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Abstract
We consider the problem of consistent low-rank
approximation for multigroup data: we ask for
a sequence of k basis vectors such that project-
ing the data onto their spanned subspace treats all
groups as equally as possible, by minimizing the
maximum error among the groups. Additionally,
we require that the sequence of basis vectors satis-
fies the natural consistency property: when look-
ing for the best k vectors, the first d < k vectors
are the best possible solution to the problem of
finding d basis vectors. Thus, this multigroup low-
rank approximation method naturally generalizes
SVD and reduces to SVD for data with a single
group. We give an iterative algorithm for this
task that sequentially adds to the basis the vector
that gives the best rank−1 projection according to
the min-max criterion, and then projects the data
onto the orthogonal complement of that vector.
For finding the best rank−1 projection, we use
primal-dual approaches or semidefinite program-
ming. We analyze the theoretical properties of the
algorithms and demonstrate empirically that the
proposed methods compare favorably to existing
methods for multigroup (or fair) PCA.

1. Introduction
Low-rank approximation techniques provide dimensionally
reduced representations of data by expressing the data ma-
trix as a linear combination of a small number of factors.
Such methods are fundamental in machine learning and data
science, due to the benefits they offer in terms of scalability,
interpretability, and their strong mathematical foundation.

Among other methods, the singular value decomposition
(SVD) holds a central position. A celebrated result states
that the first d left or right singular vectors offer the best
possible rank-d approximation to a matrix M in terms of
Frobenius or spectral norm (Eckart & Young, 1936). We
call this the consistency property of the SVD.

In many applications, the rows of a data matrix are divided
into two or more groups according to a particular attribute,
e.g., gender. In such a case, using the top k right singular

vectors may not represent every group equally well, po-
tentially resulting in inaccurate or even discriminatory out-
comes. To address these concerns, previous works (Samadi
et al., 2018; Tantipongpipat et al., 2019; Song et al., 2024)
have studied the problem of finding a common projection
onto a subspace that minimizes the worst-case reconstruc-
tion error of any group. This problem is typically referred
to as FAIR-PCA.

While effective, previous methods (Samadi et al., 2018;
Tantipongpipat et al., 2019; Song et al., 2024) do not ensure
the consistency property of the SVD, i.e., given a basis of
a subspace, it is not possible to readily obtain a basis of a
lower-rank subspace simply by discarding some vectors.

Building on this line of work, we introduce a multigroup low-
rank approximation formulation which, in the spirit of the
SVD, imposes the consistency property. More specifically,
given a data matrix M with rows divided into groups G =
{A1, . . . ,Ak}, we look for an orthonormal basis V for a
subspace of the column space with the following properties:
1) projecting onto it minimizes the maximum possible error
of any group (min-max criterion), 2) is consistent: given the
best r vectors, the first d < r vectors from that solution are
the best possible solution to the problem of finding d basis
vectors. We call such vectors multigroup singular vectors.

Figure 1 illustrates the concept of multigroup singular vec-
tors. Figure 1 (a) shows the standard singular vectors (in
red) and multigroup singular vectors (in green) in synthetic
data. While standard singular vectors clearly favor the larger
group over the smaller, multigroup singular vectors seek a
more balanced representation. Figure 1 (b) instead shows a
comparison in the real-world compas dataset (Dua & Graff,
2017). We consider the partitioning of the data into females
and males. Projecting onto the multigroup singular vectors
leads to a more balanced reconstruction error than project-
ing onto standard singular values, while giving a similar
overall reconstruction error.

We empirically evaluate our method in the task of FAIR-
PCA (Samadi et al., 2018). We show that it ensures the
consistency property while incurring similar reconstruction
error to the previous methods (Samadi et al., 2018; Tan-
tipongpipat et al., 2019; Song et al., 2024). In addition,
an obvious advantage of the consistency property is that
it confers high efficiency and scalability: we can compute
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Figure 1: Left (a): synthetic data partitioned in two groups, as indicated by the color of the points. Singular vectors
{w1,w2} and the multigroup singular vectors {v1,v2} given by our method, are also shown. Right (b): real-world compas
dataset partitioned in two groups, females and males. The y-axis indicates the ratio of the average group-wise reconstruction
error incurred by standard singular vectors and the multigroup singular vectors. The x-axis indicates the number of basis
vectors. We additionally report the average reconstruction error across all data instances (both males and females).

each basis vector efficiently, and once the full-rank basis is
computed, we can obtain lower-dimensional representations
of any rank by just discarding basis vectors, as for SVD.
This is in contrast to the previous approaches (Samadi et al.,
2018; Tantipongpipat et al., 2019; Song et al., 2024) which
require solving an independent, computationally challeng-
ing problem for any basis dimension.

The multigroup low-rank approximation problem still
presents significant challenges. To ensure the consistency
property holds, we construct the k-dimensional solution
through an iterative process of solving simpler rank-1 prob-
lems. The more difficult aspect is proving that this procedure
also yields the optimal k-dimensional result. Notably, we
demonstrate that our solution is in fact optimal in the case
of two groups in the data. For scenarios with more than two
groups, we show that our solutions are empirically close to
optimal in practice.

The contributions of this work can be summarized as fol-
lows.

• We formalize the consistent multigroup low-rank approx-
imation problem.

• We give an iterative procedure which selects the best
basis vector according to the min-max criterion, and then
projects the data onto the orthogonal complement of the
previously chosen vectors. The selection of the best basis
vector at each iteration represents the main algorithmic
challenge that we tackle.

• We theoretically analyze the formulated problems and the
proposed algorithms, focusing on the two-groups case,
which exhibits interesting properties.

• We describe extensive experiments on real-world datasets
to demonstrate the benefits of consistent low-rank approx-

imation over previous work.

The rest of this paper is organized as follows. Section 2
gives an overview of related work. Section 3 gives necessary
notations and definitions. Section 4 describes our overall
framework. Section 5 formally introduces the multigroup
singular vector problem (MG-SINGULARVECTOR), while
Section 6 proposes algorithms to solve it. We present a
theoretical analysis and give an algorithm for a special case
in Section 7, while Section 8 contains our experimental
evaluation and Section 9 presents conclusions.

2. Related Work
We assume that the reader is familiar with singular value
decomposition (SVD) and principal component analysis
(PCA) (see, e.g., (Van Der Maaten et al., 2009; Eckart &
Young, 1936; Hotelling, 1933)).

Multigroup low-rank approximation: Fair PCA. Re-
cently PCA has been extended to handle multigroup data.
In this line of work, groups correspond to different values
of a sensitive attribute (e.g., gender), and hence the pro-
posed multigroup extension of PCA is referred to as FAIR
PCA (Samadi et al., 2018; Tantipongpipat et al., 2019; Song
et al., 2024). In FAIR PCA, the goal is to retrieve a low-
dimensional representation of the data that maximizes and
balances variance for the groups. A similar problem has
also been studied by Zalcberg & Wiesel (2021) from a sig-
nal processing perspective and by Babu & Stoica (2023).
Other works have instead explored a significantly different
formulation of the FAIR PCA problem. For instance, some
works rely on notions of fairness such as demographic par-
ity or equal opportunity that are adapted from supervised
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learning (Olfat & Aswani, 2019; Kleindessner et al., 2023).
In a similar vein, Lee et al. (2022) define FAIR PCA as
the problem of minimizing the maximum mean discrepancy
between dimensionality-reduced conditional distributions
of different classes. Instead, Pelegrina & Duarte (2023)
as well as Kamani et al. (2022) formulate FAIR PCA as
an optimization problem where the objective encodes the
trade-off between reconstruction error and fairness.

Other multigroup dimensionality-reduction techniques.
In recent years, significant attention has been devoted to al-
gorithmic fairness and there have been efforts to extend tra-
ditional dimensionality-reduction techniques, beyond PCA.
For instance, Matakos et al. (2024) and Song et al. (2024)
study fair column subset selection, while Louizos et al.
(2016) introduce the fair variational autoencoder.

3. Preliminaries

Notation. We denote matrices and vectors by bold upper-
case and lowercase letters, respectively. The notation Vd
indicates the set of all matrices with d orthonormal columns,
i.e., Vd = {V ∈ Rn×d : V⊤V = Id}, where Id is the d×d
identity matrix.

For a matrix V ∈ Vd, we denote the ordered set of columns
of V by {V} = {v1, . . . ,vd}. The orthogonal comple-
ment of the span of the columns of V is denoted by V⊥.
We write V:r ∈ Rn×r for the matrix whose columns cor-
respond to the first r columns of {V}. In addition, for a
matrix A ∈ Ra×n and matrix V ∈ Rn×d that has orthonor-
mal columns, the component of A in V⊥

:r−1 is obtained
as A − AV:r−1V

⊤
:r−1. Finally, the first d singular val-

ues of matrix A, sorted in descending order, are denoted
by σ1(A), . . . , σd(A). The Frobenius norm of a matrix

A ∈ Rm×n is defined as: ∥A∥F =
√∑m

i=1

∑n
j=1 |aij |2,

where aij denotes the (i, j)-th element of A.

Orthogonal Projections. We briefly recall the properties
of orthogonal projections. Given a matrix with orthonormal
columns V ∈ Rn×d, and vector x ∈ Rn, the projection of
x onto the column space of V is obtained as x⊤VV⊤.

Orthogonal projections satisfy the following property.
Property 1 (Orthogonal projection). For any matrix A ∈
Rm×n and a matrix V ∈ Rn×d with orthonormal columns
v1, . . . ,vd, we have ∥AVV⊤∥2F =

∑d
i=1 ∥Aviv

⊤
i ∥2F .

The proof is elementary, and we provide it in the appendix
for completeness.

A fundamental property of the SVD is the consistency
property, formally stated in the Eckart-Young-Mirsky the-
orem (Eckart & Young, 1936). We state this pivotal the-
orem next. Given a matrix M ∈ Rm×n and its sin-
gular value decomposition M = UΣV⊤, then for any

d = rank(Xd) ≤ rank(M) we have that the reconstruc-
tion error

∥M−Xd∥ξ

is minimized by Xd = MV:dV
⊤
:d, i.e. the projection of M

onto the first d singular vectors. Here ξ denotes either the
Frobenius norm (ξ = F ) or the spectral norm (ξ = 2).

4. Overview of the Method
In this section we describe the multigroup low-rank approx-
imation method. Our fundamental building block is the
concept of a multigroup singular vector. A multigroup sin-
gular vector is rank-1 projection of the data, that takes all
groups into account. Given a method to compute such a vec-
tor, it is fairly simple to obtain a consistent set of multigroup
singular vectors by iteratively removing the component of
the data that lies in the span of that vector.

First, we formally define the concept of a multigroup sin-
gular vector. We call the problem of finding such a vector
MG-SINGULARVECTOR, and it represents the main algo-
rithmic focus of this paper. Then, we give an algorithm for
computing a consistent set of such vectors.

Multigroup singular vector. We seek to find a vector, such
that the resulting rank-1 projection minimizes the maximum
loss incurred by any group. The idea of minimizing the
maximum per-group loss is inspired by the egalitarian rule
in algorithmic fairness (Martinez et al., 2020). Assume an
input matrix M ∈ Rm×n with rows divided into groups G =
{A1, . . . ,Ak}. A multigroup singular vector is the vector
v minimizing the maximum loss over all groups of the
difference between the largest singular value, σ1(A

i), and
the rank-1 projection of Ai using v. That is, v minimizes
the loss L(M,v) defined as

L(M,v) = max
Ai∈G

{σ2
1(A

i)− ∥Aivv⊤∥2F }. (1)

Recall that σ1(A
i), corresponds to the maximum norm

of any rank-1 projection of Ai. Subtracting from σ1(A
i)

helps avoid bad minima of the minimization problem in
Equation 1, by taking into account the best achievable rank-
1 representation of every group. Since this loss function
is a rank-1 version of the marginal loss of Samadi et al.
(2018), we refer to Appendix A and Samadi et al. (2018) for
a broader discussion on this.

Computing a set of multigroup singular vectors. We are
now ready to describe the iterative algorithm for obtaining
a sequence of consistent multigroup singular vectors. The
algorithm works as follows. We solve the rank-1 problem
in Equation 1 to obtain the multigroup singular vector v1.
Given v1, we project the groups in G onto {v1}⊥, the or-
thogonal complement of v1. We repeat the same process on

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Consistent Multigroup Low-rank Approximation

Algorithm 1 Multigroup Orthonormalization

1: Input: Matrices {A1, . . . ,Ak}, rank d.
2: Initialize r ← 1, V ← ∅
3: while r <= d do
4: vr ← MG-SINGULARVECTOR (A1, . . . ,Ak)
5: Ai ← Ai −Aivrv

⊤
r

6: V← V ∪ vr

7: r ← r + 1
8: end while

return V

{v1}⊥ to obtain a new vector v2. Repeating this process d
times, we obtain an orthonormal basis V = {v1, . . . ,vd}.

The whole iterative process is summarized in Algorithm
1. Step 1 of the algorithm corresponds to a call to a sub-
routine, described in the following sections, that solves the
MG-SINGULARVECTOR problem. Step 1 illustrates the
projection onto the orthogonal complement of the solution
vector to the MG-SINGULARVECTOR problem.

Quality of the solutions. Since our algorithm iteratively
produces orthonormal vectors, Property 1 and a simple in-
ductive argument imply that the loss for a solution of d
dimensions is the sum of d losses of rank-1 solutions. Thus,
the quality of our solution depends only on our ability to
solve the rank-1 problem. Indeed, assume we are in step r of
Algorithm 1: we have {V} = {v1, . . . ,vr−1}, and we seek
{V′} = {V} ∪ {vr}. Since ∥AiV′V′⊤∥2F , can be decom-
posed as ∥AiV′V′⊤∥2F = ∥AiVV⊤∥2F + ∥Aivrv

⊤
r ∥2F ,

the problem reduces to solving a sequence of rank-1 prob-
lems. We will refer to the total error

∑d
i=1 L(M,vi), as the

incremental error.

In the following sections, we will show that, for the case
of two groups, we can in fact efficiently solve the rank-1
problem to optimality, and for the general case we will give
an approximate algorithm which works well in practice.

Complexity. The overall time complexity is O(dℓ), where
O(ℓ) is the complexity of solving MG-SINGULARVECTOR
that is discussed later.

5. The Multigroup Singular Vector Problem
As anticipated in Section 4, solving the MG-
SINGULARVECTOR problem represents the crucial
algorithmic challenge to be addressed for multigroup
low-rank approximation. In this section, we study the
properties of the MG-SINGULARVECTOR problem, as
well as of its dual problem, which is more amenable to
optimization. Leveraging the insights gained in the present
section, in the next section we introduce algorithms to solve
the MG-SINGULARVECTOR problem.

Next, we formalize the MG-SINGULARVECTOR problem.
Problem 1 (MG-SINGULARVECTOR). Given a matrix M ∈
Rm×n with rows divided into groups G = {A1, . . . ,Ak},
find the vector v satisfying

min
v∈Rn,z∈R

z

s.t. σ2
1(A

i)− ∥Aivv⊤∥2F ≤ z for all Ai ∈ G
and ∥v∥22 = 1.

We use the term constraint functions hi(v) for the left-hand
sides of the constraints in the problem:

hi(v) = σ2
1(A

i)− ∥Aivv⊤∥2F .

Convexity analysis. Problem 1 is not a convex problem. To
see this, note that −∥Avv⊤∥2F = −v⊤A⊤Av, and since
−A⊤A is a negative semidefinite matrix, the corresponding
quadratic forms are concave functions. Each hi(v) consists
of such a quadratic form and an affine transformation (which
does not impact convexity), and is thus concave. Minimiza-
tion problems over concave functions are non-convex and
not straightforward to solve.

We also note that the constraint functions hi are continuous
functions supported on the unit hypersphere. Importantly, all
their minima are at zero, since the incremental loss attains its
minimum at 0. Given these observations, we can prove that
for any optimal solution v∗, z∗, two groups attain exactly
the same error, while other groups smaller or equal error.

Theorem 5.1. For an optimal solution v∗, z∗ to Problem 1
we have:

z∗ = hi(v
∗) = hj(v

∗) ≥ hk(v
∗),

for some i ̸= j and for all k ̸= i, j.

Proof. We first prove that there exist two groups such that
z∗ = hi(v

∗) = hj(v
∗). Assume for the sake of contradic-

tion that v∗ is an optimal solution such that z∗ = hi(v
∗) >

hj(v
∗) for all j. Then, this implies that hi(v

∗) > 0, and
v∗ cannot be a minimizer of hi since the minima of hl for
all l, are at hl(v) = 0. Thus we can locally move to a
nearby solution vϵ such that hi(vϵ) < hi(v

∗) and at the
same time hj(vϵ) ≤ hi(vϵ) for all j. This contradicts the
fact that v∗ is an optimal solution. Additionally it must be
that hk(v

∗) ≤ hi(v
∗) = hj(v

∗) since hi(v
∗) = hj(v

∗)
attain the optimal value z∗.

As we stated before, Problem 1 is easier when there are
two groups. The proof hints at an interesting geometric
intuition for why that is the case. In this setting, we have
two quadratic constraint functions h1 and h2, and as Theo-
rem 5.1 suggests, the candidate optimal solutions v lie at
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the intersection points of two ellipsoids determined by the
quadratic equation h1 = h2. Thus, it suffices to start from
the minimum of either h1 or h2 (note that this minimum
is found by setting v to the leading eigenvector of either
group 1 or 2) and follow the direction of steepest descent of
the objective function, to find the global minimum (due to
symmetry it can be either v∗ or −v∗). We will formalize
this intuition by characterizing the KKT points, in Section 7,
where we show that in the two-group case the problem
enjoys strong duality. Indeed, this is not surprising, as sev-
eral strong results exist for non-convex problems with two
quadratic constraints (we refer to (Boyd & Vandenberghe,
2004), Appendix B). We now proceed to define the dual
problem for the general case.

The dual problem. To study Problem 1, it is useful to con-
sider the dual problem. An advantage of the dual problem
over the primal problem (Problem 1) is that it leads to an
objective function with a gradient that is more ”informative”
and more convenient for gradient-based methods. Methods
such as Frank-Wolfe (Frank et al., 1956), use the gradient
to determine the search direction in the feasible region.

As already mentioned, we show that for k = |G| = 2
Problem 1 exhibits strong duality (i.e., the optimal value
of the primal problem equals the optimal value of the dual
problem), despite being non-convex.

However, even for |G| > 2, the dual problem is still useful
in practice, since we can assess the quality of our solution
by evaluating the difference between the primal and dual
optimal objective values.

To formulate the dual problem we will consider the La-
grangian function corresponding to Problem 1. The La-
grangian is obtained by adding the problem constraints to
the objective, along with the dual variables, which corre-
spond to the Lagrange multipliers. In particular, the La-
grangian function associated with Problem 1 is:

H(v, z,µ, λ) = z +

k∑
i=1

µi(hi(v)− z) + λ(∥v∥22 − 1),

where we denote µ = [µ1, . . . , µk]. Further, let

A(µ) =

k∑
i=1

µi(A
i)⊤Ai,

and define s = [σ2
1(A

1), . . . , σ2
1(A

k)]. The dual problem
associated with Problem 1 is the following.
Problem 2 (MG-SINGULARVECTOR-DUAL).

max
µ∈Rk

µ⊤s− λmax(A(µ))

s.t. 1⊤µ = 1 (2)
µ ≥ 0. (3)

Here, λmax denotes the maximum eigenvalue. A detailed
derivation of Problem 2 is given in the appendix.

Problem 2 is convex and has an interesting interpretation as
a parametric eigenvalue problem: the solution vector v is
the leading eigenvector of the optimal convex combination
A(µ), determined by the coefficients µ.

Uniqueness. Later on, we define the solution v which we
obtain from the dual as a function of µ, which requires
uniqueness. However, in general, v is not unique, as A(µ)
may have repeated eigenvalues. This is not a problem in
practice since real data contain noise, which leads to distinct
eigenvalues (Kato, 1966). In any case, it is always possible
to slightly perturb the data to avoid ill-conditioned scenarios
with repeated eigenvalues.

6. Algorithms for Multigroup Singular Vector
In this section we present two algorithms for MG-
SINGULARVECTOR. The first algorithm solves the dual
problem MG-SINGULARVECTOR-DUAL, which is a con-
vex optimization problem with linear constraints, using the
Frank-Wolfe algorithm. The second one solves a semidefi-
nite programming (SDP) relaxation of the primal problem.

Frank-Wolfe. The Frank-Wolfe algorithm is a widely-used
iterative algorithm for solving constrained convex optimiza-
tion problems (Pokutta, 2023). In each iteration, the algo-
rithm linearizes the objective function, and moves towards
its minimizer , while staying inside the feasible region.

The Frank-Wolfe algorithm is particularly easy to use for
Problem 2, as the dual constraints are almost trivial to satisfy
and thus the only computationally challenging aspect for the
algorithm is the computation of the gradient∇g of the dual
objective, g(µ) = µ⊤s − λmax(A(µ)), which involves
computing the gradient of λmax(A(µ)).

Denoting for brevity λ(µ) = λmax(A(µ)), we have that
λ(µ) is an eigenvalue of A(µ) and hence:

A(µ)v(µ) = λ(µ)v(µ), (4)

where v(µ) is the eigenvector corresponding to λ(µ). Tak-
ing the gradient and using the product rule, we have:

(Ai)⊤Aiv(µ)+A(µ)∇v(µ) = ∇λ(µ)v(µ)+λ(µ)∇v(µ).
(5)

To simplify the gradient, we use the constraint
v(µ)⊤v(µ) = 1. This gives:

∇v(µ)⊤v(µ) + v(µ)∇v(µ) = 0,

i.e., v(µ) is orthogonal to its gradient. Therefore, multiply-
ing equation 5 with v(µ)⊤, we obtain:

v(µ)⊤(Ai)⊤Aiv(µ) + λ(µ)v(µ)⊤∇v(µ)
=∇λ(µ)v(µ)⊤v(µ) + λ(µ)v(µ)⊤∇v(µ),

5
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Algorithm 2 Frank-Wolfe for MG-SINGULARVECTOR-
DUAL

1: Input: Matrices A1, . . . ,Ak, convergence tolerance ϵ.
2: Initialize: Set µ(0) = [1, 0, . . . , 0],

s = [σ2
1(A

1), . . . , σ2
1(A

k)]
3: t← 0
4: repeat
5: v(µ(t))← x s.t. A(µ(t))x = λmaxx
6: ∇g(µ(t))i ← si + v(µ(t))⊤(Ai)⊤Aiv(µ(t))
7: s(t) ← argmaxy:1⊤y=1,y≥0 y

⊤∇g(µ(t))
8: γt ← 2

t+2

9: µ(t+1) ← (1− γt)µ
(t) + γts

(t)

10: t← t+ 1
11: until ∥µ(t) − µ(t−1)∥ < ϵ
12: return µ(t), v(µ(t))

which simplifies to (∇λ(µ))i = v(µ)⊤(Ai)⊤Aiv(µ).
Putting everything together, we conclude that:

(∇g)i = si − v(µ)⊤(Ai)⊤Aiv(µ). (6)

Algorithm 1 contains the pseudocode of the Frank-Wolfe
method for Problem 2. The algorithm proceeds as follows.
It starts with an initial feasible solution µ(0). In each step,
line 5 solves the maximum eigenvalue problem associated
with the given parameter vector µ(t). Line 6 computes the
gradient. Line 7 solves a linear maximization problem over
the simplex defined by constraints 2 and 3 in Problem 2.
Lines 8-9 describe standard parameter update steps of the
Frank-Wolfe algorithm. Finally, the returned solution is
the v(µ) for the final update and the corresponding dual
solution µ. The complexity of the algorithm is dominated
by the maximum eigenvalue step (Line 5) which can be han-
dled using a fast Lanczos implementation. Thus the overall
complexity is O(tn2) where t is the number of iterations
until convergence.

Algorithm 2 solves Problem 2 optimally, as it is a convex
problem. However, the value g(µ) of the dual objective is
only a lower bound on the primal objective (i.e., Problem 1)
i.e., there can be a non-zero duality gap.

Semidefinite programming. We also solve MG-
SINGULARVECTOR through a semidefinite programming
(SDP) relaxation (Boyd & Vandenberghe, 2004). Since SDP
solvers come with an O(n6) running time, this algorithm
is expected to be significantly slower than Algorithm 2.
However, since for |G| > 2 we are not guaranteed to solve
MG-SINGULARVECTOR exactly, the SDP relaxation may
offer a solution that is close to rank-1, and hence close to
optimal. As a consequence, this approach can be useful in
settings where accuracy is more important than efficiency.
The pseudocode of the SDP for solving Problem 1 is pro-
vided in the appendix (Algorithm 3) where we also present

experiments demonstrating more accurate approximation of
the primal optimum compared to Algorithm 2.

7. Algorithm and Analysis for Two Groups
Often, the data are divided into exactly two groups, e.g., on
the basis of sex. As mentioned, in this particular case, we
are able to solve Problem 1 optimally and, moreover, the
optimal solution equalizes the loss.

Algorithm. We give a novel algorithm dedicated to the
two-group case, which outperforms competitors (such as
the Frank-Wolfe algorithm) in this setting, but cannot be
conveniently extended to address the setting of more than
two groups. The algorithm relies on the observation that
for |G| = 2 there exists a unique feasible µ for the dual,
which satisfies Theorem 5.1. We can find such a µ using a
fast root-finding approach, such as Brent’s method (Brent,
1971). This algorithm is evaluated in our experiments and
its details are in the appendix (see Lemma E.1).

Theoretical Analysis. The case of |G| = 2 has interesting
theoretical properties, which we present here. All the proofs
can be found in the appendix. First, we observe that, as a
consequence of Theorem 5.1, it holds that h1(v

∗) = h2(v
∗)

for any optimal solution v∗ to Problem 1.

Furthermore, leveraging the KKT conditions (see,
e.g., (Kuhn & Tucker, 2013)) to characterize the optimal
solutions to Problem 2 leads to the following theorem.

Theorem 7.1. For |G| = 2, the optimal solution to MG-
SINGULARVECTOR can be computed in polynomial time.

The proof relies on a simple idea. Since Problem 2 is convex,
it has a unique maximum, which can be found in polyno-
mial time (for example, using the approach based on the
Frank-Wolfe algorithm). Such a unique maximum can be
characterized by the KKT conditions. Then, to complete
the proof, it suffices to show that Problems 1 and 2 attain
strong duality, i.e., f(v∗) = z∗ = g(µ∗), where v∗ and µ∗

are optimal solutions to Problems 1 and 2, respectively.

Our analysis reveals interesting properties which are de-
scribed in the following lemmas and proved in the appendix.

Lemma 7.2. For |G| = 2, the SDP relaxation in Algorithm
3 is tight.

Finally, the following lemma related to Algorithm 1 follows.

Lemma 7.3. For |G| = 2, an optimal solution of Algorithm
1 is such that the total error for the two groups is equal.

8. Experiments
This section presents our experimental evaluation, which
aims at assessing the performance of our method (Algorithm

6
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Table 1: Dataset statistics. For each dataset, we report the
number of columns (n), the number of groups (|G|), and the
number of rows and rank by group.

Dataset Columns (n) |G| Group Rows Group Ranks

heart 14 2 201, 96 13, 13
german 63 2 690, 310 49,47
credit 25 2 18 112, 11 888 24, 24
student 58 2 383, 266 42, 42
adult 109 2 21 790, 10 771 98, 98
compas 189 2 619, 100 165, 71
communities 104 2 1 685, 309 101, 101
recidivism 227 2 1 923, 310 175, 113
compas-3 189 3 241, 240, 238 115, 110, 97
communities-4 104 4 90, 1 571, 218, 115 90, 99, 103, 103

1) in the FAIR-PCA task. Exploring other applications is
left to future work. We refer to the multigroup singular
vectors output by Algorithm 1 as MULTIGROUP SVS.

The experiments consider both the two-group case, where
our methods are supported by optimality guarantees, and the
case of more than two groups, where the optimality guaran-
tees no longer hold, but we observe that, in practice, the gap
between primal and dual solutions is consistently small and
hence they are close to optimal (see Appendix D). The re-
sults show that our method can offer significant advantages
over recent methods for FAIR-PCA.

8.1. Settings

Next, we illustrate the datasets, metrics, baselines, parame-
ter settings and experimental setup used in our experiments.

Datasets.

• Datasets with two groups, We use the juvenile re-
cidivism data (recidivism) from Catalunya (Tolan et al.,
2019) and various datasets from the UCI machine
learning repository (Dua & Graff, 2017): ”heart-
cleveland” (heart), ”german-credit” (german), ”credit-
card” (credit), ”student performance” (student), ”adult”
(adult), ”compas-recidivism” (compas), ”communities”
(communities). Group membership is based on sex, ex-
cept for ”communities ” where groups determined by
racial composition (caucasian majority or not).

• Datasets with more than two groups. We consider the
”compas-recidivism” dataset partitioned into three groups
according to age (compas-3), and the ”communities”
dataset partitioned into four groups, namely ”blacks”,
”hispanics”, ”asians” and ”caucasians”, according to the
dominant ethnicity (communities-4).

Data are processed by removing protected attributes, one-
hot encoding categorical variables, and standardizing
columns. Table 1 shows summary statistics of the datasets.

Baselines. We compare against the FAIR-PCA-SDP al-
gorithm based on semi-definite programming (Tantipong-

pipat et al., 2019) and against the BICRITERIA algorithm
(Song et al. (2024), Algorithm 3). Given target rank d,
FAIR-PCA-SDP and BICRITERIA return a rank-d projec-
tion matrix P = UΛU⊤, where U ∈ Rn×d is obtained
through SVD. In our experiments, we evaluate the consis-
tency property by comparing the loss when using U:r of
FAIR-PCA-SDP and BICRITERIA against V:r retrieved
by Algorithm 1, for all r < d.

Metrics and parameters. To evaluate the performance of
our method and FAIR-PCA-SDP, we monitor the marginal
loss (introduced in Samadi et al. (2018)), incremental loss,
(see Section 4), and the standard L2 reconstruction loss.

Both the marginal and incremental losses quantify the de-
viation from the optimal reconstruction, whereas the L2

reconstruction loss does not account for such optimal recon-
struction. As the BICRITERIA algorithm (Song et al., 2024)
is designed to optimize the L2 reconstruction loss only, it is
not competitive with our method and FAIR-PCA-SDP in
terms of marginal and incremental loss.

We show the variation of each loss in the groups as a func-
tion of the (target) reconstruction rank d, which we vary
from 1 to 8. Finally, we measure runtimes in seconds.

Experimental setup. Our implementation is written in
python. In the two-groups case, the singular vectors for
multigroup data are obtained by the tailored algorithm based
on the root-finding procedure, while for more than two
groups, they are obtained by the Frank-Wolfe algorithm.

Experiments are executed on a compute node with 32 cores
and 256GB of RAM. The (anonymized) source code is
available online 1.

8.2. Results for Two-group Data

Figure 2 (top) shows the different losses incurred by our
method and the baselines in the compas datasets as a func-
tion of the target rank d. Due to the space limitations, anal-
ogous results for all the other datasets are presented in the
appendix (Figure 3). The figure highlights the crucial ad-
vantage of MULTIGROUP SVS: the incremental loss is the
same in both groups for all values of the rank parameter
lower than the input target rank (8), meaning that fairness is
also pursued in the lower-dimensional subspaces. In particu-
lar, the incremental loss is considerably smaller for MULTI-
GROUP SVS than for FAIR-PCA-SDP. On the other hand,
the marginal loss optimized by FAIR-PCA-SDP is never
significantly smaller for FAIR-PCA-SDP than for MULTI-
GROUP SVS, but tends to be smaller for MULTIGROUP SVS.
Finally, the reconstruction loss is consistently comparable
for FAIR-PCA-SDP and MULTIGROUP SVS, but tends

1https://anonymous.4open.science/r/
multigroupSVs-F716/

7

https://anonymous.4open.science/r/multigroupSVs-F716/
https://anonymous.4open.science/r/multigroupSVs-F716/


385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Consistent Multigroup Low-rank Approximation

Bicriteria FAIR-PCA-SDP Multigroup SVs

2 4 6 8
Rank

0

2

4

M
ar

g
in

a
l

L
o

ss
×103

2 4 6 8
Rank

0.0

2.5

5.0

In
cr

em
en

ta
l

L
o

ss

×104

2 4 6 8
Rank

1

2

3

R
ec

o
n

st
ru

ct
io

n
L

o
ss ×105

2 4 6 8
Rank

1

2

3

M
ar

g
in

a
l

L
o

ss

×103

2 4 6 8
Rank

0

2

4

In
cr

em
en

ta
l

L
o

ss

×103

2 4 6 8
Rank

6

8

R
ec

o
n

st
ru

ct
io

n
L

o
ss ×104

Figure 2: compas dataset with two groups (top) and compas-3 dataset with three groups (bottom). Marginal, incremental,
and reconstruction loss by rank. Different marker symbols indicate different groups.

Table 2: Runtimes of MULTIGROUP SVS, FAIR-PCA-
SDP and BICRITERIA (in seconds) in all datasets (d = 8).

Dataset MULTIGROUP SVS FAIR-PCA-SDP BICRITERIA

heart 0.009 0.022 0.016
german 0.1 0.9 0.021
credit 0.23 0.084 0.053
student 0.067 0.64 0.031
adult 2.16 9.13 0.2
compas 0.71 143.15 0.053
communities 0.28 8.62 0.035
recidivism 1.28 357.59 0.061
compas-3 2.54 124.11 0.019
communities-4 1.23 11.16 0.024

to be larger for BICRITERIA. Unlike the incremental and
marginal losses, the reconstruction loss can be highly unbal-
anced since both MULTIGROUP SVS and FAIR-PCA-SDP
do not seek to balance the reconstruction loss, but rather the
distance to the best possible approximation.

In addition, Table 2 shows the runtime of MULTIGROUP
SVS and the baselines in the different datasets. BICRITE-
RIA is typically the fastest algorithm. However, it is not com-
petitive with MULTIGROUP SVS and FAIR-PCA-SDP in
terms of performance, even for reconstruction loss. On the
other hand, FAIR-PCA-SDP becomes slow as dataset size
increases, and MULTIGROUP SVS is generally faster that
FAIR-PCA-SDP, often by orders of magnitude. MULTI-
GROUP SVS always deliver high-quality results in terms
of all the metrics under consideration in less than three
seconds.

8.3. Results for more than two groups

In case there are more than two groups, the problems solved
by the algorithms under comparison become NP-hard, and
the algorithms drop the optimality guarantees.

As Figure 2 (bottom) shows for the compas-3 dataset,
MULTIGROUP SVS consistently yield a more balanced low-
dimensional data representation than FAIR-PCA-SDPand
BICRITERIA as the rank increases. This observation sug-
gests that MULTIGROUP SVS provides an effective heuristic
for multigroup dimensionality reduction with an arbitrary
number of groups |G| > 2. Results of the same experiments
for the communities-4 dataset, given in Figure 4 in the ap-
pendix, lead to analogous observations. Figures 2 (bottom)
and 4 also show that, as discussed, when there are more
than two groups in the data, there is no guarantee of equal-
ity in the marginal and incremental losses associated with
different groups.

Nevertheless, in the appendix (Figures 5 and 6), we present
experimental results demonstrating that the gap between
primal and dual solutions in practice tends to be negligible,
and thus our solutions tend to be close to optimal.

To conclude, Table 2 also reports the runtimes in the experi-
ments with more than two groups, which confirm the trends
observed in the two-group case.

9. Conclusion
We have introduced the problem of consistent multigroup
low-rank approximation that, given a dataset partitioned into
groups, asks for a sequence of orthonormal vectors such that
projecting the data onto their spanned subspace minimizes
the maximum error across groups, and such that any subse-
quence is also an optimal solution of smaller length.

We have proposed efficient and theoretically well-founded
methods to compute the desired sequence of vectors. Exten-
sive experiments highlight the advantages of our methods
over existing approaches.
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A. Loss Functions
In this section, we discuss widely used loss functions.

An equivalence that we will frequently use is σi(M) = ∥Mviv
⊤
i ∥F , where vi is the i-th singular vector of M.

A.1. Reconstruction Error

A commonly used and natural loss function for a given group is the reconstruction error.
Definition A.1 (Reconstruction Error). Given matrix A ∈ Ra×n and an n× d matrix V ∈ Vd, the reconstruction error of
A using V is

Lrec(A,V) ≜ ∥A−AVV⊤∥2F =

n∑
i=1

σ2
i (A)− ∥AVV⊤∥2F ,

where the equivalence holds due to the properties of projection matrices.

However, the reconstruction error has a serious limitation when considering multiple groups (Samadi et al., 2018). To explain
this, imagine that we are given a data matrix with two groups M = {A,B}, and WA, WB the corresponding minimizers
of Lrec(A, · ) and Lrec(B, · ), for some rank d. We can obtain WA and WB from the SVD of A and B accordingly. Now
consider that Lrec(A,WA) = ℓA >> Lrec(B,WB) = ℓB , i.e., the best possible rank-d reconstruction error for B is much
better than the best possible reconstruction error for A. We can see that this puts a lower bound of ℓA to the loss. This means
that any improvement to the reconstruction error of B, beyond ℓA, cannot improve the objective. This may be considered
unfair to group B, since it suffers from a high reconstruction error only due to the fact that group A cannot be reconstructed
well enough in a rank d subspace.

A.2. Marginal Loss

Tantipongpipat et al. (2019) consider a family of problems under the term multicriteria dimensional reduction, where the
task is to find a subspace that takes into account various groups present in the data, in a balanced manner.
Problem 3 ((f, g)-Multicriteria dimension reduction). For each group Ai, associate a function fi : Vd → R that denotes the
group’s objective value for a particular V ∈ Rn×d, and an aggregation function g : Rk → R. Find V ∈ Vd which optimizes

min
V∈Vd

g(f1(VV⊤), f2(VV⊤), . . . , fk(VV⊤)).

Samadi et al. (2018) introduced the marginal loss, described next. Assume that we are given a matrix M with groups
{A1, . . . ,Ak}. For some group Ag, the singular values are σ1(A

g), . . . , σn(A
g). Given an n × d matrix V ∈ Vd, the

marginal error of group Ag using V is as follows.
Definition A.2 (FAIR-PCA loss).

Lmarg(A
g,V) ≜

d∑
i=1

σ2
i (A

g)− ∥AgVV⊤∥2F .

For more information on the marginal loss, we refer the reader to Samadi et al. (2018) and Tantipongpipat et al. (2019).

A.3. Consistency Makes Parity More Challenging

A motivating factor for using the marginal error objective in FAIR-PCA is that it ensures equal loss, when two groups are
present in the data, i.e. Lmarg(A,V∗) = Lmarg(B,V∗) (see Theorem 4.5 in Samadi et al. (2018))

However, the consistency requirement means neither the reconstruction error nor the marginal loss can guarantee parity of
loss while meeting the consistency requirements.

As already noticed, we are interested in minimizing the loss of projecting the groups in G using the common projection
V:dV

⊤
:d for all values of d. Observe that V:dV

⊤
:d is an orthogonal projection.

Observation 1. Assume that Algorithm 1 is executed on an instance with two groups A ∈ Ra×n and B ∈ Rb×n, where the
loss function L is instead either Lrec or Lmarg. Then for optimal solution V∗ ∈ Rn×d it may hold that

L(A,V∗(V∗)⊤) ̸= L(B,V∗(V∗)⊤)

10
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To see why this holds for L = Lrec, assume that we have a solution of MULTIGROUP SVS of rank d, and that L(A,V:d) =
L(B,V:d). The vector vd+1 lies in the orthogonal complement of V:d, V⊥

:d. We denote the component of A in the
orthogonal complement of V:d as Ad+1.

If:
∥A∥2F − ∥Ad+1xx

⊤∥2F < ∥B∥2F − σ2
1(Bd+1) ∀∥x∥22 = 1,

or vice versa, then necessarily either L(A,V∗) < L(B,V∗) or L(A,V∗) > L(B,V∗),

For the marginal error Lmarg, assume again that L(A,V:d) = L(B,V:d), and we are seeking a vector vd+1 in V⊥
:d. In order

for L(A,Vd+1) = L(B,Vd+1) to hold, according to Property 1, we must have:

d+1∑
i=1

(σ2
i (A)− ∥Aviv

⊤
i ∥2F ) =

d+1∑
i=1

(σ2
i (B)− ∥Bviv

⊤
i ∥2F ).

Since by hypothesis the equality holds for the summands up to the d-th, then the equality needs to hold also for i = d+ 1.
However if:

σ2
d+1(A)− ∥Ad+1xx

⊤∥2F < σ2
d+1(B)− σ2

1(Bd+1) ∀x : ∥x∥22 = 1

or vice versa, then again either L(A,V∗) < L(B,V∗) or L(A,V∗) > L(B,V∗).

B. Derivation of the Dual of Problem 1
The dual objective is obtained as:

g(µ, λ) = inf
v,z
H(v, z,µ, λ).

First, notice that, grouping the terms containing z together we can see that the coefficient of z is 1−
∑

i∈G µi. The infimum
ofH involves taking the derivative ofH with respect to z and setting to zero.

∂H
∂z

= 0 =⇒
∑
i∈G

µi = 1

Since its coefficient is zero, we can effectively delete z from the lagrangian without changing the optimal solution. However,
the infimum of the lagrangian w.r.t. v is particularly interesting. Rearranging the terms, we observe that the infimum
involves the quadratic form: v⊤(

∑
i∈G −µi(A

i)⊤Ai + λI)v. In general, the infimum of this expression is −∞, unless the
matrix (

∑
i∈G −µi(A

i)⊤Ai + λI) is positive semi-definite. We set A(µ) =
∑

i∈G µi(A
i)⊤Ai and thus equivalently we

write:
−A(µ) + λI ⪰ 0

We observe that the matrix A(µ) is a convex combination (since 0 ≤ µi and
∑

i µi = 1 ) of positive semidefinite matrices,
thus its negation is negative semidefinite. It follows that the primal minimization problem is bounded from below when
λ = λmax(A(µ)) . We define s = [σ2

1(A
1), . . . , σ2

1(A
k)]. Putting everything together, we obtain the dual problem:

max
µ∈Rk

µ⊤s− λmax(A(µ))

s.t. 1⊤µ = 1 (7)
µ ≥ 0. (8)

C. SDP
Algorithm 3 contains the pseudocode of SDP to solve Problem 1.

D. Additional Experiment Results
In this section, we present additional experiments.
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Algorithm 3 MG-SINGULARVECTOR-SDP

1: Input: Matrices [A1, . . . ,Ak]
2: X ∈ Rn×n ← Solve:

min z∈R z (9)

s.t. σ2
1(A

i)− Tr(AiX) ≤ z for Ai ∈ G[
X x
x⊤ 1

]
⪰ 0 ,Tr(X) ≤ 1,

3: X =
∑n

j=1 λjxjx
⊤
j

4: Output: x1 ∈ Rn

D.1. Two groups

Figure 3 shows the different metrics being monitored in our experiments (i.e., the marginal loss, the incremental loss and the
reconstruction loss) as a function of reconstruction (target) rank in all considered two-group datasets except the compas
dataset, for which results are provided in Figure 2 in the main text.

The findings of the experiments presented in Figure 3 largely corroborate the findings presented in the main text (Figure 2)
for the compas dataset.

D.2. More than two groups

Figure 4 displays marginal, incremental and reconstruction loss by rank in the communities-4 dataset partitioned into four
groups. Again, the results for the communities-4 are consistent with and confirm the results seen in in Figure 2 for the
compas-3 dataset.

Empirical Duality gap. In the case of more than two groups, the proposed methods are heuristics as they are not guaranteed
to retrieve an optimal solution. In particular, there can be a discrepancy between the optimum of the primal and the one of
the dual. Such discrepancy is known as duality gap. We note that we can compare the value of the dual objective g, at the
obtained solutions for Algorithms 2 and 3, and also the primal objective for the corrsponing solution vector v = v(µ) from
Algorithm 2 and v = x1 from Algorithm 3, by computing f = max(h1(v), . . . , hk(v)). We call the difference |f − g|,
empirical duality gap, as it gives us an empirical estimate of how far away from optimality are our solutions (a zero empirical
duality gap means that the particular primal-dual solution pair is optimal).

In practice, as shown in Figure 5, such empirical duality gap is typically narrow. In particular, Figure 5 shows the value of
the primal and dual objective in the compas-3 dataset with three groups, communities-4 dataset with four groups as well
as in a synthetic dataset (gaussian-3) consisting of three groups, each of size 50 × 10 and with entries independent and
identically distributed according to a standard Gaussian distribution. The difference between the primal and dual objective is
generally limited and often negligible.

The results presented in Figure 5 are obtained by resorting to the Frank-Wolfe procedure to solve the dual problem, i.e.,
Algorithm 2.

The Frank-Wolfe algorithm is the algorithm of choice because of its simplicity and efficiency. However, solving MG-
SINGULARVECTOR by the semidefinite programming relaxation (Algorithm 3) yields an even smaller duality gap, as
demonstrated in Figure 6 for the same datasets considered in Figure 5.

E. Proofs
All the proofs of our results omitted from the main text due to space constraints are detailed in this section.

12
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Consistent Multigroup Low-rank Approximation

E.1. Proof of Property 1

Proof. We have that:
∥AVV⊤∥2F = ∥Av1v

⊤
1 + . . .+Avdv

⊤
d ∥2F .

The result follows from orthogonality, i.e., v⊤
i vj = 0 for all i, j ∈ [1, . . . , d]. This implies that:

∥Av1v
⊤
1 + . . .+Avdv

⊤
d ∥2F = ∥Av1v

⊤
1 ∥+ . . .+ ∥Avdv

⊤
d ∥2F =

d∑
i=1

∥Aviv
⊤
i ∥2F

E.2. Proof of Orthonormalization Argument

Proof. Following an inductive argument (where the induction is on d), we can prove that V = {v1, . . . , vd} is indeed an
orthonormal basis.

Base case. For d = 1, we can choose an arbitrary unit vector v1. Note that v1 is in the orthogonal complement of the
subspace spanned by the 0. Since v1 is a unit vector, it forms an orthormal basis of its span {v1}.

Inductive hypothesis At step k − 1, we have a k − 1-dimensional orthonormal basis Vk−1 = {v1, . . . , vk−1}.

Inductive step At step k, we project the data onto the orthogonal complement of vk−1 and we select vk in such subspace.
The orthogonal complement of vk−1 is which also orthogonal to the space spanned by vk−2, and so on. Thus, vk is
orthogonal to all vectors vj for j < k and V = {v1, . . . , vk} must be an orthonormal basis, which completes the proof.

E.3. Proof of Theorem 7.1

Proof. Since we are in the case |G| = 2, we can consider a simplified formulation. We notice that µ2 = 1 − µ1 and set
µ1 = µ and µ2 = 1− µ. We also set A1 = A, A2 = B and C(µ) = µA⊤A+ (1− µ)B⊤B. Thus, Problem 2 becomes:

max
µ∈R

µs1 + (1− µ)s2 − λmax(C(µ)), µ ∈ [0, 1]. (10)

We can now perform the standard KKT analysis. The dual lagrangian is:

HD(µ, ξ1, ξ2) = g(µ) + ξ1µ+ ξ2(1− µ).

The stationarity condition is:
∂

∂µ
HD(µ∗, ξ1, ξ2) =

∂

∂µ
g(µ∗) + ξ1 − ξ2 = 0.

Additionally, the complementary slackness condition requires that ξ1µ = 0 and ξ2(1 − µ) = 0. To see this, first recall
the duality between MG-SINGULARVECTOR and MG-SINGULARVECTOR-DUAL, from which we know that µ1 = µ
and µ2 = 1 − µ are the associated multipliers with constraints hA − z and hB − z of MG-SINGULARVECTOR. From
Theorem 5.1 we know that hA − z = 0 and hB − z = 0 and thus from complementary slackness we can infer that µ can be
neither 0 or 1. Similarly, complementary slackness between µ and ξ1 and ξ2 indicates that ξ1 = ξ2 = 0.

Thus, stationarity simply reduces to ∂
∂µg(µ

∗) = 0. From this and using equation 6, it follows that:

s1 − s2 − v⊤(µ∗)(A⊤A−B⊤B)v(µ∗) = 0. (11)

Therefore, v(µ∗) leads to equal loss between the two groups. Additionally, this stationary point is a global maximum of g.
To see this, we take the second derivative of g:

∂2g

∂µ2
= − ∂2

∂µ2
λmax(C(µ)).

13
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Consistent Multigroup Low-rank Approximation

The Hadamard second variation formula (Schiffer, 1946), gives us an analytical expression for the second derivative of
λmax:

∂2

∂µ2
λmax(C(µ)) =

v(µ)⊤
∂2C(µ)

∂µ2
v(µ) + 2

∑
j ̸=max

|v(µ)⊤ ∂C(µ)
∂µ vj(µ)|

λmax − λj(µ)
. (12)

where λj ,vj are eigenvalue-eigenvector pairs corresponding to smaller eigenvalues. The first term of Equation 12 vanishes
(C(µ) is only linearly dependent on µ), while the numerator and denominator in the second term are trivially positive (since
C(µ) is positive semidefinite and λmax > λj . An important thing to note is that we have assumed simple spectrum. From
this we can conclude that ∂2g

∂µ2 < 0, i.e., the function is concave, and thus has a unique maximum, at µ∗. At µ∗, we have that:

g(µ∗) = s1 − v(µ∗)⊤A⊤Av(µ∗)

= s2 − v(µ∗)⊤B⊤Bv(µ∗).

As v(µ∗) is also a feasible point of Problem 1, with some value z, we have that g(µ∗) = z and since the primal is always
lower bounded by the dual, we conclude that strong duality holds.

Lemma E.1. Define q(µ) = s1 − s2 − v⊤(µ)(A⊤A−B⊤B)v(µ). Then, µ∗ is a root of q(µ) and additionally q(µ) is
monotone with respect to µ

The fact that µ∗ is a root of q(µ) follows directly from Equation 11. The monotonicity follows from ∂q
∂µ =

− ∂2

∂µ2λmax(C(µ)) > 0. This has an interesting consequence for the problem under investigation when |G| = 2. The fact
that a unique root exists in µ ∈ (0, 1) and the monotonicity mean that we can resort to a root-finding algorithm (such as
Brent’s method (Brent, 1971) or the bisection method (Ehiwario & Aghamie, 2014)) to locate the optimal µ∗. In fact, as we
show in the experiments, such an algorithm is highly effective for MG-SINGULARVECTOR, when |G| = 2. By default, we
use the aforementioned Brent’s method for finding the unique root µ ∈ (0, 1).

Note that a similar approach based on root-finding algorithms cannot be applied to the case of more than two groups and
there is no obvious way to extend this approach to the general case.

E.4. Proof of Lemma 7.2

Proof. Using a Schur complement (Boyd & Vandenberghe, 2004), we can rewrite Problem 2 as:

max
µ∈Rk

γ

s.t.
[
−A(µ) + λI 0

0 µ⊤s− γ

]
⪰ 0

1⊤µ = 1

µ ≥ 0.

To complete the proof, it suffices to notice that the SDP relaxation illustrated in Algorithm 3 is the dual problem to this
problem (with dual variable X). From our previous duality results it follows that strong duality exists between these two
SDPs. Then, we can conclude that the SDP in Algorithm 3 solves Problem 1 to optimality.

E.5. Proof of Lemma 7.3

Proof. Observe that V = {v1, . . . ,vd} is a matrix with orthonormal columns since it is constructed using Algorithm 1.
Hence, we can invoke Property 1 along with Theorem 5.1 to obtain the result. Namely, after running Algorithm 1, we obtain
V = {v1, . . . ,vd}, which gives a total error of

∑d
i=1 L(A,vi) for group A and a total error of

∑d
i=1 L(B,vi) for group

B. We know that L(A,vi) = L(B,vi) for any i ∈ {1, . . . , d} due to Theorem 5.1. The lemma then follows.

As for time complexity, it suffices to consider that the optimal rank-1 solutions of MG-SINGULARVECTOR for two groups
can be obtained in polynomial time O(ℓ), as stated in Theorem 7.1. Then Property 1 implies that we need total time O(dℓ)
to obtain an optimal solution.
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Figure 3: Real-world datasets with two groups. Marginal, incremental and reconstruction loss by rank. Different marker
symbols indicate different groups.
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Figure 4: communities-4 dataset with four groups. Marginal, incremental and reconstruction loss by rank. Different marker
signs indicate different groups.
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Figure 5: Real-world and syntethic data. Primal and dual optimal objective values as a function of rank for the solution
relying on the Frank-Wolfe algorithm.
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Figure 6: Real-world and synthetic data. Duality gap as a function of rank for the solutions relying on the Frank-Wolfe (FW)
and semidefinite programming solver (SDP).
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