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Latent-NeRF LucidDreamer Set-the-scene

“A living room has a coffee table with a basket on it, a wooden floor, a TV on a TV stand, and a sofa with an astronaut sitting on”

“A rabbit is eating a birthday cake at the dining table”

“A table with a roasted turkey, a salad, a loaf of French bread, a glass of orange juice and an empty plate on it”

“Panda in a wizard hat sitting on a wooden chair and looking at a ficus in a pot”
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and rotate 20° ”

Figure 1: GALA3D generates high-quality complex 3D scenes and supports interactive controllable editing. Existing
methods either produce low-quality textures, visual artifacts, and geometric distortions or fail to accurately generate multiple
objects and their interactions according to the text.
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Abstract
We present GALA3D, generative 3D GAussians
with LAyout-guided control, for effective com-
positional text-to-3D generation. We first utilize
large language models (LLMs) to generate the
initial layout and introduce a layout-guided 3D
Gaussian representation for 3D content gener-
ation with adaptive geometric constraints. We

1



GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-guided Generative Gaussian Splatting

then propose an instance-scene compositional op-
timization mechanism with conditioned diffusion
to collaboratively generate realistic 3D scenes
with consistent geometry, texture, scale, and ac-
curate interactions among multiple objects while
simultaneously adjusting the coarse layout priors
extracted from the LLMs to align with the gener-
ated scene. Experiments show that GALA3D is
a user-friendly, end-to-end framework for state-
of-the-art scene-level 3D content generation and
controllable editing while ensuring the high fi-
delity of object-level entities within the scene.
The source codes and models will be available at
gala3d.github.io.

1. Introduction
Crafting 3D content has been labor-intensive for domain
specialists (e.g., 3D artists and interior designers), partic-
ularly for complex 3D scenes. Furthermore, the diversity
of the generated scenes remains limited, and ordinary users
usually find it challenging to customize scenes or edit them.

These issues have prompted the recent emergence of text-
to-3D generation models (Chang et al., 2015; Poole et al.,
2022; Lin et al., 2023a; Raj et al., 2023). Given a textual
description as input, text-to-3D methods optimize the 3D
representations under the supervision of pre-trained 2D dif-
fusion priors, producing object-centric 3D contents (Poole
et al., 2022; Chen et al., 2023a; Xu et al., 2023; Wang et al.,
2023b; Tang et al., 2023).

However, existing text-to-3D generative models struggle
to generate complex 3D scenes with multiple objects and
intricate interactions because they optimize a shared 3D rep-
resentation. They lack guidance on interactions and spatial
positions of objects and generate low-quality 3D scenes,
including distorted geometry, 3D inconsistency, multi-face
objects, and content drift across different rendering views.

One recent trend is to introduce manually designed layouts
to enforce geometric constraints and capture interactions
among multiple objects in the scenes (Po & Wetzstein, 2023;
Lin et al., 2023b; Cohen-Bar et al., 2023). However, the
implicit NeRF representation (Mildenhall et al., 2020) often
cannot satisfy all the constraints from the layout, resulting
in textural blurring and geometric distortions. Further, the
layout creation requires manual work, which may be time
consuming and not friendly for ordinary users.

In this paper, we propose GALA3D, a generative layout-
guided Gaussian Splatting framework for complex text-to-
3D generation. Instead of handcrafted layouts, GALA3D
utilizes large language models (LLMs) to extract instance
relationships from textual descriptions and translate them
into coarse layouts. We introduce a layout-guided Gaus-

sian representation and adaptively optimize the shape and
distribution of Gaussians for high-quality geometry. Fur-
ther, we integrate a compositional optimization strategy
combined with diffusion priors to update the parameters
of layout-guided Gaussians, which enforces semantic and
spatial consistency among multiple objects. To address the
misalignment between layouts generated by LLMs and the
generated scene, we iteratively optimize the spatial position
and scale of the layouts.

GALA3D presents a user-friendly, end-to-end framework
for high-quality scene-level 3D content generation and con-
trollable editing. Extensive qualitative and quantitative stud-
ies show that GALA3D attains impressive results on com-
positional text-to-3D scene generation while ensuring high
fidelity of object-level entities within the scene.

We make the following contributions in this paper:

• We introduce GALA3D, a scene-level text-to-3D
framework based on generative 3D Gaussian Splatting,
which generates high-fidelity, coherent, complex 3D
scenes with multiple objects and precise interactions.

• GALA3D bridges text description and compositional
scene generation through layout priors obtained from
LLMs and a layout refinement module that optimizes
the coarse layout interpreted by LLMs.

• GALA3D introduces a layout-guided Gaussian rep-
resentation with adaptive geometry control to model
complex 3D scenes and utilizes a compositional opti-
mization mechanism to tackle the challenge of main-
taining 3D consistency in geometry and texture, obtain-
ing accurate interactions among multiple objects.

• GALA3D outperforms existing methods in text-to-3D
scene generation and provides a user-friendly, end-to-
end framework for high-quality complex 3D content
generation and controllable editing conversationally.

2. Related Work
Text-to-3D generation by Neural Radiance Field. The
success of text-to-image methods has been extended to text-
to-3D generation, resulting in rapid progress. DreamFu-
sion (Poole et al., 2022) first introduces the Score Distil-
lation Sampling (SDS) to optimize NeRF representations
from a pre-trained 2D diffusion model. Magic3D (Lin
et al., 2023a) improves Dreamfusion with a coarse-to-
fine optimization scheme. In contrast, Fantasia3D (Chen
et al., 2023a) disentangles the modeling of geometry and
appearance. To deal with issues of over-smoothing and
out-of-distribution that arise in the diffusion process, Pro-
lificDreamer (Wang et al., 2023b) introduces a principled
particle-based variational framework named Variational-
Score-Distillation, while SJC (Wang et al., 2023a) proposes
the Perturb-and-Average Scoring. Recent works (Xu et al.,
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Figure 2: Overview of our method. Given a textual description, GALA3D first creates a coarse layout using LLMs. The
layout is then utilized to construct the Layout-guided Gaussian Representation, incorporating Adaptive Geometry Control to
constrain the Gaussians’ geometric shape and spatial distribution. Subsequently, Compositional Diffusions are employed to
optimize the 3D Guassians using text-to-image priors compositionally. Simultaneously, the Layout Refinement module
refines the initial layout provided by LLMs, enabling better adherence to real-world scene constraints.

2023; Metzer et al., 2023) incorporate additional explicit 3D
shape priors to assist in generating high-quality 3D geomet-
ric structures and assets. However, the implicit NeRF rep-
resentation is often insufficient to generate complex scenes
that involve multiple objects with intricate interactions.

One promising approach to address these issues is to use
layout to constrain the NeRF representation for composi-
tional 3D generation. For example, given the user-defined
bounding boxes with corresponding texts, Comp3d (Po &
Wetzstein, 2023) blends multiple objects into a scene. Simi-
larly, Set-the-scene (Cohen-Bar et al., 2023) and CompoN-
eRF (Lin et al., 2023b) generate 3D scenes with compo-
sitional NeRFs using pre-defined customizable layouts as
object proxies. However, the layout is manually designed
to align with text descriptions, which is time-consuming.
LI3D (Lin et al., 2023c) and SceneWiz3D (Zhang et al.,
2023b) propose using LLMs as a layout interpreter and con-
nect them to off-the-shelf NeRF-based layout-to-3D gen-
erative models (Lin et al., 2023b) to generate 3D scenes.
However, layouts interpreted by LLMs are often not pre-
cise, resulting in misalignment between the layout and the
desired scene (e.g., a floating hat, as shown in Figure 8).
Besides, compositional NeRF models tend to suffer from
degradations in visual quality and geometric deformation be-
cause they cannot effectively handle the constraints imposed
by layout during the NeRF optimization process, as shown
in Figure 1. Here, we adaptively refine the layout inter-
preted by LLMs to resolve spatial ambiguities and introduce
layout-guided Gaussians to model complex 3D scenes.

Text-to-3D generation by 3D Gaussian Splatting. More
recently, 3D Gaussian Splatting (Kerbl et al., 2023) (3DGS)
provides an efficient point-based representation by optimiz-

ing a collection of 3D Gaussian spheres to characterize the
3D space. Recent advances have shown promise in merg-
ing 3DGS with diffusion models for text-to-3D generation.
Yi et al. (2023) and Liang et al. (2023) utilize 3D text-to-
point generative models to generate the initialized point
clouds with human priors for 3DGS. In contrast, (Chen
et al., 2023b; Tang et al., 2023) adopt a two-stage optimiza-
tion process for 3DGS involving geometry optimization
and texture refinement. To maintain multi-view geometric
consistency, GaussianDiffusion (Li et al., 2023) proposes a
variational 3DGS combined with structured noise.

However, these object-centric methods optimize a single
set of 3DGS and cannot effectively generate complex com-
posite scenes with multiple objects. Further, as there is no
constraint on the distribution and shape of Gaussians, these
methods may generate distorted geometry, multi-face, and
content drift across different rendered views. To address
these issues, we introduce layout priors and adaptive geom-
etry control to make 3DGS more controllable. Our method
expands the capabilities of 3DGS for representing complex
multi-object scenes in a compositional construction manner,
resulting in high-quality and consistent 3D scene content.

3D generation with Large Language Models. LLMs pos-
sess rich knowledge of large text corpus and can interpret
and extract object relationships according to the prompts.
However, this capability has not been extensively explored
in the field of 3D generation. Some efforts have attempted
to leverage LLMs for procedural 3D modeling (Sun et al.,
2023), avatars simulation (Ren et al., 2023), text-to-3D
benchmark (He et al., 2023), and 3D editing (Fang et al.,
2023). The recent combination (Wen et al., 2023; Yang et al.,
2024; Feng et al., 2024) of 3D asset retrieval and LLMs has
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enabled the creation of restricted indoor scenarios. How-
ever, these methods have not explored the capability of
LLMs in zero-shot 3D generation and end-to-end complex
scene structuring. Furthermore, the aforementioned meth-
ods assume that the outputs by LLMs are reliable, leading
to potential error propagation with the generated layouts
diverging significantly from real-world scenes and textual
descriptions. GALA3D addresses this by refining LLM-
generated layouts to better align with the generated scenes
in 3D space, integrating the 3D generation process with
layout optimization.

3. Method
As shown in Figure 2, given a text input, GALA3D first
obtains coarse layout prior interpreted by LLMs and con-
structs Layout-guided Gaussian Representation based on
the layout (Section 3.1). Adaptive Geometry Control is
introduced to optimize the geometry and distribution of
Gaussian ellipsoids, making them more regularized and
closely adherent to the geometric surface (Section 3.2). Sub-
sequently, GALA3D utilizes a Compositional Optimiza-
tion strategy with Diffusion Priors (Section 3.3) for layout-
guided Gaussians, combined with Layout Refinement mod-
ule (Section 3.4) to refine the coarse layout from LLMs. Our
method ultimately employs an aggregated loss function to
jointly optimize the entire pipeline (Section 3.5).

3.1. Layout-guided Gaussian Representation

A few generative models use geometric priors (e.g., layout)
to learn 3D representations and ensure shape and consis-
tency. However, existing methods (Lin et al., 2023b; Po
& Wetzstein, 2023; Cohen-Bar et al., 2023) face two chal-
lenges: (i) how to obtain relatively reasonable layout priors
without manual design, and (ii) how to mitigate the interfer-
ence of layout constraints in optimizing 3D representations,
minimizing visual artifacts and geometric distortions.

Coarse Layout prior interpreted by LLMs. To deal with
the first challenge, we introduce LLMs (e.g., GPT-3.5) as
coarse layout interpreters. LLMs have showcased remark-
able language understanding and relationship extraction
capabilities, making layout extraction more efficient and
cost-effective than manual crafting. We utilize LLMs to ex-
tract instances from textual descriptions and generate their
corresponding coarse layout priors. Notably, the layout
interpreted by LLMs still deviates from the textual descrip-
tions and actual scenes. Therefore, we introduce the Layout
Refinement module to address this issue in Section 3.4.

Layout-guided Gaussian Representation. For the second
challenge, we introduce layout constraints into 3DGS rep-
resentation for the first time and propose Layout-guided
Gaussian Representation. At a macro level, Layout-guided

Gaussian Representation is a collection of scene Gaussians
formed by multiple instance Gaussians corresponding to
each instance layout. At a micro level, we employ the Adap-
tive Geometry Control (Section 3.2) to better constrain the
geometry and distribution of Gaussians. Each set of layout-
guided Gaussians can be parameterized as:

𝐿𝑖 = {(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , ℎ𝑖 , 𝑤𝑖 , 𝑙𝑖 , 𝑘𝑖 , 𝜙𝑖 , 𝐺𝑖), 𝑖 ∈ [1, . . . , 𝑁]} , (1)

where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are the position of layout center for the 𝑖-th
object; ℎ𝑖 , 𝑤𝑖 , 𝑙𝑖 represent the length, width, and height of
the layout boundary, respectively; 𝑘𝑖 is the scaling factor; 𝜙𝑖
is the rotation angle; 𝐺𝑖 denotes instance Gaussians within
the layout; and 𝑁 is the total number of instances in the
scene enumerated by LLMs.

Instance Guassians represent the 3D instance through a
set of anisotropic Gaussians, defined by center position p =

(𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) ∈ R3, color 𝑐, opacity 𝛼, and covariance 𝚺obj =
RSS⊤R⊤, where S is the scale matrix and R is the rotation
matrix. The scene Gaussians can be then defined as a set
of layout-guided Guassians 𝐿scene = {𝐿𝑖 , 𝑖 ∈ [1, . . . , 𝑁]}
within the entire scene.

Layout-guided Gaussians Rendering at Scene-level. To
render the entire scene from the Layout-guided Gaussian
Representation, we first transform the Gaussians of each
layout 𝐿𝑖 into a uniform global scene coordinate system:

pscene = 𝑘𝑖Rz (𝜙i)pi + (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)⊤, (2)

where p𝑖 denotes the center position of instance Gaussians
Gi, 𝑘𝑖 is the scaling factor, and Rz (𝜙i) is the rotation matrix
for rotating 𝜙𝑖 degrees around the z-axis. The global scene
parameters comprise the covariance matrix of Gaussian col-
lections from all layouts in the scene under transformations:

𝚺scene = 𝑘2
𝑖 Rz (𝜙i)𝚺objR⊤

z (𝜙i), (3)

where 𝚺scene,𝚺obj represent the covariance of the scene
Gaussians and instance Gaussians; Rz is the rotation matrix
and Rz

⊤ is its transpose. The corresponding 2D covariance
can be projected by:

𝚺′
scene = JW𝚺sceneW⊤J⊤, (4)

where W is the viewing transformation matrix and J denotes
the Jacobian of the affine approximation of the projective
transformation. We further utilize global Gaussian splatting
to render the entire scene containing multiple objects:

𝐶 =
∑︁
𝑖∈𝑁

𝑐𝑖𝛼
′
𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼′
𝑗 ), (5)

where 𝐶 is the color of the rendering pixel; 𝑐𝑖 is the ren-
dering color of each Gaussian; and 𝛼′

𝑖
is the final opacity

of the Gaussian. The final opacity 𝛼′
𝑖

is queried by Q, the
rendering pixel’s coordinate in the projection space:

𝛼′
𝑖 = 𝛼𝑖𝑒

− 1
2 (Q−Pi )⊤𝚺−1

i (Q−Pi ) , (6)
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where 𝚺−1
i is equivalent to the axes of the ellipsoid; 𝛼𝑖

denotes the learned opacity; and Pi is the spatial position of
the Gaussian in the projected plane.

3.2. Adaptive Geometry Control for Gaussians

The raw 3DGS representation adopts the densification
scheme for Gaussians, providing good control over the total
number of Gaussians. However, this strategy fails to con-
strain the distribution of Gaussian ellipsoids, resulting in
numerous unused invisible Gaussians. It is also incapable
of controlling the generation of Gaussians with a uniform
regular shape, which shares similar covariances and normal
vectors. As a comparison, we propose Adaptive Geometry
Control for Gaussians, which achieves adaptive geometric
control of Layout-guided Gaussians through distribution
constraint and shape optimization. Similar to (de Queiroz &
Chou, 2016; Liu et al., 2023; Low & Lee, 2023), given an
initialized set of Gaussians, the distribution constraint can
be implemented by a density distribution function:

1
∥pi − 𝜁i∥

∼ N̂ (𝜇, 𝜎2), (7)

where 𝜁i = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) is the center coordinate of the corre-
sponding layout prior; ∥pi − 𝜁i∥ is the Euclidean distance
between the Gaussian center and 𝜁i; 𝜇 is the mean of the
Gaussians’ distributions; and 𝜎 is the standard deviation.
Both are changeable parameters. Here, N̂ represents the
folded normal distribution, with a truncation range from the
layout center to the boundary. We then sample Gaussians
near the layouts’ surface according to the distribution.

To obtain Gaussian shapes with more regular geometry and
scale, we introduce a regularization term:

L𝑟𝑒𝑔 =
1
𝑁

𝑁∑︁
𝑖=1

Si ∥q − pi∥ , (8)

where Si is a 3D vector along three axes and denotes the
scale matrix for the 𝑖-th Gaussian; and q − pi denotes the
flatness of the Gaussian ellipsoid and will be compressed if
too long. As shown in Figure 3, Adaptive Geometry Con-
trol adaptively optimizes the distribution and shape of the
layout-guided Gaussians, achieving more refined geometric
structures and highly detailed textures.

3.3. Compositional Optimization with Diffusion Priors

In pursuit of generating scenes with a consistent style and
multiple instances, our method leverages a compositional
optimization strategy with diffusion priors to update the
parameters of Layout-guided Gaussians. We initially utilize
a multi-view diffusion model to optimize instance Gaus-
sian, followed by a scene-conditioned diffusion to align
and optimize multiple objects in the scene along with their
interactive relationships. Layout loss is further employed

Figure 3: Adaptive Geometry Control for instance Gaus-
sians. Note that the improved Gaussian distribution results
in enhanced texture and geometry, as the colors of Gaus-
sians on the surface become more aligned.

to ensure the semantic and spatial consistency between the
generated 3D scene and the layout prior.

Text-to-3D generation by multi-view diffusion. To opti-
mize instance Gaussian for each instance in the scene, we
utilize MVDream (Shi et al., 2023) as a multi-view diffusion
prior combined with Score Distillation Sampling (SDS). The
gradient for the 𝑖-th instance Gaussian can be formulated as:

▽𝐺𝑖
L (𝑖)

𝑆𝐷𝑆
= E𝜖 ,𝜂

[
𝑤(𝜂) (𝜖𝜑 (𝐼𝑖; 𝑡𝑖 , 𝑀𝑖 , 𝜂) − 𝜖) 𝜕𝐼𝑖

𝜕𝐺𝑖

]
, (9)

where 𝜖 is the added noise; 𝑡𝑖 is the text prompt correspond-
ing to the 𝑖-th instance; 𝜂 is the time step for optimization;
𝑤(𝜂) is a weighting function from DDPM (Ho et al., 2020);
𝐼𝑖 denotes the sampled image from diffusion prior; 𝑀𝑖 is
the extrinsic matrix of the camera; 𝐺𝑖 denotes the instance
Gaussians within the layout, and 𝜖𝜑 is the denoising func-
tion for the diffusion process of 3DGS. We embed a virtual
camera model to render multi-view images from diffusion
prior, with a camera radius of 3

4 ∥(ℎ𝑖 , 𝑤𝑖 , 𝑙𝑖)∥2, a horizontal
angle of 360◦, and uniform sampling of viewing poses.

Global scene optimization by conditioned diffusion. We
then introduce conditioned diffusion to optimize the global
scene, generating interactions between multiple instances
while adhering to the layout prior. Unlike single object gen-
eration, we use ControlNet (Zhang et al., 2023a) for com-
positional optimization, ensuring that the generated scene
aligns with the layout. Concretely, we fine-tuned ControlNet
to support rendering layouts from multiple viewpoints as
input and generate 2D diffusion supervision with layout-text
consistency. The gradients of SDS for scene parameters can
be formulated as:

▽𝐺sceneL𝑆𝐷𝑆 = E𝜖 ,𝜂

[
𝑤(𝜂) (𝜖𝜙 (𝐼; 𝑡, 𝛿, 𝜂) − 𝜖) 𝜕𝐼

𝜕𝐺scene

]
, (10)

where 𝛿 is the condition input for the ControlNet, obtained
by rendering the 2D images from the layouts. During the
diffusion process, the instance-level and scene-level opti-
mization share the same time step 𝜂 to ensure synchronous
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and collaborative learning. 𝑡 is the textual description of the
whole scene encompassing multiple instances; 𝐼 is the ren-
dered global scene from conditioned diffusion, and 𝐺𝑠𝑐𝑒𝑛𝑒

denotes the parameters of scene Gaussians.

Global scene optimization by Layout loss. To constrain
the generated instances in 3D space to maintain scale, po-
sition, and geometric consistency with the provided layout
priors, we introduce the layout loss:

L (𝑖)
𝑙𝑎𝑦𝑜𝑢𝑡

= 𝟙𝑏𝑏𝑜𝑥 (p) [𝑑𝑥 (𝑝𝑥 , 𝑥𝑖 , ℎ𝑖) + 𝑑𝑦 (𝑝𝑦 , 𝑦𝑖 , 𝑤𝑖) + 𝑑𝑧 (𝑝𝑧 , 𝑧𝑖 , 𝑙𝑖)], (11)

where distance function 𝑑𝑥 (𝑝𝑥 , 𝑥𝑖 , ℎ𝑖) calculates the Man-
hattan distance from each center point outside the 3D layout
boundaries to the nearest point on the x-axis and similarly
for the other two axes:

𝑑𝑥 (𝑝𝑥 , 𝑥𝑖 , ℎ𝑖)=min( |𝑝𝑥 − (𝑥𝑖 + ℎ𝑖
2 ) |, |𝑝𝑥 − (𝑥𝑖 − ℎ𝑖

2 ) |), (12)

where 𝑝𝑥 is the center coordinate of the instance Gaussian
on the x-axis, 𝑥𝑖 is the position of the layout center on the
x-axis, and ℎ is the height of the layout prior to the 𝑖-th
instance. The indicator function 𝟙𝑏𝑏𝑜𝑥 (p) checks whether a
point p is in the bounding box and is 1 if 𝑝𝑥 ∈ [𝑥𝑖 − ℎ𝑖

2 , 𝑥𝑖 +
ℎ𝑖
2 ] and 𝑝𝑦 ∈ [𝑦𝑖 − 𝑤𝑖

2 , 𝑦𝑖 + 𝑤𝑖

2 ] and 𝑝𝑧 ∈ [𝑧𝑖 − 𝑙𝑖
2 , 𝑧𝑖 +

𝑙𝑖
2 ],

and 0 otherwise.

Layout Refinement

Before Refinement After Refinement

Translation

Rotation

Scaling

Layout from LLMs Layout after adjusted

Figure 4: Layout Refinement. The LLM-generated layouts
exhibit spatial misalignment and abnormal scale. We em-
ploy Layout Refinement to optimize the layout, resulting in
a more aligned layout with the text and the 3D scene.

3.4. Layout Refinement

Although LLMs possess the ability to extract textual-
instance relationships, they may still exhibit significant er-
rors due to the lack of 3D understanding of scenes. The
layout priors interpreted by LLMs may deviate from the ac-
tual scene and text description, leading to issues like object
drift and size discrepancies (Figure 4). To solve this issue,
we propose the Layout Refinement module to adaptively
adjust the coarse layout generated from LLMs, making it
more consistent with scene constraints. The gradient of the
layout can be formulated as:

▽(𝜁𝑖 ,𝛼𝑖 ,𝑘𝑖 ,𝜙𝑖 )L
(𝑖)
𝐷𝑒 𝑓

= E𝜖 ,𝜂 [𝑤(𝜂) (𝜖𝜙 (𝐼; 𝑡, 𝛿, 𝜂) − 𝜖) 𝜕𝐼
𝜕(𝜁𝑖 ,𝛼𝑖 ,𝑘𝑖 ,𝜙𝑖 ) ], (13)

where 𝜁𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) is the center coordinate of the layout
corresponding to the 𝑖-th instance; 𝛼𝑖 is the opacity; 𝑘𝑖
denotes the scale scaling factor, and 𝜙𝑖 is the rotation matrix

for the layout. All of the above are learnable parameters,
continuously updated during the optimization. 𝑡 is the text
prompt, and 𝐼 denotes the rendered scene image from the
conditioned diffusion priors.

3.5. Total Loss

The total loss function can be summarized as

L =
∑𝑁

𝑖=1 (𝛽1L (𝑖)
𝑆𝐷𝑆

+ 𝛽2L (𝑖)
𝑙𝑎𝑦𝑜𝑢𝑡

+ 𝛽3L (𝑖)
𝐷𝑒 𝑓

) + 𝛽4L𝑔𝑙𝑜𝑏𝑎𝑙 + 𝛽5L𝑟𝑒𝑔, (14)

where L (𝑖)
𝑆𝐷𝑆

optimize the 𝑖-th layout-guided instance Gaus-
sian, L (𝑖)

𝑙𝑎𝑦𝑜𝑢𝑡
optimize the corresponding 𝑖-th layout. L (𝑖)

𝐷𝑒 𝑓

denotes the Layout Refinement for coarse layout priors.
L𝑔𝑙𝑜𝑏𝑎𝑙 denotes the global optimization by conditioned dif-
fusion for the whole scene, and L𝑟𝑒𝑔 is applied to supervise
the shape control for Gaussians.

4. Experimental Results
Implementation details. We utilize MVDream (Shi et al.,
2023) as the multi-view diffusion model, with a guidance
scale of 50. The guidance scale of ControlNet is set to 100
to optimize the scene and decrease the timestep linearly
during training. For the 3DGS, the learning rates of opacity
and position are 5 × 10−2 and 1.6 × 10−4. The color of 3D
Gaussians is represented by the spherical harmonic coeffi-
cient, with the degree set to 0 and the learning rate set to
5 × 10−3. The covariance of the 3D Gaussians is converted
into scaling and rotation for optimization, with learning
rates of 5 × 10−3 and 10−3, respectively. We set coefficients
𝛽1, 𝛽2, 𝛽3, 𝛽4 as 𝛽1 = 1, 𝛽2 = 103, 𝛽3 = 10−1, 𝛽4 = 10−1,
and 𝛽5 = 103 to balance the magnitude of the losses. For
each instance, we initialize the 3D Gaussians with 100,000
particles and discard adaptive density control in 3D Gaus-
sian Splatting to save memory and speed up training. The
sampling radius of the camera is set to the scene range in
the spherical coordinate system, while horizontal angles are
uniformly sampled at 360◦. All the experiments are carried
out on a single A800 with 80 GB memory.

4.1. Quantitative Comparison

To evaluate our method on the Text-to-3D task, we con-
duct benchmarking against the state-of-the-art (SOTA) ap-
proaches, including NeRF-based methods (Metzer et al.,
2023; Wang et al., 2023b), Voxel-based method (Wang et al.,
2023a), 3DGS-based methods (Tang et al., 2023; Yi et al.,
2023; Chen et al., 2023b; Liang et al., 2023), and composi-
tional NeRF-based generation with layout (Cohen-Bar et al.,
2023). Given the absence of ground truth for zero-shot
text-to-3D generation, we follow previous works (Jain et al.,
2022; Huang et al., 2023) to employ CLIP Score as the
evaluation metric to assess the quality and consistency of
generated 3D scenes in relation to textual descriptions. As
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Table 1: Overall performance of GALA3D with existing state-of-the-art Text-to-3D approaches using single-object
and multi-object text prompts. T denotes using text prompt and TL denotes using text prompt combined with layout. ■,
■, ■, ■ refer to the number of instances in the scene as 1, 3, 7, and 10, respectively. Average represents the average score of
multiple generated scenes used for evaluation, including 22 scenes with varying numbers of objects, ranging from 1 to 10.

Methods Representation Input Average ■Case 1 ■Case 2 ■Case 3 ■Case 4
Latent-NeRF (Metzer et al., 2023) NeRF T 27.772 22.135 27.482 22.203 19.606

ProlificDreamer (Wang et al., 2023b) NeRF T 28.401 30.237 21.913 19.219 25.587
MVDream (Shi et al., 2023) NeRF T 30.856 28.756 32.636 26.015 27.417

SJC (Wang et al., 2023a) Voxel Grid T 28.775 29.100 31.764 21.154 26.352
DreamGaussian (Tang et al., 2023) 3DGS T 25.117 26.281 23.051 18.595 25.739
GaussianDreamer (Yi et al., 2023) 3DGS T 28.351 29.469 31.237 25.727 24.143

GSGEN (Chen et al., 2023b) 3DGS T 30.293 28.932 29.578 29.959 23.927
LucidDreamer (Liang et al., 2023) 3DGS T 31.174 28.720 26.533 27.768 26.895

Set-the-scene (Cohen-Bar et al., 2023) Comp NeRF TL 29.628 28.129 19.135 29.003 25.899
Ours Comp 3DGS T 34.573 31.637 37.658 31.459 35.052

shown in Table 1, text prompts containing varying numbers
of objects are chosen to assess the performance of text-to-
3D generative models under different settings. Our method
excels over all competitors in generating complex 3D scenes
with multiple interacting objects.

Compared with NeRF-based and voxel-based methods.
To ensure a fair comparison, we employ the vanilla form
of Latent-NeRF (Metzer et al., 2023), which employs a
text-guided NeRF model to optimize the spatial radiance
field in latent space. Our method outperforms Latent-NeRF
by a large margin across all evaluated metrics. Prolific-
Dreamer (Wang et al., 2023b) presents Variational Score
Distillation for 3D scene generation, maintaining a set of pa-
rameters as particles to represent the 3D distribution. How-
ever, it fails to model complex scenes with multiple inter-
acting objects using this scheme. GALA3D also boosts the
performance of our baseline method MVDream (Shi et al.,
2023) in both object-level and scene-level generation and
achieves optimal results. SJC (Wang et al., 2023a) regards
the 3D diffusion process as an optimization of a vector field.
Instead, our method integrates conditioned diffusion with
compositional optimization of Gaussians, proven to be more
effective for 3D scene generation.

Compared with compositional NeRFs with scene layout.
Recent works (Cohen-Bar et al., 2023; Lin et al., 2023b;
Po & Wetzstein, 2023) utilize manually designed layouts as
priors for compositional NeRF to assist in generating more
controllable and intricate scenes. We compare our method
with Set-the-scene (Cohen-Bar et al., 2023) and provide
the rendered layout interpreted by LLMs as its prior input.
Under the same specified layout input, scenes generated
by Set-the-Scene exhibit unpleasant blurriness and artifacts.
Conversely, our method demonstrates superior scene con-
sistency, spatial geometry, and overall quality, especially in
scenes with multiple instances (e.g., ten objects).

Compared with 3DGS-based methods. For Gaussian-
based approaches (Tang et al., 2023; Yi et al., 2023; Chen
et al., 2023b; Liang et al., 2023), our method exhibits su-
perior performance in 3D generation for both single-object

and complex scenes. Our proposed Adaptive Geometry
Control for 3DGS ensures the generation of 3D models with
high-resolution geometry and texture, thereby avoiding the
distortions and blurring observed in existing approaches.

4.2. Qualitative Comparison

We report qualitative comparisons on text-to-3D genera-
tion in Figure 1 and Figure 5, including the generation of
single-object, interactive multi-object, and complex compos-
ite scenes. Visually, our method enables the generation of
highly realistic 3D objects and multi-object scenes, surpass-
ing other methods in terms of generated texture, geometric
shapes, and semantic consistency. Notably, the NeRF-based
generative models produce noticeable artifacts, distortions,
and multi-view inconsistencies. The 3DGS-based methods
often exhibit multi-face issues and rough geometric shapes.
Additionally, these methods show significant deficiencies
in scene-text alignment, struggling to accurately generate
specified instances, interaction relationships, and correct
spatial positions. GALA3D not only precisely generates the
desired multiple objects and their interaction relationships
but also maintains the consistency between text and multiple
objects in the scene, ensuring a unified style.

Compared with compositional scene generation methods.
We further compare our approach with recent works (Lin
et al., 2023b; Vilesov et al., 2023; Po & Wetzstein, 2023;
Lin et al., 2023c) in compositional scene generation, which
use the layout as an additional constraint for 3D representa-
tion (e.g., NeRF). Since most of these works are not open-
sourced, we use the results provided in their papers for com-
parison, applying the same prompts as input to generate 3D
scenes. As shown in Figure 6, these compositional 3D scene
generation approaches exhibit unpleasant floating objects,
visual artifacts, and geometric distortions in the generated
3D scenes. They also face significant challenges in texture
degradation and transition smoothness. In contrast, the 3D
scenes generated by our method obtain higher realistic vi-
sual effects. Our method also supports more user-friendly
and controllable editing in a convenient interactive manner.
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Table 2: User study results. Human evaluation results comparing GALA3D with other SOTA text-to-3D approaches.
Participants scored on the following four metrics, rating from 1 to 10, with higher scores indicating stronger preference.

Methods Scene Quality Geometric Fidelity Text Alignment Scene Consistency
SJC (Wang et al., 2023a) 5.98 5.04 6.76 4.61

DreamGaussian (Tang et al., 2023) 5.22 4.18 4.30 5.46
GaussianDreamer (Yi et al., 2023) 6.09 5.71 5.23 4.37

GSGEN (Chen et al., 2023b) 6.54 4.23 5.41 6.25
LucidDreamer (Liang et al., 2023) 4.78 5.62 5.03 4.77

Set-the-scene (Cohen-Bar et al., 2023) 6.36 5.03 7.12 6.12
Ours 8.42 8.37 8.55 9.68

Figure 5: Qualitative comparisons of text-to-3D generation approaches. Our method is capable of generating high-quality
single-object, interactive multi-object, and complex composite scenes with high consistency in textual descriptions.

“A table with a banana and a potted plant in 

front of a sofa that is next to a lamp on a stool”

CG3D Ours

OursComp3D

“On the oak floor there is a Victorian style 

wooden chair with a Ficus in a pot next to it”

CompoNeRF Ours

“The Great Sphinx of Giza is situated near the 

Great Pyramid in the desert”

LI3D Ours

“A courtyard with a well in the center 

and four trees around it”

Figure 6: Comparisons with compositional scene genera-
tion methods. Our method ensures superior coherence and
consistency in generated content compared to competitors.

4.3. User Study

We conduct a user study to further evaluate the effectiveness
of our method in generating high-quality, text-consistent 3D
assets. Specifically, we engage human evaluators to com-
pare 3D models generated by our method and competitive
approaches from 8 text descriptions. A total of 125 partic-

ipants were asked to rank based on four dimensions: (a)
Scene Quality, (b) Geometric Fidelity, (c) Text Alignment,
and (d) Scene Consistency. Each round of comparison re-
quires participants to rate the four assessment options on
a scale from 1 to 10 (10 being the best and vice versa).
Among these users, 39.2% are professionals in the fields of
art design and 3D modeling.

We report the average score of the trial, reflecting user pref-
erences for generated 3D assets. As shown in Table 2, the
results demonstrate a clear preference for our method, re-
ceiving consistently positive reviews. Compared with SOTA
approaches, GALA3D excels across all four assessments.
Our approach also garners preferences from domain experts,
demonstrating its potential in practical applications.

4.4. Conversational Interactive Editing

Our method allows conversational interactive editing. Users
can freely and controllably edit the generated scene based
on textual conversations. Specifically, editing instructions
are initially interpreted by LLMs into corresponding layout
transformation operations (e.g., adding/removing objects,
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“Generate a 3D bedroom for me, which 

contains a bed, two wooden nightstands, a 

square wooden table with a table lamp on it, 

and a wooden wardrobe.”User

“I want to move the table and lamp in front 

of the bed and rotate 45 degrees.”

User

“Please help me to replace the table lamp on 

the table with a bonsai in green.”
User

“Add a wooden chair behind the table and 

remove the nightstand on one side of the bed.”
User

“I want to restore the scene to its initial state 

and turn the style into a futuristic style.”
User

Figure 7: Conversational Interactive Editing. Our method
facilitates user-friendly and controlled editing of 3D scenes.

moving positions, rotating angles, etc.). We then optimize
the Layout-guided Gaussian Representation in the edited
local layout areas while maintaining the stability of other
regions. Our approach guarantees highly controllable and
personalized scene editing, including the addition or re-
moval of objects, spatial adjustments, style transfer, and
object interactions. This paradigm of conversational inter-
active editing combined with LLMs achieves real-world
applications, providing a user-friendly 3D assets generation
and customized editing pipeline.

Full Setting

w/o Adaptive Geometry Controlw/o Compositional Optimization

w/o Layout Refinement

Figure 8: Visual results of the ablation studies. Experi-
ments validate the effectiveness of each proposed module,
highlighting the crucial role of Layout-guided Gaussian
representation coupled with Adaptive Geometry Control in
producing high-quality scene geometry and texture.

4.5. Ablation Studies

Adaptive Geometry Control for Gaussians. We replace
the Adaptive Geometry Control with the density control
scheme employed by the raw 3DGS (Kerbl et al., 2023) and
observe a significant decrease in the realism of the generated
scene, as shown in Figure 8. The Gaussian densification
fails to constrain the distribution and shape of Gaussian

Table 3: Effect of each module in our proposed method.
AGC is short for Adaptive Geometry Control, LRM denotes
the Layout Refinement Module, and COS denotes the Com-
positional Optimization Scheme.

Model CLIP Score Model CLIP Score
w/o AGC 32.198 w/o LRM 34.293
w/o COS 32.213 w/o L𝑔𝑙𝑜𝑏𝑎𝑙 34.342
w/o L𝑙𝑎𝑦𝑜𝑢𝑡 33.297 Ours-Full 34.885

ellipsoids, resulting in unpleasant artifacts and blurs. In
contrast, our method continuously optimizes the geometric
shapes and spatial distributions of 3D Gaussians during the
training process. The ablation confirms the effectiveness of
Adaptive Geometry Control, which finely improves the com-
plex topological structures and results in enhanced texture
and geometry within the global optimization space.

Layout Refinement Module for LLMs interpreted coarse
layout. Directly using the layout interpreted by LLM with-
out refinement results in 3D scenes not well aligned, as
shown in Figure 4 and Figure 8. By contrast, the Layout
Refinement module enables the optimizing of layouts, con-
tinuously adjusting them throughout the denoising process
to achieve more intricately aligned interactions among in-
stances, adhering closely to real-world constraints.

Compositional Optimization Scheme. Figure 8 shows ab-
lations to assess the efficacy of the proposed compositional
optimization scheme. Specifically, we remove the Global
Scene Optimization module, retaining only SDS supervi-
sion for instances (with MVDream), and concatenate each
object into the scene according to the adjusted layouts. Due
to the absence of comprehensive global scene optimization,
the generated 3D scenes exhibit impoverished textures and
lack scene coherence. Furthermore, the generated geometry
only adheres to local layout supervisions, resulting in the
emergence of “over-constrained” boundaries.

Effect of Loss Functions. We analyze how each proposed
loss function contributes to the final performance. As shown
in Table 3, results indicate that both 𝐿𝑙𝑎𝑦𝑜𝑢𝑡 and 𝐿𝑠𝑐𝑒𝑛𝑒

improve the generating quality, enhancing texture details
and maintaining text-3D alignment.

5. Conclusion
In this paper, we present GALA3D, a scene-level text-to-3D
framework based on generative layout-guided 3D Gaussian
representation, which generates high-fidelity, 3D consistent
scenes with multiple objects. Experiments demonstrate that
our method surpasses existing methods in text-to-3D genera-
tion, showcasing the ability to generate complex scenes with
multiple objects and interactions, achieving outstanding tex-
ture and geometry. Our method also facilitates interactive
and controllable scene editing, achieving an efficient and
user-friendly 3D scene generation and editing framework.
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