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ABSTRACT

Building general-purpose models that can leverage information across diverse
datasets remains challenging due to varying schemas, inconsistent semantics, and
arbitrary feature orderings in real-world structured data. We introduce ASPIRE
(Arbitrary Set-based Permutation-Invariant Reasoning Engine), a universal neural
inference model that performs semantic reasoning and prediction over heteroge-
neous tabular data. ASPIRE combines two key innovations: (1) a permutation-
invariant, set-based Transformer architecture that treats feature-value pairs as
unordered sets, and (2) a semantic grounding module that leverages natural lan-
guage descriptions, dataset metadata, and in-context examples to align features
across different datasets. This design enables ASPIRE to process arbitrary collec-
tions of feature-value pairs from any dataset and make predictions for any specified
target without requiring fixed schemas or feature orderings. Once trained on diverse
datasets, ASPIRE generalizes to new inference tasks without additional tuning. Our
experiments demonstrate substantial improvements: 24% higher average F1 scores
in few-shot classification and 71% lower RMSE in regression tasks compared
to existing tabular foundation models. Additionally, ASPIRE naturally supports
cost-aware active feature acquisition, strategically selecting informative features
under budget constraints for previously unseen datasets. These capabilities position
ASPIRE as a significant step toward truly universal, semantics-aware inference
over structured data, enabling models to leverage patterns across the vast universe
of tabular datasets rather than being limited to isolated, schema-specific learning.

1 INTRODUCTION

The explosion of available datasets across domains—from healthcare and finance to environmental
sciences and retail—presents an unprecedented opportunity for machine learning. Terabytes of
structured data now exist across thousands of publicly available datasets (Nguyen et al.| 2023} |Bache
& Lichman) 2013};[Schuhmann et al., |2022;2021)), yet current machine learning approaches fail to
capitalize on this wealth of information. Most models are designed for individual datasets with fixed
schemas, leaving vast amounts of related data on disconnected islands that cannot inform each other
(van Breugel & van der Schaar], 2024; |van Breugel et al., 2024).

This limitation is particularly striking when compared to recent advances in other modalities. Foun-
dation models for images and text have demonstrated remarkable success by training on diverse,
large-scale datasets where aggregation is straightforward. However, structured tabular data—which
represents the majority of real-world data across domains like healthcare, finance, and scientific
research—remains largely untapped by foundation modeling approaches. Current foundational knowl-
edge focuses on just the tip of the iceberg of data over a few specific modalities, largely ignoring
the vast remainder of general tabular data across diverse domains. The core challenge lies in the
heterogeneous nature of tabular data: different datasets have varying schemas, inconsistent feature
semantics, and no inherent ordering, making it difficult to build models that can leverage patterns
across multiple datasets.

Traditional methods, especially gradient-boosted decision trees such as XGBoost (Chen & Guestrin,
2016), have long dominated structured data modeling due to their efficiency and strong empirical
performance on individual datasets. Recently, foundation model approaches have emerged for tabular
domains. Some studies finetune large language models on serialized table data (Fang et al., [2024;
Hegselmann et al.| [2023} |Gardner et al., [2024), though LLMs are poorly calibrated and struggle with
modeling complex continuous distributions autoregressively (Hopkins et al., 2023 |Desai & Durrett,
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Figure 1: Universal Neural Inference with ASPIRE. During training, ASPIRE learns from diverse
datasets across domains with heterogeneous schemas and varying feature sets. The semantic ground-
ing module aligns features using natural language descriptions and metadata. During inference,
ASPIRE performs zero-shot or few-shot prediction on new datasets by leveraging learned cross-
domain patterns, handling arbitrary feature combinations while maintaining permutation invariance.

2020; Jiang et al., [2023). Others, like TabPFN (Hollmann et al., 2022} [2025) and TabForestPFN (den
Breejen et al., [2024), pretrain transformers on synthetic datasets for few-shot prediction. Specialized
architectures such as XTab (Zhu et al., [2023)), CARTE (Kim et al.l 2024)), TP-BERTa (Yan et al.,
2024) and CM2 (Ye et al.,[2024) target cross-table learning across heterogeneous schemas.

Despite these advances, three critical challenges remain. First, schema heterogeneity across
datasets—where each dataset differs in feature sets, types, and distributions—impedes model transfer.
Second, structured datasets lack inherent ordering, making permutation invariance critical; many
existing methods do not guarantee consistent predictions under arbitrary feature arrangements (Arbel
et al.| 2025)). Third, semantic grounding is often overlooked: although column names and metadata
vary widely, most models underutilize natural language descriptions that could enable better fea-
ture alignment across tables. Recent work emphasizes the importance of conditioning on metadata
alongside table data for robust transfer (Klein & Hoffart, 2025).

To address these fundamental challenges, we introduce ASPIRE (Arbitrary Set-based Permutation-
Invariant Reasoning Engine), a Universal Neural Inference (UNI) framework for heterogeneous
structured data, as illustrated in Figure|l| ASPIRE treats tabular inference as a set-based reasoning
problem, modeling both features within instances and support examples as unordered sets. This design
ensures permutation invariance while enabling flexible reasoning over arbitrary feature combinations.
The key innovation lies in ASPIRE’s semantic grounding mechanism, which leverages natural
language feature descriptions, dataset metadata, and in-context examples to learn meaningful cross-
dataset dependencies. By conditioning representations on semantic information rather than feature
positions, ASPIRE aligns similar concepts across heterogeneous schemas and generalizes to new
datasets without additional training.

This work makes several key contributions to universal tabular reasoning. We formalize the problem
of universal neural inference over heterogeneous structured data and propose a principled solution
handling arbitrary feature sets and targets. Our permutation-invariant architecture guarantees consis-
tent predictions regardless of feature ordering, addressing a critical limitation of existing methods. We
demonstrate how natural language descriptions enable robust cross-dataset generalization, allowing
models to leverage semantic similarities even with minimal feature overlap.

We evaluate ASPIRE across heterogeneous tabular benchmarks, demonstrating substantial improve-
ments: 24% higher average F1 scores in few-shot classification and 71% lower RMSE in regression
tasks compared to leading tabular foundation models. ASPIRE exhibits strong few-shot capabilities
without task-specific training and seamlessly extends to active feature acquisition (Ma et al.| 2018},
Gong et al.,|2019; L1 & Oliva, |2020; Shim et al., 2018; |Li & Oliva, |2021) through its probabilistic
framework, optimizing performance under feature-cost constraints. Unlike existing methods requiring
retraining for new datasets, ASPIRE supports open-world inference on previously unseen datasets
without additional tuning.
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In summary, ASPIRE bridges a critical gap in tabular foundation modeling by aligning permutation-
invariant architectures with semantic grounding to enable truly universal tabular prediction and
reasoning across the vast universe of structured data.

2 BACKGROUND: SET MODELING

Set modeling is fundamental to universal tabular inference because real-world structured data naturally
exhibits set-like properties: features within instances have no inherent ordering, and the collection
of instances in a dataset forms an unordered set. Traditional machine learning approaches that rely
on fixed feature orderings fail when applied across heterogeneous datasets where the same semantic
concepts may appear in different positions or with different names. By treating tabular data as sets,
we can build models that are robust to these variations while maintaining the flexibility needed for
universal inference across diverse schemas.

A set is a collection of elements that does not impose any ordering among its members. Models
that operate on sets must respect this property. Let x = {z;}_; € X™ denote a set, where n is the
cardinality of the set and X is the domain of each element x;. The following concepts are central to
set modeling:

Definition 1 (Permutation Invariant). A function f : X™ — ) is permutation invariant if, for any
permutation 7, we have f(7(x)) = f(x).

Definition 2 (Permutation Equivariant). A function f : X™ — Y™ is permutation equivariant if, for
any permutation m, we have f(m(x)) = 7(f(x)).

Deep neural networks often consist of multiple layers, which can be viewed as compositions of
functions. When composing functions over sets, the following properties hold (Zaheer et al.,[2017): if
f and g are both permutation equivariant functions, then their composition f o g is also permutation
equivariant. Similarly, if g is permutation equivariant and f is permutation invariant, then the
composition f o g is permutation invariant.

Existing Approaches to Set Modeling Early methods augment training data with permuted
versions to enforce invariance, but this does not guarantee invariance in practice since sequence
models exploit positional information (Zaheer et al.,[2017)). DeepSets (Zaheer et al., 2017) provides
a foundational result: any continuous permutation invariant function can be expressed as f(S) =
h (Z zeS g(x)) leading to simple two-stage architectures. However, the required latent dimension
grows linearly with set size (Wagstaff et al.;|2019). Set Transformer (Lee et al.|[2019) addresses this
limitation by replacing pooling with self-attention mechanisms, which are inherently permutation
equivariant. Several extensions have emerged: Holder-based power means and quasi-arithmetic
pooling strategies (Kimura et al.,2024) generalize aggregation functions for increased expressivity,
while subset-invariant regularization (Cohen-Karlik et al.| 2020) enforces symmetry through learning
objectives. Recent theoretical work (Wang et al.l 2023)) provides refined insights into trade-offs
between model capacity and set size. These advances enable richer element interactions while
maintaining permutation invariance—principles that directly inspire our ASPIRE architecture.

3 PROBLEM FORMULATION

We propose and formalize the problem of universal inference: learning a single model that can
perform conditional prediction across diverse datasets with heterogeneous schemas, arbitrary feature
subsets, and varying targets. Unlike traditional supervised learning that assumes fixed schemas
and designated targets, universal inference must handle the fundamental challenges of cross-dataset
generalization while maintaining flexibility in both input features and prediction targets.

Dataset and Instance Representation Let D = {D;} X | denote a collection of datasets, where

each dataset Dy, = {eSf) }N *, contains N, independently and identically distributed examples. Each

n=1
example egﬂ) is represented as a set of M), feature—value pairs: e%k) ={(fm, vm)}%il, where f € F

and F represents the universe of all potential features across datasets. This set-based representation
naturally accommodates the heterogeneous nature of real-world datasets where feature sets, types,
and semantics vary significantly.
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From Fixed to Arbitrary Conditioning Traditional supervised learning assumes a fixed schema
with a designated target feature, optimizing target prediction given all remaining observed features.
However, this rigid formulation limits the model’s ability to leverage partial information or adapt
to new prediction tasks. We generalize to universal arbitrary conditioning, where any subset of
features may be observed for a given instance eﬁf ), and the task is to predict any subset of unobserved
features.

Formally, let o) ¢ {1,..., M}} index the observed features and ull) = {1,..., M} \ o) index
the unobserved features. The objective is to maximize the log-likelihood:

1og p({vm} et | {msvm) ot Lfmdea® )

which must be permutation-invariant with respect to observed feature—value pairs and permutation-
equivariant with respect to unobserved features. Crucially, the observed subset oslk) may differ across

instances, enabling flexible inference patterns.

Universal Inference Across Datasets While prior work has studied arbitrary conditioning within
individual datasets (Ivanov et al.| 2018} |Li et al., [2020; [Strauss & Oliva, 2021), we extend this to
the cross-dataset setting. Our goal is to learn a universal inference model that performs arbitrary
conditional prediction across a distribution of datasets, including previously unseen ones at test time.

To enable cross-dataset generalization, we propose to incorporate semantic context ¢, for each dataset

Dy, such as natural language descriptions of features and dataset metadata. Additionally, we allow

for a few-shot learning by providing an optional support set of labeled examples Sy = {egk) }Li“ll

from the same dataset. The universal inference objective models the expected conditional distribution
over datasets, instances, support sets, and observational patterns:

EpindE 0 g 0 o o pofel) [logp({vm}meugc) [ {(fmsvm) oy {fm b e Sy Ck)} ;
6]
where P(o | e;k)) represents a distribution over observed feature subsets, and Sy, is sampled from the

same dataset D}, (excluding the target instance eSZ“)). The support set size |Sk| can vary, enabling
zero-shot learning when |.S;| = 0 and few-shot learning with |Si| > 0.

This formulation captures the essence of universal neural inference: a single model capable of
semantically informed, arbitrary conditional inference across diverse datasets. At test time, given any
dataset (seen or unseen during training) and an instance e£f ) with observed features oﬁf ), the model
must accurately predict the unobserved features ugf ) by leveraging learned cross-dataset patterns
and semantic understanding.

4 ASPIRE: ARCHITECTURE AND METHOD

The core challenge of universal inference is handling heterogeneous datasets with varying schemas
while ensuring permutation invariance in reasoning over arbitrary feature sets. ASPIRE addresses this
through a unified architecture that combines semantic grounding with set-based permutation-invariant
processing, as illustrated in Figure [C.T]

4.1 OVERVIEW

ASPIRE addresses universal inference through a unified architecture that transforms heterogeneous
tabular data into shared representations while preserving flexibility for arbitrary conditioning. The
architecture builds on a key insight: successful cross-dataset generalization requires both semantic
understanding of the dataset and feature meanings and structural dependencies modeling within and
across instances.

The transformation proceeds through four interconnected stages. Semantic Grounding (§4.2) maps
features with similar meanings into a shared semantic space using natural language descriptions
and metadata, enabling the model to recognize that “patient_age” and “age_years” represent the
same concept across datasets. Atom Processing (§4.3) converts feature-value pairs into contextual
“atoms” where values are embedded conditionally on their feature semantics, ensuring that “32” is
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processed differently for age versus BMI. Set-Based Instance Representation (§4.4) treats each
instance as an unordered set of atoms, using Set Transformers to capture feature interactions while
maintaining permutation equivariance. Finally, Universal Inference (§4.5) aggregates information
from query instances, optional support sets, and dataset context through hierarchical attention
mechanisms, enabling conditional prediction for any target feature while preserving permutation
invariance. This design enables ASPIRE to perform arbitrary conditioning across datasets with
varying schemas, supporting zero-shot generalization to unseen domains and few-shot adaptation
with minimal examples.

4.2 SEMANTIC FEATURE GROUNDING

To enable cross-dataset generalization, ASPIRE must align features with similar meanings across
heterogeneous schemas. A key challenge is that semantically equivalent features often have different
names and data types across datasets—for example, BMI might appear as numerical values in one

dataset but as discrete categories (“low”, “medium”, “high”) in another, or patient age might be
labeled as “Age”, “Patient Age”, or “Age (years)” across different sources.

In order to achieve semantic awareness, we need a mechanism that can recognize conceptual equiv-
alence despite these surface-level differences in naming conventions and data representations. We
propose a semantic grounding framework that maps each feature f,,, into a unified representation
space by integrating multiple sources of semantic information. Formally, let M( f,,,) denote the set
of available metadata for feature f,,,, which may include natural language descriptions, data type
specifications, categorical value sets, and normalization parameters. The semantic feature embedding
is constructed as: ¢(fp,) = F(M(fm)), where F is a learnable aggregation function that combines
heterogeneous metadata into a unified semantic representation.

In our implementation, we instantiate F as an additive composition of specialized encoders:

O(fm) = Edesc + Eaype + I(dtype = Categorical) - Echoices, 2)
where Eges encodes natural language descriptions (e.g., using BERT ()), Egype provides learnable
type embeddings, and Fipeices aggregates categorical value representations when applicable. This
design ensures that semantically equivalent features (e.g., “Patient Age” and “Age (years)”) receive
similar embeddings across datasets, enabling effective cross-dataset knowledge transfer.

4.3 FEATURE-VALUE ATOM PROCESSING

Each instance consists of feature-value pairs that we term “atoms”—the fundamental units of infor-
mation in ASPIRE. A key challenge is achieving contextual awareness: identical values must be
embedded differently depending on their feature context. We address this through feature-conditioned
value embedding. First, we ensure the value embeddings are adapted to different data types:

Y ce fn choices L(Vm = ¢) - BERT(c)  if categorical
v(vm | fm) = { Fourier(v,,) if continuous 3)
ey if missing
where Fourier encoding (Zhou et al.| [2025) provides a single-token representation for numerical
values, and ey represents a learnable embedding for missing value that is shared across all datasets.

The atom embedding then fuses semantic feature information with contextually encoded values:

¢(fma Um) = AtomMLP(gb(fm), V('Um|fm)) 4
The AtomMLP learns to modulate value representations based on feature semantics, ensuring that
identical values receive different contextual encodings. For instance, the value “32” will be processed
differently when ¢( f,,,) indicates “age” versus “BMI”, enabling the model to capture feature-specific
value interpretations essential for cross-dataset reasoning.

4.4 SET-BASED INSTANCE REPRESENTATION

A key innovation in ASPIRE is treating each instance as an unordered set of atoms, el =

{(fm,vm) M= |, where v,,, might be missing for unobserved features. Rather than compressing this
set into a single vector, we employ permutation-equivariant set-fo-set transformations that maintain

the set structure while enabling feature interactions.
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Our approach enables late-fusion of instance information

via permutation-equivariant mappings of the feature-value | PEq&®

atoms within an instance. As illustrated in Figure 2] the Ao\ €(PEqE;,

set-to-set mapping processes atom embeddings to yield %
3 3

multiple output vectors (one per atom) that capture intra- : :
dependencies between co-occurring features. This allows
feature representations to become instance-aware without L Instance:i:ivlfr_i Inst. Emb.

bottlenecking through a single compressed vector. Figure 2: Set-to-set transformation:
permutation-equivariant processing of
feature-value atoms produces instance-
aware representations while maintaining

plel)y = SetTransformer ({4 ( fm,vm)}Mk ). (5) setstructure.

m=1
The Set Transformer architecture is well-suited for this task because both its attention mechanism and
feed-forward layers are inherently permutation-equivariant. The final atom embeddings incorporate
instance-level contextual information, allowing each feature-value pair to be aware of other features
within the same instance.

Formally, we apply stacked Set Transformer layers (Lee
et al.| 2019) to the atom embeddings:

In few-shot learning scenarios, the model receives a variable number of labeled examples (support set)
Sk = {egk) }Li‘ll from the same dataset. Each support example egk) consists of observed feature-value
pairs and is processed through the same instance embedding module, ensuring unified representation
across query and support instances:
|Sk|

A(Se) = {p(ef)} 2. ©)
This set-based approach provides two critical advantages: (1) permutation invariance—feature
ordering does not affect representations, enabling robust handling of heterogeneous schemas, and
(2) flexible conditioning—any subset of features can be observed or predicted without requiring
architectural modifications.

4.5 UNIVERSAL INFERENCE ARCHITECTURE

ASPIRE aggregates information from multiple sources through a hierarchical permutation-equivariant
framework that processes atoms within instances, then aggregates across instances while maintaining
permutation invariance at both levels.

The model processes three types of information:

* Query instance: e%k) ={(fm, U7”)}m€o(k) UA{(fm, (D)}m@(k), where oflk) and ugf) partition the
feature indices into observed and unobserved sets. /

* Support set: S, = {eg’“)}‘f;l' where each e{*) = {(fmsvm)}M_, is fully observed and sampled
from the same dataset Dy, as the query instance.

» Context: c;, containing dataset description embedded as tokens w/ positional embeddings.

Hierarchical Permutation-Equivariant Aggregation ASPIRE employs a two-level architec-
ture where each level maintains permutation-equivariant processing to capture different types of
interactions.

Level 1: Intra-Instance Processing - Feature-value atoms within each instance are embedded via
equation ] then processed through equation[5]to capture feature interactions while remaining invariant
to feature ordering.

Level 2: Inter-Instance Aggregation - To enable cross-instance reasoning, we tag each atom
representation with learnable type embeddings and aggregate across all sources:

7:]uery = {[pm(e%k)), Spquery]}mEOSf) U {[pm(egl’f)), QO[arget]}meU%k) (7)
Taaport = U H{[om (8”), ool Yory ®)
Teontext = {[tha @context]? Ckt € Clc} )

The final aggregation combines all tagged representations through another permutation-equivariant

mapping:
R = SetTransformer(Tquery U Tsupport U Teontext) (10)
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Algorithm 1 Training Procedure for Universal Neural Inference Models

Require: Dataset collection D = {Dy, }, masking distribution P(o|e), support size distribution P(.S)
1: while not converged do
2 Sample batch of datasets {Dy } £_; from D
3 for each dataset Dy, do
4: Sample target instance et ~ Dy,
5 Sample observed features o'} ~ P(o|e§f)) > arbitrary conditioning
6: Sample support set Sy, ~ Dy, where |Si| ~ P(S) > enables zero/few-shot learning
7 Sample support examples {efﬁ)}g,:l ~Di \ {e}
8: Compute loss: £ = — logp({vm}m@gc) [ {(fm,vm)}
9: end for
10: Update parameters 6
11: end while

5 {fm} a5 Sk k)

meony

Importantly, this hierarchical design ensures per-
mutation invariance at both levels: atoms can be
reordered within instances, and instances can be
reordered within the support set, without affect-
ing the final predictions. The natural language
context tokens are augmented with positional en-
codings to preserve the sequential structure. The
multi-head attention mechanism enables cross-
attention between query, support, and context
information for universal tabular reasoning.

(2Ad) Likelihood
Oooog O
mEE.=
%% Data Desc.

(). | 522-8
@ Target Desc.
Prediction Heads From the final unified repre- & SupportSet  @QueryInstance

sentation R, we extract embeddings correspond-

ing to target features and apply target-specific Figure 3: Overview. ASPIRE processes query
prediction heads. Continuous targets are mod- instances, optional support sets, and dataset con-
eled as mixture of Gaussians Zil wiN (s, 0;) text through hierarchical set-based transformations,
where all mixture parameters aré_predicted from Maintaining permutation invariance at both feature
the target embedding. Categorical targets use and instance levels for universal tabular inference.
dot-product attention between the target embed-

ding and pre-computed category embeddings from metadata to produce categorical logits.

&)

4.6 TRAINING PROCEDURE

Optimizing the universal inference objective (equation[I)) is challenging due to the intractability of
the full expectation over datasets, instances, support sets, and masking patterns. We employ Monte
Carlo approximation with a structured sampling strategy that simulates the diverse scenarios ASPIRE
will encounter during inference, as detailed in Algorithm [T}

The training procedure incorporates several key design choices that enable universal inference

capabilities. The masking distribution P (o|e§lk)) can be uniform (random feature subsets) or reflect
realistic missingness patterns to prepare the model for diverse conditioning scenarios. The support
size distribution P(.S) typically ranges from 0 to 5 examples, enabling the model to handle both
zero-shot inference on completely new datasets and few-shot adaptation with minimal examples.

This training strategy exposes ASPIRE to the full spectrum of universal inference challenges: varying
dataset schemas, arbitrary feature conditioning patterns, different support set sizes, and diverse pre-
diction targets. The resulting model learns to leverage semantic similarities and cross-dataset patterns
while maintaining robustness to the heterogeneous nature of real-world tabular data. Additional
implementation details including optimizer configurations, learning schedules, and data preprocessing
pipelines are provided in the Appendix. Our code will be open-sourced upon publication.

5 RELATED WORKS

Arbitrary Conditional Models  Arbitrary conditioning is a fundamental problem in density
estimation, where the goal is to learn a model capable of predicting any subset of features given any
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other subset. Early approaches, such as the Universal Marginalizer (Douglas et al.,[2017), use a feed-
forward network to predict each unobserved feature independently. Subsequent methods—including
VAEAC (Ivanov et al., 2018)), ACFlow (Li et al.,[2020), and ACE (Strauss & Olival, |2021)—introduce
VAE-, normalizing flow-, and energy-based models, respectively, to better capture dependencies
among unobserved features. Neural Conditioner (Belghazi et al., |2019) proposes a GAN-based
approach, though it does not provide tractable likelihood estimates. Notably, all these methods are
trained on a single dataset and specialize in modeling conditional distributions within that domain.
In contrast, our approach, ASPIRE, learns to model arbitrary conditional distributions across a
distribution of datasets, enabling broad generalization.

Tabular Foundation Models Recent work has explored building foundation models for tabular
data by pretraining on collections of diverse tables. TabPFN (Hollmann et al., [2022;2025) performs
large scale pretraining on synthetic tasks, while CM2 (Yan et al.| 2024), XTab (Zhu et al., [2023)),
and TP-BERTa (Yan et al.| 2024)) adopt masked modeling objectives to generalize across real-world
datasets. Other approaches, such as CARTE (Kim et al., 2024)), XTFormer (Chen et al., [2024),
and TabLLM (Hegselmann et al., |2023) incorporate graph reasoning, meta-functions, or language
modeling to enhance cross-domain transfer. However, most existing methods rely on fixed feature
orderings or flatten tables into sequences, which limits their ability to generalize to new schemas.
In contrast, ASPIRE maintains both semantic grounding and structural inductive biases such as
permutation invariance, enabling robust inference across unseen and heterogeneous tabular domains.

6 EXPERIMENTS

We train ASPIRE on 1, 400 upstream tabular datasets from OpenTabs (Ye et al.| |2024) with extracted
natural language descriptions. We evaluate on 20 downstream tasks from UCI, OpenML, and Kaggle
spanning healthcare, finance, and science domains (10-500 features, 1K-1M samples). ASPIRE uses
BERT (Devlin et al., 2019) for natural language encoding and token aggregation, and an 8-layer
SetTransformer backbone. We report F1 scores for classification and RMSE for regression, averaged
over three random seeds. Please look at the appendix [D.T]for more details.

Few-Shot Learning We compare ASPIRE against TabPFN, CM2, and LLaMA-3.1-8B-Instruct.
LLaMA uses structured prompts containing dataset descriptions, feature descriptions, query instances,
and support examples for few-shot prediction. Please see the appendix [C.I|for details on the prompt.
TabPFEN follows the authors’ protocol by concatenating support and query instances to obtain posterior
predictive distributions, but only supports classification tasks. CM2 is finetuned on the available
support examples with early stopping, as it was not designed for in-context few-shot prediction but
rather requires adaptation to new datasets as per (Ye et al.,[2024).

Table [T] shows F1 scores on classification tasks. ASPIRE consistently outperforms all baselines,
improving average F1 scores by 57% over TabPFN and 50% over CM2. The LLM baseline under-

Table 1: Classification performance (F1 scores) across 5-shot, 0-shot and finetuning. Higher is better.

Dataset | S-shot | 0-shot \ Finetuning

|[LLM 1 TabPFN1 CM21 ASPIRE 1|LLM 1 TabPFN1 CM21 ASPIRE 1|MLP1 XGB1 CM21 ASPIRE 1

Diabetes | 0.620 0.640 0.644 0.740 0.380 0.255 0.385 0.560 0.727  0.751  0.696 0.855
Vehicle | 0.220 0.377 0.356 0.850 0.200 0.200 0.263 0.430 0.850 0913 0.588 0.894
Satimage | 0.180 0.450 0.735 0.900 0.240 0.394 0.559 0.500 0.800 0.890 0.885 0.930
Sick 0.637 0.488 0.472 0.780 0.426 0.512 0.255 0.700 0.550 0914 0.936 0.950
Pcl 0.490 0.500 0.560 0.750 0.480 0.350 0.412 0.410 0476 0.624 0.816 0.930
Adult 0.480 0.484 0.290 0.600 0.382 0.444 0.398 0.430 0.860 0.798 0911 0.945
Breast 0.740 0.364 0.548 0.840 0.580 0.481 0.474 0.360 0955 0.942  0.930 0.966
Cmc 0.650 0.305 0.400 0.750 0.460 0.413 0.325 0.750 0.670  0.650  0.727 0.830
PW 0.358 0.590 0.670 0.650 0.350 0.700 0.575 0.450 0.948 0966 0.991 0.930
Cylinder | 0.368 0.518 0.390 0.710 0.295 0.600 0.400 0.390 0.532 0.734 0.814 0.883
Mice 0.330 0.476 0.590 0.500 0.300 0.200 0.250 0.480 0.995 0.990 0.980 0.999
Car 0.180 0.515 0.274 0.670 0.150 0.273 0.233 0.400 0.850  0.930  0.990 0.990
Segment | 0.322 0.482 0.283 0.650 0.267 0.240 0.200 0.460 0.970  0.990 0.993 0.962
Porto 0.245 0.266 0.300 0.700 0.200 0.490 0.494 0.420 0.490 0.490 0.725 0.892
Amazon | 0.463 0.438 0.700 0.730 0.460 0.520 0.411 0.530 0.870 0.483 0.970 0.876

Average | 0.418 0.459 0.480 0722 | 0344 0.404 0.375 0484 | 0.770 0.800 0.863 0.922
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Table 2: Regression performance (RMSE) across 5-shot, 0-shot and finetuning. Lower is better.

Dataset | S-shot | 0-shot | Finetuning

[LLM | CM2 | ASPIRE ||LLM | CM2 | ASPIRE | |MLP | XGB | CM2 | ASPIRE |

Elevators 0.432 0973 0.256 0.733  0.940 0.524 0.360  0.340 0.292 0.097
House Sales| 0.550  0.991 0.321 0.650  0.933 0.372 0.380 0.340 0.139 0.235
Diamonds | 0.844  0.920 0.211 0.862  0.927 0.337 0.344 0203 0.970 0.020
yprop 0.561  0.866 0.312 0.717  1.110 0.464 0987 0982 0.977 0.228
topo 0.734  0.588 0.566 0.842  0.855 0.619 0986 0922 0.335 0.204

Average | 0.624  0.867 0.333 | 0.760 0.953 0.463 | 0.611 0557 0.543 0.157

performs due to a lack of tabular specialization. Notably, ASPIRE’s zero-shot performance already
surpasses CM2’s 5-shot results, demonstrating the effectiveness of our universal inference approach
and cross-dataset knowledge transfer. Table [2] presents RMSE scores for 5-shot and 0-shot regression.
ASPIRE consistently outperforms both the general purpose LLM and tabular specific CM2 baselines,
and achieves 72% lower average RMSE than CM2 in 5-shot setting.

Finetuning In addition to few-shot prediction, ASPIRE can be further finetuned on downstream
tasks. We evaluate ASPIRE’s transferability by finetuning on each dataset’s training split and com-
paring against CM2, MLP, and XGBoost baselines. XGBoost and MLP are dataset-specific baselines,
that represent the performance achievable when training dedicated models with full supervision on
each individual dataset. Table E] shows ASPIRE outperforms all baselines on classification tasks,
achieving 7% and 15% improvements over CM2 and XGBoost respectively. For regression (Table[2)),
ASPIRE achieves 71% RMSE reduction compared to CM2. These results demonstrate ASPIRE’s
strong transferability and effectiveness as a tabular foundation model.

Ablation Studies We systematically evaluate ASPIRE’s Table 3: ASPIRE Ablation. F1 and
three key components.  Semantic grounding enables RMSE averaged across datasets.
cross-dataset generalization through natural language de-
scriptions—removing dataset descriptions causes degradation
(0.722—0.598 F1). Permutation invariance through Set Trans-
formers is crucial, as replacing with independent processing ~ Semantic Grounding

severely degrades performance (0.722—0.381 F1). Hierarchi-  w/o Dataset Description 0.598  0.349
cal aggregation with learnable type embeddings significantly Permutation Invariance
outperforms alternatives: traditional positional encoding on all [ 4ercndent (No PEq)  0.381  0.582
aggregation tokens (similar to a traditional LLM) breaks per- Hicrarchical Aggregation

mutation invariance (0.722—0.499 F1) while fixed embeddings — -

prevent adaptation (0.722—0.388 F1). These results demon- g;’;ﬂ‘g‘ﬂiﬁ;ﬁfgg 81‘3‘23 8:32;
strate that all three components are essential for our model.
Please see appendix for more details and results on Active
Feature Acquisition

Variant F11 RMSE |
Full ASPIRE 0.722 0333

7 CONCLUSIONS

We introduced ASPIRE, a universal neural inference model that enables cross-dataset generalization
for heterogeneous tabular data. By combining permutation-equivariant architectures with semantic
feature grounding, ASPIRE treats inference as a set-based reasoning problem conditioned on natu-
ral language descriptions and metadata. This design achieves robust generalization across diverse
schemas while maintaining permutation invariance—critical requirements that existing tabular foun-
dation models fail to address. ASPIRE demonstrates strong empirical performance, achieving 24%
improvement in few-shot F1 scores and 71% reduction in regression RMSE compared to existing
methods. The model naturally supports arbitrary conditioning and active feature acquisition, enabling
cost-aware inference on previously unseen datasets without retraining. These capabilities represent a
significant step toward truly universal tabular reasoning, unlocking the vast potential of structured
data across domains rather than constraining models to isolated dataset silos.
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ETHICS STATEMENT

This research exclusively uses publicly available datasets and pre-trained models in accordance with
their respective licenses and terms of use. No personally identifiable information, sensitive data,
or proprietary datasets were collected, generated, or analyzed during this study. All experimental
procedures follow standard academic research practices and do not raise ethical concerns regarding
data privacy or misuse.

USE OF LLMS

Large language models were used in two capacities in this work: (1) as experimental baselines
for comparison with our proposed method, and (2) as writing assistance tools for improving the
clarity and presentation of this manuscript. All core technical contributions, experimental design,
and analysis were conducted by the authors. The use of LLMs for writing assistance was limited to
grammar checking, style improvements, and clarity enhancements, without altering the technical
content or conclusions of the research.
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A ADDITIONAL RELATED WORKS

A.1 SET MODELING

Early methods enforce permutation invariance by augmenting training data with randomly permuted
versions of input sets, treating them as sequences while training models to produce consistent outputs
across permutations. However, this approach does not guarantee invariance in practice—especially
with finite data and limited model capacity—since sequence models inherently exploit positional
information (Zaheer et al., 2017).

A foundational work in this area is DeepSets (Zaheer et al., 2017), which proves that any continuous
permutation invariant function can be expressed as f(S) = h (3, . g(z)), where g maps individual
elements and h aggregates the result. This leads to a simple yet expressive two-stage neural architec-
ture. DeepSets also introduces permutation equivariant layers through shared transformations and
pooling operations to capture intra-set dependencies. However, later work (Wagstaff et al., 2019)
shows that the latent dimension of such architectures must grow at least linearly with the set size to
maintain universal approximability, which may limit their practicality.

To model richer interactions between set elements, Set Transformer (Lee et al., [2019) replaces
pooling with self-attention mechanisms. Attention layers are inherently permutation equivariant as
they compute weighted sums over all elements. By combining these with attention-based pooling,
Set Transformer yields permutation-invariant representations while capturing complex intra-set
relationships—an approach that lays the foundation to our ASPIRE architecture. Several extensions
have emerged to address specific limitations. Holder-based power means and quasi-arithmetic pooling
strategies (Kimura et al.,[2024) generalize sum and max pooling for increased expressivity. Other
approaches like subset-invariant regularization (Cohen-Karlik et al., |2020) enforce permutation
symmetry via learning objectives rather than architectural constraints. Recent work (Wang et al.,
2023) provides refined insights into the trade-offs between model width, depth, and set size for
maintaining expressivity.

A.2 ACTIVE FEATURE ACQUISITION

Active Feature Acquisition (AFA) aims to selectively acquire informative features under budget
constraints, rather than passively predicting a target from fully observed data. Classical approaches
use cost-sensitive classifiers—such as decision trees (Ling et al.,[2004), naive Bayes (Chai et al.,[2004),
and margin-based learners (Nan et al.,[2014)—to jointly minimize prediction error and acquisition
cost. More recent works frame AFA as a sequential decision-making process and propose various
acquisition policies, including greedy information gain (Ma et al.|[2018};|Gong et al.| 2019} Li & Olival,
2020), tree search (Zubek et al.| 2004), imitation learning (He et al.| 2012; 2016), and reinforcement
learning (Riickstie$ et al.;|2011; Shim et al.| 2018}; [Zannone et al., 2019} |L1 & Olival 2021} [2024; |Li,
2022). However, these approaches are domain-specific and require retraining when applied to new
datasets. In contrast, our ASPIRE model enables AFA in an open-world setting—allowing feature
acquisition on entirely novel datasets and domains without additional training.

B DATA PROCESSING

B.1 TRAINING DATA

We use datasets from OpenTabs (Ye et al., 2024) for training, validation, and testing. We manually
collect dataset descriptions and feature descriptions from UCI ML repository, Kaggle, OpenML, etc.
Further, we curate metadata about the dataset by obtaining statistics about the dataset using python
functions, for example, collecting potential classes for each target, data type of the feature values etc.
Tables which have too few rows and columns, which have unclear and invalid data are dropped. We
will opensource this metadata upon publication. We identify task as classification or regression based
on target value types, followed by min-max normalization of continuous values. Feature descriptions
are embedded using pre-trained transformer models (BERT-base-uncased) to create dense semantic
representations that capture feature semantics across diverse domains.
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Table B.1: Table of the downstream datasets in our experiments, along with different information

Dataset Name R/C | Samples | Numerical | Categorical | Label Classes | Source

Breast C 699 9 0 2 | https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original
Bone C 1479 2 7 3 | https://archive.ics.uci.edu/dataset/3/connectionist+bench+choice
Diabetes C 768 8 0 2 | https://openml.org/d/37

Vehicle C 846 18 0 4 | https://archive.ics.uci.edu/dataset/149/statlog+vehicle+silhouettes
Satimage C 6430 36 0 6 | https://archive.ics.uci.edu/dataset/146/statlog+landsat+satellite
Sick C 3772 7 22 2 | http://archive.ics.uci.edu/dataset/102/thyroid+disease
Analcatdata C 797 0 4 6 | https://pages.stern.nyu.edu/jsimonof/AnalCatData/Data/

Pcl C 1109 21 0 2 | https://openml.org/d/1068

Adult C 48842 6 8 2 | https://archive.ics.uci.edu/dataset/2/adult

PhishingWebsites C 11055 0 30 2 | https://archive.ics.uci.edu/dataset/327/phishing+websites
Cylinder-bands C 540 18 21 2 | https://archive.ics.uci.edu/dataset/32/cylinder+bands
MiceProtein C 1080 71 4 8 | https://archive.ics.uci.edu/dataset/342/mice+protein+expression
Car C 1728 0 6 4 | https://archive.ics.uci.edu/dataset/19/car+evaluation

Segment C 2310 19 0 7 | http://archive.ics.uci.edu/dataset/50/image+segmentation
Porto-seguro R 2000 26 31 2 | https://openml.org/d/44787

Amazon C 2000 0 9 2 | https://openml.org/d/44712

Elevators R 16599 18 19 - | https://openml.org/d/216

Yprop R 8885 251 0 - | https://openml.org/d/416

Topo R 8885 266 267 - | https://openml.org/d/422

SAT11 R 4400 115 1 - | https://www.cs.ubc.ca/labs/algorithms/Projects/SATzilla/
Diamonds R 53940 6 3 - | https://openml.org/d/42225

House_sales R 21613 20 1 - | https://openml.org/d/42731

B.2 EVALUATION DATA

The following table detail information about the down stream datasets we use as test datasets in
our evaluation.

C ASPIRE ARCHITECTURE
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Figure C.1: ASPIRE processing pipeline. The framework transforms heterogeneous inputs from
different domains through semantic alignment into a shared understanding space, applies permutation-
invariant set processing to capture feature interactions while maintaining order independence, and
produces universal predictions that support arbitrary conditioning and cross-domain transfer.

In addition to ASPIRE model descriptions in the paper, the following implementation details are
relevant. Our optimization uses AdamW with a learning rate of 1e-4 and cosine annealing with warm
restarts (100 warmup steps, weight decay of 0.01-0.04). During training, we apply feature dropout
with a 40% masking rate, where selected features have their values replaced with missing value
embeddings to improve generalization across diverse tabular domains.

The architecture employs BERT (bert-base-uncased) as the central aggregation mechanism for embed-
dings from heterogeneous information sources, including dataset descriptions, few-shot examples, and
target row representations. Feature encoding uses specialized approaches: real-valued features utilize
Fourier embeddings with 256 learnable frequency components spanning 1-256, while categorical
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features undergo BERT encoding followed by projection to the model dimension of 768. The Set
Transformer components use 4-8 attention heads with 16-32 induced points for permutation-invariant
row representations.

The multi-task learning framework combines cross-entropy loss for classification and mixture-of-
Gaussians negative log-likelihood for regression, where the regression head employs 10 Gaussian
components with learnable weights, means, and log-variances. Training incorporates early stopping
with patience of 5-7 epochs. High level pipeline is shown in Fig. [C.]

C.1 BASELINES

Here is the overview of the parameter count of our model and other baselines: ASPIRE Model size -
140, 165, 123 parameters CM2 Model size - 53, 784, 576. Our model is 2.6 x of CM2.XGBoost: We
implement this using XGBoost package. We set the maximum number of estimators in 50, 100, 300.
MLP: We use 256 dimension hidden layer. Dropout with a rate of 0.1, learning rate 1e-4 and early
stopping with patience of 5 epochs. CM2: We use the pre-trained model, which have number of
transformer layers 3, attnetion heads 8, batch size 256, learning rate for finetuning 3e-4, patience is 5.
TabPFN: We use batch size 256 and reuse the optimal parameters. For performing few-shot learning,
Ye et al.|(2024) prescribes k-shot learning via finetuning the model with k£ examples sampled from
the train set. We observe that this causes high-variance in the performance, therefore we report the
mean of all metrics for CM2 few-shot learning experiments, as shown in Table [T]and Table 2]

The following is the prompt template and example of how we provide Llama-3.1-8B-Instruct with
dataset description, feature description and support set for prediction of the query set. We follow a
similar format for the regression task.

Classification Prompt

Task: Classify adult_income data into one of these
categories: <=50K. or >50K..

Dataset description: This dataset contains census records
with demographic and employment features, used to predict
whether a person’s income exceeds $50K per year.

Features: age=37, workclass=Private, education=Bachelors,
educationnum=13, marital_status=Married-civ-spouse,
occupation=Exec-managerial, relationship=Husband, race=White,
sex=Male, capital_gain=0, capital_loss=0, hours_per_week=60,
native_country=United-States

Label: >50K.

Features: age=28, workclass=Private, education=HS-grad,
education.num=9, marital_status=Never-married,
occupation=Handlers-cleaners, relationship=Not-in-family,
race=Black, sex=Male, capital_gain=0, capital_loss=0,
hours_per_-week=40, native_country=United-States

Label: <=50K.

Features: age=45, workclass=Self-emp-not-inc,
education=Masters, education_num=14,
marital_status=Married-civ-spouse, occupation=Prof-specialty,
relationship=Husband, race=White, sex=Male,
capital_gain=1500, capital_loss=0,n

hours_per_week=50, native_country=United-States

Label:
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D APPLICATION: ACTIVE FEATURE ACQUISITION

ASPIRE’s arbitrary conditioning capability naturally extends to Active Feature Acquisition (AFA),
where features are sequentially acquired to minimize cost while maximizing prediction accuracy.
Unlike existing methods that require per-dataset training, ASPIRE performs AFA on novel datasets
without retraining by leveraging its universal inference framework.

Following prior work (Li & Oliva, 2021)), we formulate AFA as a sequential decision-making problem
where features are acquired based on estimated mutual information with the target variable. ASPIRE’s
probabilistic predictions enable principled feature selection under budget constraints, while its cross-
dataset knowledge transfer provides robust performance even on previously unseen domains. This
demonstrates ASPIRE’s flexibility beyond standard prediction tasks, supporting cost-aware inference
in open-world settings. Detailed AFA algorithms and experimental results are provided below in this
section.

Active Feature Acquisition ASPIRE’s ar-
bitrary conditioning capability enables active Breast dataset(FT) Breast Dataset(FSL)
feature acquisition (AFA) without retraining. 0.8l —— cm2

We evaluate AFA on two classification tasks o7 o ASPIRE
!)y sequentially acquiring features and predict- 207 /_f 06

ing labels at each step. We compare against @ os

CM2 and EDDI (Ma et al., 2018), which trains * ———y '

dataset-specific Partial VAE models. Figure[D.1 aspire | O /
shows results for both finetuned models (left) il 03

and 5-shot learning (right). ASPIRE consis- o 7 e, 0208
tently achieves superior performance while re-

quiring fewer acquisitions to reach high accu- Figure D.1: Active feature acquisition performance

racy. Notably, ASPIRE’s 5-shot performance (F1 scores). ASPIRE achieves superior accuracy

approaches that of finetuned ones, demonstrat- with fewer feature acquisitions. PV: Partial VAE,
ing effective cost-aware inference with minimal FT: finetuned, FSL: 5-shot.

dataset-specific adaptation.

D.1 METHODS

The information reward for acquiring feature ¢ given observed features x,, is:

R(i, Xo) = Exin(x”xo)DKL[q(Z‘Xi,XO)”q(Z|XO)]
= Exy im0 xilx0) (D.1)
Dk plq(zlxg,%i,%0) | q(z]x4, %,)]

* X,: Currently observed features

* x;: Candidate feature ¢ to be acquired

* x4: Target variables (labels)

* ¢(z|): Posterior encoder distribution in VAE

* p(x;|x,): Conditional distribution of feature ¢ given observed features

* Dir[-|I']: Kullback-Leibler divergence The following algorithm describes our greedy
procedure to select the next candidate from the set of unobserved features.

In this algorithm, we use a Partial VAE, but can also be replaced by any other encoder model. For
example, hidden representations can be [CLS] token, or target representation token.

D.2 ADDITIONAL RESULTS
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Algorithm 2 Active Feature Acquisition with Partial VAE

Require: Training dataset X, partially observed; Test dataset x,c without observations; Indices ¢

of target variables.

1: TRAINING PHASE:
2: Train Partial VAE with x,
3: INFERENCE PHASE (Active Feature Acquisition):
4: for each test instance do
5: xo <0
6: repeat
7: Choose variable z; from U \ ¢ to maximize information reward
8: Xo <+ r; Uxpo
9: until stopping criterion reached
10: end for
Mice Dataset Diabetes Dataset
0.8
0.8 0.7
g —— PV 0:6
o
§0-6 cM2 | 05
0 —— ASPIRE
0.4
0.4 PV
0.3 CM2
—— ASPIRE
0.21 0.2
0 10 20 0 2 4 6 8
Step Step

Figure D.2: F1 scores at each feature acquisition step. PV indicates Partial VAE in EDDI. All these
models are finetuned on the train split of these datasets.

F1 Score

CMC dataset Breast Cancer Dataset
081 . cm2 —=— CM2
ASPIRE 0.7 ASPIRE
0.7
/, 0.6
0.6 0.5
0.5 0.4
0 3 A & 23% 3 A
Step Step

Figure D.3: F1 scores at each feature acquisition step. PV indicates Partial VAE in EDDI. These are
the few-shot learning models.
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Diabetes dataset 0.7 Thyroid Dataset
0.7, —=— CM2 U —— M2
ASPIRE ASPIRE
0.6
v 0.6
S
3 0.5
—
w0.5
0.4
0.4 0.3
0 1 2 3 4 0.0 2.5 5.0 7.5 10.0
Step Step

Figure D.4: F1 scores at each feature acquisition step. These are the few-shot learning models.

CMC dataset Breast Cancer Dataset
08 . cm2 —=— CM2
ASPIRE 0.7 ASPIRE

0.7
0} 0.6
o /'
? 0.6
- 0.5
L

0.5 0.4

0 2 4 6 0.3 0 2 4
Step Step

Figure D.5: F1 scores at each feature acquisition step. These are the few-shot learning models
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