delays are
payoff-independent. Namely, while the delay may depend
on the chosen arm, it is sampled independently from the
stochastic payoff of the chosen arm.

Lancewicki et al. (2021) address this limitation by study-
ing a setting where the delay and the reward are drawn
together from a joint distribution. Later, Tang et al. (2024)
consider a special case where the delay is exactly the reward.
Their motivation stems from response-adaptive clinical tri-
als that aim at maximizing survival outcomes. For example,
progression-free survival (PFS)—defined as the number of
days after treatment until disease progression or death—is
widely used to evaluate the effectiveness of a treatment. No-
tably, in this context, the “delays” in observing the PFS are
the PFS itself. Schlisselberg et al. (2025) build on and refine
this investigation, extending the study to the case where
delay is the loss itself. Taken together, this delay-as-payoff
framework effectively captures many real-world scenarios
involving time-to-event data across many domains. For ex-
ample, postoperative length of stay (PLOS) is one example
of time-to-event data that specifies the length of stay after
surgery. Potential surgical procedures and postoperative
care can be modeled as arms. The delay—defined as the
time until the patient is discharged—can be interpreted as
the loss that we aim to minimize. As another example, in
advertising, common metrics, including Average Time on
Page (ATP) and Time to Re-engagement (that tracks the
time elapsed between a user’s initial interaction with an ad
and subsequent engagement such as returning to the web-
site), can be modeled as reward or loss inherently delayed
by the same duration.

Despite such recent progress, the current consideration of
payoff-dependent delay remains limited to the simple multi-
armed bandit (MAB) setting. While MAB frameworks are
foundational in decision-making problems, they have no-
table practical limitations. Specifically, they fail to account
for the influence of covariates that drive heterogeneous re-
sponses across different actions. This makes them less
suitable for scenarios involving a large number of (poten-
tially dynamically changing) actions and/or situations where
context is crucial in shaping outcomes.
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Contributions. Motivated by this limitation, in this work,
we extend the delay-as-payoff model from MAB to contex-
tual linear bandits, a practical framework that is widely used
in real-world applications. Specifically, our contributions
are as follows.

• As a first step, in Section 3, we study stochastic lin-
ear bandits with a fixed action set (known as the non-
contextual setting). We point out the difficulty of di-
rectly combining the standard LinUCB algorithm with
the idea of Schlisselberg et al. (2025), and propose a
novel phased arm elimination algorithm that only selects
actions from a volumetric spanner of the action set. In
the delay-as-loss case, we prove that, compared to the
standard regret in the delay-free setting, the overhead
caused by the payoff-dependent delay for our algorithm
isO(min{nd⋆ log(T/n)+D∆max, D∆max log(T/n)}),
where n is the dimension of the action set, T is the total
horizon, ∆max is the maximum suboptimality gap, d⋆ is
the expected delay of the optimal action, and D is the
maximum possible delay (formal definitions are deferred
to Section 2). This instance-dependent bound is in the
same spirit as the one of Schlisselberg et al. (2025) and is
small whenever the optimal action has a small loss. In the
delay-as-reward case, a slightly worse bound is provided
in Appendix B; such a separation between loss and reward
is similar to the results of Schlisselberg et al. (2025).

• Next, in Section 4, we extend our results to the contextual
case where the action set is varying and drawn i.i.d. from
an unknown distribution. Using a variant of our non-
contextual algorithm (that can handle misspecification) as
a subroutine, we apply the contextual to non-contextual
reduction recently proposed by (Hanna et al., 2023) and
show that the resulting algorithm enjoys a similar regret
guarantee despite having varying action sets, establishing
the first regret guarantee for contextual linear bandits with
delay-as-payoff.

• In Section 5, we implement our algorithm and test it on
synthetic linear bandits instances, demonstrating its su-
perior performance against a baseline that runs LinUCB
with only the currently available feedback.

Related works. Recent research has investigated different
problems of learning under bandit feedback with delayed
payoff, addressing various new challenges caused by the
combination of delay and bandit feedback. As mentioned,
most studies assume payoff-independent delays. Among
this line of research, Dudı́k et al. (2011) are among the first
to consider delays in stochastic MAB with a constant delay.
Mandel et al. (2015) and Joulani et al. (2013) extend the
consideration to stochastic delays, with the assumption that
the delay is bounded.

Subsequent studies on i.i.d. stochastic delays differentiate
between arm-independent and arm-dependent delays. For
arm-independent delays, Zhou et al. (2019); Vernade et al.
(2020a); Blanchet et al. (2024) show regret characteriza-
tions for (generalized) linear stochastic contextual bandits.
Pike-Burke et al. (2018) consider aggregated anonymous
feedback, under the assumption that the expected delay is
bounded and known to the learner. Arm-dependent stochas-
tic delays have been explored in various settings, including
Gael et al. (2020); Arya & Yang (2020); Lancewicki et al.
(2021).

Far less attention has been given to payoff-dependent
stochastic delays. The setting in Vernade et al. (2017) im-
plies a dependency between the reward and the delay, as
a current non-conversion could be the result of a delayed
reward of 1. Lancewicki et al. (2021) consider the case
where the stochastic delay in each round and the reward are
drawn from a general joint distribution. Tang et al. (2024)
investigate strongly reward-dependent delays, specifically
motivated by medical settings where the delay is equal to the
reward. Schlisselberg et al. (2025) follow this investigation
and extend the discussion to delay as loss, and provide a
tighter regret bound. Although with a slightly different fo-
cus, Thune et al. (2019); Zimmert & Seldin (2020); Gyorgy
& Joulani (2021); Van Der Hoeven & Cesa-Bianchi (2022);
van der Hoeven et al. (2023) and several other works study
non-stochastic bandits, where both the delay and rewards
are adversarial.

Nevertheless, the payoff-dependent (either loss or reward)
delays are only studied under stochastic multi-armed bandits
(MAB). In this work, we extend the study to contextual
linear bandits, significantly broadening its practicality.

2. Preliminary
Throughout this paper, we use [N ] to denote {1, 2, . . . , N}
for some positive integer N . Let Rn

+ be the n-dimensional
Euclidean space in the positive orthant and Bn

2 (1) = {v ∈
Rn : ∥v∥2 ≤ 1} be the n-dimensional unit ball with respect
to ℓ2 norm. Define U [a, b] to be the uniform distribution
over [a, b]. For a real number a, define SGN(a) as the sign of
a. For two real numbers a and b, define a ∨ b ≜ max{a, b}.
For a finite set S, denote |S| as the cardinality of S. The
notation Õ(·) hides all logarithmic dependencies.

In this paper, we consider the delay-as-payoff model pro-
posed by Schlisselberg et al. (2025), in which the delay of
the payoff is proportional to the payoff itself. Specifically,
we study stochastic linear bandits in this model, and we start
with a fixed action set as the first step (referred to as the
non-contextual case) and then move on to the case with a
time-varying action set (referred to as the contextual case).
For conciseness, we mainly discuss the payoff-as-loss case,
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but our algorithm and results can be directly extended to the
payoff-as-reward case (see Appendix B).

Non-contextual stochastic linear bandits. In this problem,
the learner is first given a fixed finite set of actions A ⊂
Rn

+ ∩ Bn
2 (1) with cardinality |A| = K. Let D > 0 be the

maximum possible delay. At each round t ∈ [T ], the learner
selects an action at ∈ A and incurs a loss ut = µat

+ ηt ∈
[0, 1] where ηt is zero-mean random noise, µa = ⟨a, θ⟩ is
the expected payoff of action a, and θ ∈ Rn

+ ∩ Bn
2 (1) is the

model parameter that is unknown to the learner.1 Then, the
loss is received by the learner at the end of round ⌈t+ dt⌉
where the delay dt = D · ut (that is, proportional to the
loss). The goal of the learner is to minimize the (expected)
pseudo regret defined as follows:

Reg ≜ E

[
T∑

t=1

⟨at, θ⟩

]
− T ·min

a∈A
⟨a, θ⟩ . (1)

Let a⋆ ∈ argmina∈A ⟨a, θ⟩ be an optimal action, µ⋆ = µa⋆

be its expected loss, and d⋆ = Dµ⋆ be its expected de-
lay. For an action a, define ∆a = ⟨a− a⋆, θ⟩ as its sub-
optimality gap. Further define ∆min = mina∈A,∆a>0 ∆a

and ∆max = maxa∈A ∆a to be the minimum and maxi-
mum non-zero sub-optimality gap respectively.

We point out that the standard multi-armed bandit (MAB)
setting considered in Schlisselberg et al. (2025) is a special
case of our setting with A being the set of all standard basis
vectors in Rn.

Contextual stochastic linear bandits. In the contextual
case, the main difference is that the action set is not fixed
but changing over rounds. Specifically, at each round t,
the learner first receives an action set At ⊂ Rn

+ ∩ Bn
2 (1)

(which can be seen as a context), where we assume that At

is drawn i.i.d. from an unknown distribution P . The rest of
the protocol remains the same, and the goal of the learner is
still to minimize the (expected) pseudo regret, defined as:

Reg ≜ E

[
T∑

t=1

⟨at, θ⟩ −
T∑

t=1

min
a⋆
t∈At

⟨a⋆t , θ⟩

]
,

where the expectation is taken over both the internal ran-
domness of the algorithm and the external randomness in
the action sets and loss noises.

3. First Step: Non-Contextual Linear Bandits
In this section, we focus on the non-contextual case, which
serves as a building block for eventually solving the con-
textual case. Before introducing our algorithm, we first
briefly introduce the successive arm elimination algorithm

1We enforce both A ⊂ Rn
+ ∩ Bn

2 (1) and θ ∈ Rn
+ ∩ Bn

2 (1) to
make sure that the payoff (and hence the delay) is non-negative.

for the simpler MAB setting proposed by Schlisselberg et al.
(2025) and their ideas of handling payoff-dependent delay.
Specifically, their algorithm starts with a guess B = 1/D
on the optimal action’s loss, and maintains an active set of
arms. The algorithm pulls each arm in the active set once,
and constructs two LCB’s (lower confidence bound) and
one UCB (upper confidence bound) for each action in the
active set as follows (supposing the current round being t):

LCBt,1(a) =
1

kt(a)

∑
τ∈Ot(a)

uτ −

√
2 log T

kt(a)
, (2)

LCBt,2(a) =
1

ct(a)

∑
τ∈Ct(a)

uτ −

√
2 log T

ct(a) ∨ 1
, (3)

UCBt(a) =
1

ct(a)

∑
τ∈Ct(a)

uτ +

√
2 log T

ct(a) ∨ 1
, (4)

where kt(a) =
∑t

τ=1 1{at = a} is the total number of
pulls of action a till round t, Ot(a) = {τ : τ + dτ ≤
t and aτ = a} is the set of rounds where action a is chosen
and its loss has been received by the end of round t, Ct(a) =
{τ ≤ t−D : aτ = a} is the set of rounds up to t−D where
action a is chosen (so its loss has for sure been received
by the end of round t), and ct(a) = |Ct(a)|. Specifically,
Eq. (2) constructs an LCB of action a assuming all the
action’s unobserved loss to be 0 (the smallest possible),
while Eq. (3) and Eq. (4) construct an LCB and a UCB using
only the losses no later than round t−D (which must have
been received by round t), making the empirical average
a better estimate of the expected loss. With UCBt(a) and
LCBt(a) = max{LCBt,1(a),LCBt,2(a)} constructed, the
algorithm eliminates an action a if its LCBt(a) is larger
than min{UCBt(a

′), B} for some a′ in the active set. If all
the actions are eliminated, this means that the guess B on
the optimal loss is too small, and the algorithm starts a new
epoch with B doubled.2

Challenges However, this approach cannot be directly ap-
plied to linear bandits. Specifically, standard algorithms for
stochastic linear bandits without delay (e.g., Li et al. (2010);
Abbasi-Yadkori et al. (2011)) all construct UCB/LCB for
each action by constructing an ellipsoidal confidence set
for θ. In the delay-as-payoff model, while it is still viable
to construct UCB/LCB similar to Eq. (3) and Eq. (4) via a
standard confidence set of θ, it is difficult to construct an
LCB counterpart similar to Eq. (2). This is because one
action’s loss is estimated using observations of all other ac-
tions in linear bandits, and naively treating the unobserved

2In fact, Schlisselberg et al. (2025) construct yet another LCB
based on the number of unobserved losses. We omit this detail
since we are not able to use this to further improve our bounds for
linear bandits.
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loss of one action as zero might not necessarily lead to an
underestimation of another action.

Our ideas To bypass this barrier, we give up on estimating
θ itself and propose to construct UCB/LCB for each action
using the observed losses of the volumatric spanner of the
action set. A volumetric spanner of an action setA is defined
such that every action in A can be expressed as a linear
combination of the spanner.

Definition 3.1 (Volumetric Spanner (Hazan & Karnin,
2016)). Suppose that A = {a1, a2, . . . , aN} is a set of
vectors in Rn. We say S ⊆ A is a volumetric spanner of
A if for any a ∈ A, we can write it as a =

∑
b∈S λb · b for

some λ ∈ R|S| with ∥λ∥2 ≤ 1.

Due to the linear structure, it is clear that the loss µa of
action a can be decomposed in a similar way as

∑
b∈S λbµb,

making it possible to estimate every action’s loss by only
estimating the loss of the spanner. Moreover, such a spanner
can be efficiently computed:

Proposition 3.2 (Bhaskara et al. (2023)). Given a finite set
A of size K, there exists an efficient algorithm finding a vol-
umetric spanner S ofA with |S| = 3n withinO(Kn3 log n)
runtime.

Equipped with the concept of volumetric spanner, we are
now ready to introduce our algorithm (see Algorithm 1).
Specifically, our algorithm also makes a guess B on the loss
of the optimal action. With this guess, it proceeds to multiple
epochs of arm elimination procedures, with the active action
set initialized as A1 = A. In each epoch m, instead of
picking every action in the active set Am, we first compute
a volumetric spanner Sm of Am with |Sm| = 3n (Line 4),
which can be done efficiently according to Proposition 3.2,
and then pick each action in the spanner set Sm for 2m

rounds in a round-robin way (Line 5).

After that, we calculate two UCBs and two LCBs for actions
in the spanner, in a way similar to the simpler MAB setting
discussed earlier (Line 7). Specifically, the first one is in
the same spirit of Eq. (2): we calculate µ̂+

m(a) ( µ̂−
m(a)) as

an overestimation (underestimation) of the expected loss
of action a by averaging over all observed losses from the
rounds in Om(a) as well as the maximum (minimum) pos-
sible value of unobserved losses from the rounds in Em(a);
see Eq. (5) and Eq. (6). The first UCB (LCB) µ̂+

m,1(a)

(µ̂−
m,1(a)) is then computed based on µ̂+

m(a) (µ̂−
m(a)) by in-

corporating a standard confidence width β√
2m
∥a∥2 for some

coefficient β; see Eq. (7) and Eq. (8). Then, to compute the
second UCB/LCB, which is in the same spirit as Eq. (3) and
Eq. (4), we calculate an unbiased estimation µ̂F

m(a) of the
expected loss of a by averaging losses from the rounds in
Cm(a), that is, all the rounds where the observation must
have been revealed; see Eq. (9). Note that the number of

Algorithm 1: Phased Elimination via Volumetric Span-
ner for Linear Bandits with Delay-as-Loss

1 Input: maximum possible delay D, action set A, β > 0.
2 Initialization: optimal loss guess B = 1/D.
3 Initialization: active action set A1 = A.

for m = 1, 2, . . . , do
4 Find Sm = {am,1, . . . , am,|Sm|}, a volumetric

spanner of Am with |Sm| = 3n.
5 Pick each a ∈ Sm 2m times in a round-robin way.
6 Let Im contain all the rounds in this epoch.
7 For each a ∈ Sm, calculate the following quantities:

µ̂+
m(a) =

1

2m

( ∑
τ∈Om(a)

uτ +
∑

τ∈Em(a)

1
)
, (5)

µ̂−
m(a) =

1

2m

∑
τ∈Om(a)

uτ , (6)

µ̂+
m,1(a) = µ̂+

m(a) +
β

2m/2
∥a∥2, (7)

µ̂−
m,1(a) = µ̂−

m(a)− β

2m/2
∥a∥2, (8)

µ̂F
m(a) =

1

cm(a)

∑
τ∈Cm(a)

uτ , (9)

µ̂+
m,2(a) = µ̂F

m(a) +
β√
cm(a)

∥a∥2, (10)

µ̂−
m,2(a) = µ̂F

m(a)− β√
cm(a)

∥a∥2, (11)

where cm(a) = |Cm(a)|,
Cm(a) = {τ ∈ Im : τ +D ∈ Im, aτ = a},
Om(a) = {τ ∈ Im : τ + dτ ∈ Im, aτ = a}, and
Em(a) = {τ ∈ Im : aτ = a} \Om(a).

for each a ∈ Am do
8 Decompose a as a =

∑|Sm|
i=1 λ

(a)
m,iam,i with

∥λ(a)
m ∥2 ≤ 1 and calculate

UCBm(a) =

|Sm|∑
i=1

λ
(a)
m,i · µ̂

SGN(λ
(a)
m,i)

m,2 (am,i),

(12)

LCBm(a) = max
j∈{1,2}

{LCBm,j(a)} where

LCBm,j(a) =

|Sm|∑
i=1

λ
(a)
m,i · µ̂

SGN(−λ
(a)
m,i)

m,j (am,i),

(13)

9 Set Am+1 = Am.
for a ∈ Am do

10 if ∃a′ ∈ Am, s.t.
LCBm(a) ≥ min{UCBm(a′), B} then

Eliminate a from Am+1.

11 if Am+1 = ∅ then
Set B ← 2B and go to Line 3.
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such rounds, cm(a) = |Cm(a)|, is a fixed number, and thus
µ̂F
m(a) is indeed unbiased. Similarly, we incorporate a stan-

dard confidence width β√
cm(a)

∥a∥2 to arrive at the second

UCB µ̂+
m,2(a) and LCB µ̂−

m,2(a); see Eq. (10) and Eq. (11).

The next step of our algorithm is to use these UCBs/L-
CBs for the spanner to compute corresponding UCBs/LCBs
for every active action in Am (Line 8). Specifically, for
each action a ∈ Am, according to the definition of a volu-
metric spanner (Definition 3.1), we can write a as a linear
combination of actions in Sm:

∑|Sm|
i=1 λ

(a)
m,iam,i . As men-

tioned, due to the linear structure of losses, we also have
µa =

∑|Sm|
i=1 λ

(a)
m,iµam,i

. Thus, when constructing a UCB

(or similarly LCB) for a, based on whether λ(a)
m,i is posi-

tive or not, we decide whether to use the UCB or LCB of
am,i; see Eq. (12), a counterpart of Eq. (4), and Eq. (13), a
counterpart of Eq. (2) and Eq. (3).3

At the end of an epoch, we eliminate all actions from the
active action set if their LCB is either larger than the UCB of
certain action or the guess B on the optimal loss (Line 10).
If the active set becomes empty, this means that the guess
B is too small, and the algorithm restarts with the guess
doubled; otherwise, we continue to the next epoch.

Computational complexity We analyze the computa-
tional complexity of Algorithm 1. Specifically, the to-
tal runtime of our algorithm over T rounds is O(nT +
Kn3 log n log(T/n)), as we compute the volumetric span-
ner only once per epoch, and the total number of epochs
is O(log(T/n)). Compared to the classic LinUCB algo-
rithm (Abbasi-Yadkori et al., 2011), our approach is in fact
more computationally efficient: LinUCB computes the UCB
for each action at a cost of O(n2) per round, resulting in a
total runtime of O(Kn2T ).

Theoretical performance We prove the following regret
bound for our algorithm.

Theorem 3.3. Algorithm 1 with β =
√

2 log(KT 3) guar-
antees:

Reg ≤ O (min {V1, V2}) + log(d⋆) · O (min {W1,W2}) ,

where V1 = n2 log(KT ) log(T/n) log(d⋆)
∆min

, V2 =

n
√
T log(d⋆) log(KT ), W1 = nd⋆ log(T/n) + D∆max,

and W2 = D∆max log(T/n).

The first term in the regret bound O (min {V1, V2}) is of
order Õ(min{ n2

∆min
, n
√
T}), which matches the standard

regret bound of LinUCB in the case without delay (Abbasi-
Yadkori et al., 2011). The second term is the overhead

3This also explains why we need µ̂+
m(a), a quantity not used

in Schlisselberg et al. (2025).

caused by delay and is in the same spirit as the result
of Schlisselberg et al. (2025): focusing only on the part
that grows in T , we see that W1 only depends on d⋆, the
expected delay of the optimal action (and hence the smallest
delay among all actions), while W2 depends on the max-
imum possible delay D but scaled by ∆max, the largest
sub-optimality gap. Therefore, the delay overhead of our
algorithm is small when either the shortest delay is small
or all actions have similar losses. We remark again that in
the delay-as-reward setting, we obtain similar results; see
Appendix B for details.

3.1. Analysis

In this section, we provide a proof sketch of Theorem 3.3.
Detailed proofs are deferred to Appendix A.

The proof starts by proving that UCBm(a) and LCBm(a)
are indeed valid UCB and LCB respectively for all actions
in Am. This follows from first using standard concentration
inequalities to show that µ̂+

m,1(a) and µ̂+
m,2(a) (µ̂−

m,1(a)

and µ̂−
m,2(a)) are valid UCBs (LCBs) for each action in

the spanner, and then generalizing it to every action a ∈
Am according to its decomposition over the actions in the
spanner.

With this property, our analysis then proceeds to con-
trol the regret of Algorithm 1 for each guess of B sep-
arately. Let TB be the set of rounds when Algorithm 1
runs with guess B. In Step 1, we first show that the
use of LCBm,2(a) and UCBm(a) ensures a regret bound
of O (min{R1, R2}+D∆max log(T/n)) where R1 =
n2 log(KT ) log(T/n)

∆min
and R2 = n

√
|TB | log(KT ), and then

in Step 2, we show that the use of LCBm,1(a) and
UCBm(a) ensures a regret bound of O(min{R1, R2} +
(nd⋆ +DB) log(T/n) +D∆max).

Step 1 For notational convenience, we define

radFm,a = β

|Sm|∑
i=1

|λ(a)
m,i| ·

∥a∥2√
cm(am,i)

to be the total confidence radius of action a coming from
the definition of LCBm,2(a) and UCBm(a). Via a standard
analysis of arm elimination, we show that that if an action a
is not eliminated at the end of epoch m, we have

∆a ≤ 4 max
a∈Am

radFm,a ≤
4
√
3nβ

minam∈Sm

√
cm(am)

,

where the second inequality uses Cauchy-Schwarz inequal-
ity and the properties of volumetric spanners, specifically
that ∥λ(a)

m ∥2 ≤ 1 and |Sm| = 3n. To provide a lower bound
on cm(a′) for any a′ ∈ Sm, note that we pick each action
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a′ ∈ Sm 2m times in a round-robin manner, and thus

cm(a′) ≥ 2m − D

|Sm|
− 1 = 2m − D

3n
− 1.

Rearranging the terms, we then obtain

2m∆a ≤
48nβ2

∆a
+

D∆a

3n
+∆a. (14)

Taking summation over all a ∈ Sm and m, and notic-
ing that the total number of epochs is bounded by M =
⌈log2(|TB |/3n)⌉, we arrive at the following O(R1 +
D∆max log(T/n)) regret guarantee:

M∑
m=1

∑
a∈Sm

2m∆a

≤
M∑

m=1

∑
a∈Sm,∆a>0

2 ·
(
48nβ2

∆a
+

D∆a

3n
+∆a

)

≤
M∑

m=1

∑
a∈Sm,∆a>0

O
(
n log(KT )

∆a

)
+O (D∆max log(T/n)) ,

≤ O
(
n2 log(T/n) log(KT )

∆min

)
+O (D∆max log(T/n)) ,

where the first inequality is because a ∈ Sm is not elimi-
nated in epoch m − 1 and the last inequality is by lower
bounding ∆a by ∆min.

To obtain the other instance-independent regret bound
O(R2 + D∆max log(T/n)), we bound the regret differ-
ently by considering ∆a ≥ β

√
n/2m and ∆a ≤ β

√
n/2m

separately:

M∑
m=1

∑
a∈Sm

2m∆a

≤
M∑

m=1

∑
a∈Sm,∆a≥β

√
n/2m

(
512nβ2

∆a
+

2D∆a

3n
+ 2∆a

)

+

M∑
m=1

∑
a∈Sm,∆a≤β

√
n/2m

(2m∆a)

≤ O(n
√
|TB | log(KT ) +D∆max log(T/n)).

Step 2 To obtain the other regret boundO(min{R1, R2}+
(nd⋆ + DB) log(T/n) + D∆max) with a different delay
overhead, we similarly define

radNm,a = β

|Sm|∑
i=1

|λ(a)
m,i| ·

∥a∥2√
2m

as the total confidence radius of action a coming from
the definition of LCBm,1(a). Further let µ̂m(a) =

1
2m

(∑
τ∈Om(a)∪Em(a) uτ

)
be the empirical mean of action

a’s loss within epoch m (which is generally not available to
the algorithm due to delay). According to the construction
of µ̂+

m(a) and µ̂−
m(a), we know that for all a ∈ Sm,

µ̂+
m(a) ≤ µ̂m(a) +

|Em(a)|
2m

, µ̂−
m(a) ≥ µ̂m(a)− |Em(a)|

2m
.

Then, for any action a ∈ Am that is not eliminated at the
end of epoch m, using the fact that a =

∑|Sm|
i=1 λ

(a)
m,iam,i,

we obtain with high probability:

µa ≤
|Sm|∑
i=1

λ
(a)
m,i · µ̂m(am,i) + radNm,a

≤ LCBm,1(a) + radNm,a +

|Sm|∑
i=1

|λ(a)
m,i| ·

|Em(am,i)|
2m

≤ LCBm,1(a) + radNm,a

+

|Sm|∑
i=1

|λ(a)
m,i| ·

(
2Dµam,i

2m|Sm|
+

16 logKT + 2

2m

)
(15)

≤ B + radNm,a

+

|Sm|∑
i=1

|λ(a)
m,i| ·

(
2Dµam,i

2m|Sm|
+

16 logKT + 2

2m

)
,

(16)

where the first inequality is by standard Azuma-Hoeffding’s
inequality, the third inequality is by Lemma C.2 of Schlissel-
berg et al. (2025) (included as Lemma A.2 in the appendix
for completeness), and the last inequality is because a is not
eliminated at the end of epoch m.

Now consider two cases. When B ≥ µa

2 , we know that
∆a ≤ µa − µ⋆ ≤ 2B. Using the previous Eq. (14), we
know that

2m∆a ≤ O
(
nβ2

∆a
+

DB

n

)
. (17)

Otherwise, when B < µa

2 , with some manipulation on
Eq. (16), we show that

2m∆a ≤ O

(
nβ2

∆a
+

∑|Sm|
i=1 Dµam,i

n

)
. (18)

Combining Eq. (17) and Eq. (18), we then obtain that within
epoch m, the regret is bounded by

O

∑
a∈Sm

nβ2

∆a
+DB +D

|Sm−1|∑
i=1

µam−1,i

 , (19)

since all active actions in epoch m are not eliminated in
epoch m − 1. The first term

∑
a∈Sm

nβ2

∆a
in Eq. (19)
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Algorithm 2: Reduction from Contextual Linear Bandits to Non-Contextual Linear Bandits (Hanna et al., 2023)

Input: confidence level δ, an instance Algn-ctx of Algorithm 3 with β =
√

2 log(KT 3).
Let Θ′ be a 1

T -cover of Θ with size O(Tn).
for m = 1, 2, . . . do

1 Construct action set Xm = {g(m)(θ) | θ ∈ Θ′} where g(m)(θ) = 1
2m−1

∑2m−1

τ=1 argmina∈Aτ
⟨a, θ⟩.

2 Initiate Algn-ctx with action set Xm and misspecification level εm = min{1, 2
√
log(T |Θ′|/δ)/2m}.

3 for t = 2m−1 + 1, . . . , 2m do
4 Algn-ctx outputs action g(m)(θt).
5 Observe At and select at = argmina∈At

⟨a, θt⟩.
6 Observe the loss uτ for all τ such that τ + dτ ∈ (t− 1, t] and send them to Algn-ctx.

eventually leads to the min{R1, R2} term in the claimed
regret bound, by the exact same reasoning as in Step 1.
The second term explains the final DB log(T/n) term in
the regret bound (recall that number of epoch is of order
O(log(T/n))). Finally, the last term in Eq. (19) can be
written as D

∑|Sm−1|
i=1 ∆am−1,i

+ 3n · d⋆, and the term
D
∑|Sm−1|

i=1 ∆am−1,i
is one half of the regret incurred in

epoch m− 1 as long as 2m−1 > 2D (otherwise, the epoch
length is smaller than D, and we bound the regret trivially
by D∆max). Summing over all epochs and rearranging the
terms thus leads to the a term nd⋆ log(T/n) in the regret.
This proves the goal of the second step.

Combining everything Finally, note that the number of
different values of B Algorithm 1 uses is upper bounded
by ⌈log2(d⋆)⌉ = ⌈log2(Dµ⋆)⌉ since the optimal action a⋆

will never be eliminated when B ≥ µ⋆. Summing up the
regret over these different values of B arrives at the the final
bound O(min{V1, V2}, log(d⋆)min{W1,W2}).

4. Extension to Contextual Linear Bandits
In this section, we extend our results to the stochastic contex-
tual setting where the action set at each round is drawn i.i.d.
from a distribution P . While the arm elimination procedure
is critical in solving our problem in the non-contextual case
with a fixed action set, it is not clear (if possible at all) to
directly generalize it to the contextual setting due to the
dynamic nature of the action set.

Fortunately, a recent work by Hanna et al. (2023) proposes
a reduction from contextual linear bandits to non-contextual
linear bandits (both without delay). At a high level, this re-
duction constructs a fixed action for each possible parameter
θ of the contextual bandit instance, where the expected pay-
off of this fixed action equals to the expected payoff of the
optimal action assuming that the true parameter is θ. Since
the distribution of the action set is unknown, this reduction
estimates each action’s expected payoff using the historical
action sets. This estimation introduces a misspecification

error, resulting in a misspecified model. Therefore, the sub-
routine used by this reduction needs to be able to handle
an ε-misspecified model, where the loss of each a ∈ A
is approximately linear: µa = ⟨a, θ⟩ + εa ∈ [0, 1], with
ε ≥ maxa∈A |εa| indicating the misspecification level. It
turns out that, a simple modification of our Algorithm 1
can indeed address such misspecification — it only requires
incorporating the misspecification level ε into the criteria
of arm elimination; see Algorithm 3 and specifically its
Line 10 for details.

We then plugin this subroutine, denoted as Algn-ctx, into
their reduction, as shown in Algorithm 2. Specifically, the
algorithm first constructs a 1

T -cover Θ′ of the parameter
space Θ = Rn

+ ∩ Bn
2 (1) with size |Θ′| = O(Tn). It then

proceeds in epochs with doubling length. At the start of
epoch m, a new fixed action set Xm = {g(m)(θ) : θ ∈ Θ′}
is constructed, where g(m)(θ) is the averaged optimal ac-
tion over the previous m− 1 epochs, assuming the model
parameter being θ. Then, a new instance of Algn-ctx with
action set Xm and some misspecification level εm is initi-
ated and run for the entire epoch. At each round t of this
epoch, Algn-ctx outputs an action g(m)(θt) ∈ Xm, and the
algorithm’s final decision upon receiving the true action set
At is at = argmina∈At

⟨a, θt⟩. Finally, at the end of this
round, all newly observed losses are sent to Algn-ctx.

Guarantees and Analysis Even though our algorithm is
a direct application of the reduction of Hanna et al. (2023),
it is a priori unclear whether it enjoys any favorable regret
guarantee in the delay-as-loss setting. By adopting and
generalizing their analysis, we show that this is indeed the
case. Before introducing our results, we define the following
quantities:

g(θ) ≜ EA∼P

[
argmin

a∈A
⟨a, θ⟩

]
,

∆n-ctx
min ≜ min

θ′∈Θ′,⟨g(θ′),θ⟩̸=⟨g(θ),θ⟩
E [⟨g(θ)− g(θ′), θ⟩] ,

∆n-ctx
max ≜ max

θ′∈Θ′
E [⟨g(θ)− g(θ′), θ⟩] ,

7
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Figure 1. Comparison of the empirical results of our algorithm, LinUCB, OTFLinUCB, and OTFLinTS with K = 70. The top row is
the delay-as-loss setting and the bottom row is the delay-as-reward setting. The left, middle, and right column correspond to n = 6, 8, 10
respectively.

d
⋆
≜ D · ⟨g(θ), θ⟩ = D · EA∼P

[
min
a∈A
⟨a, θ⟩

]
,

where g(θ) denotes the optimal action in expectation, ∆n-ctx
min

(∆n-ctx
max) denotes the minimum (maximum) suboptimality

gap for the reduced non-contextual linear bandit instance,
and d

⋆
denotes the expected delay of the optimal action.

Theorem 4.1. Algorithm 2 with δ = 1/T 2 guarantees

Reg = O
(
n
√
T log T +min{V1, V2}

+ log(d
⋆
)min{W1,W2}

)
,

where V1 = n3 log2(T ) log(T/n) log(d
⋆
)

∆n-ctx
min

, V2 =

n1.5

√
T log(d

⋆
) log(T ), W1 = log T (nd

⋆
log(T/n) +

D∆n-ctx
max), and W2 = D∆n-ctx

max log T log(T/n).

The proof is deferred to Appendix C. The regret bound is
in the same spirit as the one for the non-contextual case
(Theorem 3.3) and consists of a term for standard regret
and a term for delay overhead. The standard part unfortu-
nately suffers higher dependence on the dimension n, while
the delay overhead is in a similar problem-dependent form.
We remark that this is the first regret guarantee for contex-
tual linear bandits with delay-as-payoff, resolving an open
problem asked by (Schlisselberg et al., 2025).

5. Experiment
In this section, we implement and evaluate our algorithm for
both the delay-as-loss and delay-as-reward settings. For sim-
plicity, we only consider the non-contextual setting. Since
there are no existing algorithms for this problem (to the best
of our knowledge), we consider three simple benchmarks.
The first one applies the standard LinUCB algorithm only
using the currently available observations (see Algorithm 5
in Appendix D for details). We point out that this simple
approach to handling delayed feedback is indeed very com-
mon in the literature and in fact enjoys favorable guarantees
at least for some problems (Thune et al., 2019; van der
Hoeven et al., 2023). Additionally, we include two bench-
mark algorithms: OTFLinUCB and OTFLinTS (Vernade
et al., 2020a), which are designed for linear bandits but with
payoff-independent stochastic delay.

Experiment setup The experiment setup is as follows. We
set the dimension n ∈ {6, 8, 10} and the size of the action
set |A| = 70. The model parameter θ is set to be |ν|

∥ν∥2

where ν is drawn from the n-dimensional standard normal
distribution and |ν| denotes the entry-wise absolute value of
ν to make sure that θ ∈ Rn

+ ∩ Bn
2 (1). Each action a ∈ A

is constructed by first sampling ai uniformly from [0, 1] for
all i ∈ [n] and then normalizing it to unit ℓ2-norm. When
an action at is chosen at round t, the payoff ut is drawn
from beta distribution with α = µat

and β = 1− µat
.The

8
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number of iterations T is 16000 and the maximal possible
delay D is 1000. For simplicity, we also ignore the role of
B in our algorithms.

Results In Figure 1, we plot the mean and the standard de-
viation of the regret over 8 independent experiments with dif-
ferent random seeds, for each n ∈ {6, 8, 10} (the columns)
and also both delay-as-loss and delay-as-reward (the rows).
We observe that our algorithm consistently outperforms all
the three benchmarks in all setups. Also, in all runs, after
about 9 to 12 epochs, our algorithm eliminates a significant
number of bad actions, leading to almost constant regret
after that point (and explaining the “phase transition” in the
plots).

6. Conclusion
In this work, we initiate the study of the delay-as-payoff
model for contextual linear bandits and develop provable
algorithms that require novel ideas compared to standard
linear bandits. Interesting future directions include proving
matching regret lower bounds and extending our results to
general payoff-dependent delays (Lancewicki et al., 2021),
unbounded delay/payoff (Howson et al., 2023; Zhou et al.,
2019), and other even more challenging settings, such as
those with intermediate observations (Vernade et al., 2020b;
Esposito et al., 2023) or evolving observations (Bar-On &
Mansour, 2024).
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A. Omitted Details in Section 3
In this section, we provide the detailed proof for Theorem 3.3. Specifically, as mentioned in Section 4, we prove the
guarantee of a modified algorithm (Algorithm 3) for the more general ε-misspecified linear bandits.

Recall that in misspecified linear bandits, µa = ⟨a, θ⟩ + εa ∈ [0, 1] with |εa| ≤ ε for all a ∈ A. Due to this difference,
we clarify on the definitions of ∆a, a⋆, µ⋆, ∆min, ∆max, and d⋆ in misspecified linear bandits as follows. We still define
∆a = ⟨a⋆ − a, θ⟩ as the suboptimality gap of action a, where a⋆ ∈ argmina∈A ⟨a, θ⟩, but µ⋆ ≜ mina∈A µa as the loss of
the optimal action. Note that due to the misspecification, µ⋆ may not necessarily be µa⋆ . Define ∆min = mina∈A,∆a>0 ∆a

and ∆max = maxa∈A ∆a to be the minimum non-zero, and maximum sub-optimality gap. The delay at round t is still
defined as dt = D · ut and d⋆ = D · µ⋆ is the expected delay of the optimal action.

As for the algorithm, Algorithm 3 differs from Algorithm 1 only in Line 10 where we add one misspecification term 4
√
3nε

in the criteria of eliminating an action.

The following theorem shows the guarantee of our algorithm in the misspecified linear bandits.

Theorem A.1. Algorithm 3 with β =
√
2 log(KT 3) guarantees that

Reg ≤ O
(
min

{
n2 log(KT ) log(T/n) log(d⋆)

∆min
, n
√

T log(d⋆) log(KT )

}
+ ε
√
nT

)
+ log(d⋆) · O (min {nd⋆ log(T/n) +D∆max, D∆max log(T/n)}) .

To prove Theorem A.1, recall the following quantities

µ̂m(a) =
1

2m

∑
τ∈Om(a)∪Em(a)

uτ , ∀a ∈ Sm, (29)

µ̂m,1(a) =

|Sm|∑
i=1

λ
(a)
m,i · µ̂m(am,i), ∀a ∈ Am, (30)

µ̂m,2(a) =

|Sm|∑
i=1

λ
(a)
m,i · µ̂

F
m(am,i), ∀a ∈ Am. (31)

We then define the following event and show that the event holds with high probability.
Event 1. For all action a ∈ Am, m ∈ [T ],

|⟨a, θ⟩ − µ̂m,1(a)| ≤
√
|Sm|ε+ β

|Sm|∑
i=1

∣∣∣λ(a)
m,i

∣∣∣√ 1

2m
, (32)

|⟨a, θ⟩ − µ̂m,2(a)| ≤
√
|Sm|ε+ β

|Sm|∑
i=1

∣∣∣λ(a)
m,i

∣∣∣√ 1

cm(am,i)
, (33)

|Em(a)| ≤ 2Dµa

|Sm|
+ 16 logKT + 2, (34)

where β =
√

2 logKT 3.

Lemma A.2. Algorithm 3 guarantees that Event 1 holds with probability at least 1− 2
T 2 .

Proof. Fix an action a ∈ Sm in epoch m ∈ [T ]. According to standard Azuma’s inequality, we know that with probability
at least 1− δ,

|µa − µ̂m,1(a)| ≤
√

2 log(2/δ)

2m
∥a∥2,

|µa − µ̂m,2(a)| ≤

√
2 log(2/δ)

cm(a)
∥a∥2.
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Algorithm 3: Phased Elimination via Volumetric Spanner for Linear Bandits with Delay-as-Loss with misspecification

1 Input: maximum possible delay D, action set A, β > 0, a misspecification level ε.
2 Initialization: optimal loss guess B = 1/D.
3 Initialization: active action set A1 = A.

for m = 1, 2, . . . , do
4 Find Sm = {am,1, . . . , am,|Sm|}, a volumetric spanner of Am with |Sm| = 3n.
5 Pick each a ∈ Sm 2m times in a round-robin way.
6 Let Im contain all the rounds in this epoch.
7 For each a ∈ Sm, calculate the following quantities:

µ̂+
m(a) =

1

2m

( ∑
τ∈Om(a)

uτ +
∑

τ∈Em(a)

1
)
, (20)

µ̂−
m(a) =

1

2m

∑
τ∈Om(a)

uτ , (21)

µ̂+
m,1(a) = µ̂+

m(a) +
β

2m/2
∥a∥2, (22)

µ̂−
m,1(a) = µ̂−

m(a)− β

2m/2
∥a∥2, (23)

µ̂F
m(a) =

1

cm(a)

∑
τ∈Cm(a)

uτ , (24)

µ̂+
m,2(a) = µ̂F

m(a) +
β√
cm(a)

∥a∥2, (25)

µ̂−
m,2(a) = µ̂F

m(a)− β√
cm(a)

∥a∥2, (26)

where cm(a) = |Cm(a)|, Cm(a) = {τ ∈ Im : τ +D ∈ Im, aτ = a},
Om(a) = {τ ∈ Im : τ + dτ ∈ Im, aτ = a}, and Em(a) = {τ ∈ Im : aτ = a} \Om(a).

for each a ∈ Am do
8 Decompose a as a =

∑|Sm|
i=1 λ

(a)
m,iam,i with ∥λ(a)

m ∥2 ≤ 1 and calculate

UCBm(a) =

|Sm|∑
i=1

λ
(a)
m,i · µ̂

SGN(λ
(a)
m,i)

m,2 (am,i), (27)

LCBm(a) = max
j∈{1,2}

{LCBm,j(a)} where

LCBm,j(a) =

|Sm|∑
i=1

λ
(a)
m,i · µ̂

SGN(−λ
(a)
m,i)

m,j (am,i), (28)

9 Set Am+1 = Am.
for a ∈ Am do

10 if ∃a′ ∈ Am, s.t. LCBm(a) ≥ min{UCBm(a′), B}+ 4
√
3nε then

Eliminate a from Am+1.

11 if Am+1 = ∅ then
Set B ← 2B and go to Line 3.

12



Contextual Linear Bandits with Delay as Payoff

Taking union bound over all possible a ∈ A and all m ∈ [T ], we know that with probability at least 1− δ, for all a ∈ Sm
and all m ∈ [T ],

|µa − µ̂m,1(a)| ≤

√
2 log(2TK/δ)

nt(a)
∥a∥2,

|µa − µ̂m,2(a)| ≤

√
2 log(2TK/δ)

cm(a)
∥a∥2.

Then, given that the above equation holds, for a ∈ Am, due to the property of volumetric spanners, we have µa =

⟨a, θ⋆⟩+ εa =
∑|Sm|

i=1 λ
(a)
m,i ⟨am,i, θ

⋆⟩+ εa. Therefore, we can obtain that

|⟨a, θ⟩ − µ̂m,1(a)| ≤

∣∣∣∣∣∣
|Sm|∑
i=1

λ
(a)
m,i(⟨am,i, θ

⋆⟩ − µam,i)

∣∣∣∣∣∣+
|Sm|∑
i=1

∣∣∣λ(a)
m,i

∣∣∣ · ∣∣µam,i − µ̂m(am,i)
∣∣

≤
|Sm|∑
i=1

∣∣∣λ(a)
m,i

∣∣∣(εam,i
+

√
2 log(2TK/δ)

2m

)

≤
√
|Sm|ε+

|Sm|∑
i=1

∣∣∣λ(a)
m,i

∣∣∣√2 log(2TK/δ)

2m
,

where the last inequality uses ∥λ(a)
m ∥1 ≤

√
|Sm| · ∥λ(a)

m ∥2 ≤
√
|Sm|. A similar analysis proves Eq. (33). Eq. (34) holds with

probability at least 1− 1
T 2 according to Lemma 4.1 of (Schlisselberg et al., 2025). Picking δ = 1

T 2 finishes the proof.

The next lemma shows that if B ≥ µ⋆, then Algorithm 3 will not reach an empty active set.

Lemma A.3. Suppose that Event 1 holds. If B ≥ µ⋆, then a⋆ ∈ Am for all m.

Proof. Since Event 1 holds, we have, we know that for all a ∈ Am, LCBm(a) ≤ ⟨a, θ⟩ +
√
|Sm|ε and UCBm(a) ≥

⟨a, θ⟩ −
√
|Sm|ε. If B ≥ µ⋆, then we have a⋆ never eliminated since for any a ∈ Am

LCBm(a⋆) ≤ ⟨a⋆, θ⟩+ ε
√
|Sm| ≤ µ⋆ + ε+ ε

√
|Sm| ≤ µ⋆ + 2ε

√
|Sm|,

LCBm(a⋆) ≤ ⟨a⋆, θ⟩+ ε
√
|Sm| ≤ ⟨a, θ⟩+ 2ε

√
|Sm| ≤ UCBm(a) + 4ε

√
|Sm|.

Therefore, a⋆ never satisfy the elimination condition.

The following lemma shows that the regret within epoch m can be well-controlled.

Lemma A.4. Suppose that Event 1 holds. Algorithm 3 guarantees that if a ∈ A is not eliminated at the end of epoch m
(meaning that a ∈ Am+1), then

2m ·∆a ≤ 2m · 24
√
nε+

256nβ2

∆a
+

2D∆a

|Sm|
.

Proof. For notational convenience, define radNm,a = β√
2m
∥a∥2 and radFm,a = β√

cm(a)
∥a∥2 for all a ∈ Sm. In addition, we

also define radNm,a and radFm,a for a /∈ Sm as follows:

radNm,a =

|Sm|∑
i=1

|λ(a)
m,i| · rad

N
m,am,i

,

radFm,a =

|Sm|∑
i=1

|λ(a)
m,i| · rad

F
m,am,i

.

13
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Since Event 1 holds, we know that for all a ∈ Am, LCBm(a) ≤ ⟨a, θ⟩ +
√
|Sm|ε, UCBm(a) ≥ ⟨a, θ⟩ −

√
|Sm|ε.

Moreover, as LCBm(a) = max{LCBm,1(a),LCBm,2(a)}, we know that for all a ∈ Am

LCBm,1(a) + 2radNm,a + 2ε
√
|Sm| ≥ µ̂m,1(a) + radNm,a + 2ε

√
|Sm| ≥ ⟨a, θ⟩ ,

LCBm,2(a) + 2radFm,a + 2ε
√
|Sm| ≥ µ̂m,2(a) + radFm,a + 2ε

√
|Sm| ≥ ⟨a, θ⟩ ,

UCBm(a)− 2radFm,a − 2ε
√
|Sm| = µ̂m,2(a)− radFm,a − 2ε

√
|Sm| ≤ ⟨a, θ⟩ .

If B ≥ µ⋆, then a⋆ ∈ Am according to Lemma A.3. Moreover, if a is not eliminated in epoch m, we have LCB(a) ≤
min{UCBm(a⋆), B}+ 4

√
|Sm|ε, meaning that

⟨a, θ⟩ − 2radFm,a − 2ε
√
|Sm|

≤ µ̂m,2(a)− radFm,a

≤ LCBm(a)

≤ min{UCBm(a⋆), B}+ 4
√
|Sm|ε

≤ UCBm(a⋆) + 4
√
|Sm|ε

= µ̂m,2(a
⋆) + radFm,a⋆ + 4

√
|Sm|ε

≤ ⟨a⋆, θ⟩+ 2radFm,a⋆ + 6
√
|Sm|ε.

Since radFm,a =
∑|Sm|

i=1 |λ
(a)
m,i| · rad

F
m,am,i

with ∥λ(a)
m ∥2 ≤ 1, we have that ∥λ(a)

m ∥1 ≤
√
|Sm| and

∆a ≤ 4
√
|Sm|

(
max
a∈Sm

radFm,a + 2ε

)
= 4
√
3n max

a∈Sm

radFm,a + 8
√
3nε ≤ 8

√
nβ

mina′∈Sm

√
cm(a′)

+ 16
√
nε.

If B ≤ µ⋆, then we have

⟨a⋆, θ⟩+ ε ≥ µ⋆ ≥ B ≥ LCBm(a)− 4
√
|Sm|ε ≥ ⟨a, θ⟩ − 2radFm,a − 5

√
|Sm|ε,

where the second inequality is because a is not eliminated in epoch m. Therefore, we always have

∆a ≤ 2radFm,a + 6
√
|Sm|ε ≤

8
√
nβ

mina′∈Sm

√
cm(a′)

+ 12
√
nε.

In addition, we know that for all a ∈ Sm,

2m ≤ cm(a) +
D

|Sm|
+ 1 ≤ cm(a) +

2D

|Sm|
.

Therefore, if 12
√
nε ≥ ∆a

2 , then we have

2m∆a ≤ 2m · 24
√
nε;

otherwise, we have ∆a ≤ 8
√
nβ

mina∈Sm

√
cm(a)

+ 12
√
nε ≤ 8

√
nβ

mina∈Sm

√
cm(a)

+ ∆a

2 and

∆a ≤
16
√
nβ

mina′∈Sm

√
cm(a′)

,

and we can obtain that

min
a′∈Sm

cm(a′) ·∆a ≤
256dβ2

∆a
.

Combining the above two cases, we know that for all a ∈ Am,

2m ·∆a ≤ 2m · 24
√
nε+ min

a′∈Sm

cm(a′) ·∆a +
2D∆a

|Sm|
≤ 2m · 24

√
nε+

256nβ2

∆a
+

2D∆a

|Sm|
.

14
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In fact, the bound above can be obtained by only using LCBm,1. Next, we provide yet-another regret bound within epoch
m, which utilizes LCBm,2.

Lemma A.5. Algorithm 3 guarantees that under Event 1, if action a is not eliminated at the end of epoch m (meaning that
a ∈ Am+1), then

⟨a, θ⟩ ≤ B + radNm,a +

|Sm|∑
i=1

|λ(a)
m,i| ·

(
2Dµam,i

2m|Sm|
+

16 log T + 2

2m

)
+ 8
√
|Sm|ε.

Proof. For all a ∈ Sm, since ut ∈ [0, 1], we know that

µ̂+
m(a) =

1

2m

 ∑
τ∈Om(a)

uτ +
∑

τ∈Em(a)

1

 ≤ µ̂m,a +
|Em(a)|

2m
, (35)

µ̂−
m(a) =

1

2m

 ∑
τ∈Om(a)

uτ

 ≥ µ̂m,a −
|Em(a)|

2m
. (36)

Then, under Event 1, we know that for all a ∈ Am,

⟨a, θ⟩ =
|Sm|∑
i=1

λ
(a)
m,i ⟨am,i, θ

⋆⟩

=

|Sm|∑
i=1

λ
(a)
m,i(µam,i

− εam,i
) (since µa = ⟨a, θ⋆⟩+ εa)

≤
|Sm|∑
i=1

λ
(a)
m,i · µam,i

+
√
|Sm|ε (since ∥λ(a)

m ∥1 ≤
√
|Sm|)

≤
|Sm|∑
i=1

λ
(a)
m,i · µ̂m(am,i) + radNm,a + 3

√
|Sm|ε (since Event 1 holds)

≤
|Sm|∑
i=1

λ
(a)
m,i · µ̂

sgn(−λ
(a)
m,i)

m (am,i) + radNm,a +

|Sm|∑
i=1

|λ(a)
m,i| ·

|Em(am,i)|
2m

+ 3
√
|Sm|ε (using Eq. (35) and Eq. (36))

= LCBm,1(a) + radNm,a +

|Sm|∑
i=1

|λ(a)
m,i| ·

|Em(am,i)|
2m

+ 3
√
|Sm|ε

≤ LCBm,1(a) + radNm,a +

|Sm|∑
i=1

|λ(a)
m,i| ·

(
2Dµam,i

2m|Sm|
+

16 logKT + 2

2m

)
+ 3
√
|Sm|ε. (since Event 1 holds)

Since LCBm,1(a) ≤ B + 4
√
|Sm|ε (as a is not eliminated at the end of epoch m), we have

⟨a, θ⟩ ≤ B + radNm,a +

|Sm|∑
i=1

|λ(a)
m,i| ·

(
2Dµam,i

2m|Sm|
+

16 log T + 2

2m

)
+ 8
√
|Sm|ε.

Lemma A.6. If Event 1 holds, Algorithm 3 guarantees that if a is not eliminated at the end of epoch m, then we also have

2m∆a ≤
256nβ2

∆a
+

4DB + 12
∑|Sm|

i=1 |λ
(a)
m,i| ·Dµam,i

|Sm|
+ (128 log T + 16)

√
n+ 2m · 64

√
nε.
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Proof. If ⟨a, θ⟩ ≤ 2B, we know that ∆a = ⟨a− a⋆, θ⟩ ≤ 2B. Using Lemma A.4, we can obtain that

2m ·∆a ≤ 2m · 24
√
nε+

256nβ2

∆a
+

2D∆a

|Sm|

≤ 2m · 24
√
nε+

256nβ2

∆a
+

4DB

|Sm|

If ⟨a, θ⟩ ≥ 2B, we have B ≤ ⟨a,θ⟩
2 . Using Lemma A.5, we know that

∆a ≤ ⟨a, θ⟩ ≤ 2 · radNm,a︸ ︷︷ ︸
Term (1)

+2

|Sm|∑
i=1

|λ(a)
m,i| ·

(
2Dµam,i

2m|Sm|
+

16 log T + 2

2m

)
+ 16

√
|Sm|ε︸ ︷︷ ︸

Term (2)

.

If Term (1) ≥ Term (2), we have

∆a ≤ 4radNm,aε ≤ 4
√
|Sm| max

am∈Sm

radNm,am
≤ 8β

√
n

2m/2
,

meaning that 2m∆a ≤ 64nβ2

∆a
. Otherwise, we have

∆a ≤ 4

|Sm|∑
i=1

|λ(a)
m,i| ·

(
2Dµam,i

2m|Sm|
+

16 log T + 2

2m

)
+ 64
√
nε,

meaning that

2m∆a ≤
8
∑|Sm|

i=1 |λ
(a)
m,i| ·Dµam,i

|Sm|
+ (128 log T + 16)

√
n+ 2m · 64

√
nε.

Combining both cases, we know that

2m∆a ≤
256nβ2

∆a
+

4DB + 12
∑|Sm|

i=1 |λ
(a)
m,i| ·Dµam,i

|Sm|
+ (128 log T + 16)

√
n+ 2m · 64

√
nε.

Now we are ready to prove our main result Theorem A.1.

Proof of Theorem A.1. We analyze the regret when Event 1 holds, which happens with probability at least 1− 2
T 2 . When

Event 1 does not hold, the expected regret is bounded by 2
T .

We then bound the regret with a fixed choice of B. Combining Lemma A.4 and Lemma A.5, if action a is not eliminated at
the end of epoch m, we have

2m ·∆a ≤
256nβ2

∆a
+

4DB + 12
∑|Sm|

i=1 |λ
(a)
m,i| ·Dµam,i

|Sm|
+ (128 log T + 16)

√
n+ 2m · 64

√
nε,

2m ·∆a ≤ 2m · 24
√
nε+

256nβ2

∆a
+

2D∆a

|Sm|
.

Therefore, we have

∆a ≤ O
(

nβ2

2m ·∆a
+
√
nε+

√
n log T

2m

)
+

1

2m
min

{
4DB + 12

∑|Sm|
i=1 |λ

(a)
m,i| ·Dµam,i

n
,
D∆a

n

}
.
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Denote TB to be the number of rounds Algorithm 3 proceeds with B and define RegB be the expected regret within TB
rounds. Then, for any αm ≥ 0, the overall regret is then upper bounded as follows:

RegB ≜
⌈log2(|TB |/3n⌉∑

m=1

∑
a∈Sm

2m ·∆a

≤
⌈log2(|TB |/3n⌉∑

m=1

∑
a∈Sm

1{∆a > αm}
(
O
(
nβ2

∆a
+ 2m

√
nε+

√
n log T

)

+ min

{
4DB + 12

∑|Sm−1|
i=1 |λ(a)

m−1,i| · d(am−1,i)

n
,
2D∆a

n

})
(since a is not eliminated in epoch m− 1 for all a ∈ Sm)

+
∑
m≥1

∑
a∈Sm

1{∆a ≤ αm}2m∆a.

Picking αm = β
√

n
2m , we can obtain that

RegB =

⌈log2(|TB |/3n⌉∑
m=1

∑
a∈Sm

(
O
(
β
√
n · 2m + 2m

√
nε+

√
n log T

)

+ min

{
4DB + 12

∑|Sm−1|
i=1 |λ(a)

m−1,i| · d(am−1,i)

n
,
2D∆a

n

})
≤ O

(
|TB |
√
nε+ βn

√
|TB |+

√
n log T log(T/n)

)
+

⌈log2(|TB |/3n)⌉∑
m=1

∑
a∈Sm

min

{
4DB + 12

∑|Sm−1|
i=1 |λ(a)

m−1,i| · d(am−1,i)

n
,
2D∆a

n

}
.

On the other hand, picking αm = 0, we have

RegB ≤
⌈log2(|TB |/3n⌉∑

m=1

∑
a∈Sm

(
O
(

nβ2

∆min
+ 2m

√
nε+

√
n log T

)

+ min

{
4DB + 12

∑|Sm−1|
i=1 |λ(a)

m−1,i| · d(am−1,i)

n
,
2D∆a

n

})

≤ O
(
n2β2 log(T/n)

∆min
+ ε
√
n|TB |+

√
n log T log(T/n)

)

+

⌈log2(|TB |/3n⌉∑
m=1

∑
a∈Sm

min

{
4DB + 12

∑|Sm−1|
i=1 |λ(a)

m−1,i| · d(am−1,i)

n
,
2D∆a

n

}
.

Using the fact that β =
√
2 log(KT 3) and combining both bounds, we can obtain that

RegB ≤ O
(
min

{
n2 log(KT ) log(T/n)

∆min
, n
√
|TB | log(KT )

}
+ ε
√
n|TB |

)

+

⌈log2(|TB |/3n⌉∑
m=1

∑
a∈Sm

min

{
4DB + 12

∑|Sm−1|
i=1 |λ(a)

m−1,i| · d(am−1,i)

n
,
2D∆a

n

}
(37)

For notational convenience, let RB = O
(
min

{
n2 log(KT ) log(T/n)

∆min
, n
√
|TB | log(KT )

}
+ ε
√
n|TB |

)
. To further analyze

this bound, we first upper bound min

{
4DB+12

∑|Sm−1|
i=1 |λ(a)

m−1,i|·d(am−1,i)

n , 2D∆a

n

}
by 2D∆a

n and obtain that

RegB ≤ RB +O (D∆max log(T/n)) . (38)
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On the other hand, we can also upper bound min

{
4DB+12

∑|Sm−1|
i=1 |λ(a)

m−1,i|·d(am−1,i)

n , 2D∆a

n

}
by

12
∑|Sm−1|

i=1 |λ(a)
m−1,i|·d(am−1,i)

n and obtain that

RegB ≤ RB +

⌈log2(|TB |/3n⌉∑
m=1

∑
a∈Sm

4DB + 12
∑|Sm−1|

i=1 |λ(a)
m−1,i| · d(am−1,i)

n

 .

Let Lm
Alg =

∑
a∈Sm

2mµa be the total expected loss within epoch m and Lm
⋆ = |Sm| · 2m · µ⋆ be the total expected loss for

the optimal action. Define Regm = Lm
Alg − Lm

⋆ . Direct calculation shows that

∑
a∈Sm

∑|Sm−1|
i=1 |λ(a)

m−1,i| · d(am−1,i)

n

≤ 3D

2m−1
· 2m−1

|Sm−1|∑
i=1

µam−1,i
(since |λ(a)

m−1,i| ≤ 1 and |Sm| = 3n)

=
3D

2m−1
Lm−1
Alg .

Using the fact that RegB =
∑⌈log(|TB |/3n)⌉

m=1 Regm, we know that

⌈log(|TB |/3n)⌉∑
m=1

(Lm
Alg − Lm

⋆ )

≤
⌈log(|TB |/3n)⌉∑

m=1

Regm + 2ε · |TB |

≤ RB +

⌈log(|TB |/3n)⌉∑
m=⌈log2(72D)⌉+1

36D

2m−1
· Lm−1

Alg +

⌈log2(72D)⌉∑
m=1

2m∆max + 12DB log(T/n) (2ε · |TB | is subsumed in RB)

≤ RB +

⌈log(|TB |/3n)⌉∑
m=⌈log2(72D)⌉+1

36D

2m−1
·
(
Lm−1
Alg − Lm−1

⋆

)

+

⌈log(|TB |/3n)⌉∑
m=⌈log2(72D)⌉+1

36D

2m−1
· Lm−1

⋆ +

⌈log2(72D)⌉∑
m=1

2m∆max + 12DB log(T/n)

≤ RB +
1

2

⌈log(|TB |/3n)⌉∑
m=⌈log2(72D)⌉+1

(
Lm−1
Alg − Lm−1

⋆

)
+ 36nDµ⋆ log(T/(216nD)) + 144D∆max + 12DB log(T/n)

= RB +
1

2

⌈log(|TB |/3n)⌉∑
m=⌈log2(72D)⌉+1

(
Lm−1
Alg − Lm−1

⋆

)
+ 36nd⋆ log(T/(216nD)) + 144D∆max + 12DB log(T/n).

Rearranging the terms, we can obtain that

RegB ≤ RB + 72nd⋆ log(T/(216nD)) + 288D∆max + 12DB log(T/n). (39)

Combining Eq. (38) and Eq. (39), we know that

RegB ≤ O
(
min

{
n2 log(KT ) log(T/n)

∆min
, n
√
|TB | log(KT )

}
+ ε
√
n|TB |

)
+O (min {nd⋆ log(T/nD) +D∆max +DB log(T/n), D∆max log(T/n)}) . (40)
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Finally, according to Lemma A.3, Algorithm 3 fails at most ⌈log2(Dµ⋆))⌉ = ⌈log2(d⋆))⌉ times. Summing up the regret
over all rounds, we know that the overall regret is bounded as follows:

Reg ≤
⌈log2(d

⋆))⌉∑
r=0

Reg2r/D ≤ O
(
min

{
n2 log(KT ) log(T/n) log(d⋆)

∆min
, n
√
T log(d⋆) log(KT )

}
+ ε
√
nT

)
+ log(d⋆) · O (min {nd⋆ log(T/n) +D∆max, D∆max log(T/n)}) .

which finishes the proof.
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B. Omitted Details for Delay-as-Reward
In this section, we show our results for the delay-as-reward setting. The difference compared with the delay-as-loss setting
is that now, µa = ⟨a, θ⟩+ εa ∈ [0, 1] represents the expected reward of picking action a, where |εa| ≤ ε for all a ∈ A. The
learner’s goal is to minimize the pseudo regret defined as follows:

Reg ≜ T max
a∈A
⟨a, θ⟩ − E

[
T∑

t=1

⟨at, θ⟩

]
. (41)

Define ∆a = ⟨a⋆ − a, θ⟩ as the suboptimality gap of action a, where a⋆ ∈ argmaxa∈A ⟨a, θ⟩, and µ⋆ ≜ maxa∈A µa as
the reward of the optimal action. Again, note that due to the misspecification, µ⋆ may not necessarily be µa⋆ . Define
∆min = mina∈A,∆a>0 ∆a to be the minimum non-zero sub-optimality gap. The delay at round t is still defined as
dt = D · ut, and d⋆ = D · µ⋆ is the expected delay of the optimal action.
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B.1. Algorithm for Linear Bandits with Delay-as-Reward

We list our algorithm for the reward case in Algorithm 4 for completeness. The algorithm shares the same idea as
Algorithm 3.

Algorithm 4: Phased Elimination for Linear Bandits with Delay-as-Reward

1 Input: maximum possible delay D, action set A, β > 0, a misspecification level ε.
2 Initialize optimal reward guess B = 1.
3 Initialize active action set A1 = A.
4 for m = 1, 2, . . . , do
5 Find Sm = {am,1, . . . , am,|Sm|} to be the volumetric spanner of Am, where |Sm| = 3n.
6 Pick each a ∈ Sm 2m times in a round-robin way.
7 Let Im contain all the rounds in this epoch.
8 For all a ∈ Sm, calculate the following quantities

µ̂+
m(a) =

1

2m

( ∑
τ∈Om(a)

uτ +
∑

τ∈Em(a)

1
)
, (42)

µ̂−
m(a) =

1

2m

∑
τ∈Om(a)

uτ , (43)

µ̂+
m,1(a) = µ̂+

m(a) +
β

2m/2
∥a∥2, (44)

µ̂−
m,1(a) = µ̂−

m(a)− β

2m/2
∥a∥2, (45)

µ̂F
m(a) =

1

cm(a)

∑
τ∈Cm(a)

uτ , (46)

µ̂+
m,2(a) = µ̂F

m(a) +
β√
cm(a)

∥a∥2, (47)

µ̂−
m,2(a) = µ̂F

m(a)− β√
cm(a)

∥a∥2, (48)

where cm(a) = |Cm(a)|, Cm(a) = {τ ∈ Im : τ +D ∈ Im, aτ = a},
Om(a) = {τ ∈ Im : τ + dτ ∈ Im, aτ = a}, and Em(a) = {τ ∈ Im : aτ = a} \Om(a).

9 for each a ∈ Am do
10 Decompose a as a =

∑|Sm|
i=1 λ

(a)
m,iam,i with ∥λ(a)

m ∥2 ≤ 1 and calculate

LCBm(a) =

|Sm|∑
i=1

λ
(a)
m,i · µ̂

−SGN(λ
(a)
m,i)

m,2 (am,i), (49)

UCBm(a) = max
j∈{1,2}

{UCBm,j(a)} where

UCBm,j(a) =

|Sm|∑
i=1

λ
(a)
m,i · µ̂

SGN(λ
(a)
m,i)

m,j (am,i), (50)

11 Set Am+1 = Am.
12 for a1 ∈ Am do
13 if ∃a2 ∈ Am, such that max{LCBm(a2), B} ≥ UCBm(a1) + 4

√
3nε then

14 Eliminate a1 from Am+1.

15 if Am+1 is empty then
Set B ← B/2 and go to Line 3.
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B.2. Regret Guarantees

In this section, we show the theoretical guarantees for our algorithm in the delay-as-reward setting.

Theorem B.1. Algorithm 4 with β =
√
2 log(KT 3) guarantees that

Reg ≤ O
(
min

{
n2 log(KT ) log(T/n) log(1/µ⋆)

∆min
, n
√
T log(KT ) log(1/µ⋆)

}
+ ε
√
nT

)

+O

min


⌈log2(1/µ

⋆)⌉∑
j=0

3n∑
i=1

d(a
(2−j)
m−1,i), D∆max log(1/µ

⋆) log(T/n)


 ,

where {aBm,i}3ni=1 represents the set of volumetric spanner at epoch m with the optimal reward guess B.

Similar to the analysis in Appendix A, our analysis is based on the condition that Event 1 holds, which happens with
probability 1 − 2

T 2 according to Lemma A.2. The following lemma is a counterpart of Lemma A.3, providing an upper
bound of the number of guesses on the optimal reward B.

Lemma B.2. Suppose that Event 1 holds. If B ≤ µ⋆, then a⋆ ∈ Am for all m.

Proof. Since Event 1 holds, we have, we know that for all a ∈ Am, UCBm(a)+
√
|Sm|ε ≥ ⟨a, θ⟩, LCBm(a)+

√
|Sm|ε ≤

⟨a, θ⟩ If B ≤ µ⋆, then we have a⋆ never eliminated since for any a ∈ Am,

UCBm(a⋆) + 2ε
√
|Sm| ≥ max

a∈A
{⟨a, θ⟩+ εa} ≥ µ⋆ ≥ B,

UCBm(a⋆) + 4ε
√
|Sm| ≥ µ⋆ + 2ε

√
|Sm| ≥ ⟨a, θ⟩+ ε

√
|Sm| ≥ LCBm(a).

Therefore, a⋆ never satisfy the elimination condition.

The following lemma is a counterpart of Lemma A.4.

Lemma B.3. Suppose that Event 1 holds. Algorithm 4 guarantees that if a ∈ A is not eliminated at the end of epoch m
(meaning that a ∈ Am+1), then

2m ·∆a ≤ 2m · 24
√
nε+

256nβ2

∆a
+

2D∆a

|Sm|
.

Proof. Since Event 1 holds, we know that for all a ∈ Am, LCBm(a) ≤ µa +
√
|Sm|ε, UCBm(a) ≥ µa −

√
|Sm|ε.

Moreover, as UCBm(a) = min{UCBm,1(a),UCBm,2(a)}, we know that for all a ∈ Am

UCBm,1(a)− 2radNm,a − 2ε
√
|Sm| = µ̂m,1(a)− radNm,a − 2ε

√
|Sm| ≤ ⟨a, θ⟩ ,

UCBm,2(a)− 2radFm,a − 2ε
√
|Sm| = µ̂m,2(a)− radFm,a − 2ε

√
|Sm| ≤ ⟨a, θ⟩ ,

LCBm(a) + 2radFm,a + 2ε
√
|Sm| = µ̂m,2(a) + radFm,a + 2ε

√
|Sm| ≥ ⟨a, θ⟩ .

If B ≤ µ⋆, then a⋆ ∈ Am according to Lemma B.2. Moreover, if a is not eliminated in epoch m, we have UCBm(a) +
4
√
|Sm|ε ≥ max{LCBm(a⋆), B}, meaning that

⟨a, θ⟩+ 2radFm,a + 2ε
√
|Sm|

≥ µ̂m,2(a) + radFm,a

≥ UCBm(a)

≥ max{LCBm(a⋆), B} − 4
√
|Sm|ε

≥ LCBm(a⋆)− 4
√
|Sm|ε

= µ̂m,2(a
⋆)− radFm,a⋆ − 4

√
|Sm|ε
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≥ ⟨a⋆, θ⟩ − 2radFm,a⋆ − 6
√
|Sm|ε.

Since radFm,a =
∑|Sm|

i=1 |λ
(a)
m,i| · rad

F
m,am,i

with ∥λ(a)
m ∥2 ≤ 1, we have that ∥λ(a)

m ∥1 ≤
√
|Sm| and

∆a ≤ 4
√
|Sm|

(
max
a∈Sm

radFm,a + 2ε

)
= 4
√
3n max

a∈Sm

radFm,a + 8
√
3nε ≤ 8

√
nβ

mina′∈Sm

√
cm(a′)

+ 16
√
nε.

If B ≥ µ⋆, then we have

µ⋆ ≤ B ≤ UCBm(a) + 4
√
|Sm|ε ≤ µa + 2radFm,a + 6

√
|Sm|ε,

where the second inequality is because a is not eliminated in epoch m. Therefore, we always have

∆a ≤ 2radFm,a + 6
√
|Sm|ε ≤

8
√
nβ

mina′∈Sm

√
cm(a′)

+ 12
√
nε.

In addition, we know that for all a ∈ Sm,

2m = |Sm| ≤ cm(a) +
D

|Sm|
+ 1 ≤ cm(a) +

2D

|Sm|
.

Therefore, if 12
√
nε ≥ ∆a

2 , then we have

2m∆a ≤ 2m · 24
√
nε;

otherwise, we have ∆a ≤ 8
√
nβ

mina∈Sm

√
cm(a)

+ 12
√
nε ≤ 8

√
nβ

mina∈Sm

√
cm(a)

+ ∆a

2 and

∆a ≤
16
√
nβ

mina′∈Sm

√
cm(a′)

,

and we can obtain that

min
a′∈Sm

cm(a′) ·∆a ≤
256dβ2

∆a
.

Combining the above two cases, we know that for all a ∈ Am,

2m ·∆a ≤ 2m · 24
√
nε+ min

a′∈Sm

cm(a′) ·∆a +
2D∆a

|Sm|
≤ 2m · 24

√
nε+

256nβ2

∆a
+

2D∆a

|Sm|
.

The following lemma is a counterpart of Lemma A.5.

Lemma B.4. Algorithm 4 guarantees that under Event 1, if an action a is eliminated at the end of epoch m (meaning that
a ∈ Am), then

B ≤ ⟨a, θ⟩+ radNm,a +

|Sm|∑
i=1

|λ(a)
m,i| ·

(
2d(am,i)

2m|Sm|
+

16 log T + 2

2m

)
+ 8
√
|Sm|ε,

where d(a) = Dµa.

Proof. Under Event 1, we know that for all a ∈ Am,

⟨a, θ⟩ =
|Sm|∑
i=1

λ
(a)
m,i ⟨am,i, θ

⋆⟩
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=

|Sm|∑
i=1

λ
(a)
m,i(µam,i − εam,i) (since µa = ⟨a, θ⋆⟩+ εa)

≥
|Sm|∑
i=1

λ
(a)
m,i · µam,i

−
√
|Sm|ε (since ∥λ(a)

m ∥1 ≤
√
|Sm|)

≥
|Sm|∑
i=1

λ
(a)
m,i · µ̂m(am,i)− radNm,a − 3

√
|Sm|ε (since Event 1 holds)

≥
|Sm|∑
i=1

λ
(a)
m,i · µ̂

sgn(λ
(a)
m,i)

m (am,i)− radNm,a −
|Sm|∑
i=1

|λ(a)
m,i| ·

|Em(am,i)|
2m

− 3
√
|Sm|ε (using Eq. (35) and Eq. (36))

= UCBm,1(a)− radNm,a −
|Sm|∑
i=1

|λ(a)
m,i| ·

|Em(am,i)|
2m

− 3
√
|Sm|ε

≥ UCBm,1(a)− radNm,a −
|Sm|∑
i=1

|λ(a)
m,i| ·

(
2d(am,i)

2m|Sm|
+

16 logKT + 2

2m

)
− 4
√
|Sm|ε. (since Event 1 holds)

Since UCBm,1(a) ≥ B − 4
√
|Sm|ε (as a is not eliminated at the end of epoch m), we have

B ≤ ⟨a, θ⟩+ radNm,a +

|Sm|∑
i=1

|λ(a)
m,i| ·

(
2d(am,i)

2m|Sm|
+

16 log T + 2

2m

)
+ 8
√
|Sm|ε.

The following lemma is a counterpart of Lemma A.6.

Lemma B.5. If B ≥ µ⋆

2 and Event 1 holds, Algorithm 4 guarantees that if a is not eliminated at the end of epoch m, then
we also have

2m∆a ≤
256nβ2

∆a
+

12
∑|Sm|

i=1 |λ
(a)
m,i| · d(am,i)

|Sm|
+ (128 log T + 16)

√
n+ 2m · 64

√
nε,

where d(a) = Dµa.

Proof. If ⟨a, θ⟩ ≥ B
2 , we know that ∆a = ⟨a⋆ − a, θ⟩ ≤ 3 ⟨a, θ⟩. Using Lemma B.3, we can obtain that

2m ·∆a ≤ 2m · 24
√
nε+

256nβ2

∆a
+

2D ⟨a, θ⟩
|Sm|

≤ 2m · 24
√
nε+

256nβ2

∆a
+

2
∑|Sm|

i=1 |λ
(a)
m,i| · d(am,i)

|Sm|
.

If ⟨a, θ⟩ ≤ B
2 , we have 3(B − ⟨a, θ⟩) ≥ 3B

2 ≥ ⟨a
⋆ − a, θ⟩. Using Lemma A.5, we know that

∆a ≤ µa ≤ 3 · radNm,a︸ ︷︷ ︸
Term (1)

+3

|Sm|∑
i=1

|λ(a)
m,i| ·

(
2d(am,i)

2m|Sm|
+

16 log T + 2

2m

)
+ 24

√
|Sm|ε︸ ︷︷ ︸

Term (2)

.

If Term (1) ≥ Term (2), we have

∆a ≤ µa ≤ 6radNm,aε ≤ 6
√
|Sm| max

am∈Sm

radNm,am
≤ 12β

√
n

2m/2
,
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meaning that 2m∆a ≤ 144nβ2

∆a
. Otherwise, we have

∆a ≤ 6

|Sm|∑
i=1

|λ(a)
m,i| ·

(
2d(am,i)

2m|Sm|
+

16 log T + 2

2m

)
+ 96
√
nε,

meaning that

2m∆a ≤
12
∑|Sm|

i=1 |λ
(a)
m,i| · d(am,i)

|Sm|
+ (96 log T + 12)

√
n+ 2m · 96

√
nε.

Combining both cases, we know that

2m∆a ≤
256nβ2

∆a
+

12
∑|Sm|

i=1 |λ
(a)
m,i| · d(am,i)

|Sm|
+ (96 log T + 12)

√
n+ 2m · 96

√
nε.

Now we are ready to prove our main result Theorem B.1.

Proof of Theorem B.1. Combining Lemma B.3 and Lemma B.5 and following the exact same process of obtaining Eq. (37)
in Theorem A.1, we can obtain that for a fixed value of B, Algorithm 4 guarantees that

RegB ≤ O
(
min

{
n2 log(KT ) log(T/n)

∆min
, n
√
|TB | log(KT )

}
+ ε
√
n|TB |

)

+

⌈log2(|TB |/3n⌉∑
m=1

∑
a∈Sm

O

(
min

{∑|Sm−1|
i=1 |λ(a)

m−1,i| · d(am−1,i)

n
,
D∆a

n

})

≤ O

(
min

{
n2 log(KT ) log(T/n)

∆min
, n
√
|TB | log(KT )

}
+ ε
√
n|TB |

+min


⌈log2(|TB |/3n⌉∑

m=1

|Sm−1|∑
i=1

d(am−1,i), D∆max log(T/n)


 .

According to Lemma B.2, there are at most ⌈log2(1/µ⋆)⌉ different values of B. With an abuse of notation, we define
S(B)
m = {a(B)

m,i}i∈[3n] to be the volumetric spanner at epoch m with the reward guess B. Taking summation over all these
values, we can obtain that

Reg ≤ O
(
min

{
n2 log(KT ) log(T/n) log(1/µ⋆)

∆min
, n
√
T log(KT ) log(1/µ⋆)

}
+ ε
√
nT

)

+O

min


⌈log2(1/µ

⋆)⌉∑
j=0

3n∑
i=1

d(a
(2−j)
m−1,i), D∆max log(1/µ

⋆) log(T/n)


 ,

completing the proof.

While we can further apply a similar analysis to the one in Theorem A.1 to bound the term
∑⌈log2(1/µ

⋆)⌉
j=0

∑3n
i=1 d(a

(2−j)
m−1,i)

and obtain a bound with respect to d⋆, since d⋆ ≥ D∆max + ε, this d⋆ dependent bound does not provide a significantly
better regret guarantee in the worst case. This difference in loss versus reward is also pointed out in (Schlisselberg et al.,
2025) in the MAB setting. We keep this term in the upper bound since this quantity can still be potentially smaller than
D∆max log(1/µ

⋆) log(T/n).
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C. Omitted Details in Section 4
In this section, we provide the omitted details in Section 4. We start with the following lemma that is a standard application
of the Azuma-Hoeffding’s inequality.

Lemma C.1 (Proposition 2 in (Hanna et al., 2023)). For each epoch m, Algorithm 2 guarantees that with probability at
least 1− δ

T , the following holds:

∣∣∣⟨g(θ), θ′⟩ − 〈g(m)(θ), θ′
〉∣∣∣ ≤ 2

√
log(2T |Θ′|/δ)

2m−1
, ∀θ, θ′ ∈ Θ′.

Next, we provide the proof for Theorem 4.1.

Proof of Theorem 4.1. Define θ0 = argminθ′∈Θ′ ∥θ′ − θ∥2. Following the analysis of Hanna et al. (2023), we decompose
the regret Regm within epoch m as follows:

Regm = E

 2m∑
τ=2m−1+1

(〈
argmin
a∈At

⟨a, θt⟩ , θ
〉
− min

a⋆
τ∈Aτ

⟨a⋆τ , θ⟩
)

≤ E

 2m∑
τ=2m−1+1

(〈
argmin
a∈At

⟨a, θt⟩ , θ0
〉
− min

a⋆
τ∈Aτ

⟨a⋆τ , θ0⟩
)+O

(
2m−1

T

)

= E

 2m∑
τ=2m−1+1

⟨g(θt)− g(θ0), θ0⟩

+O
(
2m−1

T

)

= E

 2m∑
τ=2m−1+1

〈
g(θt)− g(m)(θt), θ0

〉
︸ ︷︷ ︸

ERR-TERM(1)

+E

 2m∑
τ=2m−1+1

〈
g(m)(θt)− g(m)(θ0), θ0

〉
︸ ︷︷ ︸

REG-NCTX

+ E

 2m∑
τ=2m−1+1

〈
g(m)(θ0)− g(θ0), θ0

〉
︸ ︷︷ ︸

ERR-TERM(2)

+O
(
2m−1

T

)
,

where the second equality is because E [mina∈At ⟨a, θ0⟩] = E
[〈
argmina∈At

⟨a, θ0⟩ , θ0
〉]

= ⟨g(θ0), θ0⟩.

For ERR-TERM(1) and ERR-TERM(2), we apply Lemma C.1 to bound both terms by O
(√

2m log(T |Θ′|)
)

. As for
REG-NCTX, this is in fact the regret of misspecified non-contextual linear bandits with action set Xm and misspecification
level maxθ′∈Θ′

∣∣〈g(m)(θ′)− g(θ′), θ
〉∣∣, since E[ut] = ⟨g(θt), θ⟩ for all t. Applying Lemma C.1 again, we know that the

misspecification is of order εm = O(
√
log(T |Θ′|)/2m) with probability at least 1− 1

T 2 . Then, applying the regret guarantee
of Algorithm 3 proven in Theorem A.1, we know that

REG-NCTX ≤ O
(√

n2m log(T |Θ′|)
)
+O

(
min{Vm,1, Vm,2}, log(d

⋆
)min{Wm,1,Wm,2}

)
,

where Vm,1 = n2 log(T |Θ′|) log(T/n) log(d
⋆
)

∆n-ctx
min

, Vm,2 = n

√
2m log(d

⋆
) log(T |Θ′|), Wm,1 = nd

⋆
log(T/n) + D∆n-ctx

max, and
Wm,2 = D∆n-ctx

max log(T/n). Taking a summation over all m ∈ [⌈log2(T )⌉] epochs and using the fact that |Θ′| ≤ O(Tn)
finishes the proof.
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D. Omitted Details in Section 5
For completeness, we include the pseudo code for the benchmark used in our experiment, that is, LinUCB using only the
observed feedback; see Algorithm 5.

Algorithm 5: LinUCB with Delayed Feedback
Input: action set A, a parameter λ > 0.

Initialize: θ̂1 arbitrarily, βt =
√
λ+

√
2 log T + n log(1 + t

nλ ) for all t ∈ [T ], H1 = λI .

for t = 1, 2, . . . , T do
Pick

at =

argmina∈A

〈
a, θ̂t

〉
− β∥a∥−1

Ht
, in the loss case,

argmaxa∈A

〈
a, θ̂t

〉
+ β∥a∥−1

Ht
, in the reward case.

Observe the payoff uτ for all τ such that τ + dτ ∈ (t− 1, t].
Update Ht+1 = Ht +

∑
τ :τ+dτ∈(t−1,t] aτa

⊤
τ and θ̂t+1 = H−1

t+1

∑
τ :τ+dτ≤t aτuτ .
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