
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALORA: OPTIMALLY SCALED LOW-RANK ADAP-
TATION FOR EFFICIENT HIGH-RANK FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) continue to scale in size, the computational
overhead has become a major bottleneck for task-specific fine-tuning. While low-
rank adaptation (LoRA) effectively curtails this cost by confining the weight up-
dates to a low-dimensional subspace, such a restriction can hinder effectiveness
and slow convergence. This contribution deals with these limitations by accu-
mulating progressively a high-rank weight update from consecutive low-rank in-
crements. Specifically, the per update optimal low-rank matrix is identified to
minimize the loss function and closely approximate full fine-tuning. To endow ef-
ficient and seamless optimization without restarting, this optimal choice is formed
by appropriately scaling the columns of the original low-rank matrix. Rigorous
performance guarantees reveal that the optimal scaling can be found analytically.
Extensive numerical tests with popular LLMs scaling up to 12 billion parame-
ters demonstrate a consistent performance gain and fast convergence relative to
state-of-the-art LoRA variants on diverse tasks including natural language under-
standing, commonsense reasoning, and mathematical problem solving.

1 INTRODUCTION

Large language models (LLMs) enjoy well-documented success in a broad spectrum of areas in-
cluding conversational agents (Achiam et al., 2023), software development (Chen et al., 2021), text
summarization (Zhang et al., 2024a), and education (Zhang et al., 2024b). Before deploying a pre-
trained LLM to a certain task, it is often necessary to fine-tune it on domain-specific data to enhance
its expertise. With the rapid growth of LLM size in recent years however, conventional full fine-
tuning approaches that revise all the model parameters, are increasingly prohibitive due to their
substantial computational burden, especially critical for resource-limited applications. For instance,
the recent Llama 4 Behemoth model consists of 2 trillion parameters in total, while even its smallest
variant Llama 4 Scout contains 109 billion parameters. Even with half precision, full fine-tuning of
the latter still necessitates over 1 TB GPU memory, and extended wall-clock time.

As a lightweight alternative, parameter-efficient fine-tuning (PEFT) has been introduced to lower the
computational overhead (Houlsby et al., 2019). In contrast to full fine-tuning, PEFT methods refine
merely a small subset of parameters (Houlsby et al., 2019; Sung et al., 2021; Li & Liang, 2021),
thereby markedly reducing the memory footprint and runtime. Admist these, low-rank adaptation
(LoRA) (Hu et al., 2022) has gained particular prominence for its simplicity and efficiency. LoRA
presumes the fine-tuning weight update pertains to a low-dimensional manifold, and parameterize
it as the outer product of two tall matrices. As a result, fine-tuning the large-scale LLM reduces to
optimizing these small “adapter” matrices. Despite its effectiveness and popularity, recent studies
have underscored that LoRA and its variants face challenges such as diminishing performance (Hu
et al., 2022), and slower convergence (Meng et al., 2024) relative to full fine-tuning, which deteri-
orate further as the rank declines (Jiang et al., 2024; Huang et al., 2025). Consequently, one has to
compromise notable model effectiveness to tradeoff the highly desired efficiency.

To overcome these challenges, this work commits to formulate a high-rank weight update by stack-
ing the per-step low-rank increments. As opposed to vanilla LoRA operating in a fixed low-rank
subspace, our key idea is to dynamically identify the optimal low-rank adapters to update, that min-
imize the loss per iteration. To ensure efficient optimization, this optimal choice is restricted to the
family of matrices whose columns are scaled from the original low-rank adapters. The advocated ap-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

proach is thus termed scaled low-rank adaptation (ScaLoRA). This column-wise scaling allows for
efficient re-calculation of moment estimators in adaptive optimizers such as Adam(W), eliminating
the need to reset optimizer and re-warm up learning rate. All in all, our contribution is three-fold:

• We prove a sufficient and necessary condition for the optimal low-rank adapters. This condition
establishes that the optimal choice requires truncated singular value decomposition (SVD) of the
weight gradient matrix, which leads to prohibitive overhead and requires restarting optimization.

• To cope with these two issues, we restrict the new adapters to certain transforms of the original
ones. With column-wise scaling as the transform, tractable moment estimators and globally
optimal adapters are provably identified in analytical form.

• Numerical tests are performed with DeBERTaV3-base, LLaMA-2-7B, LLaMA-3-8B, and
Gemma-3-12B-pt on GLUE benchmark, commonsense reasoning datasets, and mathematical
problems (MetaMathQA, GSM8K, and MATH), verifying our analytical claims and confirming
ScaLoRA’s superior performance as well as accelerated convergence.

Related work. Following LoRA (Hu et al., 2022), plenty of variants have been probed to fur-
ther enhance its effectiveness. For instance, DoRA (yang Liu et al., 2024) decomposes the weight
matrix into magnitude and direction components, where only the latter is updated via LoRA.
QLoRA (Dettmers et al., 2023) quantizes the pre-trained weights to further reduce computational
cost. FourierFT (Gao et al., 2024b) substitutes the low-rank matrices with spectral coefficients and
recovers the weight update via inverse discrete Fourier transform. Flora (Hao et al., 2024) lever-
ages random projections to encode and decode the weight gradients. FedPara (Hyeon-Woo et al.,
2022) and LoKr (Yeh et al., 2024) integrate Hadamard and Kronecker products into the low-rank
outer product. In addition to structural modifications, methods have been developed to refine the
initialization of low-rank adapters (Meng et al., 2024; Li et al., 2024; Wang et al., 2024), and adjust
the optimization iterations (Wang et al., 2025; Yen et al., 2025; Zhang et al., 2025). Another line
of research (Lialin et al., 2024; Jiang et al., 2024; Huang et al., 2025) targets high-rank weight up-
date induced by low-rank adapters. Our ScaLoRA falls in the latter category, and a more detailed
comparison will be provided in the ensuing sections.

2 LOW-RANK ADAPTATION RECAP

This section briefly recaps LoRA (Hu et al., 2022), the challenges it faces, and existing remedies.

Consider a general weight matrix W ∈ Rm×n of a large model. LoRA decomposes W = Wpt +
Wft, where Wpt denotes the frozen pre-trained weight matrix, and Wft is the learnable fine-tuning
update. Aiming at efficiency, LoRA assumes the latter lives on a low-dimensional manifold, and can
be approximated via Wft := AB⊤, where A ∈ Rm×r and B ∈ Rn×r are “adapter” matrices with
r ≪ m,n. For batched inputs X ∈ Rn×k, LoRA’s forward operation satisfies WX = WptX +
A(B⊤X). LoRA reduces the number of trainable parameters to (m + n)r ≪ mn, markedly
lowering the associated memory footprint, and the computational burden of backpropagation.

Letting ℓ(·) denote the loss function, LoRA seeks to optimize

min
A,B

ℓ(Wpt +AB⊤)

With t indexing iteration, define Wt := Wpt + AtB
⊤
t . LoRA initializes A0 ∼ N (0, σ2) with a

small variance σ2, and B0 = 0n×r, so that W0 = Wpt remains intact. The subsequent updates
rely on adaptive optimizers such as AdamW (Loshchilov & Hutter, 2019). For illustration, consider
instead the plain gradient descent (GD) update

At+1 = At − η∇ℓ(Wt)Bt, Bt+1 = Bt − η∇ℓ(Wt)
⊤At (1)

where η > 0 is the learning rate, and the gradients ∇At
ℓ(Wt) = ∇ℓ(Wt)Bt and ∇Bt

ℓ(Wt) =
∇ℓ(Wt)

⊤At follow from the chain rule. Then, the per-step weight increment satisfies

∆Wt := Wt+1 −Wt = At+1Bt+1 −AtBt = −η∇ℓ(Wt)BtB
⊤
t − ηAtA

⊤
t ∇ℓ(Wt) +O(η2)

where the last term is negligible as η is typically tiny (Wang et al., 2024; Hao et al., 2024; Wang
et al., 2025; Yen et al., 2025). Summing over T steps yields the cumulative update

T−1∑
t=0

∆Wt = WT −W0 = ATB
⊤
T −A0B

⊤
0 = ATB

⊤
T . (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This formulation confines LoRA’s weight update to a low-dimensional subspace, which can degrade
effectiveness and decelerate convergence when compared to full fine-tuning.

Recent studies show that the gap between LoRA and full fine-tuning can be mitigated by increas-
ing the rank r (Jiang et al., 2024; Huang et al., 2025). This motivates investigating high-rank up-
dates with low-dimensional adapters. ReLoRA (Lialin et al., 2024) advocates learning a cascade of
low-rank adapters and merging them sequentially into the pre-trained weights. However, learning
each adapter requires restarting optimization, including random initialization, optimizer reset, and
learning rate warm-up, which slows down convergence. MoRA (Jiang et al., 2024) replaces the
two linear matrix multiplications A(B⊤X) by nonlinear mappings fdecompress(Mfcompress(X)) with
learnable M, while the two mappings demand careful handcrafted designs to ensure effective and
stable fine-tuning. HiRA (Huang et al., 2025) parameterizes the weight update as the Hadamard
product of low-rank matrix with pre-trained weight; i.e., Wft := (AB⊤) ⊙ Wpre. Although this
yields a high-rank update in Euclidean space, it remains confined to a smaller manifold of dimension
(m + n − r)r, compared to full fine-tuning’s mn-dimensional one. Moreover, HiRA demands ex-
plicit forward calculation and backpropagation through the m× n Hadamard product per iteration,
which incurs O(mnr) complexity, and scales poorly to immense LLMs.

Notation. Bold lowercase letters (capitals) stand for vectors (matrices). MI represents the sub-
matrix of M with columns indexed by set I. Symbols ⊙ and ·◦2 stand for Hadamard (entry-wise)
product and square. Row(·), Col(·), and Null(·) denote row, column and null spaces. rank(·) and
tr(·) are the rank and trace of a matrix. diag(v) is the diagonal matrix whose diagonal entries are
from vector v, while diag(M) refers to the vector formed by the diagonals of matrix M. ·† denotes
the Moore-Penrose pseudoinverse. For M ∈ Rm×n, ∥M∥row ∈ Rn defines the vector of row-wise
norms; i.e., [∥M∥row]i = ∥Mi,:∥2. O(r) refers to the orthogonal group of degree r; namely the set
of all r × r orthogonal matrices. For readability, all proofs are deferred to Appendix A.

3 HIGH-RANK UPDATES VIA OPTIMAL SCALING

Unlike LoRA adhering to a fixed low-rank component AtB
⊤
t , the key idea of this work is to dy-

namically identify the “optimal” low-rank adapters per iteration that maximally descends the loss.
By refining different low-dimensional subspaces over time, the cumulative increments effectively
form a high-rank update, endowing LoRA with both improved effectiveness and faster convergence.
Specifically, we will merge the current AtB

⊤
t into Wpt, and factor out an alternative low-rank

matrix ÃtB̃
⊤
t to optimize; that is,

Wt = Wpt +AtB
⊤
t = (Wpt +AtB

⊤
t − ÃtB̃

⊤
t)︸ ︷︷ ︸

:=W̃pt
t , merge & freeze

+ ÃtB̃
⊤
t︸ ︷︷ ︸

:=W̃ft
t , learnable

. (3)

The optimal choice of ÃtB̃
⊤
t will be presented in the next subsection. Before that, we first illustrate

how this change in the optimization direction influences the optimization dynamics to produce a
high-rank update. With the alternative adapters (Ãt, B̃t), the GD update (1) can be replaced by

At+1 = Ãt − η∇ℓ(Wt)B̃t, Bt+1 = B̃t − η∇ℓ(Wt)
⊤Ãt. (4)

In doing so, the resultant update ∆W̃t to weight matrix Wt, and the corresponding dynamics are

∆W̃t = At+1B
⊤
t+1 − ÃtB̃

⊤
t = −η∇ℓ(Wt)B̃tB̃

⊤
t − ηÃtÃ

⊤
t ∇ℓ(Wt) +O(η2), (5a)

T−1∑
t=0

∆W̃t =

T∑
t=1

AtB
⊤
t −

T−1∑
t=0

ÃtB̃
⊤
t . (5b)

By optimizing different low-rank matrices per iteration, the telescoping in (2) is avoided, thus al-
lowing to accumulate the low-rank increments to render a high-rank update.

Although ReLoRA (Lialin et al., 2024) also employs a similar merging strategy, it performs this
operation less frequently due to its optimization restarts, and simply reinitializes ÃtB̃

⊤
t = 0 without

a principled selection. Next, we analyze the optimal selection and the associated challenges.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 CHALLENGES IN ACCUMULATING LOW-RANK UPDATES

Though promising, this idea of accumulating low-rank updates faces two major challenges, namely
prohibitive computation and inefficient restart, which are separately elaborated next.

We start by characterizing the optimal low-rank adapters and their computational complexity. Due
to the nonlinearity of LLMs, the global optimum of the loss function is analytically infeasible. As a
tractable alternative, a standard upper bound on the loss function will be presented, whose minimizer
is available in closed form. The analysis relies on the following Lipschitz smoothness assumption.
Assumption 1. The loss function ℓ has L-Lipschitz continuous gradients; i.e., ∥∇ℓ(W) −
∇ℓ(W′)∥F ≤ L∥W −W′∥F, ∀W,W′ ∈ Rm×n.

Assumption 1 is fairly mild and widely used in both machine learning (Goodfellow et al., 2016;
Shalev-Shwartz & Ben-David, 2014), and optimization (Bertsekas, 2016; Kingma & Ba, 2015). It
is default for analyzing first-order optimization approaches such as (stochastic) GD. Building upon
this assumption, the loss function admits the quadratic upper bound as follows

ℓ(Wt +∆Wt) ≤ ℓ(Wt) + ⟨∇ℓ(Wt),∆Wt⟩F +
L

2
∥∆Wt∥2F. (6)

Minimizing the right-hand side of (6) incurs optimal update ∆W∗
t = − 1

L∇ℓ(Wt), which recovers
GD of full fine-tuning. While the Lipschitz constant L is hard to compute or even estimate especially
for complicated LLMs, the effective step size 1/L is typically treated as a hyperparameter and tuned
via grid search. Likewise, it holds for the alternative update (4) that

ℓ(Wt +∆W̃t) ≤ ℓ(Wt) + ⟨∇ℓ(Wt),∆W̃t⟩F +
L

2
∥∆W̃t∥2F

(a)
=

L

2
∥∆W∗

t −∆W̃t∥2F +Const.

where (a) utilizes completing the square, and Const. refers to constants not dependent on ∆W̃t.
This reformulation reveals that minimizing the loss upper bound is equivalent to aligning LoRA’s
weight increment with full fine-tuning. Plugging in (5a) and omitting high-order terms yield

min
Ãt,B̃t

L

2

∥∥∥ 1

L
∇ℓ(Wt)− η∇ℓ(Wt)B̃tB̃

⊤
t − ηÃtÃ

⊤
t ∇ℓ(Wt)

∥∥∥2
F

(7)

whose minimizer is offered in the following theorem.
Theorem 1. Consider the SVD ∇ℓ(Wt) = UtΣtV

⊤
t . If rank(∇ℓ(Wt)) ≥ 2r, ∀t and Assump-

tion 1 holds, then (Ã∗
t , B̃

∗
t) minimizes (7) if and only if

Ã∗
t =

1√
Lη

[Ut]At
Pt, B̃∗

t =
1√
Lη

[Vt]Bt
Qt (8)

where sets At ∪ Bt = {1, . . . , 2r}, |At| = |Bt| = r, and Pt,Qt ∈ O(r).

Theorem 1 establishes a sufficient and necessary condition for the optimal low-rank adapters. The
optimal choice involves the truncated rank-2r SVD of ∇ℓ(Wt), which prompts an iterative solver
and incurs O(Smnr) time complexity, with S denoting the number of iterations (Baglama & Re-
ichel, 2005). Due to this prohibitively high complexity, it is generally infeasible to apply such a
choice to (4) for each t. It is worthwhile mentioning that LoRA-GA (Wang et al., 2024) arises as a
special case of Theorem 1, where a sufficient (yet not necessary) condition is derived at t = 0 and
P0 = Q0 = Ir to initialize LoRA adapters. Moreover, the assumption rank(∇ℓ(Wt)) ≥ 2r, ∀t
can be readily satisfied in practice; see numerical validations in Figure 2c of Section 4.

Aside from the prohibitive SVD computation, another challenge attributes to switching the optimiza-
tion variables from (At,Bt) to (Ãt, B̃t). Specifically, LLM optimization relies on adaptive opti-
mizers such as AdamW (Loshchilov & Hutter, 2019), which estimate the first and second moments
of stochastic gradients via the exponential moving average of gradient samples; cf. Appendix A.4.
When switching to the alternative (Ãt, B̃t), their gradient moments need to be re-estimated from
the optimization trajectory, incurring time and space complexities proportional to t. One straight-
forward remedy is to restart optimization (Lialin et al., 2024), which resets the moment estimators
to accumulate them from scratch. However, as all gradient statistics are discarded, the optimization
breaks off and the convergence slows down considerably.

To enable efficient and seamless optimization, we propose to restrict Ãt and B̃t to be structured
transformations of At and Bt. Upon appropriate design, the gradient moment estimators of the
former can be equivariantly computed from those of the latter.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 OPTIMAL SCALAR SCALING

We will first investigate a simple scalar scaling Ãt = αtAt, B̃t = βtBt. Let mt(·) and vt(·) denote
the first and second gradient moment estimators, which involve the general stochastic matrices A,
B and W; see Appendix A.4 for details. The next lemma depicts the impact of scalar scaling on the
gradient moment estimators.

Lemma 2. For W = Wpt +AB⊤ = W̃pt + ÃB̃⊤ with Ã = αA and B̃ = βB, it holds that

mt(∇Ãℓ(W)) = βmt(∇Aℓ(W)), vt(∇Ãℓ(W)) = β2vt(∇Aℓ(W)),

mt(∇B̃ℓ(W)) = αmt(∇Bℓ(W)), vt(∇B̃ℓ(W)) = α2vt(∇Bℓ(W)).

Lemma 2 suggests that the first and second moment estimators of (Ã, B̃) can be directly scaled
from those of (A,B). Intuitively, given that the gradient of Ã is ∇ℓ(W)B̃, it is hence scaled by β

proportionally when transforming B̃ = βB; similar statements hold for B’s gradient.

We now seek the optimal (Ãt, B̃t) minimizing the loss upper bound. Under the aforementioned
transform, the objective function (7) reduces to

min
αt,βt

L

2

∥∥∥ 1

L
∇ℓ(Wt)− ηβ2

t∇ℓ(Wt)BtB
⊤
t − ηα2

tAtA
⊤
t ∇ℓ(Wt)

∥∥∥2
F
. (9)

To solve for the global minimizer of (9), the following technical assumption is adopted.
Assumption 2. ∥A⊤

t ∇ℓ(Wt)∥F and ∥∇ℓ(Wt)Bt∥F are not both 0, ∀t.

Assumption 2 asserts that the gradients of At and Bt do not vanish simultaneously; otherwise there
is no update, and the iteration can be skipped. With this assumption, the optimal scaling factors are
derived as follows.
Theorem 3. With Assumptions 1-2 in effect, the global minimizer of (9) is given by

(α∗
t , β

∗
t) =


(
± ∥A⊤

t ∇ℓ(Wt)∥F√
Lη∥AtA⊤

t ∇ℓ(Wt)∥F
, 0
)
, if CA

t > 0 and CB
t ≤ 0, or Ct = 0 and At ̸= 0(

0,± ∥∇ℓ(Wt)Bt∥F√
Lη∥∇ℓ(Wt)BtB⊤

t ∥F

)
, if CA

t ≤ 0 and CB
t > 0, or Ct = 0 and Bt ̸= 0(

±
√

CA
t

LηCt
,±

√
CB

t

LηCt

)
, if CA

t ≥ 0, CB
t ≥ 0 and Ct > 0

where we define

CA
t := ∥A⊤

t ∇ℓ(Wt)∥2F∥∇ℓ(Wt)BtB
⊤
t ∥2F − ∥∇ℓ(Wt)Bt∥2F∥A⊤

t ∇ℓ(Wt)Bt∥2F,
CB

t := ∥∇ℓ(Wt)Bt∥2F∥AtA
⊤
t ∇ℓ(Wt)∥2F − ∥A⊤

t ∇ℓ(Wt)∥2F∥A⊤
t ∇ℓ(Wt)Bt∥2F,

Ct := ∥AtA
⊤
t ∇ℓ(Wt)∥2F∥∇ℓ(Wt)BtB

⊤
t ∥2F − ∥A⊤

t ∇ℓ(Wt)Bt∥4F.

Note that the three cases in Theorem 3 may overlap, because the global optima can be non-unique.
Moreover, all possible scenarios are covered by the three cases; cf. Appendix A.2.

3.3 OPTIMAL COLUMN-WISE SCALING

For improved fitting capacity, this section delves into a more complicated column-wise scaling with
Ãt = At diag(αt) and B̃t = Bt diag(βt), whose gradient moment estimators are provided next.

Lemma 4. For W = Wpt +AB⊤ = W̃pt + ÃB̃⊤ with Ã = Adiag(α) and B̃ = Bdiag(β),

mt(∇Ãℓ(W)) = mt(∇Aℓ(W)) diag(β), vt(∇Ãℓ(W)) = vt(∇Aℓ(W)) diag2(β),

mt(∇B̃ℓ(W)) = mt(∇Bℓ(W)) diag(α), vt(∇B̃ℓ(W)) = vt(∇Bℓ(W)) diag2(α).

Unlike column-wise scaling, moment estimators for transformations including row-wise scaling and
left/right-multiplying a full matrix, are generally intractable.

With column-wise scaling on he other hand, the objective function (7) boils down to

min
αt,βt

L

2

∥∥∥ 1

L
∇ℓ(Wt)− η∇ℓ(Wt)Bt diag

2(βt)B
⊤
t − ηAt diag

2(αt)A
⊤
t ∇ℓ(Wt)

∥∥∥2
F
. (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Different from the scalar case in (9), Appendix A.3 shows that (10) has O(9r) stationary points,
among which the global optimum is generally hard to obtain in affordable time. Nevertheless, under
certain conditions the optimum can be efficiently obtained through a 2r × 2r linear system.
Theorem 5. With the definitions

SA
t := [At ∇ℓ(Wt)Bt] , S

B
t :=

[
Bt A⊤

t ∇ℓ(Wt)
]
,λt :=

[
∥A⊤

t ∇ℓ(Wt)∥2row
∥B⊤

t ∇ℓ(Wt)
⊤∥2row

]
and Assumptions 1-2 in effect, if the linear system of equations

[
(SA⊤

t SA
t) ⊙ (SB⊤

t SB
t)

]
vt = λt

has a non-negative solution vt ∈ R2r
+ , then the global minimizer of (10) is given by[

α∗
t
β∗
t

]
= ± 1√

Lη
v
◦ 1

2
t . (11)

Interestingly, our empirical observations suggest that around 80% LoRA layers in an LLM satisfies
the the non-negativity condition for vt across iterations; see Figure 2d.

3.4 SCALORA FOR HIGH-RANK UPDATE AND FAST CONVERGENCE

Building upon these analytical insights, our scaled low-rank adaptation (ScaLoRA) method opti-
mally scales the low-rank adapters per (few) iteration(s) to attain the desired high-rank update and
fast convergence. In particular, ScaLoRA relies on a mixture of the aforementioned two scaling
schemes. When the linear system in Theorem 5 yields a positive solution, (3) adopts the opti-
mal column-wise scaling Ãt = At diag(α

∗
t), B̃t = Bt diag(β

∗
t), with moment estimators up-

dated as in Lemma 4; otherwise, the algorithm resorts to Theorem 3 for the optimal scalar scaling
Ãt = α∗

tAt, B̃t = β∗
tBt, and Lemma 2 to update moment estimators. Akin to full fine-tuning, the

Lipschitz constant L is viewed as a hyperparameter and we tune it using grid search. The step-by-
step pseudocodes are provided in Appendix B.

Next, we analyze the computational cost of ScaLoRA, and compare it to SOTA approaches. To
start, the gradients ∇ℓ(Wt)Bt and ∇ℓ(Wt)

⊤At can be directly acquired from backpropagation,
that incurs no extra overhead. As a consequence, the overall time complexity for ScaLoRA is
O(mnr+(m+n+r)r2), where the term O(mnr) comes from (3), and the rest can be deduced from
Theorems 3 and 5. When r ≪ m,n, the time complexity is dominated by the former. Moreover,
as (3) can be performed in place, the space overhead is as small as O((m+n+r)r). In comparison,
MoRA’s overhead significantly depends on the design of fcompress and fdecompress, which typically
exceeds LoRA’s simple bilinear structure. While HiRA exhibits O(mnr) time overhead compara-
ble to ScaLoRA, it suffers from high memory footprint of O(mn) due to the backpropagation of
Hadamard product.

Similar to other high-rank update approaches, the escalated computational cost is the major limita-
tion of ScaLoRA, which confines its scalability to increasingly large models. We next introduce a
variant to mitigate this limitation. Since η is typically tiny, the optimal scaling is close to 1 after
one update; cf. Appendix D.1. Thus, a natural remedy is to perform ScaLoRA every I iterations, so
that the per-step time complexity is amortized to O((mnr+ (m+ n+ r)r2)/I) without noticeably
exacerbating the performance. We term this intermittent variant as ScaLoRA-I. It is worth stressing
that MoRA and HiRA both rely on a fixed structure to impel a high-rank update, which is imposed
per optimization step, and cannot be amortized. A summary of the costs is provided in Appendix B,
and numerical comparisons using LLMs are presented in Section 4.3.

Another notable limitation of ScaLoRA is its storage. While LoRA and other high-rank variants
require saving only the low-dimensional adapters At and Bt, ScaLoRA stores the entire merged
matrix Wt = W̃pt

t + ÃtB̃
⊤
t due to the modification of W̃pt

t . Fortunately, disk space is typically
abundant relative to memory, and thereby it does not pose a bottleneck for LLM fine-tuning.

4 NUMERICAL TESTS

This section presents numerical tests to validate the effectiveness of the proposed ScaLoRA ap-
proach. All setups including datasets, models, and hyperparameters are deferred to Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Fine-tuning loss (b) Rank of weight update

(c) Gradient distance to full fine-tuning (d) Loss landscapes and upper bounds

Figure 1: Visualization of linear regression on synthetic data.

Table 1: Comparison using DeBERTaV3-base on the GLUE benchmark. The top two results are
marked with solid lines and underlines. The results for LoRA approaches are obtained by averaging
3 random runs with r = 4, and the full fine-tuning results are from (Zhang et al., 2023).

Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE All

Mcc Acc Acc Corr Acc Matched Acc Acc Avg

Full FT 69.19 95.63 89.46 91.60 92.40 89.90 94.03 83.75 88.25

LoRA 68.10±1.73 95.49±0.05 89.46±0.20 91.09±0.14 91.86±0.03 90.25±0.13 94.30±0.05 84.48±2.04 88.13
MoRA 69.67±0.90 95.45±0.44 89.62±0.76 90.90±0.19 91.83±0.12 90.05±0.04 93.81±0.20 85.44±1.19 88.35
HiRA 68.82±1.01 95.53±0.19 89.95±0.53 91.15±0.09 92.19±0.06 90.24±0.10 94.15±0.13 85.68±0.17 88.46
ScaLoRA 69.86±0.37 95.83±0.29 90.28±0.31 91.47±0.15 92.10±0.07 90.36±0.03 94.34±0.28 87.61±0.34 88.98

4.1 LINEAR REGRESSION WITH SYNTHETIC DATA

The first experiment performs linear regression on toy data. The loss function is ℓ(W) =
1
2∥Y−WX∥2F, where X and Y are given matrices. LoRA substitutes W∈ R64×64 with AB⊤. Fig-
ure 1 sketches the behavior of LoRA, ScaLoRA(-I), and full fine-tuning. It is seen that ScaLoRA(-I)
converges remarkably faster than vanilla LoRA, thanks to the progressively increasing rank of cu-
mulative weight updates, and better alignment to full fine-tuning. In addition, Figure 1d depicts the
loss function, and its quadratic upper bound (6). By selecting the optimal per-step LoRA adapters,
ScaLoRA minimizes the loss upper bound and the associated loss landscape, leading to accelerated
convergence. These observations corroborate our theoretical results in Section 3.

4.2 NATURAL LANGUAGE UNDERSTANDING

The next test deals with ScaLoRA’s performance on General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019), which contains 8 different tasks in the field of natural lan-
guage understanding (NLU). The model is DeBERTaV3-base (He et al., 2023), a masked language
model specialized in NLU with 184M parameters. The rank in LoRA is fixed to r = 4 with scaling
coefficient 8 for all approaches, and other setups follow from (Zhang et al., 2023). Table 1 compares
ScaLoRA to LoRA (Hu et al., 2022), and SOTA high-rank variants MoRA (Jiang et al., 2024) and
HiRA (Huang et al., 2025), where the top two results are marked in bold and underlined. Notably,
ScaLoRA not only presents 0.5%+ average performance gain, but also achieves the best perfor-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Fine-tuning loss (b) Rank of weight update

(c) Gradient rank (d) Percentage of column scaling

Figure 2: Visualization on the RTE dataset with DeBERTaV3-base.

mance in 7 out of 8 datasets, and exhibits comparable performance (0.09% less than the highest) on
the remaining one. We remark that the GLUE datasets are relatively small, so that full fine-tuning
can readily lead to overfitting, and hence inferior performance.

To further investigate the rationale behind ScaLoRA’s performance gain, Figures 2a and 2b outline
the fine-tuning loss and rank of cumulative weight update for LoRA and ScaLoRA(-I) on the RTE
dataset of the GLUE benchmark. MoRA and HiRA are excluded since they rely on different learning
rates. Clearly, ScaLoRA gradually accumulates the low-rank update during the fine-tuning epochs,
rendering weight updates of average rank 54. Due to this high-rank update, ScaLoRA’s convergence
is markedly faster than LoRA with r = 4, and aligns with LoRA for r = 54 especially in the last
5 epochs. This highlights the high-rank update and fast convergence incurred by ScaLoRA. Inter-
estingly, the increase of rank in Figure 2b becomes slower with epochs. This is because ScaLoRA’s
direct objective is to minimize the loss, which allows each layer to adaptively adjust the singular
values in the most effective directions. When the previous weight updates span a sufficiently large
subspace that the new weight increment falls into, the rank stops growing. This in turn confirms
LoRA’s premise that the optimal weight update lives on a low-rank manifold. In addition, Fig-
ures 2c and 2d respectively justify the assumption rank(∇ℓ(Wt)) ≥ 2r, ∀t in Theorem 1, and the
condition vt ∈ R2r

+ in Theorem 5. As the NLU tasks in GLUE are relatively simple and the RTE
dataset is small, a low rank of 54 suffices to fit well the datasets. Next, experiments are conducted
on a suite of more challenging tasks with larger LLMs, where higher ranks become necessary.

4.3 COMMONSENSE REASONING

Beyond the NLU tasks, further tests are conducted on commonsense reasoning tasks with LLMs
including LLaMA2-7B (Touvron et al., 2023) and LLaMA3-8B (Grattafiori et al., 2024). With
the LLM size growing, computational cost becomes a bottleneck for fine-tuning. Thus, the
intermittent variant ScaLoRA-I with I = 10 is also included in the test. The experimen-
tal setups follow from (Lion et al., 2025), where LLMs are fine-tuned separately on each
dataset, and subsequently evaluated for multiple-choice log-likelihood under the widely-adopted
lm-evaluation-harness framework (Gao et al., 2024a). To underscore the importance of
high-rank updates for challenging tasks, we restrict the fitting capacity of LoRA and its variants by
setting r = 8 throughout the test. This setup is intended to emulate more challenging scenarios
where higher ranks are necessitated to capture the underlying task structure. Compared to the com-
mon choice r = 32, this low-rank configuration leads to consistently degraded performance across

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Commonsense reasoning using LLaMA2-7B and LLaMA3-8B with r = 8. The top two
results are marked with solid lines and underlines.

Method BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg
L

L
aM

A
2-

7B

LoRA 87.40±0.58 81.66±0.90 59.16±1.11 82.45±0.38 79.48±1.14 82.91±0.77 57.59±1.44 58.40±2.21 73.63
ReLoRA 87.80±0.57 82.48±0.89 60.08±1.11 83.23±0.37 82.56±1.07 82.95±0.77 58.11±1.44 58.00±2.20 74.40
LoRA-GA 87.92±0.58 83.03±0.88 60.13±1.11 83.30±0.38 82.87±1.09 83.25±0.77 56.83±1.44 58.40±2.21 74.34
MoRA 87.49±0.58 82.54±0.89 59.88±1.11 82.56±0.38 79.08±1.14 83.59±0.76 58.02±1.44 57.40±2.21 73.82
HiRA 87.71±0.57 82.97±0.88 59.83±1.11 83.38±0.37 81.69±1.09 82.83±0.77 55.55±1.45 57.60±2.21 73.95
ScaLoRA 87.77±0.57 82.43±0.88 60.08±1.11 83.43±0.37 82.08±1.08 83.54±0.76 58.11±1.44 58.60±2.20 74.51
ScaLoRA-I 87.58±0.76 82.26±0.89 60.49±1.11 83.52±0.37 81.69±1.09 83.75±0.76 58.53±1.44 60.20±1.19 74.75

LoRAr=32 88.29±0.56 82.70±0.90 60.54±1.11 83.15±0.37 82.00±1.08 82.79±0.77 57.68±1.44 59.00±2.20 74.52

L
L

aM
A

3-
8B

LoRA 88.99±0.55 85.09±0.83 60.95±1.10 86.09±0.35 82.64±1.06 86.62±0.70 62.29±1.42 62.00±2.17 76.83
ReLoRA 89.20±0.54 85.64±0.82 60.13±1.11 85.99±0.35 85.24±1.00 86.95±0.69 63.14±1.39 61.80±2.19 77.26
LoRA-GA 89.69±0.53 84.98±0.83 61.00±0.96 86.58±0.96 85.32±0.99 86.11±0.71 62.29±1.42 61.80±2.18 77.22
MoRA 88.56±0.56 86.18±0.81 60.29±1.11 86.69±0.34 82.40±1.07 87.79±0.67 64.08±1.40 62.20±2.17 77.27
HiRA 88.87±0.55 86.07±0.81 60.64±1.11 86.11±0.35 84.53±1.02 87.12±0.69 63.91±1.40 62.40±2.17 77.46
ScaLoRA 89.20±0.54 86.18±0.81 61.82±1.10 86.51±0.34 84.53±1.02 86.57±0.70 65.61±1.39 62.40±2.17 77.85
ScaLoRA-I 89.14±0.54 86.07±0.81 62.33±1.10 86.48±0.34 83.35±1.05 86.53±0.70 64.68±0.70 62.00±0.70 77.57

LoRAr=32 89.69±0.53 85.47±0.82 61.72±1.10 86.76±0.34 83.35±1.05 87.08±0.69 64.08±1.40 62.20±2.17 77.54

Table 3: Rank (number of singular values with magnitudes ≥ 0.005) and effective rank (erank) of
weight updates in LLaMA2-7B with r = 8. Both Euclidean and intrinsic ranks are shown for HiRA.

Method BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA

R
an

k

LoRA 8±0 8±0 8±0 8±0 8±0 8±0 8±0 8±0

ReLoRA 16±0 16±0.1 24±0.08 32±0.33 32±1.07 16±0.6 15±0.3 36±2.32

HiRA (Eucl.) 4004±217 3925±319 3971±291 3889±344 3670±497 3074±875 3315±721 3729±462

HiRA (intr.) 8±0 8±0 8±0 8±0 8±0 8±0 8±0 8±0

ScaLoRA 3326±671 3482±544 3661±392 3703±351 3695±363 2254±917 1347±706 3015±891

ScaLoRA-I 1402±656 1990±843 2757±910 2937±880 2891±912 20±11 20±3 453±265

E
ra

nk

LoRA 2.7±0.6 1.9±0.4 1.8±0.4 2.3±0.6 1.2±0.2 1.6±0.4 1.7±0.4 1.3±0.3

ReLoRA 2.6±0.6 1.9±0.5 1.9±0.4 1.6±0.4 2.0±0.6 1.7±0.4 1.7±0.5 2.0±0.6

HiRA (Eucl.) 358.2±259.9 313.8±228.8 312.3±218.3 219.5±154.6 128.4±72.4 167.6±160.3 203.8±197.2 164.5±120.7

HiRA (intr.) 2.9±1.5 2.4±1.4 2.5±1.3 1.9±0.9 1.5±0.6 2.5±1.4 2.0±1.5 1.7±0.7

ScaLoRA 4.8±1.7 3.1±0.8 3.4±0.6 4.2±1.0 2.6±0.7 2.7±0.7 1.9±0.5 2.0±0.5

ScaLoRA-I 4.6±1.5 3.0±0.8 2.6±0.7 4.2±1.0 2.3±0.6 2.6±0.6 1.9±0.5 1.9±0.5

all eight tasks. Table 2 compares ScaLoRA with LoRA (Hu et al., 2022), ReLoRA (Lialin et al.,
2024), LoRA-GA (Wang et al., 2024), MoRA (Jiang et al., 2024), and HiRA (Huang et al., 2025). It
is observed that ScaLoRA and ScaLoRA-I demonstrate similar performance, both outperforming all
other competitors by a significant margin. This verifies our claim that ScaLoRA-I does not distinctly
affect the effectiveness when I is small. Further, the performance of ScaLoRA(-I) even surpasses
LoRA with a higher rank of 32, yet incurring less computational overhead.

Moreover, we further investigate the rank of weight update WT −W0 in LLaMA2-7B under dif-
ferent high-rank adaptation approaches. Following (Lialin et al., 2024; Huang et al., 2025), only
the singular values whose magnitudes exceed 0.005 are counted. MoRA has been excluded be-
cause of its nonlinearity. For HiRA, as its rank update pertains to the low-dimensional manifold
{Wft | Wft = (AB⊤) ⊙ Wpt}, we report both its Euclidean rank and its intrinsic (latent) rank,
where the latter better reflects the geometry induced by its parameterization. The average rank and
efficient rank erank(·) := ∥·∥2F/∥·∥22 along with their standard deviations across LoRA layers are re-
ported in Table 3. ScaLoRA(-I) yields (e)rank proportional to the size and difficulty of the task. For
small datasets such as ARC-e and ARC-c, the limited fine-tuning iterations renders a moderate-rank
update, which is nevertheless sufficient to fit the task. In contrast, ReLoRA exhibits markedly lower
(e)rank due to its infrequent merging operations. While HiRA consistently produces high Euclidean
rank regardless of the dataset size and task difficulty, its intrinsic (e)rank remains low owing to its
underlying low-dimensional manifold. Moreover, the erank of ScaLoRA(-I) is significantly higher
than other baselines, suggesting that the weight update captures a richer and more diverse subspace
of singular directions for task-specific adaptation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 3: Overhead comparison using LLaMA3-8B on the BoolQ dataset.

Next, Figure 3 depicts the fine-tuning time (minutes) and memory cost (GB) of ScaLoRA(-I) with
other alternatives, where the vertical axes start from nonzero values for better visual comparison.
It is clear that MoRA, HiRA and ScaLoRA necessitate 50%+ time compared to LoRA, on par
with our analysis in Section 3.4. Moreover, MoRA and HiRA require 1.08 and 7.83 GB extra
memory in comparison to LoRA, while ScaLoRA(-I) merely leads to a negligible growth of 0.01
GB. Additionally, ScaLoRA-I showcases superior scalability in both time and space comparable to
LoRA-GA and ReLoRA, which add marginally to LoRA with r = 4, and outperforms LoRA with
r = 32. In practice, an appropriate choice of I can provide a favorable balance between efficiency
and convergence. An ablation test on the effect of varying I is presented in Appendix D.2.

4.4 MATHEMATICAL PROBLEM SOLVING

Table 4: Mathematical problem solving us-
ing Gemma-3-12B.

Method GSM8K MATH

LoRA 81.20±1.08 37.20±0.63

ScaLoRA-I 82.11±1.06 37.96±0.64

Scalar-only 81.27±1.07 37.90±0.64

The next numerical test assesses ScaLoRA on math-
ematical problem solving tasks, and scales to the
larger Gemma-3-12B (Team et al., 2025) model. The
model is fine-tuned on MetaMath (Yu et al., 2024), a
mathematical question answering dataset for LLMs,
and evaluated on GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) datasets. MoRA
and HiRA are omitted due to their limited scalability
shown in Figure 3. Additionally, an ablation study is
also included to show the enhanced fitting capacity of column scaling as opposed to scalar scaling.
A variant of ScaLoRA-I with scalar scaling only is considered. The results are displayed in Ta-
ble 4, where ScaLoRA-I again outperforms LoRA on both datasets. Moreover, it is also seen that
ScaLoRA-I with scalar scaling improves upon LoRA yet underperforms ScaLoRA-I, illustrating
the effectiveness of column-wise scaling. Extended ablation study on the scalar-only variant using
commonsense reasoning datasets is provided in Appendix D.3.

5 CONCLUDING REMARKS

This paper investigated high-rank updates by gradually accumulating the optimal low-rank incre-
ments that minimize the per-step loss. It was argued that this idea faces two challenges, namely
prohibitive computation and inefficient optimization. To address them, a novel approach termed
ScaLoRA was introduced. By restricting the optimal adapters to the family of matrices whose
columns are scaled from the original ones, ScaLoRA allowed for efficient optimization without
resetting the gradient moment estimators. Performance guarantees were established respectively
for scalar and column-wise scaling to pick out the optimal adapters in analytical form. Numerical
tests covering natural language understanding, commonsense reasoning, and mathematical problem
solving validated the consistent performance gain and scalability of ScaLoRA(-I).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENTS

This work does not involve human subjects, personal data, or sensitive information. All experiments
are conducted on publicly available LLMs and benchmark datasets, with details, links, and licenses
provided in the Appendix. The proposed method aims to improve computational efficiency and
convergence in fine-tuning, which abides by ICLR’s code of ethic. Nevertheless, caution is advised
when applying the method to generative tasks. The outputs of LLMs should be carefully reviewed,
and safeguards such as gating mechanisms should be considered to ensure safety, reliability, and
trustworthiness.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure reproducibility. The paper provides full algorithmic details,
including theoretical proofs, pesudocodes, implementation details, and hyperparameter settings. We
have also uploaded the complete source code and scripts used to reproduce our main results as the
supplementary material. All LLMs and datasets used are publicly available, with links provided in
the Appendix. These resources collectively enable other researchers to replicate our findings.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

James Baglama and Lothar Reichel. Augmented implicitly restarted lanczos bidiagonalization meth-
ods. SIAM Journal on Scientific Computing, 27(1):19–42, 2005.

Dimitri Bertsekas. Nonlinear Programming, volume 4. Athena Scientific, 2016.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proc. AAAI Conf. Artif. Intel., pp. 7432–7439, 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. In Proc. Int.
Workshop Semant. Eval., pp. 1–14. ACL, 2017.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

François Chollet. On the measure of intelligence. arXiv:1911.01547, 2019.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
June 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. In Proc. Neural Information Processing Systems (NeurIPS), volume 36, pp.
10088–10115, 2023.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Proc. Int. Workshop Paraphrasing, 2005.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024a.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete Fourier transform. In Proc. Int. Conf. on Machine
Learning (ICML), volume 235, pp. 14884–14901. PMLR, 21–27 Jul 2024b.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. In Proc. Int. Conf. on Machine Learning (ICML), volume 235, pp. 17554–17571.
PMLR, 21–27 Jul 2024.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTav3: Improving deBERTa using
ELECTRA-style pre-training with gradient-disentangled embedding sharing. In Proc. Int. Conf.
on Learning Representations (ICLR), 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proc. Int. Conf. on Machine Learning (ICML), volume 97, pp. 2790–2799. PMLR,
09–15 Jun 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In Proc. Int. Conf. on
Learning Representations (ICLR), 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. In Proc. Conf. on Empirical Methods in Natural Language Processing
(EMNLP), 2023.

Qiushi Huang, Tom Ko, Zhan Zhuang, Lilian Tang, and Yu Zhang. Hira: Parameter-efficient
hadamard high-rank adaptation for large language models. In Proc. Int. Conf. on Learning Rep-
resentations (ICLR), 2025.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. FedPara: Low-rank hadamard product for
communication-efficient federated learning. In Proc. Int. Conf. on Learning Representations
(ICLR), 2022.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-efficient fine-
tuning. arXiv preprint arXiv:2405.12130, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. Int. Conf.
on Learning Representations (ICLR), 2015.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proc. Conf. Assoc. Comput. Linguist. Meet. (ACL), pp. 4582–4597, August 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. LoftQ: LoRA-fine-tuning-aware quantization for large language models. In Proc. Int.
Conf. on Learning Representations (ICLR), 2024.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. ReloRA: High-
rank training through low-rank updates. In Proc. Int. Conf. on Learning Representations (ICLR),
2024.

Kai Lion, Liang Zhang, Bingcong Li, and Niao He. Polar: Polar-decomposed low-rank adapter
representation. arXiv preprint arXiv:2506.03133, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proc. Int. Conf. on
Learning Representations (ICLR), 2019.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. In Proc. Neural Information Processing Systems
(NeurIPS), volume 37, pp. 121038–121072, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. arXiv:1809.02789, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Proc. Neural Information Processing Systems (NeurIPS), volume 32, 2019.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for SQuAD. In Proc. Conf. Assoc. Comput. Linguist. Meet. (ACL), pp. 784–789, 2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv:1904.09728, 2019.

J. Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen
veränderlichen. Journal für die reine und angewandte Mathematik, 1911(140):1–28, 1911. doi:
doi:10.1515/crll.1911.140.1.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proc. Conf. on Empirical Methods in Natural Language Processing (EMNLP), pp.
1631–1642, 2013.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks. In
Proc. Neural Information Processing Systems (NeurIPS), volume 34, pp. 24193–24205, 2021.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
Proc. Int. Conf. on Learning Representations (ICLR), 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
In Proc. Neural Information Processing Systems (NeurIPS), volume 37, pp. 54905–54931, 2024.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. LoRA-pro: Are low-rank adapters
properly optimized? In Proc. Int. Conf. on Learning Representations (ICLR), 2025.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Trans. Assoc. Comput. Linguist., 7:625–641, 2019.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proc. Conf. North Am. Chapter Assoc. Comput.
Linguist., pp. 1112–1122, 2018.

Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Proc. Int.
Conf. on Machine Learning (ICML), 2024.

Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard B W Yang, Giyeong Oh, and Yanmin Gong.
Navigating text-to-image customization: From LyCORIS fine-tuning to model evaluation. In
Proc. Int. Conf. on Learning Representations (ICLR), 2024.

Jui-Nan Yen, Si Si, Zhao Meng, Felix Yu, Sai Surya Duvvuri, Inderjit S Dhillon, Cho-Jui Hsieh,
and Sanjiv Kumar. LoRA done RITE: Robust invariant transformation equilibration for loRA
optimization. In Proc. Int. Conf. on Learning Representations (ICLR), 2025.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In Proc. Int. Conf. on Learning Representations (ICLR), 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv:1905.07830, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In Proc. Int. Conf. on
Learning Representations (ICLR), 2023.

Yang Zhang, Hanlei Jin, Dan Meng, Jun Wang, and Jinghua Tan. A comprehensive survey on
process-oriented automatic text summarization with exploration of llm-based methods. arXiv
preprint arXiv:2403.02901, 2024a.

Yilang Zhang, Bingcong Li, and Georgios B. Giannakis. Reflora: Refactored low-rank adaptation
for efficient fine-tuning of large models. In Advances in Neural Information Processing Systems,
2025.

Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhanxin Hao, Jianx-
iao Jiang, Jie Cao, Huiqin Liu, Zhiyuan Liu, et al. Simulating classroom education with llm-
empowered agents. arXiv preprint arXiv:2406.19226, 2024b.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez De Ocáriz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. In Proc. Int. Conf. on Machine Learning
(ICML), volume 235, pp. 62369–62385. PMLR, 21–27 Jul 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A MISSING PROOFS

This section provides the proofs omitted in the main paper.

A.1 PROOF OF THEOREM 1

Proof. For notational simplicity, we will omit the subscript t in the proof, and write Ã∗
t , B̃

∗
t as A,B.

We first verify the sufficiency. For A,B satisfying (8), it follows that

−η∇ℓ(W)BB⊤ − ηAA⊤∇ℓ(W) = − 1

L
∇ℓ(W)VBQQ⊤V⊤

B − 1

L
UAPP⊤U⊤

A∇ℓ(W)

= − 1

L
∇ℓ(W)VBV

⊤
B − 1

L
UAU

⊤
A∇ℓ(W)

(a)
= − 1

L
UΣBV

⊤
B − 1

L
UAΣA,:V

⊤

= − 1

L

∑
i∈B

σiuiv
⊤
i − 1

L

∑
i∈A

σiuiv
⊤
i

= − 1

L

2r∑
i=1

σiuiv
⊤
i (12)

where (a) relies on the SVD ∇ℓ(W) = UΣV⊤, and ui,vi are the i-th columns of U,V.

Using the fact that rank(∇ℓ(W)BB⊤) ≤ r and rank(AA⊤∇ℓ(W)) ≤ r, it holds

rank(η∇ℓ(W)BB⊤ + ηAA⊤∇ℓ(W)) ≤ r + r = 2r. (13)

By Eckart–Young–Mirsky theorem (Eckart & Young, 1936), it turns out that (12) is the optimal
rank-2r approximation to 1

L∇ℓ(W) that minimizes (7).

Next we show the necessity. For notational compactness, define I := {1, . . . , 2r}. Again by
Eckart–Young–Mirsky theorem (Eckart & Young, 1936), the optimal rank-2r approximation to
1
L∇ℓ(W) should satisfy

∇ℓ(W)BB⊤ +AA⊤∇ℓ(W) =
1

Lη
UIΣI,IV

⊤
I . (14)

To achieve this rank-2r approximation, (13) suggests that we must have

rank(∇ℓ(W)BB⊤) = rank(AA⊤∇ℓ(W)) = r.

Additionally, since

rank(∇ℓ(W)BB⊤ +AA⊤∇ℓ(W)) = rank(
1

Lη
UI [Σ]I,IV

⊤
I)

= rank(∇ℓ(W)BB⊤) + rank(AA⊤∇ℓ(W)),

it must hold

Col(∇ℓ(W)BB⊤) ∩ Col(AA⊤∇ℓ(W)) = {0} (15a)

Col(∇ℓ(W)BB⊤)⊕ Col(AA⊤∇ℓ(W)) = Col(UI [Σ]I,IV
⊤
I) = Col(UI) (15b)

Row(∇ℓ(W)BB⊤) ∩ Row(AA⊤∇ℓ(W)) = {0} (15c)

Row(∇ℓ(W)BB⊤)⊕ Row(AA⊤∇ℓ(W)) = Row(UI [Σ]I,IV
⊤
I) = Row(V⊤

I). (15d)

In other words, the two terms ∇ℓ(W)BB⊤ and AA⊤∇ℓ(W) splits the 2r-dimensional column
and row spaces of UI [Σ]I,IV

⊤
I into two r-dimensional subspaces.

Moreover, because r = rank(AA⊤∇ℓ(W)) ≤ rank(A) ≤ r, it follows that rank(A) = r. Thus
we obtain Col(AA⊤∇ℓ(W)) = Col(A). Then, (14), (15a) and (15b) imply that, the two terms

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

∇ℓ(W)BB⊤ and AA⊤∇ℓ(W) are respectively the orthogonal projections of 1
LηUI [Σ]I,IV

⊤
I

onto the disjoint subspaces Col(∇ℓ(W)BB⊤) and Col(AA⊤∇ℓ(W)) = Col(A). To be specific,
defining projection matrix PA := A(A⊤A)−1A⊤, we have

AA⊤∇ℓ(W) = PA
1

Lη
UIΣI,IV

⊤
I

(a)
=

1

Lη
PAPUI∇ℓ(W)

(b)
=

1

Lη
PA∇ℓ(W)

where (a) utilizes UIΣI,IV
⊤
I = UIU

⊤
I ∇ℓ(W) = PUI∇ℓ(W), and (b) leverages Col(A) ⊂

Col(UI) so that PAPUI = PA.

Left-multiplying both sides by A⊤ leads to

0 = A⊤AA⊤∇ℓ(W)− 1

Lη
A⊤∇ℓ(W) = (A⊤A− 1

Lη
Ir)A

⊤∇ℓ(W).

Given that A⊤∇ℓ(W) has full row rank r, we must have A⊤A− 1
Lη Ir = 0. That says,

√
LηA has

orthonormal columns, and hence PA = LηAA⊤. Similarly, using (15c) and (15d), we acquire that
B also has orthonormal columns, and PB = LηBB⊤.

Now left-multiplying U⊤
I and right-multiplying VI on both sides of (14) result in

ΣIV
⊤
I BB⊤VI +U⊤

I AA⊤UIΣI =
1

Lη
ΣI . (16)

We next prove that V⊤
I BB⊤VI and U⊤

I AA⊤UI are both diagonal. Without loss of generality,
assume the σi ̸= σj , i ̸= j, ∀i, j ∈ I. Otherwise, the rank-2r SVD is not unique, and one can
always rotate the axes of UI and VI to align with A and B. By the relationship, the non-diagonal
elements satisfy for ∀i, j ∈ I and i ̸= j

σi[V
⊤
I BB⊤VI]ij + [U⊤

I AA⊤UI]ijσj =
1

Lη
[ΣI]ij = 0

σj [V
⊤
I BB⊤VI]ij + [U⊤

I AA⊤UI]ijσi =
1

Lη
[ΣI]ji = 0

Solving for [V⊤
I BB⊤VI]ij and [U⊤

I AA⊤UI]ij , we obtain

(σ2
i − σ2

j)[V
⊤
I BB⊤VI]ij = 0, (σ2

j − σ2
i)[U

⊤
I AA⊤UI]ij = 0.

This demonstrates [V⊤
I BB⊤VI]ij = [U⊤

I AA⊤UI]ij = 0, soV⊤
I BB⊤VI and U⊤

I AA⊤UI are
diagonal.

Then, recall that
√
LηA has orthonormal columns, so

(LηU⊤
I AA⊤UI)

2 = LηU⊤
I AA⊤UI .

As the diagonal matrix U⊤
I AA⊤UI is symmetric positive semi-definite, its diagnoal elements sat-

isfy

[LηU⊤
I AA⊤UI]

2
ii = [LηU⊤

I AA⊤UI]ii ≥ 0 ⇒ [U⊤
I AA⊤UI]ii = 0 or

1

Lη
.

Likewise we also have [V⊤
I BB⊤VI]ii = 0 or 1

Lη .

Defining A := {i | [U⊤
I AA⊤UI]ii = 1/(Lη)} and B := {i | [V⊤

I BB⊤VI]ii = 1/(Lη)}, it
follows from (16) that

|A| = |B| = r, A ∪ B = I.

As a result, it holds

U⊤
I AA⊤UI =

1

Lη

∑
i∈A

eie
⊤
i ⇒ (UIU

⊤
I)AA⊤(UIU

⊤
I) =

1

Lη

∑
i∈A

uiu
⊤
i =

1

Lη
UAU

⊤
A

where ei is the i-th column of the identity matrix I2r.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Notice that UIU
⊤
I = PUI , and Col(A) ⊂ Col(UI). It follows

(UIU
⊤
I)AA⊤(UIU

⊤
I) = AA⊤ =

1

Lη
UAU

⊤
A.

Using the fact that LηA⊤A = Ir and Col(A) = Col(UA), we acquire

A =
1√
Lη

UAP, P ∈ O(r)

and similarly

B =
1√
Lη

VBQ, Q ∈ O(r)

which concludes the proof.

A.2 PROOF OF THEOREM 3

Proof. As before, the subscript t will be omitted in the proof for simplicity. First notice that when
AA⊤∇ℓ(W) ̸= 0 and α → ∞, or ∇ℓ(W)BB⊤ ̸= 0 and β → ∞, the objective value (9) goes
unbounded to +∞. Additionally, if AA⊤∇ℓ(W) = 0 (or ∇ℓ(W)BB⊤ = 0), changing α (or β)
has no impact on the objective value. By Assumption 2 and Lemma 6, at least one of AA⊤∇ℓ(W)
and ∇ℓ(W)BB⊤ is nonzero. As a the objective (9) is a continuous function of α and β in R2,
there must be some global minimum achieved in the interior of R2. Therefore, we can examine the
stationary points of the objective.

The first-order stationary point condition yields

α∗
(
α∗2∥AA⊤∇ℓ(W)∥2F − ⟨AA⊤∇ℓ(W),

1

Lη
∇ℓ(W)− β∗2∇ℓ(W)BB⊤⟩F

)
= 0, (17a)

β∗
(
β∗2∥∇ℓ(W)BB⊤∥2F − ⟨∇ℓ(W)BB⊤,

1

Lη
∇ℓ(W)− α∗2AA⊤∇ℓ(W)⟩F

)
= 0. (17b)

These two equations offers nine stationary points, which are investigated in the following.

We next show that the trivial stationary point (α, β) = (0, 0) must not be a local minimum. Plugging
α = 0 and β = 0 into (9) leads to objective value of ∥∇ℓ(W)∥2F/2L. By assumption 2, at lease
one of ∥A⊤∇ℓ(W)∥F and ∥∇ℓ(W)B∥F should be nonzero. Without loss of generality, assume
∥A⊤∇ℓ(W)∥F > 0. Taking β = 0 and 0 < α < 2/(

√
Lη∥A∥2), the objective (9) is upper

bounded by

L

2

∥∥∥ 1

L
∇ℓ(W)− ηβ2∇ℓ(W)BB⊤ − ηα2AA⊤∇ℓ(W)

∥∥∥2
F
≤ L

2
∥∇ℓ(W)∥2F

∥∥∥ 1

L
Im − ηα2AA⊤

∥∥∥2
2

<
L

2
∥∇ℓ(W)∥2F.

This demonstrates (α, β) = (0, 0) must not be a local minimum. Therefore, at lease one of |α∗| and
|β∗| should be strictly positive.

To determine whether |α∗| and |β∗| are strictly positive or zeros, we consider the following four
cases.

Case 1: CA > 0 and CB ≤ 0.

We first rewrite the objective (9) as a quadratic function of a2 ≥ 0 via∥∥∥ 1

L
∇ℓ(W)− ηβ2∇ℓ(W)BB⊤ − ηα2AA⊤∇ℓ(W)

∥∥∥2
F

= η2∥AA⊤∇ℓ(W)∥2Fα4 − 2η⟨AA⊤∇ℓ(W),
1

L
∇ℓ(W)− ηβ2∇ℓ(W)BB⊤⟩Fα2 +Const.

= η2∥AA⊤∇ℓ(W)∥2Fα4 − 2η
(1

L
∥A⊤∇ℓ(W)∥2F − ηβ2∥A⊤∇ℓ(W)B∥2F

)
α2 +Const.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

which attains its minimal value at

α∗2 = max

{
0,

1
Lη∥A

⊤∇ℓ(W)∥2F − β∗2∥A⊤∇ℓ(W)B∥2F
∥AA⊤∇ℓ(W)∥2F

}
(18)

Using CA > 0, we next show that α∗ = 0 leads to a contradiction, and thus |α∗| must be strictly
positive.

Note that CA > 0 indicates A⊤∇ℓ(W) ̸= 0 and ∇ℓ(W)B ̸= 0; otherwise CA = 0 by its
definition. By Lemma 6, it follows that ∥AA⊤∇ℓ(W)∥F > 0 and ∥∇ℓ(W)BB⊤∥F > 0. If
α∗ = 0, from the previous discussions we must have |β∗| > 0. However, applying α∗ = 0 and
|β∗| > 0 to (17) renders

β∗2 =
⟨∇ℓ(W)BB⊤, 1

Lη∇ℓ(W)⟩F
∥∇ℓ(W)BB⊤∥2F

=
∥∇ℓ(W)B∥2F

Lη∥∇ℓ(W)BB⊤∥2F
.

As a result, (18) reduces to

α∗2 = max

{
0,

∥A⊤∇ℓ(W)∥2F − ∥∇ℓ(W)B∥2
F

∥∇ℓ(W)BB⊤∥2
F
∥A⊤∇ℓ(W)B∥2F

Lη∥AA⊤∇ℓ(W)∥2F

}
= max

{
0,

CA

Lη∥AA⊤∇ℓ(W)∥2F∥∇ℓ(W)BB⊤∥2F

}
=

CA

Lη∥AA⊤∇ℓ(W)∥2F∥∇ℓ(W)BB⊤∥2F
> 0

This contradicts the assumption α∗ = 0, and thus we must have |α∗| > 0.

Next, we show that CB ≤ 0 leads to β∗ = 0. Assuming |β∗| is also strictly positive, solving (17)
results in

LηCα∗2 = CA > 0, LηCβ∗2 = CB ≤ 0

which contradicts |α∗|, |β∗| > 0.

To this end, it must hold |α∗| > 0, β∗ = 0. Combining this with (17) yields the solution

α∗2 =
∥A⊤∇ℓ(W)∥2F

Lη∥AA⊤∇ℓ(W)∥2F
, β∗ = 0. (19)

Case 2: CA ≤ 0 and CB > 0.

The analysis is akin to Case 1.

Case 3: C = 0.

By Assumption 2, at least one of A and B should be non-zero. Assume A ̸= 0 for simplicity, while
similar derivation applies to B ̸= 0.

Using Cauchy-Schwarz inequality, it follows

C = ∥AA⊤∇ℓ(W)∥2F∥∇ℓ(W)BB⊤∥2F − ∥A⊤∇ℓ(W)B∥4F
= ∥AA⊤∇ℓ(W)∥2F∥∇ℓ(W)BB⊤∥2F − ⟨AA⊤∇ℓ(W),∇ℓ(W)BB⊤⟩2F ≥ 0

where the equality holds if and only if ∇ℓ(W)BB⊤ = ξAA⊤∇ℓ(W) for some constant ξ ∈ R.

If ξ = 0, solving (17) with ∇ℓ(W)BB⊤ = 0 gives (19).

If ξ ̸= 0, substituting ∇ℓ(W)BB⊤ = ξAA⊤∇ℓ(W) in (17) leads to

α∗
(
(α∗2 + ξβ∗2)∥AA⊤∇ℓ(W)∥2F − 1

Lη
∥A⊤∇ℓ(W)∥2F

)
= 0,

β∗
(
(α∗2 + ξβ∗2)∥AA⊤∇ℓ(W)∥2F − 1

Lη
∥A⊤∇ℓ(W)∥2F

)
= 0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

As (α, β) = (0, 0) has been shown non-optimal, it must holds

α∗2 + ξβ∗2 =
∥A⊤∇ℓ(W)∥2F

Lη∥AA⊤∇ℓ(W)∥2F
. (20)

This relationship and ∇ℓ(W)BB⊤ = ξAA⊤∇ℓ(W) renders objective value
L

2

∥∥∥ 1

L
∇ℓ(W)− ηβ∗2∇ℓ(W)BB⊤ − ηα∗2AA⊤∇ℓ(W)

∥∥∥2
F

=
1

2L

∥∥∥∇ℓ(W)− ∥A⊤∇ℓ(W)∥2F
∥AA⊤∇ℓ(W)∥2F

AA⊤∇ℓ(W)
∥∥∥2
F
=

1

2L

(
∥∇ℓ(W)∥2F − ∥A⊤∇ℓ(W)∥4F

∥AA⊤∇ℓ(W)∥2F

)
which is a constant independent of α∗2 and β∗2. In other words, the optimal is achieved as if (20) is
satisfied. One of such choices is simply (19).

Likewise, if B ̸= 0, a valid choice is

α∗ = 0, β∗2 =
∥∇ℓ(W)B∥2F

Lη∥∇ℓ(W)BB⊤∥2F
.

Case 4: CA ≥ 0, CB ≥ 0 and C > 0.

We first prove that CA = CB = 0 is impossible when C > 0. Assuming CA = CB = 0, it follows
from their definitions that

∥A⊤∇ℓ(W)∥2F∥∇ℓ(W)BB⊤∥2F = ∥∇ℓ(W)B∥2F∥A⊤∇ℓ(W)B∥2F,
∥∇ℓ(W)B∥2F∥AA⊤∇ℓ(W)∥2F = ∥A⊤∇ℓ(W)∥2F∥A⊤∇ℓ(W)B∥2F

Multiplying the two equations on both sides and rearranging the terms yield

∥A⊤∇ℓ(W)∥2F∥∇ℓ(W)B∥2F
(
∥AA⊤∇ℓ(W)∥2F∥∇ℓ(W)BB⊤∥2F − ∥A⊤∇ℓ(W)B∥4F

)
= 0.

As C = ∥AA⊤∇ℓ(W)∥2F∥∇ℓ(W)BB⊤∥2F − ∥A⊤∇ℓ(W)B∥4F > 0, we must have either
∥A⊤∇ℓ(W)∥2F = 0 or ∥∇ℓ(W)B∥2F = 0. However, both cases lead to C = 0, thus deriving
a contradiction.

Now assume CA > 0 without loss of generality, which leads to |α∗| > 0 as proved in Case 1. Next,
applying (18) into the objective (9) and reformulating it as a quadratic function of β∗2 causes∥∥∥ 1

L
∇ℓ(W)− ηβ2∇ℓ(W)BB⊤ − ηα∗2AA⊤∇ℓ(W)

∥∥∥2
F

=
∥∥∥ 1

L
∇ℓ(W)− ηβ2∇ℓ(W)BB⊤ − η

1
Lη∥A

⊤∇ℓ(W)∥2F − β2∥A⊤∇ℓ(W)B∥2F
∥AA⊤∇ℓ(W)∥2F

AA⊤∇ℓ(W)
∥∥∥2
F

= η2
(
∥ℓ(W)BB⊤∥2F − ∥A⊤∇ℓ(W)B∥4F

∥AA⊤∇ℓ(W)∥2F

)
β4−

2η

L

(
∥∇ℓ(W)B∥2F − ∥A⊤∇ℓ(W)∥2F∥A⊤∇ℓ(W)B∥2F

∥AA⊤∇ℓ(W)∥2F

)
β2 +Const.

=
η2C

∥AA⊤∇ℓ(W)∥2F
β4 − 2ηCB

L∥AA⊤∇ℓ(W)∥2F
β2 +Const. .

As C > 0, it follows that β∗2 = CB/(LηC). Plugging this back to (18) gives α∗2 = CA/(LηC).

A.3 PROOF OF THEOREM 5

Proof. The high-level idea of the proof is similar to the proof of Case 4 of Theorem 3. First, for the
same rationale, there must be stationary point(s) in the interior of R2r achieving the global minimum.

Denoting byϕ := α◦2 andψ := β◦2, the objective (10) can be equivalently written as a constrained
optimization problem

min
ϕ,ψ∈Rr

+

L

2

∥∥∥ 1

L
∇ℓ(W)− η∇ℓ(W)Bdiag2(ψ)B⊤ − ηAdiag2(ϕ)A⊤∇ℓ(W)

∥∥∥2
F
. (21)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The optimal value of (21) is lower bounded by the optimal value of its unconstrained counterpart

min
ϕ,ψ

L

2

∥∥∥ 1

L
∇ℓ(W)− η∇ℓ(W)Bdiag2(ψ)B⊤ − ηAdiag2(ϕ)A⊤∇ℓ(W)

∥∥∥2
F
. (22)

Next, we show that under the conditions of Theorem 5, the optimum points of (22) is inside the
constraint Rr

+, which is thus also the optimum of (21).

The optimality condition for (22) is

A⊤A diag(ϕ)A⊤∇ℓ(W)ℓ(W)⊤A− 1

Lη
A⊤∇ℓ(W)ℓ(W)⊤A+

A⊤∇ℓ(W)Bdiag(ψ)B⊤∇ℓ(W)⊤A = 0,

B⊤B diag(ψ)B⊤∇ℓ(W)⊤ℓ(W)B− 1

Lη
B⊤∇ℓ(W)⊤ℓ(W)B+

B⊤∇ℓ(W)⊤A diag(ϕ)A⊤∇ℓ(W)B = 0.

Notice that these two equations can be expressed using matrices as

diag
(
A⊤Adiag(ϕ)A⊤∇ℓ(W)ℓ(W)⊤A

)
− 1

Lη
diag

(
∥A⊤∇ℓ(W)∥2row

)
+

diag
(
A⊤∇ℓ(W)Bdiag(ψ)B⊤∇ℓ(W)⊤A

)
= 0,

diag
(
B⊤B diag(ψ)B⊤∇ℓ(W)⊤ℓ(W)B

)
− 1

Lη
diag

(
∥B⊤∇ℓ(W)⊤∥2row

)
+

diag
(
B⊤∇ℓ(W)⊤A diag(ϕ)A⊤∇ℓ(W)B

)]
= 0.

By Lemma 7, we obtain(
(A⊤A)⊙ (A⊤∇ℓ(W)ℓ(W)⊤A)

)
ϕ− 1

Lη
∥A⊤∇ℓ(W)∥2row +

(
A⊤∇ℓ(W)B

)◦2
ψ = 0,(

(B⊤B)⊙ (B⊤∇ℓ(W)⊤ℓ(W)B)
)
ψ − 1

Lη
∥B⊤∇ℓ(W)⊤∥2row +

(
B⊤∇ℓ(W)⊤A

)◦2
ϕ = 0.

Then, we can rewrite these using block matrices as[
(A⊤A)⊙ (A⊤∇ℓ(W)∇ℓ(W)⊤A) (A⊤∇ℓ(W)B)◦2

(B⊤∇ℓ(W)⊤A)◦2 (B⊤B)⊙ (B⊤∇ℓ(W)⊤∇ℓ(W)B)

] [
ϕ
ψ

]
−

1

Lη

[
∥A⊤∇ℓ(W)∥2row
∥B⊤∇ℓ(W)⊤∥2row

]
= 0

=⇒
[
(SA⊤SA)⊙ (SB⊤SB)

] [
ϕ
ψ

]
− 1

Lη
λ = 0

Therefore, the stationary points of (22) are[
ϕ
ψ

]
∈
{

1

Lη

[
(SA⊤SA)⊙ (SB⊤SB)

]†
λ+ v

∣∣∣ v ∈ Null
(
(SA⊤SA)⊙ (SB⊤SB)

)}
:= S

It is easy to verify that the null space vector v will not affect the objective value, and thus one can
take any v to reach the global minimum.

By the conditions in Theorem 5, we have vt ∈ S ∩ R2r
+ ⊆ R2r

+ . As a consequence, vt is also the
global optimum of the contrained optimization (21). Taking Hadamard square root results in (11),
which concludes the proof.

A.4 MOMENT ESTIMATORS IN ADAPTIVE OPTIMIZERS

Optimizers such as Adam(W) leverages the first and entry-wise second moment estimators of the
stochastic gradient to adaptively update the parameters. For LoRA, the parameters are A and B
(viewed as stochastic matrices), whose corresponding gradient moments are

E[∇Aℓ(Wpt +AB⊤)] = E[∇ℓ(W)B], E[(∇Aℓ(Wpt +AB⊤))◦2] = E[(∇ℓ(W)B)◦2],

E[∇Bℓ(W
pt +AB⊤)] = E[∇ℓ(W)⊤A], E[(∇Bℓ(W

pt +AB⊤))◦2] = E[(∇ℓ(W)⊤A)◦2].

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Given dampening parameters β1, β2 ∈ (0, 1), the first and second moment estimators mt(·) and
vt(·) are defined as the exponential moving averages

mt(∇ℓ(W)B) = (1− β1)∇ℓ(Wt)Bt + β1mt−1(∇ℓ(W)B)

= (1− β1)

t∑
τ=0

βt−τ
1 ∇ℓ(Wτ)Bτ , (23a)

vt(∇ℓ(W)B) = (1− β2)
[
∇ℓ(Wt)Bt

]◦2
+ β2vt−1∇ℓ(W)B

= (1− β2)

t∑
τ=0

βt−τ
2

[
∇ℓ(Wτ)Bτ

]◦2
, (23b)

mt(∇ℓ(W)⊤A) = (1− β1)

t∑
τ=0

βt−τ
1 ∇ℓ(Wτ)

⊤Aτ , (23c)

vt(∇ℓ(W)⊤A) = (1− β2)

t∑
τ=0

βt−τ
2

[
∇ℓ(Wτ)

⊤Aτ

]◦2
. (23d)

Moreover, these optimizers rely on the following standard assumption characterizing the gradient
stochasticity.
Assumption 3. Stochastic gradient samples ∇ℓ(Wt)At and ∇ℓ(Wt)

⊤Bt are unbiased and have
bounded variance for ∀t.

Under this assumption, it can be readily verified that the moment estimators in (23) are also unbiased
and variance-bounded.

Next, we prove the two lemmas in Section 3.2.

Proof of Lemma 2.

Proof. The proof directly follows from the definition (23). Specifically, it holds

mt(∇Ãℓ(W)) = mt(∇ℓ(W)B̃) = mt(β∇ℓ(W)B)

= β(1− β1)

t∑
τ=0

βt−τ
1 ∇ℓ(Wτ)Bτ

= βmt(∇ℓ(W)B) = mt(∇Aℓ(W)).

Similar derivations can be shown for other three moment estimators.

Proof of Lemma 4.

Proof. For the column-wise scaling, its first moment estimator of ∇Ãℓ(W) follows as

mt(∇Ãℓ(W)) = mt(∇ℓ(W)B̃) = mt(∇ℓ(W)B diag(β))

= (1− β1)

t∑
τ=0

βt−τ
1 ∇ℓ(Wτ)Bτ diag(β)

= mt(∇ℓ(W)B) diag(β) = mt(∇Aℓ(W)) diag(β).

And the second moment estimator turns out to be
vt(∇Ãℓ(W)) = vt(∇ℓ(W)Bdiag(β))

= (1− β2)

t∑
τ=0

βt−τ
2

[
∇ℓ(Wτ)Bτ diag(β)

]◦2
= (1− β2)

t∑
τ=0

βt−τ
2

[
∇ℓ(Wτ)Bτ

]◦2
diag2(β)

= mt(∇ℓ(W)B) diag2(β) = mt(∇Aℓ(W)) diag2(β).

The same derivations apply to the gradient moment estimators of B̃.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.5 USEFUL FACTS

Lemma 6. If ∥A⊤G∥F > 0, then ∥AA⊤G∥F > 0.

Proof. We prove by contradiction. Suppose ∥A⊤G∥F > 0 but ∥AA⊤G∥F = 0. Then we have
A⊤G ̸= 0 and AA⊤G = 0. The latter suggests Col(A⊤G) ⊆ Null(A). Given that Col(A⊤G) ⊆
Col(A⊤), we have Col(A⊤G) ⊆ Null(A) ∩Col(A⊤) = {0}, which contradicts A⊤G ̸= 0. This
prove is thus completed.

Lemma 7 ((Horn & Johnson, 2012)). For matrices M1,M2 ∈ Rm×n, and vector v ∈ Rn,

(M1 ⊙M2)v = diag(M1 diag(v)M
⊤
2).

Theorem 8 ((Schur, 1911); Schur product theorem). If matrices M1,M2 ⪰ 0, then M1⊙M2 ⪰ 0.

B PSEUDOCODES AND COMPLEXITY COMPARISON

Algorithm 1 provides the pseudocodes for our ScaLoRA approach, where AdaOpt refers to one
adaptive optimizer step.

Algorithm 1: Scaled low-rank adaptation (ScaLoRA)
Input: Loss ℓ, pre-trained weight Wpt, maximum iterations T , and learning rate η.
Initialize: A0 and B0.

1 for t = 0, . . . , T − 1 do
2 Solve vt from

[
(SA⊤

t SA
t)⊙ (SB⊤

t SB
t)

]
vt = λt;

3 if vt ∈ R2r
+ then

4 Compute α∗
t and β∗

t using Theorem 5;
5 Scale Ãt = At diag(α

∗
t), B̃t = Bt diag(β

∗
t);

6 Alter moment estimators mt and vt using Lemma 4;
7 else
8 Compute α∗

t and β∗
t using Theorem 3;

9 Scale Ãt = α∗
tAt, B̃t = β∗

tBt;
10 Alter moment estimators mt and vt using Lemma 2;
11 end
12 Merge AtB

⊤
t and factor out ÃtB̃

⊤
t using (3);

13 Update At+1 = AdaOpt(Ãt, η,mt, vt), Bt+1 = AdaOpt(B̃t, η,mt, vt);
14 end

Output: AT and BT .

Table 5 summarizes the theoretical overhead comparison, where k represents for the batch size.
Note that the low-rank matrices’ Frobenius norms ∥AtA

⊤
t ∇ℓ(Wt)∥2F and ∥∇ℓ(Wt)BtB

⊤
t ∥2F in

Theorem 3 can be calculated through the trick

∥AtA
⊤
t ∇ℓ(Wt)∥2F = tr

(
∇ℓ(Wt)

⊤AtA
⊤
t AtA

⊤
t ∇ℓ(Wt)

)
=

n∑
i=1

r∑
j=1

[(
(∇ℓ(Wt)

⊤At)(A
⊤
t At)

)
⊙
(
∇ℓ(Wt)

⊤At

)]
ij

which reduces the computational overhead from O(m2r) to O((m+ n)r2).

Further, ScaLoRA-I guarantees a constant percentage of additional time overhead upon choosing
I = Ω(r), which does not grow with the model hidden size m and n. Using the complexity analysis
in Table 5, the extra cost of ScaLoRA-I relative to LoRA is O(mnr/I)

Ω(kmn) = O(1/k), where high-order
terms are dropped under r ≪ m,n. This ensures the scalability of ScaLoRA-I to larger models and
higher r.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Additional complexities introduced by LoRA variants

Method Time Space

LoRA forward/backward Ω(kmn) Ω(kmn)

MoRA Depends on fcompress and fdecompress
HiRA O(mnr) O(mn)

ScaLoRA O(mnr + (m+ n+ r)r2) O((m+ n+ r)r)
ScaLoRA-I O((mnr + (m+ n+ r)r2)/I) O((m+ n+ r)r)

C EXPERIMENTAL SETUPS

This section lists the detailed datasets, models, and hyperparameters.

C.1 PLATFORMS

All the numerical tests are conducted on a server equipped with four Nvidia A100 GPUs. All codes
are written in PyTorch (Paszke et al., 2019), and partially built on (Hu et al., 2023; Lion et al., 2025).

C.2 SETUPS FOR LINEAR REGRESSION

The numerical test considers optimization objective

min
W

1

2
∥Y −WX∥2F

where the entries of X ∈ Rn×k and Y ∈ Rm×k are both randomly generated from standard Gaus-
sian N (0, 1). For LoRA, the objective function is

min
A,B

1

2
∥Y −AB⊤X∥2F.

The test utilizes m = n = 64, k = 100, and r = 8. The optimizer is standard GD.

C.3 SETUPS FOR NATURAL LANGUAGE UNDERSTANDING

General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019) is a
widely used suite of datasets designed to evaluate the general-purpose natural language understand-
ing (NLU) capabilities of models. In this work, we adopt the following 8 subsets of GLUE:

• MNLI (Williams et al., 2018) (Multi-Genre Natural Language Inference) evaluates a model’s
ability to perform natural language inference across multiple genres of text.

• SST-2 (Socher et al., 2013) (Stanford Sentiment Treebank) is a sentiment classification dataset
with binary labels.

• MRPC (Dolan & Brockett, 2005) (Microsoft Research Paraphrase Corpus) focuses on paraphrase
detection, i.e., determining whether two sentences are semantically equivalent.

• CoLA (Warstadt et al., 2019) (Corpus of Linguistic Acceptability) requires models to determine
whether a sentence is grammatically acceptable.

• QNLI (Rajpurkar et al., 2018) (Question Natural Language Inference) is a question-answering
dataset reformulated as a binary inference task.

• QQP1 (Quora Question Pairs) consists of pairs of questions, and the task is to predict whether
they are semantically equivalent.

• RTE2 (Recognizing Textual Entailment) contains sentence pairs for textual entailment classifica-
tion.

1https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
2https://paperswithcode.com/dataset/rte

23

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://paperswithcode.com/dataset/rte

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• STS-B (Cer et al., 2017) (Semantic Textual Similarity Benchmark) evaluates the degree of seman-
tic similarity between two sentences on a continuous scale.

Together, these datasets provide a comprehensive benchmark for testing general-purpose language
models under diverse NLU tasks. All datasets are distributed under permissive licenses. A summary
of the datasets is provided in Table 6.

Table 6: Summary of GLUE benchmark datasets.

Name Task #train #test Metrics
MNLI Natural language inference 393k 20k Matched & mismatched accuracy
SST-2 Sentiment classification 67k 1.8k Accuracy
MRPC Paraphrase detection 3.7k 1.7k Accuracy, F1
CoLA Acceptability judgment 8.5k 1k Matthews correlation
QNLI QA/NLI 105k 5.4k Accuracy
QQP Paraphrase detection 364k 391k Accuracy, F1
RTE Textual entailment 2.5k 3k Accuracy
STS-B Semantic similarity 7k 1.4k Pearson & Spearman correlations

DeBERTaV3-base (He et al., 2023) is a transformer-based encoder model with approximately 184M
parameters. It builds on the DeBERTa architecture by incorporating disentangled attention and an
enhanced masked language modeling objective, leading to improved efficiency and performance
across a range of tasks. The publicly available model checkpoint3 is released under the MIT license.

Hyperparameters and general setups for natural language understanding tests follow from the
protocols in (Hu et al., 2022; Zhang et al., 2023). Specifically, the LoRA adapters are inserted
to all linear layers including query proj, key proj, value proj, output.dense, and
intermediate.dense modules, reducing the number of parameters from 184M to 0.67M. The
LoRA rank is set to r = 4 with scaling factor 8 throughout the test. Learning rates are selected
via grid search from {0.8, 1, 2, 3, 4, 5, 6, 8, 10, 20} × 10−4 for each approach, with finer resolu-
tion allocated to the lower end of the range to better capture the region where many methods are
more sensitive. For HiRA, the learning-rates are scaled by an additional factor of 10 to offset the
magnitude change due to Hadamard product. The the number epochs are reduced due to the fast
convergence of ScaLoRA, while other hyperparameters follow the defaults in (Hu et al., 2022); see
Table 7.

Table 7: Hyperparameter for natural language understanding tests.

Hyperparam CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE
LR (LoRA) 8e-4 6e-4 8e-4 8e-4 5e-4 2e-4 4e-4 6e-4
LR (MoRA) 6e-4 6e-4 1e-3 8e-4 5e-4 2e-4 4e-4 6e-4
LR (HiRA) 6e-3 6e-3 8e-3 8e-3 5e-3 2e-3 4e-3 8e-3
LR (ScaLoRA) 6e-4 6e-4 1e-3 8e-4 5e-4 2e-4 4e-4 6e-4
LR scheduler Linear
Epochs 10 2 10 10 5 5 3 10
Batch size 32
Cutoff length 64 128 128 128 320 256 512 320
Warmup steps 100 500 10% 100 1000 1000 500 50
Class dropout 0.1 0 0 0.2 0.2 0.15 0.1 0.2
Weight decay 0 0.01 0.01 0.1 0.01 0 0.01 0.01

C.4 SETUPS FOR COMMONSENSE REASONING

Commonsense reasoning datasets (Hu et al., 2023) evaluate a model’s ability to apply everyday
knowledge and make inferences beyond explicitly provided textual information. Such benchmarks

3https://huggingface.co/microsoft/deberta-v3-base

24

https://huggingface.co/microsoft/deberta-v3-base

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

are essential for assessing reasoning over both physical and social contexts, which remain challeng-
ing for language models despite strong performance on surface-level tasks. The datasets considered
in this work cover a wide range of commonsense reasoning scenarios:

• BoolQ (Clark et al., 2019) (Boolean Questions) is a reading comprehension dataset consisting
of yes/no questions. Each question is paired with a passage from Wikipedia, requiring the model
to extract and reason over information in the passage to provide the correct binary answer.

• WG(Sakaguchi et al., 2021) (WinoGrande) is a large-scale coreference resolution benchmark
that mitigates annotation artifacts found in traditional Winograd schemas.

• PIQA(Bisk et al., 2020) (Physical Interaction QA) measures knowledge of physical common-
sense, particularly intuitive reasoning about how objects interact.

• SIQA(Sap et al., 2019) (Social-IQ-A) targets social commonsense reasoning, requiring models
to infer motivations, emotions, and social interactions.

• HS(Zellers et al., 2019) (HellaSwag) evaluates grounded commonsense inference through
multiple-choice sentence completion, designed to be adversarially difficult.

• ARC(Chollet, 2019) (AI2 Reasoning Challenge) consists of grade-school science questions, split
into ARC-e (easy) and ARC-c (challenge), based on difficulty levels.

• OpenbookQA(Mihaylov et al., 2018) contains multiple-choice science questions that require
integrating commonsense with elementary scientific facts, simulating open-book reasoning.

Together, these datasets span multiple domains (physical, social, and scientific reasoning) and pro-
vide diverse evaluation challenges. All datasets are publicly available under open or research-
friendly licenses. Table 8 provides a detailed summary.

Table 8: Summary of commonsense reasoning datasets.

Name Task #train #test
WinoGrande Coreference resolution 40k 1.3k
PIQA Physical reasoning 16k 3k
SIQA Social reasoning 33k 2k
HellaSwag Sentence completion 70k 10k
ARC-easy Multiple-choice QA 2.3k 1.2k
ARC-challenge Multiple-choice QA 2.6k 1.2k
OpenbookQA Open-book QA 5.0k 500

LLaMA2-7B (Touvron et al., 2023) is the second-generation model in the LLaMA family, offering
improvements in training stability, data curation, and overall performance compared to its predeces-
sor. The released checkpoint4 is distributed under a permissive license that supports both academic
research and commercial applications.

LLaMA3-8B (Grattafiori et al., 2024) pertains to the third-generation LLaMA models, trained with
larger and more diverse datasets and incorporating architectural refinements for improved reason-
ing and instruction-following ability. Its checkpoint5 is available under Meta’s permissive license,
likewise allowing both research use and commercial deployment.

Hyperparameters for this test are adapted from (Lion et al., 2025). LoRA modules are applied
to all projection matrices, including q proj, k proj, v proj, up proj, and down proj. The
LoRA rank, scaling factor, and dropout rate are set to 8, 16, and 5%, respectively. We use a batch
size of 16 and finetune for 3 epochs across all tasks. The sequence cutoff length is fixed at 256
tokens. Learning rates are reported in Table 9, with a cosine scheduler and 3% warmup steps.
Learning rates are selected via a grid search over {0.8, 1, 2, 3, 4, 5, 6, 8, 10, 20} × 10−4 using finer
resolution in the lower range. The learning-rates of HiRA and LoRA-GA are respectively scaled by
an additional factor of 10 and 1/10 to compensate the magnitude change due to Hadamard product
and large initialization. ReLoRA uses a re-initialization frequency of 200 steps with 10 re-warmup

4https://huggingface.co/meta-llama/Llama-2-7b
5https://huggingface.co/meta-llama/Meta-Llama-3-8B

25

https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Meta-Llama-3-8B

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 9: Learning rates for commonsense reasoning tasks.

Method BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA
L

L
aM

A
2-

7B LoRA 8e-4 4e-4 4e-4 4e-4 1e-4 1e-4 4e-4 4e-4
ReLoRA 8e-4 4e-4 4e-4 4e-4 1e-4 2e-4 4e-4 4e-4
LoRA-GA 2e-4 1e-4 1e-4 1e-4 2e-5 8e-5 1e-4 2e-4
MoRA 8e-4 4e-4 4e-4 4e-4 1e-4 2e-4 2e-4 4e-4
HiRA 8e-3 4e-3 4e-3 2e-3 1e-3 2e-3 4e-3 4e-3
ScaLoRA(-I) 8e-4 2e-4 2e-4 4e-4 1e-4 1e-4 4e-4 4e-4
LoRAr=32 8e-4 2e-4 2e-4 2e-4 1e-4 1e-4 2e-4 2e-4

L
L

aM
A

3-
8B LoRA 4e-4 1e-4 1e-4 1e-4 8e-5 2e-4 2e-4 5e-4

ReLoRA 4e-4 1e-4 1e-4 1e-4 8e-5 2e-4 2e-4 4e-4
LoRA-GA 1e-4 8e-5 6e-5 3e-5 4e-5 5e-5 8e-5 2e-4
MoRA 4e-4 1e-4 1e-4 1e-4 8e-5 1e-4 2e-4 2e-4
HiRA 8e-3 2e-3 2e-3 1e-3 1e-3 4e-3 8e-3 4e-3
ScaLoRA(-I) 4e-4 1e-4 1e-4 1e-4 8e-5 8e-5 4e-4 5e-4
LoRAr=32 4e-4 8e-5 1e-4 1e-4 8e-5 1e-4 2e-4 2e-4

steps for the three smaller datasets ARC-e, ARC-c, and OBQA, and a frequency of 2000 steps with
100 re-warmup steps for the remaining larger datasets. LoRA-GA employs a scaling factor γ = 128
for stability, and a sample batch size of 32 for gradient estimation.

C.5 SETUPS FOR MATHEMATICAL PROBLEM SOLVING

This experiment is conducted by fine-tuning the Gemma-3-12B model on the MetaMathQA dataset
and subsequently testing its performance on GSM8K and MATH datasets. Below are brief introduc-
tions to the datasets and the model involved.

MetaMathQA (Yu et al., 2024) is a synthetic math reasoning dataset released under the Apache-2.0
license and created via question bootstrapping. By rewriting problems through forward, back-
ward, and rephrased perspectives, it augments diversity and improves generalization of mathematical
problem-solving models.

GSM8K (Grade-School Math 8K) (Cobbe et al., 2021) is released under the MIT license and con-
sists of roughly 8.5K high-quality, linguistically varied word problems from middle-school curric-
ula, each requiring multiple reasoning steps. It is designed to be solvable by bright students and
serves as a standard benchmark for evaluating multi-step mathematical reasoning.

MATH (Hendrycks et al., 2021) is also released under the MIT license and includes about 12.5K
high-school competition–style math problems across topics such as algebra, number theory, ge-
ometry, and probability. Each problem is paired with a detailed step-by-step solution, challenging
language models with complex mathematical reasoning tasks.

Gemma-3-12B-pt (Team et al., 2025) is a 12-billion parameter multimodal language model devel-
oped by Google DeepMind. It is part of the Gemma-3 family, which includes models from 1B to
27B parameters, optimized for tasks such as question answering, summarization, and reasoning.
The model checkpoint6 is released under Google’s Gemma Term of Use7, permitting both research
and commercial applications.

Hyperparameters are similar to the previous commonsense reasoning test. Specifically, LoRA
modules are applied to all projection matrices; i.e., q proj, k proj, v proj, up proj, and
down proj. The LoRA rank, scaling factor, and dropout rate are set to 8, 16, and 5%, respectively.
Given the large dataset size, the batch size is increased to 64, while the number of training epochs is
reduced to 2. The sequence length is capped at 256 tokens, and the learning rate is fixed at 10−4.

6https://huggingface.co/google/gemma-3-12b-pt
7https://ai.google.dev/gemma/terms

26

https://huggingface.co/google/gemma-3-12b-pt
https://ai.google.dev/gemma/terms

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D ADDITIONAL NUMERICAL RESULTS

D.1 MOTIVATION FOR SCALORA-I

Figure 4 visualizes the deviation of the scaling factors αt and βt from 1 when applying optimal
scaling at each iteration, with DeBERTaV3-base model and CoLA dataset. It is seen that these
deviations are below 0.1 and 0.2 for most iterations, which is expected given the relatively small
learning rate η. Since At and Bt thereby change only slightly, it is natural to consider a lazy update
strategy that performs the scaling after sufficient changes have accumulated. Moreover, the figure
also shows that Bt requires noticeably larger adjustments than At, consistent with the empirical
findings and theoretical analyses in (Zhu et al., 2024).

Figure 4: Visualization of scaling factor change during fine-tuning.

D.2 ABLATION STUDY ON CHOICE OF I

Next, ablation experiment on the choice of I is conducted using LLaMA3-8B on the ARC-c dataset,
where increasing the rank to 32 yields a remarkable improvement in LoRA. To evaluate the impact
of I on the effectiveness and convergence, we report the test accuracy, the running average of fine-
tuning loss, and the elapsed time relative to LoRA for I ∈ {1, 3, 10, 30, 100}. The results are
summarized in Table 10. As I increases, accuracy and time complexity both decrease, while the
fine-tuning loss tends to grow. Notably, I = 10 provides a good trade-off between loss reduction
and computational cost. In particular, it achieves convergence comparable to I = 1 yet introducing
only a 4% additional overhead relative to LoRA.

Table 10: Ablation study on the choice of I using LLaMA3-8B on ARC-c task.

Method Acc FT loss Time
ScaLoRA I = 1 65.61 0.8693 1.42×
ScaLoRA I = 3 65.14 0.8734 1.15×
ScaLoRA I = 10 64.68 0.8705 1.04×
ScaLoRA I = 30 63.57 0.8960 1.02×
ScaLoRA I = 100 63.33 0.9851 1.01×
LoRA r = 8 62.29 1.2013 1×
LoRA r = 32 64.08 0.866 1.08×

D.3 EXTENDED ABLATION STUDY ON EFFECTIVENESS OF COLUMN SCALING

This subsection investigates the effectiveness of Theorem 5 through a more detailed comparison.
Following the setup in Section 4.4, we analyze the ScaLoRA-I variant that uses only scalar scaling.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) RTE (b) MRPC

Figure 5: Patterns of column scaling across layers.

Table 11 compares this scalar-only variant against ScaLoRA-I on commonsense reasoning bench-
marks using LLaMA2-7B with r = 8. We observe that the scalar-only variant suffers a notable
performance degradation on the SIQA, WG, ARC-c, and OBQA datasets, while performing compa-
rably to ScaLoRA-I on the remaining four. Overall, this results in an average performance drop of
0.72%, though it still exceeds LoRA by 0.60%. This underscores the significance and effectiveness
of column-wise scaling.

Table 11: Ablation study on column scaling using LLaMA2-7B on commonsense reasoning tasks.

Method BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg
LoRA 87.40 81.66 59.16 82.45 79.48 82.91 57.59 58.40 73.63
ScaLoRA-I 87.58 82.26 60.49 83.52 81.69 83.75 58.53 60.20 74.75
Scalar-only 87.31 82.32 59.37 83.60 80.93 83.38 56.11 59.20 74.03

D.4 PATTERNS OF LAYERS WITH COLUMN SCALING

Interestingly, the layers satisfying vt ⪰ 0 exhibit discernible patterns, with certain layers more
prone than others to violating this condition. Figure 5 depicts these patterns for DeBERTaV3-base
on two GLUE tasks, where column and scalar scaling are marked in black and white, respectively.
We observe that some layers are consistently transformed using column scaling, while others pre-
dominantly undergo scalar scaling. This pattern also varies across tasks. In practice, when such
patterns are known a priori, one may fix the scaling scheme accordingly to eliminate the computa-
tional overhead for solving the 2r × 2r linear system.

28

	Introduction
	Low-rank adaptation recap
	High-rank updates via optimal scaling
	Challenges in accumulating low-rank updates
	Optimal scalar scaling
	Optimal column-wise scaling
	ScaLoRA for high-rank update and fast convergence

	Numerical tests
	Linear regression with synthetic data
	Natural language understanding
	Commonsense reasoning
	Mathematical problem solving

	Concluding remarks
	Missing proofs
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 5
	Moment estimators in adaptive optimizers
	Useful facts

	Pseudocodes and complexity comparison
	Experimental setups
	Platforms
	Setups for linear regression
	Setups for natural language understanding
	Setups for commonsense reasoning
	Setups for mathematical problem solving

	Additional numerical results
	Motivation for ScaLoRA-I
	Ablation study on choice of I
	Extended ablation study on effectiveness of column scaling
	Patterns of layers with column scaling

