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ABSTRACT

Open-world long-tailed semi-supervised learning (OLSSL) has increasingly at-
tracted attention. However, existing OLSSL algorithms generally assume that the
distributions between known and novel categories are nearly identical. Against this
backdrop, we construct a more Realistic Open-world Long-tailed Semi-supervised
Learning (ROLSSL) setting where there is no premise on the distribution relation-
ships between known and novel categories. Furthermore, even within the known
categories, the number of labeled samples is significantly smaller than that of the
unlabeled samples, as acquiring valid annotations is often prohibitively costly in
the real world. Under the proposed ROLSSL setting, we propose a simple yet
potentially effective solution called dual-stage post-hoc logit adjustments. The
proposed approach revisits the logit adjustment strategy by considering the rela-
tionships among the frequency of samples, the total number of categories, and the
overall size of data. Then, it estimates the distribution of unlabeled data for both
known and novel categories to dynamically readjust the corresponding predictive
probabilities, effectively mitigating category bias during the learning of known
and novel classes with more selective utilization of imbalanced unlabeled data.
Extensive experiments on datasets such as CIFAR100 and ImageNet100 have
demonstrated performance improvements of up to 50.1%, validating the superiority
of our proposed method and establishing a strong baseline for this task. For further
researches, the experimental code will be open soon.

1 INTRODUCTION

In recent years, due to the prohibitive cost of labeling large amounts of data, many researchers have
shifted their focus to semi-supervised learning (SSL). This learning paradigm aims to compensate
for the lack of labeled data by leveraging the information from a large amount of unlabeled data.
However, most existing semi-supervised learning methods Ahmed et al. (2020); Berthelot et al.
(2019); Oliver et al. (2018); Chen et al. (2020) follow closed-set and class-balanced assumptions,
which are unrealistic. The former assumption means that the labeled data, unlabeled data, and
test data all contain samples of the same classes, but the unlabeled and test datasets often contain
new classes that are not present in labeled dataset. For the latter assumption, it indicates that both
labeled and unlabeled datasets are class-balanced, which conflicts the fact that the class distribution
of real datasets is inevitably long-tailed. And long-tailed distribution causes a significant issue: there
will be a large discrepancy in test accuracy between the head classes and the tail classes. To solve
aforementioned problems, open-world semi-supervised learning (Open-world SSL) Cao et al. (2022);
Sun & Li (2023); Mullappilly et al. (2024); Wang et al. (2023a) and long-tailed semi-supervised
learning Kim et al. (2020a); Lai et al. (2022); Lee et al. (2021a); Wei & Gan (2023a); Wei et al.
(2021b) have been proposed. Moreover, to simultaneously address open-world and long-tailed
recognition problems, open-world long-tailed SSL (OLSSL) Bai et al. (2023); Zhang et al. (2023) is
proposed to learn long-tailed and open-end data during training and test on a balanced test dataset
containing samples from head, tail and open classes. Existing OLSSL methods follow a setting
where the number of known classes is consistent with that of unknown classes in labeled data, which
conflicts with real-world applications. The number of labeled data for known classes tends to be
smaller than that of unlabeled data due to the expensive labeling cost. The realistic circumstance
further increases the difficulty of recognizing known and novel classes.
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Table 1: Relationship between our novel ROLSSL and other machine learning settings.

Setting Known classes Novel classes Data Distribution S/N Consistency
Semi-supervised learning (SSL) Classify Not present Balanced Reject
Robust SSL Classify Reject Balanced Reject
Open-set recognition Classify Reject Balanced Reject
Open-set SSL Classify Not present Balanced Reject
Long-tailed SSL Classify Not present Long-tailed Reject
Generalized zero-shot learning Classify Discover Balanced Yes
Novel class discovery Not present Discover Balanced Yes
Open-world recognition Classify Discover Balanced Yes
Open-world SSL (OSS) Classify Discover Balanced Yes
Open-world long-tailed SSL (OLSSL) Classify Discover Long-tailed Yes
Realistic open-world long-tailed SSL Classify Discover Long-tailed No

To simulate the real-world tasks, we propose a novel SSL setting named Realistic Open-world
Long-tailed Semi-supervised Learning (ROLSSL). Unlike the OLSSL setting, the OLSSL setting,
the training set employed for model training consists of a small amount of labeled data and abundant
unlabeled data for known classes in ROLSSL setting, which greatly increases the difficulty of model
recognition and classification of known classes. Furthermore, the class distributions of unlabeled data
are categorized into three representative forms: Consistent, Uniform, and Reversed. The model not
only needs to extract knowledge relevant to novel classes from a large amount of long-tailed unlabeled
data to identify novel classes and assign instances to them, but also utilize the extracted information
to assist in training on long-tailed labeled dataset with a small number of samples for classifying
known classes. It indicates that higher requirements are placed on the recognition algorithm.

Due to the poor performance of the OLSSL algorithm under the ROLSSL setting and its tendency to
degrade the recognition of novel classes as training progresses, the original PLA only maintains good
performance in datasets with few classes (detailed in Section 4.3). To address the ROLSSL problem,
we initially apply post-hoc logit adjustment (PLA) Menon et al. (2021) to the ROLSSL setting but find
that the original PLA maintains good performance only in datasets with few classes, such as CIFAR-
10 and SVHN. For datasets with more classes, it significantly reduces model performance (detailed
in Ablation 4.4). Consequently, we revisit the design of PLA, incorporating sample frequency data,
total class count, overall dataset size, and estimated sample frequency of unlabeled data to develop
a dual-stage PLA (DPLA). By considering the relative context of current data, such as the total
number of categories, the first-stage PLA adaptively modifies the relationship between the sample
frequency of labeled data and the magnitude of logit adjustment, thereby encouraging a larger relative
margin between the logits of rare and dominant labels in ROLSSL and preventing the degradation of
novel class recognition during training. Furthermore, we aim to improve performance by making
more effective use of unlabeled data. We apply the predicted sample frequency of the model to
scale the logits for each class accordingly. In this process, we suppress the contribution of classes
with higher frequency to the loss calculation while encouraging greater participation from classes
with lower frequency. This approach, termed the second-stage PLA, helps the model achieve better
recognition performance in the ROLSSL setting. Additionally, the first-stage PLA is utilized to adjust
the generated pseudo-labels, further enhancing the model’s performance.

The main contributions are summarized as follows:

• We propose a ROLSSL setting where the number of labeled data is much smaller than that
of unlabeled data for known classes, and the distribution of labeled and unlabeled data
mismatches, which better simulates the requirements of real-world applications.

• A novel strategy named dual-stage post-hoc logit adjustments (DPLA) is designed consisting
of the first stage logit adjustment that integrates factors about sample frequency and the
number of classes to better utilize labeled and unlabeled data and the second stage that
guides model to suppress the participation to categories with more samples and encourage
to make better use of less frequent categories.

• The detailed experimental results and ablation experiments demonstrate that the proposed
ROLSSL setting is more difficult to be solved. And the DPLA strategy achieves excellent
performance compared with previous advanced methods on six benchmark datasets.
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The rest of this paper is organized as follows. Section 2 introduces some relevant work in the field
of Long-tailed SSL and OLSSL. The proposed method is illustrated in Section 3 and experimental
results are given in Section 4. Besides, conclusions are provided in Section 5.

2 RELATED WORK

Long-tailed Semi-supervised Learning: Long-tail semi-supervised learning (LTSSL) has garnered
attention for its relevance in real-world applications. Various methods have been developed to
tackle its challenges. Techniques such as DARP Kim et al. (2020b) and CReST Wei et al. (2021a)
aim to correct biased pseudo-labels by aligning the distributions of labeled and unlabeled data.
ABC Lee et al. (2021b) improves generalization by using an auxiliary classifier to adjust biases in
predominant classes. CoSSL Fan et al. (2022) employs a mixup strategy Zhang et al. (2017) that
focuses on minority classes to enhance performance. However, these methods often assume consistent
distributions across labeled and unlabeled data, which may not hold true in practice. DASO Oh et al.
(2022) offers a dynamic method that adjusts pseudo-labels using linear and semantic approaches
based on observed class distributions. Despite its effectiveness, the issue of skewed class distributions
still affects the accuracy of learned representations and pseudo-label reliability. ACR Wei & Gan
(2023b) addresses this by introducing an Adaptive Consistency Regularizer that estimates and adjusts
to the true class distribution of unlabeled data, facilitating more accurate pseudo-label refinement.

Open-world Semi-supervised Learning (OSSL): ORCA Cao et al. (2022) first proposed the OSSL
task, recognizing that unlabeled test data may include classes not present in the labeled training
set. It differs from novel class discovery Han et al. (2019; 2020); Zhao & Han (2021); Zhong et al.
(2021) in that it does not assume that unlabeled data consists solely of new class samples. Recent
advancements have aimed to enhance OSSL performance. OpenLDN Rizve et al. (2022) introduces
a pairwise similarity loss to detect new classes, thereby converting the problem into a standard
semi-supervised learning (SSL) task upon the discovery of new classes. OpenCon Sun & Li (2023)
employs contrastive prototype learning to create a compact representation space that promotes tight
clustering by aligning representations within the same predicted category. Further studies explore
solutions for scenarios where known and unknown classes share a long-tail distribution (OLSSL).
Bacon Bai et al. (2024) combines contrastive learning and pseudo-labeling to address imbalances
in open-world recognition, while NCDLR Chuyu et al. (2023) uses a relaxed optimal transport
problem to infer high-quality pseudo-labels for new classes, mitigating bias in learning known and
new categories. Specifically, Realistic long-tailed open-world SSL (ROLSSL) differs from existing
tasks by not assuming relationships between known and unknown category distributions, and by
stipulating that labeled data in known categories is significantly less than their unlabeled counterparts.

3 METHOD

To avoid the imbalance between known and novel category data, which biases model learning towards
dominant labels, we have revisited strategies based on label frequency for post-hoc logit adjustment
and threshold tuning for pseudo label masks. Due to the complete failure of the original post-hoc
logit adjustment in open-set long-tail recognition, which suppressed model performance compared to
an unmodified learning process, the former reconsidered the relationship between label frequency,
category count, and dataset size to encourage a larger relative margin between the logits of rare and
dominant labels. The latter, on the other hand, relies on estimates of the categories to which unlabeled
data belong, making targeted adjustments to the probabilities of pseudo labels predicted to belong to
different categories to promote training of less numerous classes. This also involves masking pseudo
labels of more numerous classes, allowing for the use of high-quality pseudo labels to mitigate their
dominance in loss computation. We retain the fundamental open-world recognition framework, which
leverages pairwise similarity loss to implicitly cluster unlabeled data into known and novel categories
and uses entropy regularization to prevent a single category from dominating the batch.

3.1 PROBLEM FORMULATION

In the ROLSSL scenario, we consider three kinds of datasets: a labeled known-class dataset Dl
k,

an unlabeled known-class dataset Du
k , and an unlabeled novel-class dataset Du

n. The known-class
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Figure 1: The overview of the ROLSSL setting and the Dual-stage Post-hoc Logit Adjustment method.
On the left, the dataset composition within the ROLSSL framework is illustrated. On the right, the
overall process of the Dual-stage Post-hoc Logit Adjustment is shown. In the first stage of logit
adjustment, factors such as the number of classes, sample frequency, and overall dataset size are
considered to encourage a larger relative margin between the logits of rare and dominant labels. In
the second stage, the predicted class frequencies are used to adjust the logits for the unlabeled data,
further guiding the model to focus on learning from predicted minority class samples and reducing
the attention given to samples from the predicted majority classes.

dataset Dl
k consists of ml

k labeled samples {(xl
i, y

l
i)}

ml
k

i=1 and the unlabeled known-class dataset Du
k

consists of mu
k unlabeled samples {xu

j }
mu

k
j=1, where xl

i is a labeled instance with label yli = [ck] =

{1, 2, . . . , ck}, and xu
j is an unlabeled instance from one of ck known classes, with ml

k ≪ mu
k .

Let Nc represent the number of samples for class c in the labeled known-class dataset, we have
N1 ≥ N2 ≥ ... ≥ Nck , and the imbalance ratio of the labeled known-class dataset can be denoted as
γl
k = N1

Nck
. The unlabeled known-class dataset remains the same setting of the labeled known-class

dataset and the number of samples for class c is denoted as Hc with imbalance ratio γu
k . For the

unlabeled novel-class dataset, let Mc represent the number of samples for class c and the imbalance
ratio γu

n = maxcM1

mincMck
because there is no assumption about the distributions on the unlabeled novel-

class dataset. Three kinds of representative distributions are considered, i.e., consistent, uniform,
and reversed. Specifically, 1) for Consistent setting, we have M1 ≥M2 ≥ ... ≥Mck and γl

k = γu
n;

2) for Uniform setting, we have M1 = M2 = ... = Mck and γu
n = 1; 3) for Reversed setting, we

have M1 ≤M2 ≤ ... ≤Mck and γl
k = 1/γu

n . The unlabeled novel-class dataset Du
n = {xu

j }
mu

k+mu
n

j=mu
k+1

includes mu
n samples, each belonging to one of cn novel classes, where cn represents the total number

of classes in Du
n, with ml

k + mu
k

∼
= mu

n. Under the ROSSL framework, the combined unlabeled
dataset Du = {Du

k ,Du
n} may contain samples from classes that are not present in the labeled dataset

Dl = {Dl
k}, with the total class count ct in the open-world setting being ct = ck + cn.

3.2 FOUNDATIONAL TECHNIQUES OF OSSL

To identify new classes, previous work employs a neural network Rizve et al. (2022), denoted as
fΨ, for feature extraction. This network projects an input image x ∼ PQ,Q = mu

k +ml
k +mu

n
for unknown distribution P, into a high-dimensional embedding space Z by transforming x into its
embedded representation z ∈ Rd. The set of all embeddings is represented by Z, and X denote
the sets of input images, respectively. The system recognizes both known and novel class samples
by employing a classifier, fΘ, which maps embeddings z to a structured output space fΘ : Z →
Rck+cn , where the first ck logits are associated with known classes and the remaining cn logits
correspond to novel classes. The classifier outputs are converted into softmax probabilities ŷ =
Softmax(fΘ ◦ fΨ(x)) for further processing. The primary goal is to effectively discern novel
classes while maintaining recognition of known classes, achieved through an objective function
comprising three components: a pairwise similarity loss Lpair, a cross-entropy loss Lce, and an
entropy regularization term Lreg . The pairwise similarity loss enhances class differentiation Hsu et al.
(2017); Chang et al. (2017), the cross-entropy loss facilitates the classification of known and novel
classes using true labels and generated pseudo-labels Han et al. (2019); Chapelle & Zien (2005), and
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the entropy regularization prevents the model from settling on overly simplistic solutions Arazo et al.
(2020):

Lossl = Lpair + Lce + Lreg (1)

Following training with Lossl, samples corresponding to the cn logits in the output space are classified
as belonging to novel classes. Eventually, novel class samples are added to the labeled set with
the generated pseudo-labels, enabling the application of any standard closed-world semi-supervised
learning (SSL) method, thereby leading to further performance improvements.

3.3 DPLA: DUAL-STAGE POST-HOC LOGIT ADJUSTMENT

We initially consider the post-hoc logit adjustment (PLA) for data where the frequency of samples
corresponding to specific categories can be precisely obtained Menon et al. (2021); Tao et al. (2023);
Wang et al. (2023b). Given a labeled known-class sample xl

i, suppose we learn a neural network with
logits fy(xl

i) = w⊤
y Φ(x

l
i), fy = fΘ ◦ fΨ. We predict the label argmaxy∈[ck] fy(x

l
i). When trained

with softmax cross-entropy, py(xl
i) ∝ exp(fy(x

l
i)) can be viewed as an approximation of P(y|xl

i),
predicting the label with the highest probability. In the first-stage post-hoc logit adjustment for known
class, we propose a new prediction method for the known-class dataset with suitable τ1 > 0:

argmaxyl
i∈[ck]

exp
(
w⊤

y Φ(x
l
i)
)
/Ωτ

yl
i
= argmaxyl

i∈[ck]
fy(x

l
i)− τ1 · log Ωyl

i
(2)

Specifically, Ωyl
i

is a parameter synthesizing consideration of number of classes, the sample frequency
and overall size of dataset, which can be defined as (detailed in Ablation 4.4):

Ωyl
i
= 10 · (⌈C/Cbase⌉) ·

√
S/Sbase · Fyl

i
(3)

where C, S andF are the total number of classes, overall size of the estimated dataset, Cbase and Sbase
are the basic discounting parameter for total number of classes and overall size of the dataset, and
Fyl

i
represents the sample frequency of the category to which the corresponding label belongs. For

τ ̸= 1, we apply temperature scaling to the logits, formulated as pyl
i
(xl

i) ∝ exp
(
τ−1 · w⊤

yl
i
Φ(xl

i)
)

.

This adjustment is based on having access to the true probabilities P(yli|xl
i) and involves calibrating

the probabilities through temperature scaling, commonly used in the context of distillation Hinton
et al. (2015). These techniques help improve the model’s generalization ability across different
class distributions. For the second stage, given the unknown categories of the unlabeled data, we
cannot perform post-hoc logit adjustments as with known-category data where sample frequencies are
accessible Van Engelen & Hoos (2020). However, the imbalance in the unlabeled data necessitates
corresponding logit adjustments. We propose a simple logit adjustment approach for the unlabeled
data, which involves scaling the logits for each category based on the predictions of neural network f
on the categories for the unlabeled samples and the scaling weight wc for class c can be defined as:

wc = σ

(
exp (−πr

c )

exp (−πr
max)

)
· (α− β) + β (4)

where πr
c represents the ratio of the number of samples in class c to the total number of samples across

all classes, σ denotes the sigmoid activation function, α and β are hyper-parameters for re-adjusting
the scaling weight. Assume w = [w1, w2, ..., wck+cn ] is a vector of length |ck + cn|, the scaled logit
f̂(xu

j ) for an unlabeled sample xu from known or novel class can be given as:

f̂(xu
j ) = w · f(xu

j ) (5)

Due to the uniform threshold applied to pseudo-label masking Cai et al. (2022); Zheng et al. (2022), we
propose leveraging an estimation of the distribution of unlabeled data to scale the logits. This method
facilitates the adjustment of the masking level for samples across different predicted categories. More
specifically, it limits the participation in loss calculation of samples from categories with a higher
number of predicted instances, while increasing the participation rate of samples from categories with
less estimated amounts. This adjustment aids the model in focusing more on learning from samples
that are biased towards the tail classes Ma et al. (2024).
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3.4 OVERALL OPTIMIZATION OBJECTIVE

Inspired by Wei & Gan (2023b), the logits of original pseudo-label q(xu
j ) corresponding to known

classes in the part used for generating refined pseudo-labels q̃(xu
j ) are adjusted:

q̃(xu
j ) = argmax

(
f(xu

j )[1,ck] − τ2 · log Ωq(xu
j )

)
, τ2 > 0 (6)

where f(xu
j )[1,ck] represents the operation of adjusting the logits for the known categories in the

generated pseudo-labels, in the same manner as is done with labeled data. Therefore, for the loss
calculation in adjusted branches of labeled and unlabeled data based on cross-entropy loss Ren et al.
(2020); Sohn et al. (2020) the loss function of adjusted branch can be defined as follows:

Lb_ce = −
ml

k∑
i=1

log

 e
fy(x

l
i)+τ log Ω

yl
i∑ck

c=1 e
fc(xl

i)+τ log Ωc

+

mu
k+mu

n∑
j=1

M(xu
j )Lce

(
f̂(xu

j ), q̃(x
u
j )
)

(7)

where Lce represents standard Cross Entropy loss and M(xu
j ) := I

(
max(δ(f̂(xu

j )) ≥ ρ)
)

is the
sample masks which selects unlabeled samples with predicted confidence levels exceeding a prede-
fined threshold ρ. In detail, δ(·) and I(·) denote Softmax function and indicator function Wei & Gan
(2023b). Therefore, there are two types of losses in neural networks that need to be optimized. The
first is the original Cross Entropy loss calculation for both labeled and unlabeled data; The second is
the balanced Cross Entropy loss calculation after logit adjustment, which can be given as follows:

Lrolssl = Lpair + λ1Lce + λ2Lb_ce + Lreg (8)

where λ1 and λ2 are trade-off parameters, and they are generally set to λ1 = λ2 = 0.5 in order to
keep the scale of the loss consistent with OLSSL design (detailed in Ablation 4.4 and Appendix C).

4 EXPERIMENTS

4.1 IMPLEMENTATIONS

Datasets: To evaluate the effectiveness of OpenLDN, we conduct experiments on five widely-used
benchmark datasets: CIFAR-10 Krizhevsky et al. (2010a), SVHN Netzer et al. (2011), CIFAR-100
Krizhevsky et al. (2010b), ImageNet-100 Deng et al. (2009), Tiny ImageNet Le & Yang (2015), and
the Oxford-IIIT Pet dataset Parkhi et al. (2012). The CIFAR-10 and CIFAR-100 datasets each contain
60,000 images (split into 50,000 for training and 10,000 for testing), with 10 and 100 categories,
respectively. SVHN dataset contains 73257 digits for training, 26032 digits for testing, with 10
classes. The ImageNet-100 dataset consists of 100 categories selected from ImageNet. Tiny ImageNet
includes 100,000 training images and 10,000 validation images across 200 classes. The Oxford-IIIT
Pet dataset comprises images from 37 categories, divided into 3,718 training and 3,707 testing images.

Implementation Details: We employ ResNet-18 as our primary feature extractor across all ex-
periments except in instances involving ImageNet-100, where ResNet-50 is utilized. Our pairwise
similarity prediction network, utilizing an MLP with a single 100-dimensional hidden layer, and a
linear classifier, forms the basis of our feature extraction architecture. We train the network to discover
novel classes over 50 epochs with batch sizes of 200 and 480 for ImageNet-100. For CIFAR-10
dataset, SGD optimizer is employed and the Adam optimizer is used consistently throughout the
training process for the remaining five datasets. The learning rates are set at 5e-4 for the feature
extractor and 1e-2 for ImageNet-100. In order to boost performance, we incorporate Mixmatch, a
well-regarded closed-world SSL methods, during the second stage of training to enhance data balance
and pseudo-label accuracy for each class during iterative self-labeling sessions. More details on these
implementation strategies and parameter settings, e.g. Nc, τ1, can be found in Appendix A.

Evaluation Metrics: We assess accuracy for known classes using standard measures. For novel
classes, we evaluate clustering accuracy and employ the Hungarian algorithm for accurate prediction
alignment and ground truth labels matching before final accuracy calculations. The effectiveness of
the proposed method is further demonstrated by joint accuracy measurements on both known and
novel classes utilizing the Hungarian algorithm and normalized mutual information (NMI).
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OSSL Baselines: We employ FixMatch Sohn et al. (2020), DS3L Guo et al. (2020), CGDL Sun et al.
(2020), DTC Han et al. (2019), RankStats Han et al. (2020), UNO Fini et al. (2021), ORCA Cao et al.
(2022) and OpenLDN Rizve et al. (2022) to compare OSSL baselines with ROLSSL methods.
Table 2: Accuracy on the CIFAR-10, CIFAR-100, and ImageNet-100 datasets with 50% known and
50% novel classes under three different long-tailed conditions.

CIFAR-10 CIFAR-100 ImageNet100
Known Novel All Known Novel All Known Novel All

Method Semi-supervised & Open-world

FixMatch (NIPS’20) 71.5 50.4 49.5 39.6 23.5 20.3 65.8 36.7 34.9
DS3L (PMLR’20) 77.6 45.3 40.2 55.1 23.7 24.0 71.2 32.5 30.8
CGDL (CVPR’20) 72.3 44.6 39.7 49.3 22.5 23.5 67.3 33.8 31.9
DTC (CVPR’19) 53.9 39.5 38.3 31.3 22.9 18.3 25.6 20.8 21.3
RankStats (ICLR’20) 86.6 81.0 82.9 36.4 28.4 23.1 47.3 28.7 40.3
UNO (ICCV’21) 91.6 69.3 80.5 68.3 36.5 51.5 — — —
ORCA (ICLR’22) 88.2 90.4 89.7 66.9 43.0 48.1 89.1 72.1 77.8
OpenLDN (ECCV’22) 95.2 92.7 94.0 73.3 46.8 60.1 — — —

Method Long-tailed (Consistent) & Semi-supervised & Open-world

OpenLDN 44.2 12.7 28.4 31.3 11.6 22.9 18.7 4.2 12.5
Ours 46.7 38.7 46.2 32.0 18.9 25.4 17.1 8.1 14.0
NMI (OpenLDN) - 0.196 0.224 - 0.391 0.389 - 0.256 0.281
NMI (Ours) - 0.564 0.464 - 0.427 0.424 - 0.285 0.305
Method Long-tailed (Reversed) & Semi-supervised & Open-world

OpenLDN 48.5 1.2 26.6 27.2 19.7 24.0 18.8 4.8 13.7
Ours 49.8 38.3 44.1 31.8 20.7 26.8 13.9 13.6 15.2
NMI (OpenLDN) - 0.068 0.125 - 0.378 0.372 - 0.256 0.287
NMI (Ours) - 0.394 0.405 - 0.457 0.438 - 0.302 0.323
Method Long-tailed (Uniform) & Semi-supervised & Open-world

OpenLDN 44.5 3.8 24.2 21.4 7.6 14.8 13.6 3.3 10.4
Ours 47.1 53.9 50.5 22.8 8.2 15.9 11.2 7.3 11.4
NMI (OpenLDN) - 0.111 0.155 - 0.289 0.280 - 0.238 0.252
NMI (Ours) - 0.429 0.399 - 0.351 0.323 - 0.271 0.273

4.2 DISCUSSIONS ON EXPERIMENTAL RESULTS

In Tables 2 and 3, we compare the performance of OpenLDN and the proposed method across
six experimental benchmark datasets under Long-tailed (Consistent), Long-tailed (Reversed), and
Long-tailed (Uniform) conditions. The results demonstrate that the proposed method consistently
outperforms OpenLDN across almost all datasets in terms of known class, novel class, and overall
class recognition accuracy. Furthermore, the proposed method is able to achieve a more stable training
process (detailed in Section 4.3). Specifically, under the Long-tailed (Consistent) condition, the
proposed method shows significant improvements in CIFAR10, CIFAR100, SVHN, and Oxford-IIIT
Pet datasets. Under the Long-tailed (Reversed) condition, the proposed method exhibits substantial
enhancements in recognizing novel classes across all datasets, with particularly notable performance
in CIFAR10, ImageNet100, and SVHN. Under the Long-tailed (Uniform) condition, the proposed
method significantly surpasses OpenLDN in CIFAR10 and SVHN datasets. Moreover, the proposed
method achieves higher normalized mutual information (NMI) scores in the recognition of both
novel classes and overall samples, which further attests to the superior performance of the model
presented in this paper. These results indicate that the proposed method not only excels in recognizing
known classes but also demonstrates exceptional performance in novel and overall class recognition,
highlighting its robustness and adaptability in handling complex, long-tailed distributions. Overall,
the proposed method showcases superior accuracy and broad applicability in ROLSSL tasks, proving
its effectiveness in addressing the challenges posed by diverse datasets and varying class distributions.
The proposed method provides a potentially viable solution within the ROLSSL framework.

4.3 DISCUSSION ABOUT OSSL METHOD IN ROLSSL SETTINGS

In the previous section, we mentioned that directly applying the OSSL scheme within the ROLSSL
framework leads to a decline in the recognition ability for novel classes as the training progresses.
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Table 3: Accuracy on the Tiny ImageNet, Oxford-IIIT Pet, and SVHN datasets with 50% known and
50% novel classes under three different long-tailed conditions.

Tiny ImageNet Oxford-IIIT Pet SVHN
Known Novel All Known Novel All Known Novel All

Method Semi-supervised & Open-world

DTC (CVPR’19) 28.8 16.3 19.9 20.7 16.0 13.5 90.3 65.0 81.0
RankStats (ICLR’20) 5.7 5.4 3.4 12.6 11.9 11.1 96.3 96.1 96.2
UNO (ICCV’21) 46.5 15.7 30.3 49.8 22.7 34.9 85.4 74.3 79.0
OpenLDN (ECCV’22) 52.3 19.5 36.0 67.1 27.3 47.7 95.7 87.2 92.6

Method Long-tailed (Consistent) & Semi-supervised & Open-world

OpenLDN 13.7 7.7 12.1 12.7 2.1 10.5 59.9 0.5 37.9
Ours 15.6 10.0 13.8 14.9 6.7 12.0 67.5 35.4 56.2
NMI (OpenLDN) - 0.421 0.418 - 0.146 0.134 - 0.099 0.236
NMI (Ours) - 0.445 0.441 - 0.157 0.147 - 0.292 0.470
Method Long-tailed (Reversed) & Semi-supervised & Open-world

OpenLDN 13.8 9.5 13.0 13.2 1.8 10.0 31.4 15.3 25.9
Ours 17.3 10.3 14.9 13.0 8.5 12.5 77.1 20.2 48.6
NMI (OpenLDN) - 0.410 0.422 - 0.127 0.119 - 0.064 0.121
NMI (Ours) - 0.426 0.427 - 0.165 0.154 - 0.170 0.465
Method Long-tailed (Uniform) & Semi-supervised & Open-world

OpenLDN 9.5 9.0 9.0 10.7 1.4 9.5 56.3 2.9 36.6
Ours 9.2 10.6 9.6 10.2 4.2 10.2 58.4 31.9 49.7
NMI (OpenLDN) - 0.385 0.379 - 0.126 0.114 - 0.050 0.210
NMI (Ours) - 0.401 0.390 - 0.123 0.113 - 0.297 0.451

(a) CIFAR-10 (OpenLDN) (b) CIFAR-10 (Ours) (c) SVHN (OpenLDN) (d) SVHN (Ours)

Figure 2: Figures (a) and (c) show the t-SNE visualizations of OpenLDN on the CIFAR-10 and SVHN datasets,
respectively. Figures (b) and (d) present the t-SNE visualizations of the proposed method on the CIFAR-10 and
SVHN datasets. It is evident that DPLA demonstrates better recognition performance compared to OpenLDN.

Here, we illustrate this phenomenon by examining the recognition accuracy of known, novel, and
overall samples during the training process on the SVHN dataset under a consistent setting using
the OLSSL scheme. As shown in the Figure 5 of Appendix B, the OLSSL scheme, OpenLDN,
consistently exhibits low recognition performance for novel classes, dropping to zero recognition
accuracy for novel classes at around the 16th epoch and failing to recover this ability throughout
the subsequent training. In contrast, the dual-stage post-hoc logit adjustment (DPLA) proposed
in this paper effectively addresses this issue. DPLA maintains the ability to recognize novel
class samples and can achieve recognition accuracy close to or even exceeding that of OpenLDN
for all samples at certain stages, demonstrating the effectiveness of DPLA. Moreover, DPLA
consistently achieves higher recognition accuracy for both known classes and overall samples
compared to OpenLDN, without experiencing a gradual decline in accuracy. This indicates that
DPLA is well-suited for the ROLSSL framework and significantly improves accuracy. It is also
noteworthy that OpenLDN rarely regains the ability to recognize novel class samples as training
progresses; however, due to random seed variations, OpenLDN has a slight chance of achieving
very low recognition accuracy for novel class samples in the final few epochs, thereby transitioning
into a close-world training phase. To highlight the performance differences between OpenLDN
and DPLA under their optimal conditions, we selected the best performance of OpenLDN when
it had a favorable initialization and could transition into the close-world training phase for comparison.
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4.4 ABLATION STUDY

Table 4: Performance comparison of ablation
experiments designed to explore the role of
each stage of DPLA. Baseline is OpenLDN.

Method Known Novel All
Baseline 59.9 0.5 37.9

+ First Stage 65.1 32.5 54.4
+ Second Stage 67.2 35.3 55.7
+PLR (DPLA) 67.5 35.4 56.2

Method Design: We utilize the SVHN dataset to in-
vestigate the impact of each design within each DPLA
on model performance. We employ OpenLDN as the
performance baseline for model comparisons. As
observed, the inclusion of logit adjustment in the
first stage significantly improves the performance for
known, novel, and overall categories, with accuracy
for the novel category increasing by up to 30%. The
introduction of the second stage and pseudo-label
adjustment further enhances model performance,
though the improvement is less pronounced and
shows a diminishing trend.
First-stage Scaling Factor: The reason for designing the scaling factor 10 · (⌈C/Cbase⌉) ·

√
S/Sbase

in the first stage is that original post-hoc logit adjustment design only achieves expected performance
in datasets with fewer categories, such as CIFAR-10 and SVHN. However, for datasets like CIFAR-
100 and ImageNet-100, it suppresses model performance and fails to improve accuracy under data
imbalance conditions. Therefore, we design the first-stage scaling factor based on sample frequency,
total number of dataset categories, and data size. From Figures 3 and 4, it can be concluded that when
PLA is applied directly to ROLSSL without any modifications, the model performance is even lower
than the baseline performance obtained by directly applying OpenLDN to ROLSSL. As the scaling
factor increases to the multiples set in this study, model accuracy gradually rises and eventually
surpasses the baseline. However, when scaling factor continues to increase, model performance
declines, demonstrating the rationality and effectiveness of our proposed method design.

Figure 3: Ablation study on
the performance of CIFAR-
100 for the Scaling Factor.

Figure 4: Ablation study on
the performance of ImageNet-
100 for the Scaling Factor.

Table 5: Ablation study on the
model performance for trade-
off parameters λ1 and λ2.

λ1, λ2 Novel All
(0.2, 0.8) 25.7 38.5
(0.3, 0.7) 30.3 42.0
(0.4, 0.6) 33.8 44.2
(0.5, 0.5) 38.7 46.2
(0.6, 0.4) 36.3 45.8
(0.7, 0.3) 32.9 45.4
(0.8, 0.2) 29.4 41.3

Trade-off Parameter: The design of the final loss optimization objective involves setting λ1 and
λ2. We conduct an investigation based on the CIFAR-10 dataset, and it is observed that for this
dataset, λ1 = λ2 = 0.5 is the optimal setting. Under other settings, the model performance shows
some degree of decline, and this performance pattern is consistent across most other datasets. In the
experiments, λ1 + λ2 = 1 should be satisfied, mainly to maintain the numerical scale of each loss
similar to the original design in LOSSL, which is beneficial for recognizing novel category data.

5 CONCLUSION

Realistic open-world long-tailed semi-supervised learning (ROLSSL) provides a more realistic
experimental setup for open-world semi-supervised learning by considering various data imbalance
relationships among known and novel categories, as well as the high cost of obtaining labeled data
in real-world scenarios. Building on the traditional post-hoc logit adjustment, this paper proposes
dual-stage post-hoc logit adjustment (DPLA). By integrating factors such as sample frequency and the
total number of categories, this approach better utilizes both labeled and unlabeled data. The proposed
method significantly improves model performance under the ROLSSL setting, outperforming other
comparative approaches and providing a simple yet strong performance baseline for this task.
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A APPENDIX ON EXPERIMENTAL SETTINGS

Due to computational constraints, we evaluated the performance of the base stage only on the
ImageNet-100 and Oxford-IIIT Pets datasets. For all datasets that underwent closed-world
stage training, the total number of training epochs is 256, with a batch size of 64 and a
learning rate of 0.002. For the experiments for all of the datasets, the masking threshold is
set to 0.5 uniformly. Cbase is set to 10 and Sbase is set to 32 × 32 which conforms to the res-
olution of single images of CIFAR-10. C and S are corresponding parameters of the estimated dataset.

CIFAR-10 dataset: In the context of the CIFAR-10 study, our methodology is evaluated
using the setting: N1 = 500, H1 = 4000,M1 = 4500. We establish the three kinds of imbalance
ratios at γl

k = γu
k = γu

n = 100. Moreover, maintaining a constant γl
k = γu

k = 100, we further
explore our approach under varying conditions γu

n = 1/100 and M1 = M2 = ... = Mcn = 1500,
to simulate both reversed and uniform distributions of unlabeled novel-class data classes. Besides,
for the remaining experimental parameters λ1 = 0.5, λ2 = 0.5, τ1 = 2, τ2 = 2, α = 1.2 and β = 0.8.

CIFAR-100 dataset: In the context of the CIFAR-100 study, our methodology is evaluated
using the setting: N1 = 50, H1 = 400,M1 = 450. We establish the three kinds of imbalance ratios
at γl

k = γu
k = γu

n = 100. Moreover, maintaining a constant γl
k = γu

k = 100, we further explore our
approach under varying conditions γu

n = 1/100 and M1 = M2 = ... = Mcn = 150, to simulate both
reversed and uniform distributions of unlabeled novel-class data classes. Besides, for the remaining
experimental parameters λ1 = 0.5, λ2 = 0.5, τ1 = 1, τ2 = 1, α = 1.05 and β = 0.95.

ImageNet-100 dataset: In the context of the ImageNet-100 study, our methodology is evaluated
using the setting: N1 = 75, H1 = 600,M1 = 675. We establish the three kinds of imbalance ratios
at γl

k = γu
k = γu

n = 100. Moreover, maintaining a constant γl
k = γu

k = 100, we further explore our
approach under varying conditions γu

n = 1/100 and M1 = M2 = ... = Mcn = 225, to simulate both
reversed and uniform distributions of unlabeled novel-class data classes. Besides, for the remaining
experimental parameters λ1 = 0.8, λ2 = 0.2, τ1 = 1, τ2 = 1, α = 1.05 and β = 0.95.

Tiny ImageNet dataset: In the context of the Tiny ImageNet study, our methodology is
evaluated using the setting: N1 = 50, H1 = 400,M1 = 450. We establish the three kinds of imbal-
ance ratios at γl

k = γu
k = γu

n = 10. Moreover, maintaining a constant γl
k = γu

k = 100, we further
explore our approach under varying conditions γu

n = 1/100 and M1 = M2 = ... = Mcn = 150,
to simulate both reversed and uniform distributions of unlabeled novel-class data classes. Besides,
for the remaining experimental parameters λ1 = 0.5, λ2 = 0.5, τ1 = 1, τ2 = 1, α = 1.2 and β = 0.8.

Oxford-IIIT Pet dataset: In the context of the Oxford-IIIT Pet study, our methodology is
evaluated using the setting: N1 = 20, H1 = 60,M1 = 80. We establish the three kinds of imbalance
ratios at γl

k = γu
k = γu

n = 10. Moreover, maintaining a constant γl
k = γu

k = 100, we further explore
our approach under varying conditions γu

n = 1/100 and M1 = M2 = ... = Mcn = 20, to simulate
both reversed and uniform distributions of unlabeled novel-class data classes. Besides, for the
remaining experimental parameters λ1 = 0.5, λ2 = 0.5, τ1 = 1, τ2 = 1, α = 1.05 and β = 0.95.

SVHN dataset: In the context of the SVHN study, our methodology is evaluated using the
setting: N1 = 500, H1 = 4000,M1 = 4500. We establish the three kinds of imbalance ratios at
γl
k = γu

k = γu
n = 100. Moreover, maintaining a constant γl

k = γu
k = 100, we further explore

our approach under varying conditions γu
n = 1/100 and M1 = M2 = ... = Mcn = 1500, to

simulate both reversed and uniform distributions of unlabeled novel-class data classes. Besides,
for the remaining experimental parameters λ1 = 0.5, λ2 = 0.5, τ1 = 2, τ2 = 2, α = 1.2 and β = 0.8.

B OSSL METHOD PERFORMANCE IN ROLSSL SETTINGS.

To better observe the impact of the ROLSSL setting on previous OLSSL methods, we visualize the
classification performance of the OpenLDN and our proposed DPLA methods on the SVHN dataset
as epochs increase. In this Figure 5, circles and triangles represent DPLA and OpenLDN, respectively,
while blue, yellow, and green represent the accuracy of known classes, novel classes, and all classes,
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Figure 5: OSSL method performance in ROLSSL settings.

respectively. It can be seen that for known classes, the accuracy of OpenLDN gradually decreases
as epochs increase, whereas the accuracy of our proposed DPLA steadily rises. For the prediction
of novel classes, OpenLDN’s performance approaches zero, while DPLA significantly outperforms
OpenLDN, although it exhibits considerable fluctuations. Overall, OpenLDN performs very poorly
under our proposed ROLSSL setting, especially in recognizing novel classes, while our proposed
DPLA method far surpasses OpenLDN and effectively recognizes novel classes.

C APPENDIX ON PSEUDO-ALGORITHM FOR ROLSSL

Here we provide pseudo-code for the method proposed in this paper to clarify the steps of it.

Algorithm 1 Dual-Stage Post-hoc Logit Adjustment for ROLSSL

Require: Dl
k, Du

k , Du
n, α, β, τ1, τ2, λ1, λ2

Ensure: Adjusted Model Logits
1: Initialize: Set hyper-parameters α, β, τ1, τ2, λ1, λ2

2: Define datasets Dl
k (labeled), Du

k , Du
n (unlabeled)

3: First-stage Logit Adjustment:
4: for xl in Dl

k do
5: Compute logit factor Ω from sample frequency and class count
6: Adjust logits: logit← f(xl)− τ1 log(Ω)
7: end for
8: Second-stage Logit Adjustment:
9: for xu in Du

k ∪ Du
n do

10: Estimate class distribution and adjust logits with α, β:

f̂(xu)← w · f(xu)

11: end for
12: Pseudo-Label Generation:
13: for xu in Du

k ∪ Du
n do

14: Generate pseudo-labels and mask dominant classes
15: end for
16: Training:
17: Train model using cross-entropy loss and τ2-adjusted pseudo-labels
18: Optimize loss:

Loss← Lpair + λ1Lce + λ2Lb_ce + Lreg

19: Evaluation: Assess performance using accuracy and mutual information
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