

000 SCALORA: OPTIMALLY SCALED LOW-RANK ADAP- 001 002 TATION FOR EFFICIENT HIGH-RANK FINE-TUNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT

009
010
011 As large language models (LLMs) continue to scale in size, the computational
012 overhead has become a major bottleneck for task-specific fine-tuning. While low-
013 rank adaptation (LoRA) effectively curtails this cost by confining the weight up-
014 dates to a low-dimensional subspace, such a restriction can hinder effectiveness
015 and slow convergence. This contribution deals with these limitations by accu-
016 mulating progressively a high-rank weight update from consecutive low-rank in-
017 crements. Specifically, the per update optimal low-rank matrix is identified to
018 minimize the loss function and closely approximate full fine-tuning. To endow ef-
019 ficient and seamless optimization without restarting, this optimal choice is formed
020 by appropriately scaling the columns of the original low-rank matrix. Rigorous
021 performance guarantees reveal that the optimal scaling can be found analytically.
022 Extensive numerical tests with popular LLMs scaling up to 12 billion parame-
023 ters demonstrate a consistent performance gain and fast convergence relative to
024 state-of-the-art LoRA variants on diverse tasks including natural language under-
025 standing, commonsense reasoning, and mathematical problem solving.

026 1 INTRODUCTION

027 Large language models (LLMs) enjoy well-documented success in a broad spectrum of areas in-
028 cluding conversational agents (Achiam et al., 2023), software development (Chen et al., 2021), text
029 summarization (Zhang et al., 2024a), and education (Zhang et al., 2024b). Before deploying a pre-
030 trained LLM to a certain task, it is often necessary to fine-tune it on domain-specific data to enhance
031 its expertise. With the rapid growth of LLM size in recent years however, conventional full fine-
032 tuning approaches that revise all the model parameters, are increasingly prohibitive due to their
033 substantial computational burden, especially critical for resource-limited applications. For instance,
034 the recent Llama 4 Behemoth model consists of 2 trillion parameters in total, while even its smallest
035 variant Llama 4 Scout contains 109 billion parameters. Even with half precision, full fine-tuning of
036 the latter still necessitates over 1 TB GPU memory, and extended wall-clock time.

037 As a lightweight alternative, parameter-efficient fine-tuning (PEFT) has been introduced to lower the
038 computational overhead (Houlsby et al., 2019). In contrast to full fine-tuning, PEFT methods refine
039 merely a small subset of parameters (Houlsby et al., 2019; Sung et al., 2021; Li & Liang, 2021),
040 thereby markedly reducing the memory footprint and runtime. Admist these, low-rank adaptation
041 (LoRA) (Hu et al., 2022) has gained particular prominence for its simplicity and efficiency. LoRA
042 presumes the fine-tuning weight update pertains to a low-dimensional manifold, and parameterize
043 it as the outer product of two tall matrices. As a result, fine-tuning the large-scale LLM reduces to
044 optimizing these small “adapter” matrices. Despite its effectiveness and popularity, recent studies
045 have underscored that LoRA and its variants face challenges such as diminishing performance (Hu
046 et al., 2022), and slower convergence (Meng et al., 2024) relative to full fine-tuning, which deteri-
047 orate further as the rank declines (Jiang et al., 2024; Huang et al., 2025). Consequently, one has to
048 compromise notable model effectiveness to tradeoff the highly desired efficiency.

049 To overcome these challenges, this work commits to formulate a high-rank weight update by stack-
050 ing the per-step low-rank increments. As opposed to vanilla LoRA operating in a fixed low-rank
051 subspace, our key idea is to *dynamically identify the optimal low-rank adapters to update, that min-
052 imize the loss per iteration*. To ensure efficient optimization, this optimal choice is restricted to the
053 family of matrices whose columns are scaled from the original low-rank adapters. The advocated ap-

proach is thus termed scaled low-rank adaptation (ScaLoRA). This column-wise scaling allows for efficient re-calculation of moment estimators in adaptive optimizers such as Adam(W), eliminating the need to reset optimizer and re-warm up learning rate. All in all, our contribution is three-fold:

- We prove a sufficient and necessary condition for the optimal low-rank adapters. This condition establishes that the optimal choice requires truncated singular value decomposition (SVD) of the weight gradient matrix, which leads to prohibitive overhead and requires restarting optimization.
- To cope with these two issues, we restrict the new adapters to certain transforms of the original ones. With column-wise scaling as the transform, tractable moment estimators and globally optimal adapters are provably identified in analytical form.
- Numerical tests are performed with DeBERTaV3-base, LLaMA-2-7B, LLaMA-3-8B, and Gemma-3-12B-pt on GLUE benchmark, commonsense reasoning datasets, and mathematical problems (MetaMathQA, GSM8K, and MATH), verifying our analytical claims and confirming ScaLoRA’s superior performance as well as accelerated convergence.

Related work. Following LoRA (Hu et al., 2022), plenty of variants have been probed to further enhance its effectiveness. For instance, DoRA (yang Liu et al., 2024) decomposes the weight matrix into magnitude and direction components, where only the latter is updated via LoRA. QLoRA (Dettmers et al., 2023) quantizes the pre-trained weights to further reduce computational cost. FourierFT (Gao et al., 2024b) substitutes the low-rank matrices with spectral coefficients and recovers the weight update via inverse discrete Fourier transform. Flora (Hao et al., 2024) leverages random projections to encode and decode the weight gradients. FedPara (Hyeon-Woo et al., 2022) and LoKr (Yeh et al., 2024) integrate Hadamard and Kronecker products into the low-rank outer product. In addition to structural modifications, methods have been developed to refine the initialization of low-rank adapters (Meng et al., 2024; Li et al., 2024; Wang et al., 2024), and adjust the optimization iterations (Wang et al., 2025; Yen et al., 2025; Zhang et al., 2025). Another line of research (Lialin et al., 2024; Jiang et al., 2024; Huang et al., 2025) targets high-rank weight update induced by low-rank adapters. Our ScaLoRA falls in the latter category, and a more detailed comparison will be provided in the ensuing sections.

2 LOW-RANK ADAPTATION RECAP

This section briefly recaps LoRA (Hu et al., 2022), the challenges it faces, and existing remedies.

Consider a general weight matrix $\mathbf{W} \in \mathbb{R}^{m \times n}$ of a large model. LoRA decomposes $\mathbf{W} = \mathbf{W}^{\text{pt}} + \mathbf{W}^{\text{ft}}$, where \mathbf{W}^{pt} denotes the frozen pre-trained weight matrix, and \mathbf{W}^{ft} is the learnable fine-tuning update. Aiming at efficiency, LoRA assumes the latter lives on a low-dimensional manifold, and can be approximated via $\mathbf{W}^{\text{ft}} := \mathbf{AB}^{\top}$, where $\mathbf{A} \in \mathbb{R}^{m \times r}$ and $\mathbf{B} \in \mathbb{R}^{n \times r}$ are ‘‘adapter’’ matrices with $r \ll m, n$. For batched inputs $\mathbf{X} \in \mathbb{R}^{n \times k}$, LoRA’s forward operation satisfies $\mathbf{WX} = \mathbf{W}^{\text{pt}}\mathbf{X} + \mathbf{A}(\mathbf{B}^{\top}\mathbf{X})$. LoRA reduces the number of trainable parameters to $(m + n)r \ll mn$, markedly lowering the associated memory footprint, and the computational burden of backpropagation.

Letting $\ell(\cdot)$ denote the loss function, LoRA seeks to optimize

$$\min_{\mathbf{A}, \mathbf{B}} \ell(\mathbf{W}^{\text{pt}} + \mathbf{AB}^{\top})$$

With t indexing iteration, define $\mathbf{W}_t := \mathbf{W}^{\text{pt}} + \mathbf{A}_t\mathbf{B}_t^{\top}$. LoRA initializes $\mathbf{A}_0 \sim \mathcal{N}(0, \sigma^2)$ with a small variance σ^2 , and $\mathbf{B}_0 = \mathbf{0}_{n \times r}$, so that $\mathbf{W}_0 = \mathbf{W}^{\text{pt}}$ remains intact. The subsequent updates rely on adaptive optimizers such as AdamW (Loshchilov & Hutter, 2019). For illustration, consider instead the plain gradient descent (GD) update

$$\mathbf{A}_{t+1} = \mathbf{A}_t - \eta \nabla \ell(\mathbf{W}_t) \mathbf{B}_t, \quad \mathbf{B}_{t+1} = \mathbf{B}_t - \eta \nabla \ell(\mathbf{W}_t)^{\top} \mathbf{A}_t \quad (1)$$

where $\eta > 0$ is the learning rate, and the gradients $\nabla_{\mathbf{A}_t} \ell(\mathbf{W}_t) = \nabla \ell(\mathbf{W}_t) \mathbf{B}_t$ and $\nabla_{\mathbf{B}_t} \ell(\mathbf{W}_t) = \nabla \ell(\mathbf{W}_t)^{\top} \mathbf{A}_t$ follow from the chain rule. Then, the per-step weight increment satisfies

$\Delta \mathbf{W}_t := \mathbf{W}_{t+1} - \mathbf{W}_t = \mathbf{A}_{t+1}\mathbf{B}_{t+1}^{\top} - \mathbf{A}_t\mathbf{B}_t^{\top} = -\eta \nabla \ell(\mathbf{W}_t) \mathbf{B}_t \mathbf{B}_t^{\top} - \eta \mathbf{A}_t \mathbf{A}_t^{\top} \nabla \ell(\mathbf{W}_t) + \mathcal{O}(\eta^2)$ where the last term is negligible as η is typically tiny (Wang et al., 2024; Hao et al., 2024; Wang et al., 2025; Yen et al., 2025). Summing over T steps yields the cumulative update

$$\sum_{t=0}^{T-1} \Delta \mathbf{W}_t = \mathbf{W}_T - \mathbf{W}_0 = \mathbf{A}_T \mathbf{B}_T^{\top} - \mathbf{A}_0 \mathbf{B}_0^{\top} = \mathbf{A}_T \mathbf{B}_T^{\top}. \quad (2)$$

108 This formulation confines LoRA’s weight update to a low-dimensional subspace, which can degrade
 109 effectiveness and decelerate convergence when compared to full fine-tuning.
 110

111 Recent studies show that the gap between LoRA and full fine-tuning can be mitigated by increasing
 112 the rank r (Jiang et al., 2024; Huang et al., 2025). This motivates investigating high-rank up-
 113 dates with low-dimensional adapters. ReLoRA (Lalin et al., 2024) advocates learning a cascade of
 114 low-rank adapters and merging them sequentially into the pre-trained weights. However, learning
 115 each adapter requires restarting optimization, including random initialization, optimizer reset, and
 116 learning rate warm-up, which slows down convergence. MoRA (Jiang et al., 2024) replaces the
 117 two linear matrix multiplications $\mathbf{A}(\mathbf{B}^\top \mathbf{X})$ by nonlinear mappings $f_{\text{decompress}}(\mathbf{M} f_{\text{compress}}(\mathbf{X}))$ with
 118 learnable \mathbf{M} , while the two mappings demand careful handcrafted designs to ensure effective and
 119 stable fine-tuning. HiRA (Huang et al., 2025) parameterizes the weight update as the Hadamard
 120 product of low-rank matrix with pre-trained weight; i.e., $\mathbf{W}^{\text{ft}} := (\mathbf{A}\mathbf{B}^\top) \odot \mathbf{W}^{\text{pre}}$. Although this
 121 yields a high-rank update in Euclidean space, it remains confined to a smaller manifold of dimension
 122 $(m + n - r)r$, compared to full fine-tuning’s mn -dimensional one. Moreover, HiRA demands ex-
 123 plicit forward calculation and backpropagation through the $m \times n$ Hadamard product per iteration,
 124 which incurs $\mathcal{O}(mnr)$ complexity, and scales poorly to immense LLMs.
 125

126 **Notation.** Bold lowercase letters (capitals) stand for vectors (matrices). $\mathbf{M}_{\mathcal{I}}$ represents the sub-
 127 matrix of \mathbf{M} with columns indexed by set \mathcal{I} . Symbols \odot and $\cdot^{\odot 2}$ stand for Hadamard (entry-wise)
 128 product and square. $\text{Row}(\cdot)$, $\text{Col}(\cdot)$, and $\text{Null}(\cdot)$ denote row, column and null spaces. $\text{rank}(\cdot)$ and
 129 $\text{tr}(\cdot)$ are the rank and trace of a matrix. $\text{diag}(\mathbf{v})$ is the diagonal matrix whose diagonal entries are
 130 from vector \mathbf{v} , while $\text{diag}(\mathbf{M})$ refers to the vector formed by the diagonals of matrix \mathbf{M} . \cdot^\dagger denotes
 131 the Moore-Penrose pseudoinverse. For $\mathbf{M} \in \mathbb{R}^{m \times n}$, $\|\mathbf{M}\|_{\text{row}} \in \mathbb{R}^n$ defines the vector of row-wise
 132 norms; i.e., $\|\mathbf{M}\|_{\text{row}} = \|\mathbf{M}_{:, :}\|_2$. $O(r)$ refers to the orthogonal group of degree r ; namely the set
 133 of all $r \times r$ orthogonal matrices. For readability, all proofs are deferred to Appendix A.
 134

3 HIGH-RANK UPDATES VIA OPTIMAL SCALING

135 Unlike LoRA adhering to a fixed low-rank component $\mathbf{A}_t \mathbf{B}_t^\top$, the key idea of this work is to dy-
 136 namically identify the “optimal” low-rank adapters per iteration that maximally descends the loss.
 137 By refining different low-dimensional subspaces over time, the cumulative increments effectively
 138 form a high-rank update, endowing LoRA with both improved effectiveness and faster convergence.
 139 Specifically, we will merge the current $\mathbf{A}_t \mathbf{B}_t^\top$ into \mathbf{W}^{pt} , and factor out an alternative low-rank
 140 matrix $\tilde{\mathbf{A}}_t \tilde{\mathbf{B}}_t^\top$ to optimize; that is,

$$\mathbf{W}_t = \mathbf{W}^{\text{pt}} + \mathbf{A}_t \mathbf{B}_t^\top = \underbrace{(\mathbf{W}^{\text{pt}} + \mathbf{A}_t \mathbf{B}_t^\top - \tilde{\mathbf{A}}_t \tilde{\mathbf{B}}_t^\top)}_{:= \tilde{\mathbf{W}}_t^{\text{pt}}, \text{ merge \& freeze}} + \underbrace{\tilde{\mathbf{A}}_t \tilde{\mathbf{B}}_t^\top}_{:= \tilde{\mathbf{W}}_t^{\text{ft}}, \text{ learnable}}. \quad (3)$$

141 The optimal choice of $\tilde{\mathbf{A}}_t \tilde{\mathbf{B}}_t^\top$ will be presented in the next subsection. Before that, we first illustrate
 142 how this change in the optimization direction influences the optimization dynamics to produce a
 143 high-rank update. With the alternative adapters $(\tilde{\mathbf{A}}_t, \tilde{\mathbf{B}}_t)$, the GD update (1) can be replaced by
 144

$$\mathbf{A}_{t+1} = \tilde{\mathbf{A}}_t - \eta \nabla \ell(\mathbf{W}_t) \tilde{\mathbf{B}}_t, \quad \mathbf{B}_{t+1} = \tilde{\mathbf{B}}_t - \eta \nabla \ell(\mathbf{W}_t)^\top \tilde{\mathbf{A}}_t. \quad (4)$$

145 In doing so, the resultant update $\Delta \tilde{\mathbf{W}}_t$ to weight matrix \mathbf{W}_t , and the corresponding dynamics are
 146

$$\Delta \tilde{\mathbf{W}}_t = \mathbf{A}_{t+1} \mathbf{B}_{t+1}^\top - \tilde{\mathbf{A}}_t \tilde{\mathbf{B}}_t^\top = -\eta \nabla \ell(\mathbf{W}_t) \tilde{\mathbf{B}}_t \tilde{\mathbf{B}}_t^\top - \eta \tilde{\mathbf{A}}_t \tilde{\mathbf{A}}_t^\top \nabla \ell(\mathbf{W}_t) + \mathcal{O}(\eta^2), \quad (5a)$$

$$\sum_{t=0}^{T-1} \Delta \tilde{\mathbf{W}}_t = \sum_{t=1}^T \mathbf{A}_t \mathbf{B}_t^\top - \sum_{t=0}^{T-1} \tilde{\mathbf{A}}_t \tilde{\mathbf{B}}_t^\top. \quad (5b)$$

147 By optimizing different low-rank matrices per iteration, the telescoping in (2) is avoided, thus al-
 148 lowing to accumulate the low-rank increments to render a high-rank update.
 149

150 Although ReLoRA (Lalin et al., 2024) also employs a similar merging strategy, it performs this
 151 operation less frequently due to its optimization restarts, and simply reinitializes $\tilde{\mathbf{A}}_t \tilde{\mathbf{B}}_t^\top = 0$ without
 152 a principled selection. Next, we analyze the optimal selection and the associated challenges.

162
163

3.1 CHALLENGES IN ACCUMULATING LOW-RANK UPDATES

164
165

Though promising, this idea of accumulating low-rank updates faces two major challenges, namely prohibitive computation and inefficient restart, which are separately elaborated next.

166
167

We start by characterizing the optimal low-rank adapters and their computational complexity. Due to the nonlinearity of LLMs, the global optimum of the loss function is analytically infeasible. As a tractable alternative, a standard upper bound on the loss function will be presented, whose minimizer is available in closed form. The analysis relies on the following Lipschitz smoothness assumption.

170
171

Assumption 1. *The loss function ℓ has L -Lipschitz continuous gradients; i.e., $\|\nabla\ell(\mathbf{W}) - \nabla\ell(\mathbf{W}')\|_F \leq L\|\mathbf{W} - \mathbf{W}'\|_F, \forall \mathbf{W}, \mathbf{W}' \in \mathbb{R}^{m \times n}$.*

172

Assumption 1 is fairly mild and widely used in both machine learning (Goodfellow et al., 2016; Shalev-Shwartz & Ben-David, 2014), and optimization (Bertsekas, 2016; Kingma & Ba, 2015). It is default for analyzing first-order optimization approaches such as (stochastic) GD. Building upon this assumption, the loss function admits the quadratic upper bound as follows

173
174
175
176

$$\ell(\mathbf{W}_t + \Delta\mathbf{W}_t) \leq \ell(\mathbf{W}_t) + \langle \nabla\ell(\mathbf{W}_t), \Delta\mathbf{W}_t \rangle_F + \frac{L}{2} \|\Delta\mathbf{W}_t\|_F^2. \quad (6)$$

177
178
179
180
181
182

Minimizing the right-hand side of (6) incurs optimal update $\Delta\mathbf{W}_t^* = -\frac{1}{L}\nabla\ell(\mathbf{W}_t)$, which recovers GD of full fine-tuning. While the Lipschitz constant L is hard to compute or even estimate especially for complicated LLMs, the effective step size $1/L$ is typically treated as a hyperparameter and tuned via grid search. Likewise, it holds for the alternative update (4) that

183
184

$$\ell(\mathbf{W}_t + \Delta\tilde{\mathbf{W}}_t) \leq \ell(\mathbf{W}_t) + \langle \nabla\ell(\mathbf{W}_t), \Delta\tilde{\mathbf{W}}_t \rangle_F + \frac{L}{2} \|\Delta\tilde{\mathbf{W}}_t\|_F^2 \stackrel{(a)}{=} \frac{L}{2} \|\Delta\mathbf{W}_t^* - \Delta\tilde{\mathbf{W}}_t\|_F^2 + \text{Const.}$$

185
186
187

where (a) utilizes completing the square, and Const. refers to constants not dependent on $\Delta\tilde{\mathbf{W}}_t$. This reformulation reveals that minimizing the loss upper bound is equivalent to aligning LoRA’s weight increment with full fine-tuning. Plugging in (5a) and omitting high-order terms yield

188
189

$$\min_{\tilde{\mathbf{A}}_t, \tilde{\mathbf{B}}_t} \frac{L}{2} \left\| \frac{1}{L} \nabla\ell(\mathbf{W}_t) - \eta \nabla\ell(\mathbf{W}_t) \tilde{\mathbf{B}}_t \tilde{\mathbf{B}}_t^\top - \eta \tilde{\mathbf{A}}_t \tilde{\mathbf{A}}_t^\top \nabla\ell(\mathbf{W}_t) \right\|_F^2 \quad (7)$$

190

whose minimizer is offered in the following theorem.

191
192

Theorem 1. *Consider the SVD $\nabla\ell(\mathbf{W}_t) = \mathbf{U}_t \Sigma_t \mathbf{V}_t^\top$. If $\text{rank}(\nabla\ell(\mathbf{W}_t)) \geq 2r, \forall t$ and Assumption 1 holds, then $(\tilde{\mathbf{A}}_t^*, \tilde{\mathbf{B}}_t^*)$ minimizes (7) if and only if*

193
194

$$\tilde{\mathbf{A}}_t^* = \frac{1}{\sqrt{L\eta}} [\mathbf{U}_t]_{\mathcal{A}_t} \mathbf{P}_t, \quad \tilde{\mathbf{B}}_t^* = \frac{1}{\sqrt{L\eta}} [\mathbf{V}_t]_{\mathcal{B}_t} \mathbf{Q}_t \quad (8)$$

195
196

where sets $\mathcal{A}_t \cup \mathcal{B}_t = \{1, \dots, 2r\}$, $|\mathcal{A}_t| = |\mathcal{B}_t| = r$, and $\mathbf{P}_t, \mathbf{Q}_t \in \text{O}(r)$.

197
198
199
200
201
202
203
204

Theorem 1 establishes a sufficient and necessary condition for the optimal low-rank adapters. The optimal choice involves the truncated rank- $2r$ SVD of $\nabla\ell(\mathbf{W}_t)$, which prompts an iterative solver and incurs $\mathcal{O}(Smnr)$ time complexity, with S denoting the number of iterations (Baglama & Reichel, 2005). Due to this prohibitively high complexity, it is generally infeasible to apply such a choice to (4) for each t . It is worthwhile mentioning that LoRA-GA (Wang et al., 2024) arises as a special case of Theorem 1, where a sufficient (yet not necessary) condition is derived at $t = 0$ and $\mathbf{P}_0 = \mathbf{Q}_0 = \mathbf{I}_r$ to initialize LoRA adapters. Moreover, the assumption $\text{rank}(\nabla\ell(\mathbf{W}_t)) \geq 2r, \forall t$ can be readily satisfied in practice; see numerical validations in Figure 2c of Section 4.

205
206
207
208
209
210
211
212
213

Aside from the prohibitive SVD computation, another challenge attributes to switching the optimization variables from $(\mathbf{A}_t, \mathbf{B}_t)$ to $(\tilde{\mathbf{A}}_t, \tilde{\mathbf{B}}_t)$. Specifically, LLM optimization relies on adaptive optimizers such as AdamW (Loshchilov & Hutter, 2019), which estimate the first and second moments of stochastic gradients via the exponential moving average of gradient samples; cf. Appendix A.4. When switching to the alternative $(\tilde{\mathbf{A}}_t, \tilde{\mathbf{B}}_t)$, their gradient moments need to be re-estimated from the optimization trajectory, incurring time and space complexities proportional to t . One straightforward remedy is to restart optimization (Lialin et al., 2024), which resets the moment estimators to accumulate them from scratch. However, as all gradient statistics are discarded, the optimization breaks off and the convergence slows down considerably.

214
215

To enable efficient and seamless optimization, we propose to restrict $\tilde{\mathbf{A}}_t$ and $\tilde{\mathbf{B}}_t$ to be structured transformations of \mathbf{A}_t and \mathbf{B}_t . Upon appropriate design, the gradient moment estimators of the former can be equivariantly computed from those of the latter.

216 3.2 OPTIMAL SCALAR SCALING
217

218 We will first investigate a simple scalar scaling $\tilde{\mathbf{A}}_t = \alpha_t \mathbf{A}_t$, $\tilde{\mathbf{B}}_t = \beta_t \mathbf{B}_t$. Let $m_t(\cdot)$ and $v_t(\cdot)$ denote
219 the first and second gradient moment estimators, which involve the general stochastic matrices \mathbf{A} ,
220 \mathbf{B} and \mathbf{W} ; see Appendix A.4 for details. The next lemma depicts the impact of scalar scaling on the
221 gradient moment estimators.

222 **Lemma 2.** *For $\mathbf{W} = \mathbf{W}^{\text{pt}} + \mathbf{AB}^\top = \tilde{\mathbf{W}}^{\text{pt}} + \tilde{\mathbf{A}}\tilde{\mathbf{B}}^\top$ with $\tilde{\mathbf{A}} = \alpha\mathbf{A}$ and $\tilde{\mathbf{B}} = \beta\mathbf{B}$, it holds that*

$$223 m_t(\nabla_{\tilde{\mathbf{A}}}\ell(\mathbf{W})) = \beta m_t(\nabla_{\mathbf{A}}\ell(\mathbf{W})), v_t(\nabla_{\tilde{\mathbf{A}}}\ell(\mathbf{W})) = \beta^2 v_t(\nabla_{\mathbf{A}}\ell(\mathbf{W})), \\ 224 m_t(\nabla_{\tilde{\mathbf{B}}}\ell(\mathbf{W})) = \alpha m_t(\nabla_{\mathbf{B}}\ell(\mathbf{W})), v_t(\nabla_{\tilde{\mathbf{B}}}\ell(\mathbf{W})) = \alpha^2 v_t(\nabla_{\mathbf{B}}\ell(\mathbf{W})).$$

225 Lemma 2 suggests that the first and second moment estimators of $(\tilde{\mathbf{A}}, \tilde{\mathbf{B}})$ can be directly scaled
226 from those of (\mathbf{A}, \mathbf{B}) . Intuitively, given that the gradient of $\tilde{\mathbf{A}}$ is $\nabla\ell(\mathbf{W})\tilde{\mathbf{B}}$, it is hence scaled by β
227 proportionally when transforming $\tilde{\mathbf{B}} = \beta\mathbf{B}$; similar statements hold for \mathbf{B} 's gradient.

228 We now seek the optimal $(\tilde{\mathbf{A}}_t, \tilde{\mathbf{B}}_t)$ minimizing the loss upper bound. Under the aforementioned
229 transform, the objective function (7) reduces to

$$230 \min_{\alpha_t, \beta_t} \frac{L}{2} \left\| \frac{1}{L} \nabla\ell(\mathbf{W}_t) - \eta \beta_t^2 \nabla\ell(\mathbf{W}_t) \mathbf{B}_t \mathbf{B}_t^\top - \eta \alpha_t^2 \mathbf{A}_t \mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t) \right\|_F^2. \quad (9)$$

231 To solve for the global minimizer of (9), the following technical assumption is adopted.

232 **Assumption 2.** $\|\mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t)\|_F$ and $\|\nabla\ell(\mathbf{W}_t) \mathbf{B}_t\|_F$ are not both 0, $\forall t$.

233 Assumption 2 asserts that the gradients of \mathbf{A}_t and \mathbf{B}_t do not vanish simultaneously; otherwise there
234 is no update, and the iteration can be skipped. With this assumption, the optimal scaling factors are
235 derived as follows.

236 **Theorem 3.** *With Assumptions 1-2 in effect, the global minimizer of (9) is given by*

$$237 (238 \alpha_t^*, \beta_t^*) = \begin{cases} \left(\pm \frac{\|\mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t)\|_F}{\sqrt{L\eta} \|\mathbf{A}_t \mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t)\|_F}, 0 \right), & \text{if } C_t^A > 0 \text{ and } C_t^B \leq 0, \text{ or } C_t = 0 \text{ and } \mathbf{A}_t \neq \mathbf{0} \\ 239 \left(0, \pm \frac{\|\nabla\ell(\mathbf{W}_t) \mathbf{B}_t\|_F}{\sqrt{L\eta} \|\nabla\ell(\mathbf{W}_t) \mathbf{B}_t \mathbf{B}_t^\top\|_F} \right), & \text{if } C_t^A \leq 0 \text{ and } C_t^B > 0, \text{ or } C_t = 0 \text{ and } \mathbf{B}_t \neq \mathbf{0} \\ 240 \left(\pm \sqrt{\frac{C_t^A}{L\eta C_t}}, \pm \sqrt{\frac{C_t^B}{L\eta C_t}} \right), & \text{if } C_t^A \geq 0, C_t^B \geq 0 \text{ and } C_t > 0 \end{cases}$$

241 where we define

$$242 C_t^A := \|\mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t)\|_F^2 \|\nabla\ell(\mathbf{W}_t) \mathbf{B}_t \mathbf{B}_t^\top\|_F^2 - \|\nabla\ell(\mathbf{W}_t) \mathbf{B}_t\|_F^2 \|\mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t) \mathbf{B}_t\|_F^2, \\ 243 C_t^B := \|\nabla\ell(\mathbf{W}_t) \mathbf{B}_t\|_F^2 \|\mathbf{A}_t \mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t)\|_F^2 - \|\mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t)\|_F^2 \|\mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t) \mathbf{B}_t\|_F^2, \\ 244 C_t := \|\mathbf{A}_t \mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t)\|_F^2 \|\nabla\ell(\mathbf{W}_t) \mathbf{B}_t \mathbf{B}_t^\top\|_F^2 - \|\mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t) \mathbf{B}_t\|_F^4.$$

245 Note that the three cases in Theorem 3 may overlap, because the global optima can be non-unique.
246 Moreover, all possible scenarios are covered by the three cases; cf. Appendix A.2.

247 3.3 OPTIMAL COLUMN-WISE SCALING
248

249 For improved fitting capacity, this section delves into a more complicated column-wise scaling with
250 $\tilde{\mathbf{A}}_t = \mathbf{A}_t \text{ diag}(\boldsymbol{\alpha}_t)$ and $\tilde{\mathbf{B}}_t = \mathbf{B}_t \text{ diag}(\boldsymbol{\beta}_t)$, whose gradient moment estimators are provided next.

251 **Lemma 4.** *For $\mathbf{W} = \mathbf{W}^{\text{pt}} + \mathbf{AB}^\top = \tilde{\mathbf{W}}^{\text{pt}} + \tilde{\mathbf{A}}\tilde{\mathbf{B}}^\top$ with $\tilde{\mathbf{A}} = \mathbf{A} \text{ diag}(\boldsymbol{\alpha})$ and $\tilde{\mathbf{B}} = \mathbf{B} \text{ diag}(\boldsymbol{\beta})$,*

$$252 m_t(\nabla_{\tilde{\mathbf{A}}}\ell(\mathbf{W})) = m_t(\nabla_{\mathbf{A}}\ell(\mathbf{W})) \text{ diag}(\boldsymbol{\beta}), v_t(\nabla_{\tilde{\mathbf{A}}}\ell(\mathbf{W})) = v_t(\nabla_{\mathbf{A}}\ell(\mathbf{W})) \text{ diag}^2(\boldsymbol{\beta}), \\ 253 m_t(\nabla_{\tilde{\mathbf{B}}}\ell(\mathbf{W})) = m_t(\nabla_{\mathbf{B}}\ell(\mathbf{W})) \text{ diag}(\boldsymbol{\alpha}), v_t(\nabla_{\tilde{\mathbf{B}}}\ell(\mathbf{W})) = v_t(\nabla_{\mathbf{B}}\ell(\mathbf{W})) \text{ diag}^2(\boldsymbol{\alpha}).$$

254 Unlike column-wise scaling, moment estimators for transformations including row-wise scaling and
255 left/right-multiplying a full matrix, are generally intractable.

256 With column-wise scaling on the other hand, the objective function (7) boils down to

$$257 \min_{\boldsymbol{\alpha}_t, \boldsymbol{\beta}_t} \frac{L}{2} \left\| \frac{1}{L} \nabla\ell(\mathbf{W}_t) - \eta \nabla\ell(\mathbf{W}_t) \mathbf{B}_t \text{ diag}^2(\boldsymbol{\beta}_t) \mathbf{B}_t^\top - \eta \mathbf{A}_t \text{ diag}^2(\boldsymbol{\alpha}_t) \mathbf{A}_t^\top \nabla\ell(\mathbf{W}_t) \right\|_F^2. \quad (10)$$

Different from the scalar case in (9), Appendix A.3 shows that (10) has $\mathcal{O}(9^r)$ stationary points, among which the global optimum is generally hard to obtain in affordable time. Nevertheless, under certain conditions the optimum can be efficiently obtained through a $2r \times 2r$ linear system.

Theorem 5. *With the definitions*

$$\mathbf{S}_t^A := [\mathbf{A}_t \quad \nabla \ell(\mathbf{W}_t) \mathbf{B}_t], \quad \mathbf{S}_t^B := [\mathbf{B}_t \quad \mathbf{A}_t^\top \nabla \ell(\mathbf{W}_t)], \quad \boldsymbol{\lambda}_t := \begin{bmatrix} \|\mathbf{A}_t^\top \nabla \ell(\mathbf{W}_t)\|_{\text{row}}^2 \\ \|\mathbf{B}_t^\top \nabla \ell(\mathbf{W}_t)^\top\|_{\text{row}}^2 \end{bmatrix}$$

and Assumptions 1-2 in effect, if the linear system of equations $[(\mathbf{S}_t^A)^\top \mathbf{S}_t^A] \odot (\mathbf{S}_t^B)^\top \mathbf{S}_t^B \mathbf{v}_t = \boldsymbol{\lambda}_t$ has a non-negative solution $\mathbf{v}_t \in \mathbb{R}_+^{2r}$, then the global minimizer of (10) is given by

$$\begin{bmatrix} \boldsymbol{\alpha}_t^* \\ \boldsymbol{\beta}_t^* \end{bmatrix} = \pm \frac{1}{\sqrt{L\eta}} \mathbf{v}_t^{\circ \frac{1}{2}}. \quad (11)$$

Interestingly, our empirical observations suggest that around 80% LoRA layers in an LLM satisfies the the non-negativity condition for \mathbf{v}_t across iterations; see Figure 2d.

3.4 SCALORA FOR HIGH-RANK UPDATE AND FAST CONVERGENCE

Building upon these analytical insights, our scaled low-rank adaptation (Scalora) method optimally scales the low-rank adapters per (few) iteration(s) to attain the desired high-rank update and fast convergence. In particular, Scalora relies on a mixture of the aforementioned two scaling schemes. When the linear system in Theorem 5 yields a positive solution, (3) adopts the optimal column-wise scaling $\tilde{\mathbf{A}}_t = \mathbf{A}_t \text{diag}(\boldsymbol{\alpha}_t^*)$, $\tilde{\mathbf{B}}_t = \mathbf{B}_t \text{diag}(\boldsymbol{\beta}_t^*)$, with moment estimators updated as in Lemma 4; otherwise, the algorithm resorts to Theorem 3 for the optimal scalar scaling $\tilde{\mathbf{A}}_t = \alpha_t^* \mathbf{A}_t$, $\tilde{\mathbf{B}}_t = \beta_t^* \mathbf{B}_t$, and Lemma 2 to update moment estimators. Akin to full fine-tuning, the Lipschitz constant L is viewed as a hyperparameter and we tune it using grid search. The step-by-step pseudocodes are provided in Appendix B.

Next, we analyze the computational cost of Scalora, and compare it to SOTA approaches. To start, the gradients $\nabla \ell(\mathbf{W}_t) \mathbf{B}_t$ and $\nabla \ell(\mathbf{W}_t)^\top \mathbf{A}_t$ can be directly acquired from backpropagation, that incurs no extra overhead. As a consequence, the overall time complexity for Scalora is $\mathcal{O}(mnr + (m+n+r)r^2)$, where the term $\mathcal{O}(mnr)$ comes from (3), and the rest can be deduced from Theorems 3 and 5. When $r \ll m, n$, the time complexity is dominated by the former. Moreover, as (3) can be performed in place, the space overhead is as small as $\mathcal{O}((m+n+r)r)$. In comparison, MoRA's overhead significantly depends on the design of f_{compress} and $f_{\text{decompress}}$, which typically exceeds LoRA's simple bilinear structure. While HiRA exhibits $\mathcal{O}(mnr)$ time overhead comparable to Scalora, it suffers from high memory footprint of $\mathcal{O}(mn)$ due to the backpropagation of Hadamard product.

Similar to other high-rank update approaches, the escalated computational cost is the major limitation of Scalora, which confines its scalability to increasingly large models. We next introduce a variant to mitigate this limitation. Since η is typically tiny, the optimal scaling is close to 1 after one update; cf. Appendix D.1. Thus, a natural remedy is to perform Scalora every I iterations, so that the per-step time complexity is amortized to $\mathcal{O}((mnr + (m+n+r)r^2)/I)$ without noticeably exacerbating the performance. We term this intermittent variant as Scalora-I. It is worth stressing that MoRA and HiRA both rely on a fixed structure to impel a high-rank update, which is imposed per optimization step, and cannot be amortized. A summary of the costs is provided in Appendix B, and numerical comparisons using LLMs are presented in Section 4.3.

Another notable limitation of Scalora is its storage. While LoRA and other high-rank variants require saving only the low-dimensional adapters \mathbf{A}_t and \mathbf{B}_t , Scalora stores the entire merged matrix $\mathbf{W}_t = \tilde{\mathbf{W}}_t^{\text{pt}} + \tilde{\mathbf{A}}_t \tilde{\mathbf{B}}_t^\top$ due to the modification of $\tilde{\mathbf{W}}_t^{\text{pt}}$. Fortunately, disk space is typically abundant relative to memory, and thereby it does not pose a bottleneck for LLM fine-tuning.

4 NUMERICAL TESTS

This section presents numerical tests to validate the effectiveness of the proposed Scalora approach. All setups including datasets, models, and hyperparameters are deferred to Appendix C.

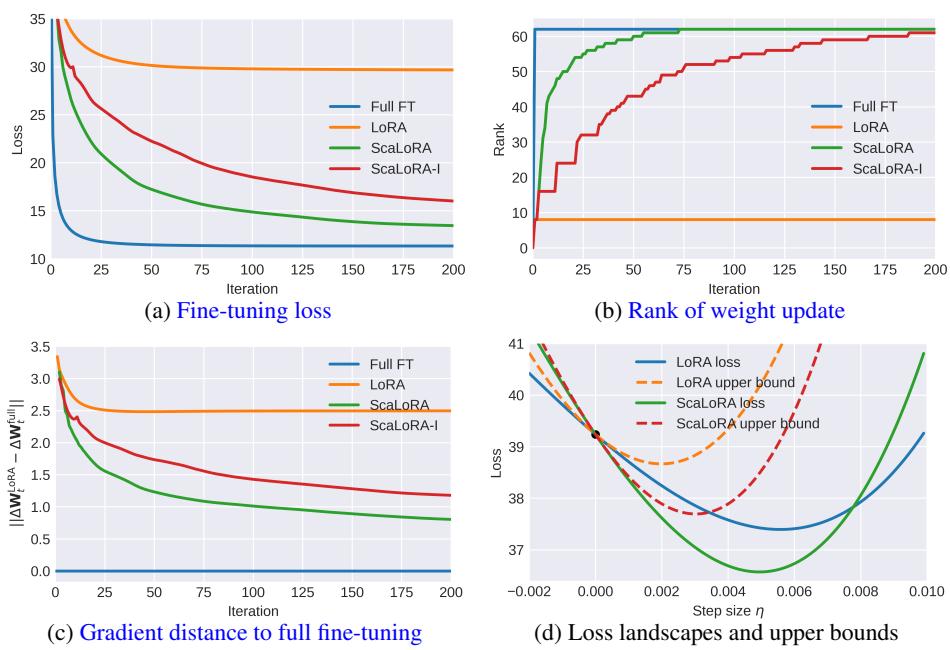


Figure 1: Visualization of linear regression on synthetic data.

Table 1: Comparison using DeBERTaV3-base on the GLUE benchmark. The top two results are marked with solid lines and underlines. The results for LoRA approaches are obtained by averaging 3 random runs with $r = 4$, and the full fine-tuning results are from (Zhang et al., 2023).

Method	CoLA	SST-2	MRPC	STS-B	QQP	MNLI	QNLI	RTE	All
	Mcc	Acc	Acc	Corr	Acc	Matched	Acc	Acc	Avg
Full FT	69.19	<u>95.63</u>	89.46	91.60	92.40	89.90	94.03	83.75	88.25
LoRA	$68.10_{\pm 1.73}$	$95.49_{\pm 0.05}$	$89.46_{\pm 0.20}$	$91.09_{\pm 0.14}$	$91.86_{\pm 0.03}$	$90.25_{\pm 0.13}$	$94.30_{\pm 0.05}$	$84.48_{\pm 2.04}$	88.13
MoRA	$69.67_{\pm 0.90}$	$95.45_{\pm 0.44}$	$89.62_{\pm 0.76}$	$90.90_{\pm 0.19}$	$91.83_{\pm 0.12}$	$90.05_{\pm 0.04}$	$93.81_{\pm 0.20}$	$85.44_{\pm 1.19}$	88.35
HiRA	$68.82_{\pm 1.01}$	$95.53_{\pm 0.19}$	$89.95_{\pm 0.53}$	$91.15_{\pm 0.09}$	$92.19_{\pm 0.06}$	$90.24_{\pm 0.10}$	$94.15_{\pm 0.13}$	$85.68_{\pm 0.17}$	88.46
ScaLoRA	<u>69.86</u> _{± 0.37}	<u>95.83</u> _{± 0.29}	<u>90.28</u> _{± 0.31}	<u>91.47</u> _{± 0.15}	<u>92.10</u> _{± 0.07}	<u>90.36</u> _{± 0.03}	<u>94.34</u> _{± 0.28}	<u>87.61</u> _{± 0.34}	<u>88.98</u>

4.1 LINEAR REGRESSION WITH SYNTHETIC DATA

The first experiment performs linear regression on toy data. The loss function is $\ell(\mathbf{W}) = \frac{1}{2} \|\mathbf{Y} - \mathbf{W}\mathbf{X}\|_F^2$, where \mathbf{X} and \mathbf{Y} are given matrices. LoRA substitutes $\mathbf{W} \in \mathbb{R}^{64 \times 64}$ with \mathbf{AB}^\top . Figure 1 sketches the behavior of LoRA, ScaLoRA(-I), and full fine-tuning. It is seen that ScaLoRA(-I) converges remarkably faster than vanilla LoRA, thanks to the progressively increasing rank of cumulative weight updates, and better alignment to full fine-tuning. In addition, Figure 1d depicts the loss function, and its quadratic upper bound (6). By selecting the optimal per-step LoRA adapters, ScaLoRA minimizes the loss upper bound and the associated loss landscape, leading to accelerated convergence. These observations corroborate our theoretical results in Section 3.

4.2 NATURAL LANGUAGE UNDERSTANDING

The next test deals with ScaLoRA’s performance on General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019), which contains 8 different tasks in the field of natural language understanding (NLU). The model is DeBERTaV3-base (He et al., 2023), a masked language model specialized in NLU with 184M parameters. The rank in LoRA is fixed to $r = 4$ with scaling coefficient 8 for all approaches, and other setups follow from (Zhang et al., 2023). Table 1 compares ScaLoRA to LoRA (Hu et al., 2022), and SOTA high-rank variants MoRA (Jiang et al., 2024) and HiRA (Huang et al., 2025), where the top two results are marked in bold and underlined. Notably, ScaLoRA not only presents 0.5%+ average performance gain, but also achieves the best perfor-

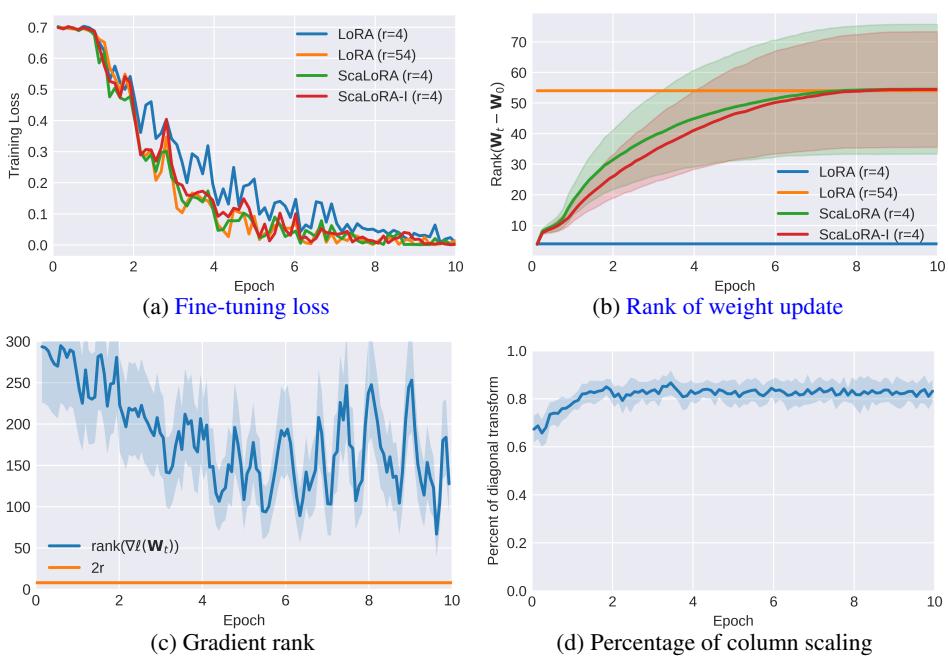


Figure 2: Visualization on the RTE dataset with DeBERTaV3-base.

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2198
2199
2199
2200
2201
2202<br

432 Table 2: Commonsense reasoning using LLaMA2-7B and LLaMA3-8B with $r = 8$. The top two
 433 results are marked with solid lines and underlines.

434	Method	BoolQ	PIQA	SIQA	HS	WG	ARC-e	ARC-c	OBQA	Avg	
436 437 438 439 440 441 442 443	LLaMA2-7B	LoRA	$87.40_{\pm 0.58}$	$81.66_{\pm 0.90}$	$59.16_{\pm 1.11}$	$82.45_{\pm 0.38}$	$79.48_{\pm 1.14}$	$82.91_{\pm 0.77}$	$57.59_{\pm 1.44}$	$58.40_{\pm 2.21}$	73.63
	ReLoRA	<u>$87.80_{\pm 0.57}$</u>	$82.48_{\pm 0.89}$	$60.08_{\pm 1.11}$	$83.23_{\pm 0.37}$	<u>$82.56_{\pm 1.07}$</u>	$82.95_{\pm 0.77}$	<u>$58.11_{\pm 1.44}$</u>	$58.00_{\pm 2.20}$	74.40	
	LoRA-GA	<u>$87.92_{\pm 0.58}$</u>	<u>$83.03_{\pm 0.88}$</u>	<u>$60.13_{\pm 1.11}$</u>	$83.30_{\pm 0.38}$	<u>$82.87_{\pm 1.08}$</u>	$83.25_{\pm 0.77}$	$56.83_{\pm 1.44}$	$58.40_{\pm 2.21}$	74.34	
	MoRA	$87.49_{\pm 0.58}$	$82.54_{\pm 0.89}$	$59.88_{\pm 1.11}$	$82.56_{\pm 0.38}$	$79.08_{\pm 1.14}$	$83.59_{\pm 0.76}$	$58.02_{\pm 1.44}$	$57.40_{\pm 2.21}$	73.82	
	HiRA	$87.71_{\pm 0.57}$	<u>$82.97_{\pm 0.88}$</u>	$59.83_{\pm 1.11}$	$83.38_{\pm 0.37}$	$81.69_{\pm 1.09}$	$82.83_{\pm 0.77}$	$55.55_{\pm 1.45}$	$57.60_{\pm 2.21}$	73.95	
	ScaloRA	$87.77_{\pm 0.57}$	$82.43_{\pm 0.88}$	$60.08_{\pm 1.11}$	<u>$83.43_{\pm 0.37}$</u>	$82.08_{\pm 1.08}$	$83.54_{\pm 0.76}$	<u>$58.11_{\pm 1.44}$</u>	<u>$58.60_{\pm 2.20}$</u>	74.51	
	ScaloRA-I	$87.58_{\pm 0.76}$	$82.26_{\pm 0.89}$	<u>$60.49_{\pm 1.11}$</u>	<u>$83.52_{\pm 0.37}$</u>	$81.69_{\pm 1.09}$	<u>$83.75_{\pm 0.76}$</u>	<u>$58.53_{\pm 1.44}$</u>	<u>$60.20_{\pm 1.19}$</u>	<u>74.75</u>	
	LoRA _{r=32}	$88.29_{\pm 0.56}$	$82.70_{\pm 0.90}$	$60.54_{\pm 1.11}$	$83.15_{\pm 0.37}$	$82.00_{\pm 1.08}$	$82.79_{\pm 0.77}$	$57.68_{\pm 1.44}$	$59.00_{\pm 2.20}$	74.52	
444 445 446 447 448 449 450	LLaMA3-8B	LoRA	$88.99_{\pm 0.55}$	$85.09_{\pm 0.83}$	$60.95_{\pm 1.10}$	$86.09_{\pm 0.35}$	$82.64_{\pm 1.06}$	$86.62_{\pm 0.70}$	$62.29_{\pm 1.42}$	$62.00_{\pm 2.17}$	76.83
	ReLoRA	<u>$89.20_{\pm 0.54}$</u>	$85.64_{\pm 0.82}$	$60.13_{\pm 1.11}$	$85.99_{\pm 0.35}$	<u>$85.24_{\pm 1.00}$</u>	$86.95_{\pm 0.69}$	$63.14_{\pm 1.39}$	$61.80_{\pm 2.19}$	77.26	
	LoRA-GA	<u>$89.69_{\pm 0.53}$</u>	$84.98_{\pm 0.83}$	$61.00_{\pm 0.96}$	$86.58_{\pm 0.96}$	<u>$85.32_{\pm 0.99}$</u>	$86.11_{\pm 0.71}$	$62.29_{\pm 1.42}$	$61.80_{\pm 2.18}$	77.22	
	MoRA	$88.56_{\pm 0.56}$	<u>$86.18_{\pm 0.81}$</u>	$60.29_{\pm 1.11}$	<u>$86.69_{\pm 0.34}$</u>	$82.40_{\pm 1.07}$	<u>$87.79_{\pm 0.67}$</u>	$64.08_{\pm 1.40}$	$62.20_{\pm 2.17}$	77.27	
	HiRA	$88.87_{\pm 0.55}$	$86.07_{\pm 0.81}$	$60.64_{\pm 1.11}$	$86.11_{\pm 0.35}$	$84.53_{\pm 1.02}$	$87.12_{\pm 0.69}$	$63.91_{\pm 1.40}$	<u>$62.40_{\pm 2.17}$</u>	77.46	
	ScaloRA	<u>$89.20_{\pm 0.54}$</u>	<u>$86.18_{\pm 0.81}$</u>	<u>$61.82_{\pm 1.10}$</u>	$86.51_{\pm 0.34}$	$84.53_{\pm 1.02}$	$86.57_{\pm 0.70}$	<u>$65.61_{\pm 1.39}$</u>	<u>$62.40_{\pm 2.17}$</u>	<u>77.85</u>	
	ScaloRA-I	$89.14_{\pm 0.54}$	$86.07_{\pm 0.81}$	<u>$62.33_{\pm 1.10}$</u>	$86.48_{\pm 0.34}$	$83.35_{\pm 1.05}$	$86.53_{\pm 0.70}$	<u>$64.68_{\pm 0.70}$</u>	$62.00_{\pm 0.70}$	<u>77.57</u>	
	LoRA _{r=32}	$89.69_{\pm 0.53}$	$85.47_{\pm 0.82}$	$61.72_{\pm 1.10}$	$86.76_{\pm 0.34}$	$83.35_{\pm 1.05}$	$87.08_{\pm 0.69}$	$64.08_{\pm 1.40}$	$62.20_{\pm 2.17}$	77.54	

451 Table 3: Rank (number of singular values with magnitudes ≥ 0.005) and effective rank (erank) of
 452 weight updates in LLaMA2-7B with $r = 8$. Both Euclidean and intrinsic ranks are shown for HiRA.

453	Method	BoolQ	PIQA	SIQA	HS	WG	ARC-e	ARC-c	OBQA
455 456 457 458 459 460	Rank	LoRA	$8_{\pm 0}$	$8_{\pm 0}$	$8_{\pm 0}$	$8_{\pm 0}$	$8_{\pm 0}$	$8_{\pm 0}$	$8_{\pm 0}$
	ReLoRA	$16_{\pm 0}$	$16_{\pm 0.1}$	$24_{\pm 0.08}$	$32_{\pm 0.33}$	$32_{\pm 1.07}$	$16_{\pm 0.6}$	$15_{\pm 0.3}$	$36_{\pm 2.32}$
	HiRA (Eucl.)	$4004_{\pm 217}$	$3925_{\pm 319}$	$3971_{\pm 291}$	$3889_{\pm 344}$	$3670_{\pm 497}$	$3074_{\pm 875}$	$3315_{\pm 721}$	$3729_{\pm 462}$
	HiRA (intr.)	$8_{\pm 0}$	$8_{\pm 0}$	$8_{\pm 0}$	$8_{\pm 0}$	$8_{\pm 0}$	$8_{\pm 0}$	$8_{\pm 0}$	$8_{\pm 0}$
	ScaloRA	$3326_{\pm 671}$	$3482_{\pm 544}$	$3661_{\pm 392}$	$3703_{\pm 351}$	$3695_{\pm 363}$	$2254_{\pm 917}$	$1347_{\pm 706}$	$3015_{\pm 891}$
	ScaloRA-I	$1402_{\pm 656}$	$1990_{\pm 843}$	$2757_{\pm 910}$	$2937_{\pm 880}$	$2891_{\pm 912}$	$20_{\pm 11}$	$20_{\pm 3}$	$453_{\pm 265}$
461 462 463 464 465	Erank	LoRA	$2.7_{\pm 0.6}$	$1.9_{\pm 0.4}$	$1.8_{\pm 0.4}$	$2.3_{\pm 0.6}$	$1.2_{\pm 0.2}$	$1.6_{\pm 0.4}$	$1.7_{\pm 0.4}$
	ReLoRA	$2.6_{\pm 0.6}$	$1.9_{\pm 0.5}$	$1.9_{\pm 0.4}$	$1.6_{\pm 0.4}$	$2.0_{\pm 0.6}$	$1.7_{\pm 0.4}$	$1.7_{\pm 0.5}$	$2.0_{\pm 0.6}$
	HiRA (Eucl.)	$358.2_{\pm 259.9}$	$313.8_{\pm 228.8}$	$312.3_{\pm 218.3}$	$219.5_{\pm 154.6}$	$128.4_{\pm 72.4}$	$167.6_{\pm 160.3}$	$203.8_{\pm 197.2}$	$164.5_{\pm 120.7}$
	HiRA (intr.)	$2.9_{\pm 1.5}$	$2.4_{\pm 1.4}$	$2.5_{\pm 1.3}$	$1.9_{\pm 0.9}$	$1.5_{\pm 0.6}$	$2.5_{\pm 1.4}$	$2.0_{\pm 1.5}$	$1.7_{\pm 0.7}$
	ScaloRA	$4.8_{\pm 1.7}$	$3.1_{\pm 0.8}$	$3.4_{\pm 0.6}$	$4.2_{\pm 1.0}$	$2.6_{\pm 0.7}$	$2.7_{\pm 0.7}$	$1.9_{\pm 0.5}$	$2.0_{\pm 0.5}$
	ScaloRA-I	$4.6_{\pm 1.5}$	$3.0_{\pm 0.8}$	$2.6_{\pm 0.7}$	$4.2_{\pm 1.0}$	$2.3_{\pm 0.6}$	$2.6_{\pm 0.6}$	$1.9_{\pm 0.5}$	$1.9_{\pm 0.5}$

466 all eight tasks. Table 2 compares ScaloRA with LoRA (Hu et al., 2022), ReLoRA (Lialin et al.,
 467 2024), LoRA-GA (Wang et al., 2024), MoRA (Jiang et al., 2024), and HiRA (Huang et al., 2025). It
 468 is observed that ScaloRA and ScaloRA-I demonstrate similar performance, both outperforming all
 469 other competitors by a significant margin. This verifies our claim that ScaloRA-I does not distinctly
 470 affect the effectiveness when I is small. Further, the performance of ScaloRA(-I) even surpasses
 471 LoRA with a higher rank of 32, yet incurring less computational overhead.

472 Moreover, we further investigate the rank of weight update $\mathbf{W}_T - \mathbf{W}_0$ in LLaMA2-7B under different
 473 high-rank adaptation approaches. Following (Lialin et al., 2024; Huang et al., 2025), only
 474 the singular values whose magnitudes exceed 0.005 are counted. MoRA has been excluded
 475 because of its nonlinearity. For HiRA, as its rank update pertains to the low-dimensional manifold
 476 $\{\mathbf{W}^{\text{ft}} \mid \mathbf{W}^{\text{ft}} = (\mathbf{A}\mathbf{B}^{\top}) \odot \mathbf{W}^{\text{pt}}\}$, we report both its Euclidean rank and its intrinsic (latent) rank,
 477 where the latter better reflects the geometry induced by its parameterization. The average rank and
 478 efficient rank $\text{erank}(\cdot) := \|\cdot\|_F^2 / \|\cdot\|_2^2$ along with their standard deviations across LoRA layers are re-
 479 ported in Table 3. ScaloRA(-I) yields (e)rank proportional to the size and difficulty of the task. For
 480 small datasets such as ARC-e and ARC-c, the limited fine-tuning iterations renders a moderate-rank
 481 update, which is nevertheless sufficient to fit the task. In contrast, ReLoRA exhibits markedly lower
 482 (e)rank due to its infrequent merging operations. While HiRA consistently produces high Euclidean
 483 rank regardless of the dataset size and task difficulty, its intrinsic (e)rank remains low owing to its
 484 underlying low-dimensional manifold. Moreover, the erank of ScaloRA(-I) is significantly higher
 485 than other baselines, suggesting that the weight update captures a richer and more diverse subspace
 486 of singular directions for task-specific adaptation.

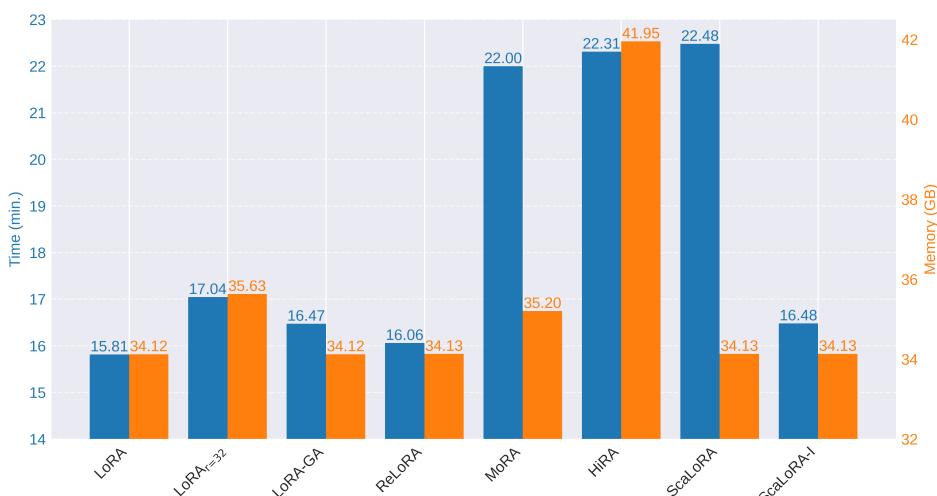


Figure 3: Overhead comparison using LLaMA3-8B on the BoolQ dataset.

Next, Figure 3 depicts the fine-tuning time (minutes) and memory cost (GB) of ScaLoRA(-I) with other alternatives, where the vertical axes start from nonzero values for better visual comparison. It is clear that MoRA, HiRA and ScaLoRA necessitate 50%+ time compared to LoRA, on par with our analysis in Section 3.4. Moreover, MoRA and HiRA require 1.08 and 7.83 GB extra memory in comparison to LoRA, while ScaLoRA(-I) merely leads to a negligible growth of 0.01 GB. Additionally, ScaLoRA-I showcases superior scalability in both time and space comparable to LoRA-GA and ReLoRA, which add marginally to LoRA with $r = 4$, and outperforms LoRA with $r = 32$. In practice, an appropriate choice of I can provide a favorable balance between efficiency and convergence. An ablation test on the effect of varying I is presented in Appendix D.2.

4.4 MATHEMATICAL PROBLEM SOLVING

The next numerical test assesses ScaLoRA on mathematical problem solving tasks, and scales to the larger Gemma-3-12B (Team et al., 2025) model. The model is fine-tuned on MetaMath (Yu et al., 2024), a mathematical question answering dataset for LLMs, and evaluated on GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) datasets. MoRA and HiRA are omitted due to their limited scalability shown in Figure 3. Additionally, an ablation study is also included to show the enhanced fitting capacity of column scaling as opposed to scalar scaling. A variant of ScaLoRA-I with scalar scaling only is considered. The results are displayed in Table 4, where ScaLoRA-I again outperforms LoRA on both datasets. Moreover, it is also seen that ScaLoRA-I with scalar scaling improves upon LoRA yet underperforms ScaLoRA-I, illustrating the effectiveness of column-wise scaling. Extended ablation study on the scalar-only variant using commonsense reasoning datasets is provided in Appendix D.3.

5 CONCLUDING REMARKS

This paper investigated high-rank updates by gradually accumulating the optimal low-rank increments that minimize the per-step loss. It was argued that this idea faces two challenges, namely prohibitive computation and inefficient optimization. To address them, a novel approach termed ScaLoRA was introduced. By restricting the optimal adapters to the family of matrices whose columns are scaled from the original ones, ScaLoRA allowed for efficient optimization without resetting the gradient moment estimators. Performance guarantees were established respectively for scalar and column-wise scaling to pick out the optimal adapters in analytical form. Numerical tests covering natural language understanding, commonsense reasoning, and mathematical problem solving validated the consistent performance gain and scalability of ScaLoRA(-I).

Table 4: Mathematical problem solving using Gemma-3-12B.

Method	GSM8K	MATH
LoRA	81.20 ± 1.08	37.20 ± 0.63
ScaLoRA-I	82.11 ± 1.06	37.96 ± 0.64
Scalar-only	81.27 ± 1.07	37.90 ± 0.64

540 ETHICS STATEMENTS
541

542 This work does not involve human subjects, personal data, or sensitive information. All experiments
543 are conducted on publicly available LLMs and benchmark datasets, with details, links, and licenses
544 provided in the Appendix. The proposed method aims to improve computational efficiency and
545 convergence in fine-tuning, which abides by ICLR’s code of ethic. Nevertheless, caution is advised
546 when applying the method to generative tasks. The outputs of LLMs should be carefully reviewed,
547 and safeguards such as gating mechanisms should be considered to ensure safety, reliability, and
548 trustworthiness.

549
550 REPRODUCIBILITY STATEMENT
551

552 We have taken multiple steps to ensure reproducibility. The paper provides full algorithmic details,
553 including theoretical proofs, pesudocodes, implementation details, and hyperparameter settings. We
554 have also uploaded the complete source code and scripts used to reproduce our main results as the
555 supplementary material. All LLMs and datasets used are publicly available, with links provided in
556 the Appendix. These resources collectively enable other researchers to replicate our findings.

557
558 REFERENCES
559

560 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
561 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
562 report. *arXiv preprint arXiv:2303.08774*, 2023.

563 James Baglama and Lothar Reichel. Augmented implicitly restarted lanczos bidiagonalization meth-
564 ods. *SIAM Journal on Scientific Computing*, 27(1):19–42, 2005.

565 Dimitri Bertsekas. *Nonlinear Programming*, volume 4. Athena Scientific, 2016.

566 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
567 commonsense in natural language. In *Proc. AAAI Conf. Artif. Intel.*, pp. 7432–7439, 2020.

568 Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task
569 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. In *Proc. Int.*
570 *Workshop Semant. Eval.*, pp. 1–14. ACL, 2017.

571 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
572 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
573 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

574 François Chollet. On the measure of intelligence. *arXiv:1911.01547*, 2019.

575 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
576 Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In *Proceedings*
577 *of the 2019 Conference of the North American Chapter of the Association for Computational*
578 *Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 2924–2936,
579 June 2019.

580 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
581 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
582 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

583 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
584 of quantized llms. In *Proc. Neural Information Processing Systems (NeurIPS)*, volume 36, pp.
585 10088–10115, 2023.

586 Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
587 *Proc. Int. Workshop Paraphrasing*, 2005.

588 Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. *Psychome-
589 trika*, 1(3):211–218, 1936.

594 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 595 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
 596 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
 597 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
 598 evaluation harness, 07 2024a.

599 Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
 600 Parameter-efficient fine-tuning with discrete Fourier transform. In *Proc. Int. Conf. on Machine*
 601 *Learning (ICML)*, volume 235, pp. 14884–14901. PMLR, 21–27 Jul 2024b.

602

603 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
 604 MIT press Cambridge, 2016.

605

606 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 607 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd
 608 of models. *arXiv preprint arXiv:2407.21783*, 2024.

609

610 Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
 611 compressors. In *Proc. Int. Conf. on Machine Learning (ICML)*, volume 235, pp. 17554–17571.
 612 PMLR, 21–27 Jul 2024.

613

614 Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTav3: Improving deBERTa using
 615 ELECTRA-style pre-training with gradient-disentangled embedding sharing. In *Proc. Int. Conf.*
 616 *on Learning Representations (ICLR)*, 2023.

617

618 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 619 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
 620 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
 621 *Track (Round 2)*, 2021.

622

623 Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.

624

625 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 626 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 627 NLP. In *Proc. Int. Conf. on Machine Learning (ICML)*, volume 97, pp. 2790–2799. PMLR,
 628 09–15 Jun 2019.

629

630 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 631 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *Proc. Int. Conf. on*
 632 *Learning Representations (ICLR)*, 2022.

633

634 Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
 635 Poria, and Roy Ka-Wei Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning
 636 of large language models. In *Proc. Conf. on Empirical Methods in Natural Language Processing*
 637 (*EMNLP*), 2023.

638

639 Qiushi Huang, Tom Ko, Zhan Zhuang, Lilian Tang, and Yu Zhang. Hira: Parameter-efficient
 640 hadamard high-rank adaptation for large language models. In *Proc. Int. Conf. on Learning Rep-*
 641 *resentations (ICLR)*, 2025.

642

643 Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. FedPara: Low-rank hadamard product for
 644 communication-efficient federated learning. In *Proc. Int. Conf. on Learning Representations*
 645 (*ICLR*), 2022.

646

647 Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
 648 Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-efficient fine-
 649 tuning. *arXiv preprint arXiv:2405.12130*, 2024.

650

651 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proc. Int. Conf.*
 652 *on Learning Representations (ICLR)*, 2015.

653

654 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
 655 *Proc. Conf. Assoc. Comput. Linguist. Meet. (ACL)*, pp. 4582–4597, August 2021.

648 Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
 649 Zhao. LoftQ: LoRA-fine-tuning-aware quantization for large language models. In *Proc. Int.*
 650 *Conf. on Learning Representations (ICLR)*, 2024.

651 Vladislav Lalin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. ReloRA: High-
 652 rank training through low-rank updates. In *Proc. Int. Conf. on Learning Representations (ICLR)*,
 653 2024.

654 Kai Lion, Liang Zhang, Bingcong Li, and Niao He. Polar: Polar-decomposed low-rank adapter
 655 representation. *arXiv preprint arXiv:2506.03133*, 2025.

656 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *Proc. Int. Conf. on*
 657 *Learning Representations (ICLR)*, 2019.

658 Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
 659 vectors adaptation of large language models. In *Proc. Neural Information Processing Systems*
 660 (*NeurIPS*), volume 37, pp. 121038–121072, 2024.

661 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 662 electricity? A new dataset for open book question answering. *arXiv:1809.02789*, 2018.

663 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 664 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 665 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 666 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
 667 learning library. In *Proc. Neural Information Processing Systems (NeurIPS)*, volume 32, 2019.

668 Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
 669 for SQuAD. In *Proc. Conf. Assoc. Comput. Linguist. Meet. (ACL)*, pp. 784–789, 2018.

670 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 671 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

672 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialqa: Common-
 673 sense reasoning about social interactions. *arXiv:1904.09728*, 2019.

674 J. Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen
 675 veränderlichen. *Journal für die reine und angewandte Mathematik*, 1911(140):1–28, 1911. doi:
 676 doi:10.1515/crll.1911.140.1.

677 Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algo-
 678 rithms*. Cambridge university press, 2014.

679 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
 680 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
 681 treebank. In *Proc. Conf. on Empirical Methods in Natural Language Processing (EMNLP)*, pp.
 682 1631–1642, 2013.

683 Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks. In
 684 *Proc. Neural Information Processing Systems (NeurIPS)*, volume 34, pp. 24193–24205, 2021.

685 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 686 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 687 report. *arXiv preprint arXiv:2503.19786*, 2025.

688 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 689 lay Bashlykov, Soumya Batra, Prajwala Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 690 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

691 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
 692 GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
 693 *Proc. Int. Conf. on Learning Representations (ICLR)*, 2019.

702 Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
 703 In *Proc. Neural Information Processing Systems (NeurIPS)*, volume 37, pp. 54905–54931, 2024.
 704

705 Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. LoRA-pro: Are low-rank adapters
 706 properly optimized? In *Proc. Int. Conf. on Learning Representations (ICLR)*, 2025.

707 Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
 708 *Trans. Assoc. Comput. Linguist.*, 7:625–641, 2019.
 709

710 Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
 711 sentence understanding through inference. In *Proc. Conf. North Am. Chapter Assoc. Comput.
 712 Linguist.*, pp. 1112–1122, 2018.

713 Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 714 Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In *Proc. Int.
 715 Conf. on Machine Learning (ICML)*, 2024.

716 Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard B W Yang, Giyeong Oh, and Yanmin Gong.
 717 Navigating text-to-image customization: From LyCORIS fine-tuning to model evaluation. In
 718 *Proc. Int. Conf. on Learning Representations (ICLR)*, 2024.
 719

720 Jui-Nan Yen, Si Si, Zhao Meng, Felix Yu, Sai Surya Duvvuri, Inderjit S Dhillon, Cho-Jui Hsieh,
 721 and Sanjiv Kumar. LoRA done RITE: Robust invariant transformation equilibration for loRA
 722 optimization. In *Proc. Int. Conf. on Learning Representations (ICLR)*, 2025.

723 Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
 724 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
 725 for large language models. In *Proc. Int. Conf. on Learning Representations (ICLR)*, 2024.
 726

727 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 728 chine really finish your sentence? *arXiv:1905.07830*, 2019.

729 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
 730 Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *Proc. Int. Conf. on
 731 Learning Representations (ICLR)*, 2023.
 732

733 Yang Zhang, Hanlei Jin, Dan Meng, Jun Wang, and Jinghua Tan. A comprehensive survey on
 734 process-oriented automatic text summarization with exploration of llm-based methods. *arXiv
 735 preprint arXiv:2403.02901*, 2024a.

736 Yilang Zhang, Bingcong Li, and Georgios B. Giannakis. Reflora: Refactored low-rank adaptation
 737 for efficient fine-tuning of large models. In *Advances in Neural Information Processing Systems*,
 738 2025.

739 Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhanxin Hao, Jianx-
 740 iao Jiang, Jie Cao, Huiqin Liu, Zhiyuan Liu, et al. Simulating classroom education with llm-
 741 empowered agents. *arXiv preprint arXiv:2406.19226*, 2024b.
 742

743 Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez De Ocáriz Borde, Rickard Brüel
 744 Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
 745 Asymmetry in low-rank adapters of foundation models. In *Proc. Int. Conf. on Machine Learning
 746 (ICML)*, volume 235, pp. 62369–62385. PMLR, 21–27 Jul 2024.
 747

748

749

750

751

752

753

754

755

A MISSING PROOFS

This section provides the proofs omitted in the main paper.

A.1 PROOF OF THEOREM 1

Proof. For notational simplicity, we will omit the subscript t in the proof, and write $\tilde{\mathbf{A}}_t^*, \tilde{\mathbf{B}}_t^*$ as \mathbf{A}, \mathbf{B} .

We first verify the *sufficiency*. For \mathbf{A}, \mathbf{B} satisfying (8), it follows that

$$\begin{aligned}
 -\eta \nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top - \eta \mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W}) &= -\frac{1}{L} \nabla \ell(\mathbf{W}) \mathbf{V}_B \mathbf{Q} \mathbf{Q}^\top \mathbf{V}_B^\top - \frac{1}{L} \mathbf{U}_A \mathbf{P} \mathbf{P}^\top \mathbf{U}_A^\top \nabla \ell(\mathbf{W}) \\
 &= -\frac{1}{L} \nabla \ell(\mathbf{W}) \mathbf{V}_B \mathbf{V}_B^\top - \frac{1}{L} \mathbf{U}_A \mathbf{U}_A^\top \nabla \ell(\mathbf{W}) \\
 &\stackrel{(a)}{=} -\frac{1}{L} \mathbf{U} \Sigma_B \mathbf{V}_B^\top - \frac{1}{L} \mathbf{U}_A \Sigma_{A,:} \mathbf{V}^\top \\
 &= -\frac{1}{L} \sum_{i \in \mathcal{B}} \sigma_i \mathbf{u}_i \mathbf{v}_i^\top - \frac{1}{L} \sum_{i \in \mathcal{A}} \sigma_i \mathbf{u}_i \mathbf{v}_i^\top \\
 &= -\frac{1}{L} \sum_{i=1}^{2r} \sigma_i \mathbf{u}_i \mathbf{v}_i^\top
 \end{aligned} \tag{12}$$

where (a) relies on the SVD $\nabla \ell(\mathbf{W}) = \mathbf{U} \Sigma \mathbf{V}^\top$, and $\mathbf{u}_i, \mathbf{v}_i$ are the i -th columns of \mathbf{U}, \mathbf{V} .

Using the fact that $\text{rank}(\nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top) \leq r$ and $\text{rank}(\mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})) \leq r$, it holds

$$\text{rank}(\eta \nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top + \eta \mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})) \leq r + r = 2r. \tag{13}$$

By Eckart–Young–Mirsky theorem (Eckart & Young, 1936), it turns out that (12) is the optimal rank- $2r$ approximation to $\frac{1}{L} \nabla \ell(\mathbf{W})$ that minimizes (7).

Next we show the *necessity*. For notational compactness, define $\mathcal{I} := \{1, \dots, 2r\}$. Again by Eckart–Young–Mirsky theorem (Eckart & Young, 1936), the optimal rank- $2r$ approximation to $\frac{1}{L} \nabla \ell(\mathbf{W})$ should satisfy

$$\nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top + \mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W}) = \frac{1}{L\eta} \mathbf{U}_{\mathcal{I}} \Sigma_{\mathcal{I}, \mathcal{I}} \mathbf{V}_{\mathcal{I}}^\top. \tag{14}$$

To achieve this rank- $2r$ approximation, (13) suggests that we must have

$$\text{rank}(\nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top) = \text{rank}(\mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})) = r.$$

Additionally, since

$$\begin{aligned}
 \text{rank}(\nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top + \mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})) &= \text{rank}\left(\frac{1}{L\eta} \mathbf{U}_{\mathcal{I}} [\Sigma]_{\mathcal{I}, \mathcal{I}} \mathbf{V}_{\mathcal{I}}^\top\right) \\
 &= \text{rank}(\nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top) + \text{rank}(\mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})),
 \end{aligned}$$

it must hold

$$\text{Col}(\nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top) \cap \text{Col}(\mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})) = \{0\} \tag{15a}$$

$$\text{Col}(\nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top) \oplus \text{Col}(\mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})) = \text{Col}(\mathbf{U}_{\mathcal{I}} [\Sigma]_{\mathcal{I}, \mathcal{I}} \mathbf{V}_{\mathcal{I}}^\top) = \text{Col}(\mathbf{U}_{\mathcal{I}}) \tag{15b}$$

$$\text{Row}(\nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top) \cap \text{Row}(\mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})) = \{0\} \tag{15c}$$

$$\text{Row}(\nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top) \oplus \text{Row}(\mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})) = \text{Row}(\mathbf{U}_{\mathcal{I}} [\Sigma]_{\mathcal{I}, \mathcal{I}} \mathbf{V}_{\mathcal{I}}^\top) = \text{Row}(\mathbf{V}_{\mathcal{I}}^\top). \tag{15d}$$

In other words, the two terms $\nabla \ell(\mathbf{W}) \mathbf{B} \mathbf{B}^\top$ and $\mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})$ splits the $2r$ -dimensional column and row spaces of $\mathbf{U}_{\mathcal{I}} [\Sigma]_{\mathcal{I}, \mathcal{I}} \mathbf{V}_{\mathcal{I}}^\top$ into two r -dimensional subspaces.

Moreover, because $r = \text{rank}(\mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})) \leq \text{rank}(\mathbf{A}) \leq r$, it follows that $\text{rank}(\mathbf{A}) = r$. Thus we obtain $\text{Col}(\mathbf{A} \mathbf{A}^\top \nabla \ell(\mathbf{W})) = \text{Col}(\mathbf{A})$. Then, (14), (15a) and (15b) imply that, the two terms

810 $\nabla\ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top$ and $\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W})$ are respectively the orthogonal projections of $\frac{1}{L\eta}\mathbf{U}_\mathcal{I}[\Sigma]_{\mathcal{I},\mathcal{I}}\mathbf{V}_\mathcal{I}^\top$
811 onto the disjoint subspaces $\text{Col}(\nabla\ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top)$ and $\text{Col}(\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W})) = \text{Col}(\mathbf{A})$. To be specific,
812 defining projection matrix $\mathbf{P}_\mathbf{A} := \mathbf{A}(\mathbf{A}^\top\mathbf{A})^{-1}\mathbf{A}^\top$, we have
813

$$814 \mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W}) = \mathbf{P}_\mathbf{A}\frac{1}{L\eta}\mathbf{U}_\mathcal{I}\Sigma_{\mathcal{I},\mathcal{I}}\mathbf{V}_\mathcal{I}^\top \stackrel{(a)}{=} \frac{1}{L\eta}\mathbf{P}_\mathbf{A}\mathbf{P}_{\mathbf{U}_\mathcal{I}}\nabla\ell(\mathbf{W}) \stackrel{(b)}{=} \frac{1}{L\eta}\mathbf{P}_\mathbf{A}\nabla\ell(\mathbf{W})$$

816 where (a) utilizes $\mathbf{U}_\mathcal{I}\Sigma_{\mathcal{I},\mathcal{I}}\mathbf{V}_\mathcal{I}^\top = \mathbf{U}_\mathcal{I}\mathbf{U}_\mathcal{I}^\top\nabla\ell(\mathbf{W}) = \mathbf{P}_{\mathbf{U}_\mathcal{I}}\nabla\ell(\mathbf{W})$, and (b) leverages $\text{Col}(\mathbf{A}) \subset$
817 $\text{Col}(\mathbf{U}_\mathcal{I})$ so that $\mathbf{P}_\mathbf{A}\mathbf{P}_{\mathbf{U}_\mathcal{I}} = \mathbf{P}_\mathbf{A}$.
818

819 Left-multiplying both sides by \mathbf{A}^\top leads to
820

$$821 0 = \mathbf{A}^\top\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W}) - \frac{1}{L\eta}\mathbf{A}^\top\nabla\ell(\mathbf{W}) = (\mathbf{A}^\top\mathbf{A} - \frac{1}{L\eta}\mathbf{I}_r)\mathbf{A}^\top\nabla\ell(\mathbf{W}).$$

823 Given that $\mathbf{A}^\top\nabla\ell(\mathbf{W})$ has full row rank r , we must have $\mathbf{A}^\top\mathbf{A} - \frac{1}{L\eta}\mathbf{I}_r = 0$. That says, $\sqrt{L\eta}\mathbf{A}$ has
824 orthonormal columns, and hence $\mathbf{P}_\mathbf{A} = L\eta\mathbf{A}\mathbf{A}^\top$. Similarly, using (15c) and (15d), we acquire that
825 \mathbf{B} also has orthonormal columns, and $\mathbf{P}_\mathbf{B} = L\eta\mathbf{B}\mathbf{B}^\top$.
826

827 Now left-multiplying $\mathbf{U}_\mathcal{I}^\top$ and right-multiplying $\mathbf{V}_\mathcal{I}$ on both sides of (14) result in
828

$$829 \Sigma_\mathcal{I}\mathbf{V}_\mathcal{I}^\top\mathbf{B}\mathbf{B}^\top\mathbf{V}_\mathcal{I} + \mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}\Sigma_\mathcal{I} = \frac{1}{L\eta}\Sigma_\mathcal{I}. \quad (16)$$

830 We next prove that $\mathbf{V}_\mathcal{I}^\top\mathbf{B}\mathbf{B}^\top\mathbf{V}_\mathcal{I}$ and $\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}$ are both diagonal. Without loss of generality,
831 assume the $\sigma_i \neq \sigma_j, i \neq j, \forall i, j \in \mathcal{I}$. Otherwise, the rank- $2r$ SVD is not unique, and one can
832 always rotate the axes of $\mathbf{U}_\mathcal{I}$ and $\mathbf{V}_\mathcal{I}$ to align with \mathbf{A} and \mathbf{B} . By the relationship, the non-diagonal
833 elements satisfy for $\forall i, j \in \mathcal{I}$ and $i \neq j$
834

$$835 \sigma_i[\mathbf{V}_\mathcal{I}^\top\mathbf{B}\mathbf{B}^\top\mathbf{V}_\mathcal{I}]_{ij} + [\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}]_{ij}\sigma_j = \frac{1}{L\eta}[\Sigma_\mathcal{I}]_{ij} = 0$$

$$836 \sigma_j[\mathbf{V}_\mathcal{I}^\top\mathbf{B}\mathbf{B}^\top\mathbf{V}_\mathcal{I}]_{ij} + [\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}]_{ij}\sigma_i = \frac{1}{L\eta}[\Sigma_\mathcal{I}]_{ji} = 0$$

840 Solving for $[\mathbf{V}_\mathcal{I}^\top\mathbf{B}\mathbf{B}^\top\mathbf{V}_\mathcal{I}]_{ij}$ and $[\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}]_{ij}$, we obtain
841

$$842 (\sigma_i^2 - \sigma_j^2)[\mathbf{V}_\mathcal{I}^\top\mathbf{B}\mathbf{B}^\top\mathbf{V}_\mathcal{I}]_{ij} = 0, \quad (\sigma_j^2 - \sigma_i^2)[\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}]_{ij} = 0.$$

843 This demonstrates $[\mathbf{V}_\mathcal{I}^\top\mathbf{B}\mathbf{B}^\top\mathbf{V}_\mathcal{I}]_{ij} = [\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}]_{ij} = 0$, so $\mathbf{V}_\mathcal{I}^\top\mathbf{B}\mathbf{B}^\top\mathbf{V}_\mathcal{I}$ and $\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}$ are
844 diagonal.
845

846 Then, recall that $\sqrt{L\eta}\mathbf{A}$ has orthonormal columns, so
847

$$848 (L\eta\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I})^2 = L\eta\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}.$$

849 As the diagonal matrix $\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}$ is symmetric positive semi-definite, its diagonal elements satisfy
850

$$851 [L\eta\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}]_{ii}^2 = [L\eta\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}]_{ii} \geq 0 \Rightarrow [\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}]_{ii} = 0 \text{ or } \frac{1}{L\eta}.$$

854 Likewise we also have $[\mathbf{V}_\mathcal{I}^\top\mathbf{B}\mathbf{B}^\top\mathbf{V}_\mathcal{I}]_{ii} = 0$ or $\frac{1}{L\eta}$.
855

856 Defining $\mathcal{A} := \{i \mid [\mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I}]_{ii} = 1/(L\eta)\}$ and $\mathcal{B} := \{i \mid [\mathbf{V}_\mathcal{I}^\top\mathbf{B}\mathbf{B}^\top\mathbf{V}_\mathcal{I}]_{ii} = 1/(L\eta)\}$, it
857 follows from (16) that

$$858 |\mathcal{A}| = |\mathcal{B}| = r, \quad \mathcal{A} \cup \mathcal{B} = \mathcal{I}.$$

859 As a result, it holds
860

$$861 \mathbf{U}_\mathcal{I}^\top\mathbf{A}\mathbf{A}^\top\mathbf{U}_\mathcal{I} = \frac{1}{L\eta} \sum_{i \in \mathcal{A}} \mathbf{e}_i \mathbf{e}_i^\top \Rightarrow (\mathbf{U}_\mathcal{I} \mathbf{U}_\mathcal{I}^\top) \mathbf{A}\mathbf{A}^\top (\mathbf{U}_\mathcal{I} \mathbf{U}_\mathcal{I}^\top) = \frac{1}{L\eta} \sum_{i \in \mathcal{A}} \mathbf{u}_i \mathbf{u}_i^\top = \frac{1}{L\eta} \mathbf{U}_\mathcal{A} \mathbf{U}_\mathcal{A}^\top$$

863 where \mathbf{e}_i is the i -th column of the identity matrix \mathbf{I}_{2r} .

864 Notice that $\mathbf{U}_{\mathcal{I}}\mathbf{U}_{\mathcal{I}}^\top = \mathbf{P}_{\mathbf{U}_{\mathcal{I}}}$, and $\text{Col}(\mathbf{A}) \subset \text{Col}(\mathbf{U}_{\mathcal{I}})$. It follows
865

$$866 \quad (\mathbf{U}_{\mathcal{I}}\mathbf{U}_{\mathcal{I}}^\top)\mathbf{A}\mathbf{A}^\top(\mathbf{U}_{\mathcal{I}}\mathbf{U}_{\mathcal{I}}^\top) = \mathbf{A}\mathbf{A}^\top = \frac{1}{L\eta}\mathbf{U}_{\mathcal{A}}\mathbf{U}_{\mathcal{A}}^\top.$$

868 Using the fact that $L\eta\mathbf{A}^\top\mathbf{A} = \mathbf{I}_r$ and $\text{Col}(\mathbf{A}) = \text{Col}(\mathbf{U}_{\mathcal{A}})$, we acquire
869

$$870 \quad \mathbf{A} = \frac{1}{\sqrt{L\eta}}\mathbf{U}_{\mathcal{A}}\mathbf{P}, \quad \mathbf{P} \in \text{O}(r)$$

873 and similarly

$$874 \quad \mathbf{B} = \frac{1}{\sqrt{L\eta}}\mathbf{V}_{\mathcal{B}}\mathbf{Q}, \quad \mathbf{Q} \in \text{O}(r)$$

876 which concludes the proof. \square
877

878 A.2 PROOF OF THEOREM 3

880 *Proof.* As before, the subscript t will be omitted in the proof for simplicity. First notice that when
881 $\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W}) \neq 0$ and $\alpha \rightarrow \infty$, or $\nabla\ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top \neq 0$ and $\beta \rightarrow \infty$, the objective value (9) goes
882 unbounded to $+\infty$. Additionally, if $\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W}) = 0$ (or $\nabla\ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top = 0$), changing α (or β)
883 has no impact on the objective value. By Assumption 2 and Lemma 6, at least one of $\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W})$
884 and $\nabla\ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top$ is nonzero. As the objective (9) is a continuous function of α and β in \mathbb{R}^2 ,
885 there must be some global minimum achieved in the interior of \mathbb{R}^2 . Therefore, we can examine the
886 stationary points of the objective.

887 The first-order stationary point condition yields

$$888 \quad \alpha^*\left(\alpha^{*2}\|\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W})\|_F^2 - \langle\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W}), \frac{1}{L\eta}\nabla\ell(\mathbf{W}) - \beta^{*2}\nabla\ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\rangle_F\right) = 0, \quad (17a)$$

$$889 \quad \beta^*\left(\beta^{*2}\|\nabla\ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2 - \langle\nabla\ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top, \frac{1}{L\eta}\nabla\ell(\mathbf{W}) - \alpha^{*2}\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W})\rangle_F\right) = 0. \quad (17b)$$

893 These two equations offers nine stationary points, which are investigated in the following.
894

895 We next show that the trivial stationary point $(\alpha, \beta) = (0, 0)$ must not be a local minimum. Plugging
896 $\alpha = 0$ and $\beta = 0$ into (9) leads to objective value of $\|\nabla\ell(\mathbf{W})\|_F^2/2L$. By assumption 2, at least
897 one of $\|\mathbf{A}^\top\nabla\ell(\mathbf{W})\|_F$ and $\|\nabla\ell(\mathbf{W})\mathbf{B}\|_F$ should be nonzero. Without loss of generality, assume
898 $\|\mathbf{A}^\top\nabla\ell(\mathbf{W})\|_F > 0$. Taking $\beta = 0$ and $0 < \alpha < 2/(\sqrt{L\eta}\|\mathbf{A}\|_2)$, the objective (9) is upper
899 bounded by

$$900 \quad \frac{L}{2}\left\|\frac{1}{L}\nabla\ell(\mathbf{W}) - \eta\beta^2\nabla\ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top - \eta\alpha^2\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W})\right\|_F^2 \leq \frac{L}{2}\|\nabla\ell(\mathbf{W})\|_F^2\left\|\frac{1}{L}\mathbf{I}_m - \eta\alpha^2\mathbf{A}\mathbf{A}^\top\right\|_2^2$$

$$901 \quad < \frac{L}{2}\|\nabla\ell(\mathbf{W})\|_F^2.$$

904 This demonstrates $(\alpha, \beta) = (0, 0)$ must not be a local minimum. Therefore, at lease one of $|\alpha^*|$ and
905 $|\beta^*|$ should be strictly positive.
906

907 To determine whether $|\alpha^*|$ and $|\beta^*|$ are strictly positive or zeros, we consider the following four
908 cases.

909 **Case 1:** $C^A > 0$ and $C^B \leq 0$.

910 We first rewrite the objective (9) as a quadratic function of $a^2 \geq 0$ via

$$911 \quad \left\|\frac{1}{L}\nabla\ell(\mathbf{W}) - \eta\beta^2\nabla\ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top - \eta\alpha^2\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W})\right\|_F^2$$

$$912 \quad = \eta^2\|\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W})\|_F^2\alpha^4 - 2\eta\langle\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W}), \frac{1}{L}\nabla\ell(\mathbf{W}) - \eta\beta^2\nabla\ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\rangle_F\alpha^2 + \text{Const.}$$

$$913 \quad = \eta^2\|\mathbf{A}\mathbf{A}^\top\nabla\ell(\mathbf{W})\|_F^2\alpha^4 - 2\eta\left(\frac{1}{L}\|\mathbf{A}^\top\nabla\ell(\mathbf{W})\|_F^2 - \eta\beta^2\|\mathbf{A}^\top\nabla\ell(\mathbf{W})\mathbf{B}\|_F^2\right)\alpha^2 + \text{Const.}$$

918 which attains its minimal value at

$$919 \quad \alpha^{*2} = \max \left\{ 0, \frac{\frac{1}{L\eta} \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 - \beta^{*2} \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\mathbf{B}\|_F^2}{\|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2} \right\} \quad (18)$$

920 Using $C^A > 0$, we next show that $\alpha^* = 0$ leads to a contradiction, and thus $|\alpha^*|$ must be strictly
921 positive.

922 Note that $C^A > 0$ indicates $\mathbf{A}^\top \nabla \ell(\mathbf{W}) \neq \mathbf{0}$ and $\nabla \ell(\mathbf{W})\mathbf{B} \neq \mathbf{0}$; otherwise $C^A = 0$ by its
923 definition. By Lemma 6, it follows that $\|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F > 0$ and $\|\nabla \ell(\mathbf{W})\mathbf{B}\|_F > 0$. If
924 $\alpha^* = 0$, from the previous discussions we must have $|\beta^*| > 0$. However, applying $\alpha^* = 0$ and
925 $|\beta^*| > 0$ to (17) renders

$$926 \quad \beta^{*2} = \frac{\langle \nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top, \frac{1}{L\eta} \nabla \ell(\mathbf{W}) \rangle_F}{\|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2} = \frac{\|\nabla \ell(\mathbf{W})\mathbf{B}\|_F^2}{L\eta \|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2}.$$

927 As a result, (18) reduces to

$$928 \quad \alpha^{*2} = \max \left\{ 0, \frac{\|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 - \frac{\|\nabla \ell(\mathbf{W})\mathbf{B}\|_F^2}{\|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2} \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\mathbf{B}\|_F^2}{L\eta \|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2} \right\}$$

$$929 \quad = \max \left\{ 0, \frac{C^A}{L\eta \|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2} \right\}$$

$$930 \quad = \frac{C^A}{L\eta \|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2} > 0$$

931 This contradicts the assumption $\alpha^* = 0$, and thus we must have $|\alpha^*| > 0$.

932 Next, we show that $C^B \leq 0$ leads to $\beta^* = 0$. Assuming $|\beta^*|$ is also strictly positive, solving (17)
933 results in

$$934 \quad L\eta C\alpha^{*2} = C^A > 0, \quad L\eta C\beta^{*2} = C^B \leq 0$$

935 which contradicts $|\alpha^*|, |\beta^*| > 0$.

936 To this end, it must hold $|\alpha^*| > 0$, $\beta^* = 0$. Combining this with (17) yields the solution

$$937 \quad \alpha^{*2} = \frac{\|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2}{L\eta \|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2}, \quad \beta^* = 0. \quad (19)$$

938 **Case 2:** $C^A \leq 0$ and $C^B > 0$.

939 The analysis is akin to Case 1.

940 **Case 3:** $C = 0$.

941 By Assumption 2, at least one of \mathbf{A} and \mathbf{B} should be non-zero. Assume $\mathbf{A} \neq 0$ for simplicity, while
942 similar derivation applies to $\mathbf{B} \neq 0$.

943 Using Cauchy-Schwarz inequality, it follows

$$944 \quad C = \|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2 - \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\mathbf{B}\|_F^4$$

$$945 \quad = \|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2 - \langle \mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W}), \nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top \rangle_F^2 \geq 0$$

946 where the equality holds if and only if $\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top = \xi \mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})$ for some constant $\xi \in \mathbb{R}$.

947 If $\xi = 0$, solving (17) with $\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top = 0$ gives (19).

948 If $\xi \neq 0$, substituting $\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top = \xi \mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})$ in (17) leads to

$$949 \quad \alpha^* \left((\alpha^{*2} + \xi \beta^{*2}) \|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 - \frac{1}{L\eta} \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \right) = 0,$$

$$950 \quad \beta^* \left((\alpha^{*2} + \xi \beta^{*2}) \|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 - \frac{1}{L\eta} \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \right) = 0.$$

972 As $(\alpha, \beta) = (0, 0)$ has been shown non-optimal, it must holds
 973

$$974 \alpha^{*2} + \xi\beta^{*2} = \frac{\|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2}{L\eta\|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2}. \quad (20)$$

976 This relationship and $\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top = \xi\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})$ renders objective value
 977

$$978 \frac{L}{2} \left\| \frac{1}{L} \nabla \ell(\mathbf{W}) - \eta\beta^{*2} \nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top - \eta\alpha^{*2} \mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W}) \right\|_F^2 \\ 979 = \frac{1}{2L} \left\| \nabla \ell(\mathbf{W}) - \frac{\|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2}{\|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2} \mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W}) \right\|_F^2 = \frac{1}{2L} \left(\|\nabla \ell(\mathbf{W})\|_F^2 - \frac{\|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^4}{\|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2} \right)$$

982 which is a constant independent of α^{*2} and β^{*2} . In other words, the optimal is achieved as if (20) is
 983 satisfied. One of such choices is simply (19).

984 Likewise, if $\mathbf{B} \neq 0$, a valid choice is
 985

$$986 \alpha^* = 0, \beta^{*2} = \frac{\|\nabla \ell(\mathbf{W})\mathbf{B}\|_F^2}{L\eta\|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2}.$$

989 **Case 4:** $C^A \geq 0, C^B \geq 0$ and $C > 0$.

990 We first prove that $C^A = C^B = 0$ is impossible when $C > 0$. Assuming $C^A = C^B = 0$, it follows
 991 from their definitions that

$$992 \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2 = \|\nabla \ell(\mathbf{W})\mathbf{B}\|_F^2 \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\mathbf{B}\|_F^2, \\ 993 \|\nabla \ell(\mathbf{W})\mathbf{B}\|_F^2 \|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 = \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\mathbf{B}\|_F^2$$

995 Multiplying the two equations on both sides and rearranging the terms yield

$$996 \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \|\nabla \ell(\mathbf{W})\mathbf{B}\|_F^2 (\|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2 - \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\mathbf{B}\|_F^4) = 0.$$

998 As $C = \|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2 - \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\mathbf{B}\|_F^4 > 0$, we must have either
 999 $\|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 = 0$ or $\|\nabla \ell(\mathbf{W})\mathbf{B}\|_F^2 = 0$. However, both cases lead to $C = 0$, thus deriving
 1000 a contradiction.

1001 Now assume $C^A > 0$ without loss of generality, which leads to $|\alpha^*| > 0$ as proved in Case 1. Next,
 1002 applying (18) into the objective (9) and reformulating it as a quadratic function of β^{*2} causes
 1003

$$1004 \left\| \frac{1}{L} \nabla \ell(\mathbf{W}) - \eta\beta^2 \nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top - \eta\alpha^{*2} \mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W}) \right\|_F^2 \\ 1005 = \left\| \frac{1}{L} \nabla \ell(\mathbf{W}) - \eta\beta^2 \nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top - \eta \frac{\frac{1}{L\eta} \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 - \beta^2 \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\mathbf{B}\|_F^2}{\|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2} \mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W}) \right\|_F^2 \\ 1006 = \eta^2 \left(\|\nabla \ell(\mathbf{W})\mathbf{B}\mathbf{B}^\top\|_F^2 - \frac{\|\mathbf{A}^\top \nabla \ell(\mathbf{W})\mathbf{B}\|_F^4}{\|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2} \right) \beta^4 - \\ 1007 \frac{2\eta}{L} \left(\|\nabla \ell(\mathbf{W})\mathbf{B}\|_F^2 - \frac{\|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2 \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\mathbf{B}\|_F^2}{\|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2} \right) \beta^2 + \text{Const.} \\ 1008 = \frac{\eta^2 C}{\|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2} \beta^4 - \frac{2\eta C^B}{L\|\mathbf{A}\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_F^2} \beta^2 + \text{Const.}.$$

1009 As $C > 0$, it follows that $\beta^{*2} = C^B/(L\eta C)$. Plugging this back to (18) gives $\alpha^{*2} = C^A/(L\eta C)$. \square

1018 A.3 PROOF OF THEOREM 5

1020 *Proof.* The high-level idea of the proof is similar to the proof of Case 4 of Theorem 3. First, for the
 1021 same rationale, there must be stationary point(s) in the interior of \mathbb{R}^{2r} achieving the global minimum.

1022 Denoting by $\phi := \alpha^{\circ 2}$ and $\psi := \beta^{\circ 2}$, the objective (10) can be equivalently written as a constrained
 1023 optimization problem

$$1024 \min_{\phi, \psi \in \mathbb{R}_+^r} \frac{L}{2} \left\| \frac{1}{L} \nabla \ell(\mathbf{W}) - \eta \nabla \ell(\mathbf{W}) \mathbf{B} \text{diag}^2(\psi) \mathbf{B}^\top - \eta \mathbf{A} \text{diag}^2(\phi) \mathbf{A}^\top \nabla \ell(\mathbf{W}) \right\|_F^2. \quad (21)$$

1026 The optimal value of (21) is lower bounded by the optimal value of its unconstrained counterpart
 1027

$$1028 \min_{\phi, \psi} \frac{L}{2} \left\| \frac{1}{L} \nabla \ell(\mathbf{W}) - \eta \nabla \ell(\mathbf{W}) \mathbf{B} \operatorname{diag}^2(\psi) \mathbf{B}^\top - \eta \mathbf{A} \operatorname{diag}^2(\phi) \mathbf{A}^\top \nabla \ell(\mathbf{W}) \right\|_F^2. \quad (22)$$

1030 Next, we show that under the conditions of Theorem 5, the optimum points of (22) is inside the
 1031 constraint \mathbb{R}_+^r , which is thus also the optimum of (21).

1032 The optimality condition for (22) is

$$1033 \mathbf{A}^\top \mathbf{A} \operatorname{diag}(\phi) \mathbf{A}^\top \nabla \ell(\mathbf{W}) \ell(\mathbf{W})^\top \mathbf{A} - \frac{1}{L\eta} \mathbf{A}^\top \nabla \ell(\mathbf{W}) \ell(\mathbf{W})^\top \mathbf{A} + \\ 1034 \quad \mathbf{A}^\top \nabla \ell(\mathbf{W}) \mathbf{B} \operatorname{diag}(\psi) \mathbf{B}^\top \nabla \ell(\mathbf{W})^\top \mathbf{A} = 0, \\ 1035 \mathbf{B}^\top \mathbf{B} \operatorname{diag}(\psi) \mathbf{B}^\top \nabla \ell(\mathbf{W})^\top \ell(\mathbf{W}) \mathbf{B} - \frac{1}{L\eta} \mathbf{B}^\top \nabla \ell(\mathbf{W})^\top \ell(\mathbf{W}) \mathbf{B} + \\ 1036 \quad \mathbf{B}^\top \nabla \ell(\mathbf{W})^\top \mathbf{A} \operatorname{diag}(\phi) \mathbf{A}^\top \nabla \ell(\mathbf{W}) \mathbf{B} = 0.$$

1039 Notice that these two equations can be expressed using matrices as
 1040

$$1042 \operatorname{diag}(\mathbf{A}^\top \mathbf{A} \operatorname{diag}(\phi) \mathbf{A}^\top \nabla \ell(\mathbf{W}) \ell(\mathbf{W})^\top \mathbf{A}) - \frac{1}{L\eta} \operatorname{diag}(\|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_{\text{row}}^2) + \\ 1043 \quad \operatorname{diag}(\mathbf{A}^\top \nabla \ell(\mathbf{W}) \mathbf{B} \operatorname{diag}(\psi) \mathbf{B}^\top \nabla \ell(\mathbf{W})^\top \mathbf{A}) = \mathbf{0}, \\ 1044 \operatorname{diag}(\mathbf{B}^\top \mathbf{B} \operatorname{diag}(\psi) \mathbf{B}^\top \nabla \ell(\mathbf{W})^\top \ell(\mathbf{W}) \mathbf{B}) - \frac{1}{L\eta} \operatorname{diag}(\|\mathbf{B}^\top \nabla \ell(\mathbf{W})^\top\|_{\text{row}}^2) + \\ 1045 \quad \operatorname{diag}(\mathbf{B}^\top \nabla \ell(\mathbf{W})^\top \mathbf{A} \operatorname{diag}(\phi) \mathbf{A}^\top \nabla \ell(\mathbf{W}) \mathbf{B}) \big] = \mathbf{0}.$$

1046 By Lemma 7, we obtain

$$1050 ((\mathbf{A}^\top \mathbf{A}) \odot (\mathbf{A}^\top \nabla \ell(\mathbf{W}) \ell(\mathbf{W})^\top \mathbf{A})) \phi - \frac{1}{L\eta} \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_{\text{row}}^2 + (\mathbf{A}^\top \nabla \ell(\mathbf{W}) \mathbf{B})^{\circ 2} \psi = \mathbf{0}, \\ 1051 ((\mathbf{B}^\top \mathbf{B}) \odot (\mathbf{B}^\top \nabla \ell(\mathbf{W})^\top \ell(\mathbf{W}) \mathbf{B})) \psi - \frac{1}{L\eta} \|\mathbf{B}^\top \nabla \ell(\mathbf{W})^\top\|_{\text{row}}^2 + (\mathbf{B}^\top \nabla \ell(\mathbf{W})^\top \mathbf{A})^{\circ 2} \phi = \mathbf{0}.$$

1055 Then, we can rewrite these using block matrices as

$$1056 \begin{bmatrix} (\mathbf{A}^\top \mathbf{A}) \odot (\mathbf{A}^\top \nabla \ell(\mathbf{W}) \nabla \ell(\mathbf{W})^\top \mathbf{A}) & (\mathbf{A}^\top \nabla \ell(\mathbf{W}) \mathbf{B})^{\circ 2} \\ (\mathbf{B}^\top \nabla \ell(\mathbf{W})^\top \mathbf{A})^{\circ 2} & (\mathbf{B}^\top \mathbf{B}) \odot (\mathbf{B}^\top \nabla \ell(\mathbf{W})^\top \nabla \ell(\mathbf{W}) \mathbf{B}) \end{bmatrix} \begin{bmatrix} \phi \\ \psi \end{bmatrix} - \\ 1057 \quad \frac{1}{L\eta} \begin{bmatrix} \|\mathbf{A}^\top \nabla \ell(\mathbf{W})\|_{\text{row}}^2 \\ \|\mathbf{B}^\top \nabla \ell(\mathbf{W})^\top\|_{\text{row}}^2 \end{bmatrix} = \mathbf{0} \\ 1061 \implies \begin{bmatrix} (\mathbf{S}^{A^\top} \mathbf{S}^A) \odot (\mathbf{S}^{B^\top} \mathbf{S}^B) \end{bmatrix} \begin{bmatrix} \phi \\ \psi \end{bmatrix} - \frac{1}{L\eta} \boldsymbol{\lambda} = \mathbf{0}$$

1063 Therefore, the stationary points of (22) are

$$1065 \begin{bmatrix} \phi \\ \psi \end{bmatrix} \in \left\{ \frac{1}{L\eta} \left[(\mathbf{S}^{A^\top} \mathbf{S}^A) \odot (\mathbf{S}^{B^\top} \mathbf{S}^B) \right]^\dagger \boldsymbol{\lambda} + \mathbf{v} \mid \mathbf{v} \in \operatorname{Null}((\mathbf{S}^{A^\top} \mathbf{S}^A) \odot (\mathbf{S}^{B^\top} \mathbf{S}^B)) \right\} := \mathcal{S}$$

1067 It is easy to verify that the null space vector \mathbf{v} will not affect the objective value, and thus one can
 1068 take any \mathbf{v} to reach the global minimum.

1069 By the conditions in Theorem 5, we have $\mathbf{v}_t \in \mathcal{S} \cap \mathbb{R}_+^{2r} \subseteq \mathbb{R}_+^{2r}$. As a consequence, \mathbf{v}_t is also the
 1070 global optimum of the constrained optimization (21). Taking Hadamard square root results in (11),
 1071 which concludes the proof. \square

1073 A.4 MOMENT ESTIMATORS IN ADAPTIVE OPTIMIZERS

1075 Optimizers such as Adam(W) leverages the first and entry-wise second moment estimators of the
 1076 stochastic gradient to adaptively update the parameters. For LoRA, the parameters are \mathbf{A} and \mathbf{B}
 1077 (viewed as stochastic matrices), whose corresponding gradient moments are

$$1078 \mathbb{E}[\nabla_{\mathbf{A}} \ell(\mathbf{W}^{\text{pt}} + \mathbf{A} \mathbf{B}^\top)] = \mathbb{E}[\nabla \ell(\mathbf{W}) \mathbf{B}], \quad \mathbb{E}[(\nabla_{\mathbf{A}} \ell(\mathbf{W}^{\text{pt}} + \mathbf{A} \mathbf{B}^\top))^{\circ 2}] = \mathbb{E}[(\nabla \ell(\mathbf{W}) \mathbf{B})^{\circ 2}], \\ 1079 \mathbb{E}[\nabla_{\mathbf{B}} \ell(\mathbf{W}^{\text{pt}} + \mathbf{A} \mathbf{B}^\top)] = \mathbb{E}[\nabla \ell(\mathbf{W})^\top \mathbf{A}], \quad \mathbb{E}[(\nabla_{\mathbf{B}} \ell(\mathbf{W}^{\text{pt}} + \mathbf{A} \mathbf{B}^\top))^{\circ 2}] = \mathbb{E}[(\nabla \ell(\mathbf{W})^\top \mathbf{A})^{\circ 2}].$$

Given dampening parameters $\beta_1, \beta_2 \in (0, 1)$, the first and second moment estimators $m_t(\cdot)$ and $v_t(\cdot)$ are defined as the exponential moving averages

$$\begin{aligned} m_t(\nabla \ell(\mathbf{W}) \mathbf{B}) &= (1 - \beta_1) \nabla \ell(\mathbf{W}_t) \mathbf{B}_t + \beta_1 m_{t-1}(\nabla \ell(\mathbf{W}) \mathbf{B}) \\ &= (1 - \beta_1) \sum_{\tau=0}^t \beta_1^{t-\tau} \nabla \ell(\mathbf{W}_\tau) \mathbf{B}_\tau, \end{aligned} \quad (23a)$$

$$\begin{aligned} v_t(\nabla \ell(\mathbf{W}) \mathbf{B}) &= (1 - \beta_2) [\nabla \ell(\mathbf{W}_t) \mathbf{B}_t]^{\circ 2} + \beta_2 v_{t-1}(\nabla \ell(\mathbf{W}) \mathbf{B}) \\ &= (1 - \beta_2) \sum_{\tau=0}^t \beta_2^{t-\tau} [\nabla \ell(\mathbf{W}_\tau) \mathbf{B}_\tau]^{\circ 2}, \end{aligned} \quad (23b)$$

$$m_t(\nabla \ell(\mathbf{W})^\top \mathbf{A}) = (1 - \beta_1) \sum_{\tau=0}^t \beta_1^{t-\tau} \nabla \ell(\mathbf{W}_\tau)^\top \mathbf{A}_\tau, \quad (23c)$$

$$v_t(\nabla \ell(\mathbf{W})^\top \mathbf{A}) = (1 - \beta_2) \sum_{\tau=0}^t \beta_2^{t-\tau} [\nabla \ell(\mathbf{W}_\tau)^\top \mathbf{A}_\tau]^{\circ 2}. \quad (23d)$$

Moreover, these optimizers rely on the following standard assumption characterizing the gradient stochasticity.

Assumption 3. *Stochastic gradient samples $\nabla \ell(\mathbf{W}_t) \mathbf{A}_t$ and $\nabla \ell(\mathbf{W}_t)^\top \mathbf{B}_t$ are unbiased and have bounded variance for $\forall t$.*

Under this assumption, it can be readily verified that the moment estimators in (23) are also unbiased and variance-bounded.

Next, we prove the two lemmas in Section 3.2.

Proof of Lemma 2.

Proof. The proof directly follows from the definition (23). Specifically, it holds

$$\begin{aligned} m_t(\nabla_{\tilde{\mathbf{A}}} \ell(\mathbf{W})) &= m_t(\nabla \ell(\mathbf{W}) \tilde{\mathbf{B}}) = m_t(\beta \nabla \ell(\mathbf{W}) \mathbf{B}) \\ &= \beta (1 - \beta_1) \sum_{\tau=0}^t \beta_1^{t-\tau} \nabla \ell(\mathbf{W}_\tau) \mathbf{B}_\tau \\ &= \beta m_t(\nabla \ell(\mathbf{W}) \mathbf{B}) = m_t(\nabla_{\mathbf{A}} \ell(\mathbf{W})). \end{aligned}$$

Similar derivations can be shown for other three moment estimators. \square

Proof of Lemma 4.

Proof. For the column-wise scaling, its first moment estimator of $\nabla_{\tilde{\mathbf{A}}} \ell(\mathbf{W})$ follows as

$$\begin{aligned} m_t(\nabla_{\tilde{\mathbf{A}}} \ell(\mathbf{W})) &= m_t(\nabla \ell(\mathbf{W}) \tilde{\mathbf{B}}) = m_t(\nabla \ell(\mathbf{W}) \mathbf{B} \text{diag}(\boldsymbol{\beta})) \\ &= (1 - \beta_1) \sum_{\tau=0}^t \beta_1^{t-\tau} \nabla \ell(\mathbf{W}_\tau) \mathbf{B}_\tau \text{diag}(\boldsymbol{\beta}) \\ &= m_t(\nabla \ell(\mathbf{W}) \mathbf{B}) \text{diag}(\boldsymbol{\beta}) = m_t(\nabla_{\mathbf{A}} \ell(\mathbf{W})) \text{diag}(\boldsymbol{\beta}). \end{aligned}$$

And the second moment estimator turns out to be

$$\begin{aligned} v_t(\nabla_{\tilde{\mathbf{A}}} \ell(\mathbf{W})) &= v_t(\nabla \ell(\mathbf{W}) \mathbf{B} \text{diag}(\boldsymbol{\beta})) \\ &= (1 - \beta_2) \sum_{\tau=0}^t \beta_2^{t-\tau} [\nabla \ell(\mathbf{W}_\tau) \mathbf{B}_\tau \text{diag}(\boldsymbol{\beta})]^{\circ 2} \\ &= (1 - \beta_2) \sum_{\tau=0}^t \beta_2^{t-\tau} [\nabla \ell(\mathbf{W}_\tau) \mathbf{B}_\tau]^{\circ 2} \text{diag}^2(\boldsymbol{\beta}) \\ &= m_t(\nabla \ell(\mathbf{W}) \mathbf{B}) \text{diag}^2(\boldsymbol{\beta}) = m_t(\nabla_{\mathbf{A}} \ell(\mathbf{W})) \text{diag}^2(\boldsymbol{\beta}). \end{aligned}$$

The same derivations apply to the gradient moment estimators of $\tilde{\mathbf{B}}$. \square

1134 A.5 USEFUL FACTS
11351136 **Lemma 6.** *If $\|\mathbf{A}^\top \mathbf{G}\|_F > 0$, then $\|\mathbf{A}\mathbf{A}^\top \mathbf{G}\|_F > 0$.*
11371138 *Proof.* We prove by contradiction. Suppose $\|\mathbf{A}^\top \mathbf{G}\|_F > 0$ but $\|\mathbf{A}\mathbf{A}^\top \mathbf{G}\|_F = 0$. Then we have
1139 $\mathbf{A}^\top \mathbf{G} \neq \mathbf{0}$ and $\mathbf{A}\mathbf{A}^\top \mathbf{G} = \mathbf{0}$. The latter suggests $\text{Col}(\mathbf{A}^\top \mathbf{G}) \subseteq \text{Null}(\mathbf{A})$. Given that $\text{Col}(\mathbf{A}^\top \mathbf{G}) \subseteq$
1140 $\text{Col}(\mathbf{A}^\top)$, we have $\text{Col}(\mathbf{A}^\top \mathbf{G}) \subseteq \text{Null}(\mathbf{A}) \cap \text{Col}(\mathbf{A}^\top) = \{\mathbf{0}\}$, which contradicts $\mathbf{A}^\top \mathbf{G} \neq \mathbf{0}$. This
1141 prove is thus completed. \square
11421143 **Lemma 7** ((Horn & Johnson, 2012)). *For matrices $\mathbf{M}_1, \mathbf{M}_2 \in \mathbb{R}^{m \times n}$, and vector $\mathbf{v} \in \mathbb{R}^n$,*
1144

1145
$$(\mathbf{M}_1 \odot \mathbf{M}_2)\mathbf{v} = \text{diag}(\mathbf{M}_1 \text{diag}(\mathbf{v})\mathbf{M}_2^\top).$$

1146 **Theorem 8** ((Schur, 1911); Schur product theorem). *If matrices $\mathbf{M}_1, \mathbf{M}_2 \succeq 0$, then $\mathbf{M}_1 \odot \mathbf{M}_2 \succeq 0$.*
11471148 B PSEUDOCODES AND COMPLEXITY COMPARISON
11491150 Algorithm 1 provides the pseudocodes for our ScaLoRA approach, where AdaOpt refers to one
1151 adaptive optimizer step.
11521153 **Algorithm 1:** Scaled low-rank adaptation (ScaLoRA)
11541155 **Input:** Loss ℓ , pre-trained weight \mathbf{W}^{pt} , maximum iterations T , and learning rate η .
11561157 **Initialize:** \mathbf{A}_0 and \mathbf{B}_0 .

```

1158 1 for  $t = 0, \dots, T - 1$  do
1159 2   Solve  $\mathbf{v}_t$  from  $[(\mathbf{S}_t^{A^\top} \mathbf{S}_t^A) \odot (\mathbf{S}_t^{B^\top} \mathbf{S}_t^B)]\mathbf{v}_t = \boldsymbol{\lambda}_t$ ;
1160 3   if  $\mathbf{v}_t \in \mathbb{R}_+^{2r}$  then
1161 4     Compute  $\boldsymbol{\alpha}_t^*$  and  $\boldsymbol{\beta}_t^*$  using Theorem 5;
1162 5     Scale  $\tilde{\mathbf{A}}_t = \mathbf{A}_t \text{diag}(\boldsymbol{\alpha}_t^*)$ ,  $\tilde{\mathbf{B}}_t = \mathbf{B}_t \text{diag}(\boldsymbol{\beta}_t^*)$ ;
1163 6     Alter moment estimators  $m_t$  and  $v_t$  using Lemma 4;
1164 7   else
1165 8     Compute  $\boldsymbol{\alpha}_t^*$  and  $\boldsymbol{\beta}_t^*$  using Theorem 3;
1166 9     Scale  $\tilde{\mathbf{A}}_t = \boldsymbol{\alpha}_t^* \mathbf{A}_t$ ,  $\tilde{\mathbf{B}}_t = \boldsymbol{\beta}_t^* \mathbf{B}_t$ ;
1167 10    Alter moment estimators  $m_t$  and  $v_t$  using Lemma 2;
1168 11  end
1169 12  Merge  $\mathbf{A}_t \mathbf{B}_t^\top$  and factor out  $\tilde{\mathbf{A}}_t \tilde{\mathbf{B}}_t^\top$  using (3);
1170 13  Update  $\mathbf{A}_{t+1} = \text{AdaOpt}(\tilde{\mathbf{A}}_t, \eta, m_t, v_t)$ ,  $\mathbf{B}_{t+1} = \text{AdaOpt}(\tilde{\mathbf{B}}_t, \eta, m_t, v_t)$ ;
1171 14 end
1172 Output:  $\mathbf{A}_T$  and  $\mathbf{B}_T$ .

```

1173 Table 5 summarizes the theoretical overhead comparison, where k represents for the batch size.
1174 Note that the low-rank matrices' Frobenius norms $\|\mathbf{A}_t \mathbf{A}_t^\top \nabla \ell(\mathbf{W}_t)\|_F^2$ and $\|\nabla \ell(\mathbf{W}_t) \mathbf{B}_t \mathbf{B}_t^\top\|_F^2$ in
1175 Theorem 3 can be calculated through the trick
1176

$$\begin{aligned}
\|\mathbf{A}_t \mathbf{A}_t^\top \nabla \ell(\mathbf{W}_t)\|_F^2 &= \text{tr}(\nabla \ell(\mathbf{W}_t)^\top \mathbf{A}_t \mathbf{A}_t^\top \mathbf{A}_t \mathbf{A}_t^\top \nabla \ell(\mathbf{W}_t)) \\
&= \sum_{i=1}^n \sum_{j=1}^r \left[((\nabla \ell(\mathbf{W}_t)^\top \mathbf{A}_t)(\mathbf{A}_t^\top \mathbf{A}_t)) \odot (\nabla \ell(\mathbf{W}_t)^\top \mathbf{A}_t) \right]_{ij}
\end{aligned}$$

1177 which reduces the computational overhead from $\mathcal{O}(m^2 r)$ to $\mathcal{O}((m+n)r^2)$.
11781179 Further, ScaLoRA-I guarantees a constant percentage of additional time overhead upon choosing
1180 $I = \Omega(r)$, which does not grow with the model hidden size m and n . Using the complexity analysis
1181 in Table 5, the extra cost of ScaLoRA-I relative to LoRA is $\frac{\mathcal{O}(mnr/I)}{\Omega(kmn)} = \mathcal{O}(1/k)$, where high-order
1182 terms are dropped under $r \ll m, n$. This ensures the scalability of ScaLoRA-I to larger models and
1183 higher r .
1184

1188
1189
1190 Table 5: Additional complexities introduced by LoRA variants
1191
1192
1193
1194
1195
1196

Method	Time	Space
LoRA forward/backward	$\Omega(kmn)$	$\Omega(kmn)$
MoRA	Depends on f_{compress} and $f_{\text{decompress}}$	
HiRA	$\mathcal{O}(mnr)$	$\mathcal{O}(mn)$
ScaLoRA	$\mathcal{O}(mnr + (m + n + r)r^2)$	$\mathcal{O}((m + n + r)r)$
ScaLoRA-I	$\mathcal{O}((mnr + (m + n + r)r^2)/I)$	$\mathcal{O}((m + n + r)r)$

1197
1198

C EXPERIMENTAL SETUPS

11991200 This section lists the detailed datasets, models, and hyperparameters.
12011202

C.1 PLATFORMS

12031204 All the numerical tests are conducted on a server equipped with four Nvidia A100 GPUs. All codes
1205 are written in PyTorch (Paszke et al., 2019), and partially built on (Hu et al., 2023; Lion et al., 2025).
12061207

C.2 SETUPS FOR LINEAR REGRESSION

12081209 The numerical test considers optimization objective
1210

1211
$$\min_{\mathbf{W}} \frac{1}{2} \|\mathbf{Y} - \mathbf{WX}\|_F^2$$

1212

1213 where the entries of $\mathbf{X} \in \mathbb{R}^{n \times k}$ and $\mathbf{Y} \in \mathbb{R}^{m \times k}$ are both randomly generated from standard Gaussian $\mathcal{N}(0, 1)$. For LoRA, the objective function is
1214

1215
$$\min_{\mathbf{A}, \mathbf{B}} \frac{1}{2} \|\mathbf{Y} - \mathbf{AB}^\top \mathbf{X}\|_F^2.$$

1216

1217 The test utilizes $m = n = 64$, $k = 100$, and $r = 8$. The optimizer is standard GD.
12181219

C.3 SETUPS FOR NATURAL LANGUAGE UNDERSTANDING

12201221 **General Language Understanding Evaluation (GLUE) benchmark** (Wang et al., 2019) is a
1222 widely used suite of datasets designed to evaluate the general-purpose natural language understand-
1223 ing (NLU) capabilities of models. In this work, we adopt the following 8 subsets of GLUE:
1224

- **MNLI** (Williams et al., 2018) (Multi-Genre Natural Language Inference) evaluates a model’s ability to perform natural language *inference* across multiple genres of text.
- **SST-2** (Socher et al., 2013) (Stanford Sentiment Treebank) is a *sentiment classification* dataset with binary labels.
- **MRPC** (Dolan & Brockett, 2005) (Microsoft Research Paraphrase Corpus) focuses on *paraphrase detection*, i.e., determining whether two sentences are semantically equivalent.
- **CoLA** (Warstadt et al., 2019) (Corpus of Linguistic Acceptability) requires models to determine whether a sentence is *grammatically acceptable*.
- **QNLI** (Rajpurkar et al., 2018) (Question Natural Language Inference) is a question-answering dataset reformulated as a binary *inference* task.
- **QQP**¹ (Quora Question Pairs) consists of pairs of questions, and the task is to predict whether they are semantically equivalent.
- **RTE**² (Recognizing Textual Entailment) contains sentence pairs for *textual entailment* classifica-
1239 tion.

1240
1241 ¹<https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs>²<https://paperswithcode.com/dataset/rte>

1242 • **STS-B** (Cer et al., 2017) (Semantic Textual Similarity Benchmark) evaluates the degree of *semantic*
 1243 *similarity* between two sentences on a continuous scale.
 1244

1245 Together, these datasets provide a comprehensive benchmark for testing general-purpose language
 1246 models under diverse NLU tasks. All datasets are distributed under permissive licenses. A summary
 1247 of the datasets is provided in Table 6.

1248
 1249 Table 6: Summary of GLUE benchmark datasets.
 1250

Name	Task	#train	#test	Metrics
MNLI	Natural language inference	393k	20k	Matched & mismatched accuracy
SST-2	Sentiment classification	67k	1.8k	Accuracy
MRPC	Paraphrase detection	3.7k	1.7k	Accuracy, F1
CoLA	Acceptability judgment	8.5k	1k	Matthews correlation
QNLI	QA/NLI	105k	5.4k	Accuracy
QQP	Paraphrase detection	364k	391k	Accuracy, F1
RTE	Textual entailment	2.5k	3k	Accuracy
STS-B	Semantic similarity	7k	1.4k	Pearson & Spearman correlations

1260
 1261 **DeBERTaV3-base** (He et al., 2023) is a transformer-based encoder model with approximately 184M
 1262 parameters. It builds on the DeBERTa architecture by incorporating disentangled attention and an
 1263 enhanced masked language modeling objective, leading to improved efficiency and performance
 1264 across a range of tasks. The publicly available model checkpoint³ is released under the MIT license.

1265 **Hyperparameters** and general setups for natural language understanding tests follow from the
 1266 protocols in (Hu et al., 2022; Zhang et al., 2023). Specifically, the LoRA adapters are inserted
 1267 to all linear layers including `query-proj`, `key-proj`, `value-proj`, `output.dense`, and
 1268 `intermediate.dense` modules, reducing the number of parameters from 184M to 0.67M. The
 1269 LoRA rank is set to $r = 4$ with scaling factor 8 throughout the test. **Learning rates are selected**
 1270 **via grid search from $\{0.8, 1, 2, 3, 4, 5, 6, 8, 10, 20\} \times 10^{-4}$** for each approach, with finer resolution
 1271 allocated to the lower end of the range to better capture the region where many methods are
 1272 more sensitive. For HiRA, the learning-rates are scaled by an additional factor of 10 to offset the
 1273 magnitude change due to Hadamard product. The the number epochs are reduced due to the fast
 1274 convergence of ScaLoRA, while other hyperparameters follow the defaults in (Hu et al., 2022); see
 1275 Table 7.

1276
 1277 Table 7: Hyperparameter for natural language understanding tests.
 1278

Hyperparam	CoLA	SST-2	MRPC	STS-B	QQP	MNLI	QNLI	RTE
LR (LoRA)	8e-4	6e-4	8e-4	8e-4	5e-4	2e-4	4e-4	6e-4
LR (MoRA)	6e-4	6e-4	1e-3	8e-4	5e-4	2e-4	4e-4	6e-4
LR (HiRA)	6e-3	6e-3	8e-3	8e-3	5e-3	2e-3	4e-3	8e-3
LR (ScaLoRA)	6e-4	6e-4	1e-3	8e-4	5e-4	2e-4	4e-4	6e-4
LR scheduler	Linear							
Epochs	10	2	10	10	5	5	3	10
Batch size					32			
Cutoff length	64	128	128	128	320	256	512	320
Warmup steps	100	500	10%	100	1000	1000	500	50
Class dropout	0.1	0	0	0.2	0.2	0.15	0.1	0.2
Weight decay	0	0.01	0.01	0.1	0.01	0	0.01	0.01

1290
 1291 C.4 SETUPS FOR COMMONSENSE REASONING
 1292

1293 **Commonsense reasoning datasets** (Hu et al., 2023) evaluate a model’s ability to apply everyday
 1294 knowledge and make inferences beyond explicitly provided textual information. Such benchmarks
 1295

³<https://huggingface.co/microsoft/deberta-v3-base>

1296 are essential for assessing reasoning over both physical and social contexts, which remain challenging
 1297 for language models despite strong performance on surface-level tasks. The datasets considered
 1298 in this work cover a wide range of commonsense reasoning scenarios:

- 1300 • **BoolQ** (Clark et al., 2019) (Boolean Questions) is a reading comprehension dataset consisting
 1301 of yes/no questions. Each question is paired with a passage from Wikipedia, requiring the model
 1302 to extract and reason over information in the passage to provide the correct binary answer.
- 1303 • **WG**(Sakaguchi et al., 2021) (WinoGrande) is a large-scale coreference resolution benchmark
 1304 that mitigates annotation artifacts found in traditional Winograd schemas.
- 1305 • **PIQA**(Bisk et al., 2020) (Physical Interaction QA) measures knowledge of physical common-
 1306 sense, particularly intuitive reasoning about how objects interact.
- 1307 • **SIQA**(Sap et al., 2019) (Social-IQ-A) targets social commonsense reasoning, requiring models
 1308 to infer motivations, emotions, and social interactions.
- 1309 • **HS**(Zellers et al., 2019) (HellaSwag) evaluates grounded commonsense inference through
 1310 multiple-choice sentence completion, designed to be adversarially difficult.
- 1311 • **ARC**(Chollet, 2019) (AI2 Reasoning Challenge) consists of grade-school science questions, split
 1312 into **ARC-e** (easy) and **ARC-c** (challenge), based on difficulty levels.
- 1313 • **OpenbookQA**(Mihaylov et al., 2018) contains multiple-choice science questions that require
 1314 integrating commonsense with elementary scientific facts, simulating open-book reasoning.

1316 Together, these datasets span multiple domains (physical, social, and scientific reasoning) and pro-
 1317 vide diverse evaluation challenges. All datasets are publicly available under open or research-
 1318 friendly licenses. Table 8 provides a detailed summary.

1320 Table 8: Summary of commonsense reasoning datasets.

Name	Task	#train	#test
WinoGrande	Coreference resolution	40k	1.3k
PIQA	Physical reasoning	16k	3k
SIQA	Social reasoning	33k	2k
HellaSwag	Sentence completion	70k	10k
ARC-easy	Multiple-choice QA	2.3k	1.2k
ARC-challenge	Multiple-choice QA	2.6k	1.2k
OpenbookQA	Open-book QA	5.0k	500

1321 **LLaMA2-7B** (Touvron et al., 2023) is the second-generation model in the LLaMA family, offering
 1322 improvements in training stability, data curation, and overall performance compared to its predeces-
 1323 sor. The released checkpoint⁴ is distributed under a permissive license that supports both academic
 1324 research and commercial applications.

1325 **LLaMA3-8B** (Grattafiori et al., 2024) pertains to the third-generation LLaMA models, trained with
 1326 larger and more diverse datasets and incorporating architectural refinements for improved reason-
 1327 ing and instruction-following ability. Its checkpoint⁵ is available under Meta’s permissive license,
 1328 likewise allowing both research use and commercial deployment.

1329 **Hyperparameters** for this test are adapted from (Lion et al., 2025). LoRA modules are applied
 1330 to all projection matrices, including `q_proj`, `k_proj`, `v_proj`, `up_proj`, and `down_proj`. The
 1331 LoRA rank, scaling factor, and dropout rate are set to 8, 16, and 5%, respectively. We use a batch
 1332 size of 16 and finetune for 3 epochs across all tasks. The sequence cutoff length is fixed at 256
 1333 tokens. Learning rates are reported in Table 9, with a cosine scheduler and 3% warmup steps.
 1334 Learning rates are selected via a grid search over $\{0.8, 1, 2, 3, 4, 5, 6, 8, 10, 20\} \times 10^{-4}$ using finer
 1335 resolution in the lower range. The learning-rates of HiRA and LoRA-GA are respectively scaled by
 1336 an additional factor of 10 and 1/10 to compensate the magnitude change due to Hadamard product
 1337 and large initialization. ReLoRA uses a re-initialization frequency of 200 steps with 10 re-warmup
 1338 steps.

1339 ⁴<https://huggingface.co/meta-llama/Llama-2-7b>

1340 ⁵<https://huggingface.co/meta-llama/Meta-Llama-3-8B>

Table 9: Learning rates for commonsense reasoning tasks.

	Method	BoolQ	PIQA	SIQA	HS	WG	ARC-e	ARC-c	OBQA
1352 1353 1354 1355 1356 1357 1358 1359	LLaMA2-7B	LoRA	8e-4	4e-4	4e-4	4e-4	1e-4	1e-4	4e-4
	ReLoRA	8e-4	4e-4	4e-4	4e-4	1e-4	2e-4	4e-4	4e-4
	LoRA-GA	2e-4	1e-4	1e-4	1e-4	2e-5	8e-5	1e-4	2e-4
	MoRA	8e-4	4e-4	4e-4	4e-4	1e-4	2e-4	2e-4	4e-4
	HiRA	8e-3	4e-3	4e-3	2e-3	1e-3	2e-3	4e-3	4e-3
	ScaLoRA(-I)	8e-4	2e-4	2e-4	4e-4	1e-4	1e-4	4e-4	4e-4
	LoRA _{r=32}	8e-4	2e-4	2e-4	2e-4	1e-4	1e-4	2e-4	2e-4
1360 1361 1362 1363 1364 1365 1366	LLaMA3-8B	LoRA	4e-4	1e-4	1e-4	1e-4	8e-5	2e-4	2e-4
	ReLoRA	4e-4	1e-4	1e-4	1e-4	8e-5	2e-4	2e-4	4e-4
	LoRA-GA	1e-4	8e-5	6e-5	3e-5	4e-5	5e-5	8e-5	2e-4
	MoRA	4e-4	1e-4	1e-4	1e-4	8e-5	1e-4	2e-4	2e-4
	HiRA	8e-3	2e-3	2e-3	1e-3	1e-3	4e-3	8e-3	4e-3
	ScaLoRA(-I)	4e-4	1e-4	1e-4	1e-4	8e-5	8e-5	4e-4	5e-4
	LoRA _{r=32}	4e-4	8e-5	1e-4	1e-4	8e-5	1e-4	2e-4	2e-4

1369 steps for the three smaller datasets ARC-e, ARC-c, and OBQA, and a frequency of 2000 steps with
1370 100 re-warmup steps for the remaining larger datasets. LoRA-GA employs a scaling factor $\gamma = 128$
1371 for stability, and a sample batch size of 32 for gradient estimation.

C.5 SETUPS FOR MATHEMATICAL PROBLEM SOLVING

1376 This experiment is conducted by fine-tuning the Gemma-3-12B model on the MetaMathQA dataset
1377 and subsequently testing its performance on GSM8K and MATH datasets. Below are brief introduc-
1378 tions to the datasets and the model involved.

1379 **MetaMathQA** (Yu et al., 2024) is a synthetic math reasoning dataset released under the Apache-2.0
1380 license and created via question bootstrapping. By rewriting problems through forward, back-
1381 ward, and rephrased perspectives, it augments diversity and improves generalization of mathematical
1382 problem-solving models.

1383 **GSM8K** (Grade-School Math 8K) (Cobbe et al., 2021) is released under the MIT license and con-
1384 sists of roughly 8.5K high-quality, linguistically varied word problems from middle-school curric-
1385 ula, each requiring multiple reasoning steps. It is designed to be solvable by bright students and
1386 serves as a standard benchmark for evaluating multi-step mathematical reasoning.

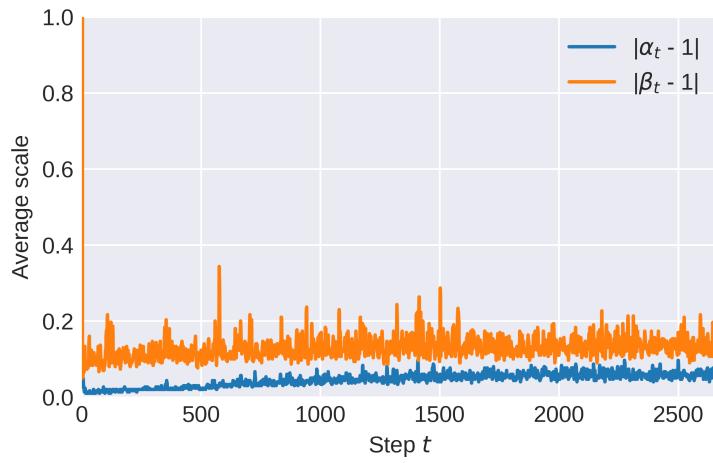
1387 **MATH** (Hendrycks et al., 2021) is also released under the MIT license and includes about 12.5K
1388 high-school competition-style math problems across topics such as algebra, number theory, ge-
1389 ometry, and probability. Each problem is paired with a detailed step-by-step solution, challenging
1390 language models with complex mathematical reasoning tasks.

1391 **Gemma-3-12B-pt** (Team et al., 2025) is a 12-billion parameter multimodal language model devel-
1392 oped by Google DeepMind. It is part of the Gemma-3 family, which includes models from 1B to
1393 27B parameters, optimized for tasks such as question answering, summarization, and reasoning.
1394 The model checkpoint⁶ is released under Google’s Gemma Term of Use⁷, permitting both research
1395 and commercial applications.

1396 **Hyperparameters** are similar to the previous commonsense reasoning test. Specifically, LoRA
1397 modules are applied to all projection matrices; i.e., `q_proj`, `k_proj`, `v_proj`, `up_proj`, and
1398 `down_proj`. The LoRA rank, scaling factor, and dropout rate are set to 8, 16, and 5%, respectively.
1399 Given the large dataset size, the batch size is increased to 64, while the number of training epochs is
1400 reduced to 2. The sequence length is capped at 256 tokens, and the learning rate is fixed at 10^{-4} .

1401
1402
1403⁶<https://huggingface.co/google/gemma-3-12b-pt>

⁷<https://ai.google.dev/gemma/terms>

1404
1405 **D ADDITIONAL NUMERICAL RESULTS**
14061407 **D.1 MOTIVATION FOR SCALORA-I**
14081409 Figure 4 visualizes the deviation of the scaling factors α_t and β_t from 1 when applying optimal
1410 scaling at each iteration, with DeBERTaV3-base model and CoLA dataset. It is seen that these
1411 deviations are below 0.1 and 0.2 for most iterations, which is expected given the relatively small
1412 learning rate η . Since \mathbf{A}_t and \mathbf{B}_t thereby change only slightly, it is natural to consider a lazy update
1413 strategy that performs the scaling after sufficient changes have accumulated. Moreover, the figure
1414 also shows that \mathbf{B}_t requires noticeably larger adjustments than \mathbf{A}_t , consistent with the empirical
1415 findings and theoretical analyses in (Zhu et al., 2024).
14161417
1418 **Figure 4: Visualization of scaling factor change during fine-tuning.**
14191420 **D.2 ABLATION STUDY ON CHOICE OF I**
14211422 Next, ablation experiment on the choice of I is conducted using LLaMA3-8B on the ARC-c dataset,
1423 where increasing the rank to 32 yields a remarkable improvement in LoRA. To evaluate the impact
1424 of I on the effectiveness and convergence, we report the test accuracy, the running average of fine-
1425 tuning loss, and the elapsed time relative to LoRA for $I \in \{1, 3, 10, 30, 100\}$. The results are
1426 summarized in Table 10. As I increases, accuracy and time complexity both decrease, while the
1427 fine-tuning loss tends to grow. Notably, $I = 10$ provides a good trade-off between loss reduction
1428 and computational cost. In particular, it achieves convergence comparable to $I = 1$ yet introducing
1429 only a 4% additional overhead relative to LoRA.
14301431 **Table 10: Ablation study on the choice of I using LLaMA3-8B on ARC-c task.**
1432

Method	Acc	FT loss	Time
ScaLoRA $I = 1$	65.61	0.8693	1.42 \times
ScaLoRA $I = 3$	65.14	0.8734	1.15 \times
ScaLoRA $I = 10$	64.68	0.8705	1.04 \times
ScaLoRA $I = 30$	63.57	0.8960	1.02 \times
ScaLoRA $I = 100$	63.33	0.9851	1.01 \times
LoRA $r = 8$	62.29	1.2013	1 \times
LoRA $r = 32$	64.08	0.866	1.08 \times

1433 **D.3 EXTENDED ABLATION STUDY ON EFFECTIVENESS OF COLUMN SCALING**
14341435 This subsection investigates the effectiveness of Theorem 5 through a more detailed comparison.
1436 Following the setup in Section 4.4, we analyze the ScaLoRA-I variant that uses only scalar scaling.
1437

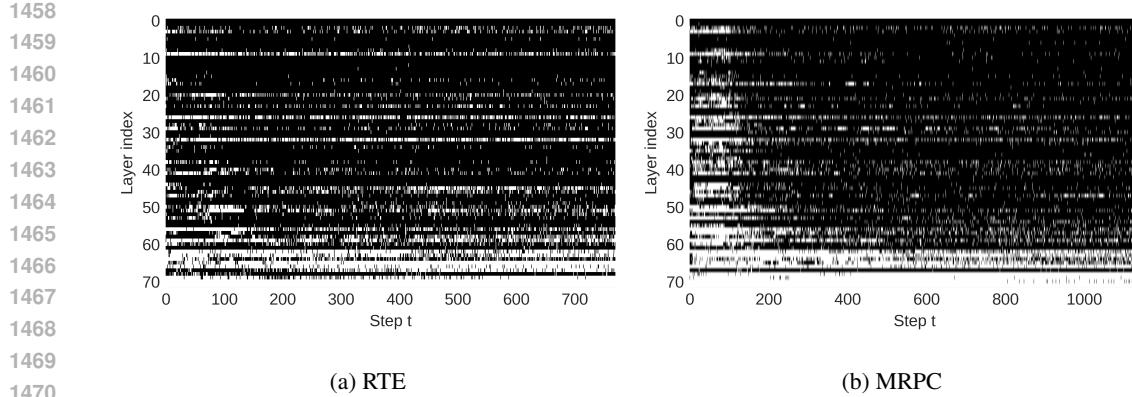


Figure 5: Patterns of column scaling across layers.

Table 11 compares this scalar-only variant against ScaLoRA-I on commonsense reasoning benchmarks using LLaMA2-7B with $r = 8$. We observe that the scalar-only variant suffers a notable performance degradation on the SIQA, WG, ARC-c, and OBQA datasets, while performing comparably to ScaLoRA-I on the remaining four. Overall, this results in an average performance drop of 0.72%, though it still exceeds LoRA by 0.60%. This underscores the significance and effectiveness of column-wise scaling.

Table 11: Ablation study on column scaling using LLaMA2-7B on commonsense reasoning tasks.

Method	BoolQ	PIQA	SIQA	HS	WG	ARC-e	ARC-c	OBQA	Avg
LoRA	87.40	81.66	59.16	82.45	79.48	82.91	57.59	58.40	73.63
ScaLoRA-I	87.58	82.26	60.49	83.52	81.69	83.75	58.53	60.20	74.75
Scalar-only	87.31	82.32	59.37	83.60	80.93	83.38	56.11	59.20	74.03

D.4 PATTERNS OF LAYERS WITH COLUMN SCALING

Interestingly, the layers satisfying $v_t \succeq 0$ exhibit discernible patterns, with certain layers more prone than others to violating this condition. Figure 5 depicts these patterns for DeBERTaV3-base on two GLUE tasks, where column and scalar scaling are marked in black and white, respectively. We observe that some layers are consistently transformed using column scaling, while others predominantly undergo scalar scaling. This pattern also varies across tasks. In practice, when such patterns are known a priori, one may fix the scaling scheme accordingly to eliminate the computational overhead for solving the $2r \times 2r$ linear system.