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ABSTRACT

This work explores autoencoder-based neural ordinary differential equation (neu-
ral ODE) surrogate models for advection-dominated dynamical systems. Along-
side predictive demonstrations, physical insight into the sources of model accel-
eration (i.e., how the neural ODE achieves its acceleration) is the scope of the
current study. Such investigations are performed by quantifying the effect of neu-
ral ODE components on latent system time-scales using eigenvalue analysis of
dynamical system Jacobians. This work uncovers the key role played by the train-
ing trajectory length on the latent system time-scales: larger trajectory lengths
correlate with an increase in limiting neural ODE time-scales, and optimal neural
ODE:s are found to recover the largest time-scales of the full-order (ground-truth)
system. Demonstration studies are performed using datasets sourced from numer-
ical solutions of the Kuramoto-Sivashinsky equation and hydrogen-air channel
detonations (compressible reacting Navier-Stokes equations).

1 INTRODUCTION

Since its introduction in (Chen et al.| (2018)), the neural ODE strategy has cemented itself as a pow-
erful scientific machine learning tool to model the evolution of dynamical systems using neural
networks, and has found a vast number of applications across several fields (Finlay et al.,[2020; |Lee
& Parish, 20205 (Owoyele & Pall, 2022 Kumar et al., 2023} |Poli et al.l 2019). Instead of directly
enforcing discrete temporal representations (e.g., as used in residual networks described in Jiang
et al.[ (2021)), or recurrent neural networks described in Reddy et al.| (2019)), neural ODEs learn a
continuous representation of nonlinear system dynamics using discretely sampled trajectory data.
The critical advantage is that the instantaneous right-hand-side is modeled as a nonlinear function
via a neural network, allowing the framework to leverage (a) existing time-integration schemes to
execute the forecasting step, and (b) adjoint methods to enable memory-efficient backpropagation.

When equipped with autoencoder-provided latent spaces, the neural ODE conveniently outputs a
functional form for the instantaneous rate-of-change of low-dimensional yet expressive latent vari-
ables, a highly useful asset for reduced-order modeling (ROM), and in turn, real-time physics simu-
lation applications. As a result, the combined autoencoder-based neural ODE strategy has been used
to develop accelerated surrogate models in a variety of scenarios (Dutta et al., [2021} |Linot et al.,
2023).

Of particular interest to this work is the application of neural ODE ROMs to advection-dominated
systems (i.e., systems in which the governing equations are heavily influenced by advection
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terms) that typically describe turbulent or shock-containing fluid flows over aircrafts and in
power/propulsion devices (Linot et al.l 2023). If available, such ROMs could drastically acceler-
ate simulation-augmented design loops for deploying resilient next-generation aerospace concepts
(Brenner et al., 2019; Raman & Hassanaly, [2019). To this end, recent work has observed the ef-
fect of smoothed latent trajectories for advection-dominated systems produced by reduced neural
ODE simulations, pointing to a relationship between model acceleration and intrinsic time-scale
elimination provided by the latent space (Wan et al) 2023)). Similar trends have been shown for
neural ODE based surrogate models for stiff chemical kinetics (Vijayarangan et al., [2023). De-
spite these advances, however, the source of acceleration in the overall modeling strategy remains
unclear: the goal of achieving model accuracy from both forecasting and autoencoding perspec-
tives often overshadows the need to identify the contribution of each of these components to the
empirically observed model acceleration (i.e., the need to interpret the dynamical properties of the
learned neural ODE). Quantitative insight into the sources of acceleration — particularly, the degree
of time-scale elimination — provided by the neural ODE based ROM can lead to valuable physical
and model-oriented insights, and is the scope of the current study.

To understand and interpret sources of neural ODE acceleration, a more rigorous and quantitative
analysis of time-scales produced by the neural ODE based ROM is warranted. This is accomplished
here through a direct study of the effect of critical neural ODE training parameters — such as the
overall integration time (training trajectory length) used to optimize models — on the accuracy and
degree of time-scale elimination produced in the latent space. To execute this analysis, neural ODE
Jacobians are used to directly quantify the fastest and slowest time-scales in the learned autoencoder-
generated latent space. Ultimately, this study demonstrates the critical role of training trajectory
length as a controlling parameter for time-scale elimination and model acceleration in latent spaces
of advection-dominated systems. Demonstration studies are performed using ground-truth data from
numerical simulations of the Kuramoto-Sivashinsky (KS) equation, and further tests are conducted
for a hydrogen-air channel detonation configuration (Appendix A). The study concludes by demon-
strating how these latent time-scales relate to the underlying physics of the full-order system. Specif-
ically, for the KS equation, the largest (slowest) time-scales of the best performing neural ODE are
found to recover the largest time-scales of the full-order system.

2 METHODOLOGY

Dataset: The full-order system dataset comes from numerical solutions of the KS partial differen-
tial equation. The KS equation is solved using jax—cfd (Kochkov et al., [2021)), which generates
ground-truth solution trajectories on a uniform one-dimensional spatial domain using a pseudospec-
tral discretization. E] Time integration is performed with an explicit Euler method. Training data
is generated from 25 distinct trajectories of 1500 instantaneous full-order solution snapshots sep-
arated by a fixed time-step of At = 0.01. Each snapshot is 512-dimensional and resides in a
one-dimensional physical space. During training, trajectories are broken into sub-trajectories of
length specified by the training trajectory length n;. Trained models are then tested using new initial
conditions. The reader is referred to the recent work of |Wan et al.| (2023) for details of the KSE
formulation and initial condition generation.

Neural ODE for Latent Dynamics: Ground-truth physical space trajectories are projected to a
reduced latent space using an autoencoder. The neural ODE utilizes these latent trajectories to learn
a continuous-time model of the latent dynamical system given by

dw(t - ~

% =N(w(t), w(to) =wl(to), (1)
where A is a neural network and w(t) represents the predicted latent variable. The parameters of
the neural network are trained by minimizing the objective function

~
LNODE = <ntZ||w(to+jAt> —w(to+jAt)H§>, 2)
j=1

where the target latent variable w(t) € RV is obtained by applying an encoder ¢ to the correspond-
ing physical space snapshot u(t) € R™«, such that w(t) = ¢(u(t)) and N,, < N,,. The neural

'In this work, the domain length is 64, and is discretized into 512 points. The KS viscosity is set to 0.01.
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ODE formulation in Eq. 2]is advantageous as it is dynamics-informed, training the latent dynamical
system to minimize error across all n, time steps. As such, the training trajectory length, n, is a key
parameter, selected a-priori, that influences the amount of dynamical information used to construct
the latent model. Varying n; values in training is therefore expected to lead to neural ODEs with
differing predictive and stability characteristics based on the intrinsic time-scales of the full-order
system.

Latent Time-Scales: Jacobian eigenvalue analysis is incorporated here to extract dynamical system
time-scales (Maas & Pope, [1992; Mease et al., 2003; Valorani & Goussis, [2001). Specifically, this
analysis is employed to evaluate the impact of n, and neural network architecture hyperparameters
on latent time-scales. Given Eq.[I] the fastest (limiting) and slowest time-scales in the latent space
can be computed as

1 1

tlim(t) = ; N (W (1) and tmax<t) = N (W (t); ’
max(|elg(%)|) (W)D

3)

min(|eig

respectively. ¢y is indicative of the largest feasible explicit time-step for evolution in the latent
space, and t,x is a measure of the slowest-evolving dynamical features (as discussed below, this
work aims to correlate ¢,,,, with neural ODE predictive accuracy). Additionally, since jax—-cfd
is used to solve the KS equation, differentiation through the full-order (physical space) dynamical
system du/dt = F(u) is also possible, which facilitates Jacobian computation & for extracting the
corresponding true physical space time-scales in the same manner.

Architectures, Training, and Evaluation: The neural ODE architecture comprises a feed-forward
neural network with four hidden layers (120 neurons in each hidden layer) utilizing ELU activa-
tion functions. The encoder architecture features a series of 1D convolutional layers with batch
normalization and ELU activation function, designed to gradually reduce the spatial dimension of
the physical space input. This down-sampling process halves the spatial component while dou-
bling the channel count, leading to a flatten operation and a linear layer that creates the latent space
representation w(t). The decoder mirrors the encoder design, substituting convolution layers with
transpose convolution layers. Architectures are implemented in PyTorch (Paszke et al.,|2019), and
torchdiffeq (Chenl 2018) is leveraged for neural ODE training routines. The ADAM optimizer
was used for optimization with initial learning rate set to 10~3. Two distinct training methodologies
to train the autoencoder and neural ODE were compared: a decoupled approach, where the autoen-
coder and neural ODE are trained separately, and a coupled approach, where the two are trained
simultaneously in an end-to-end manner. For rollout predictions, the decoupled approach was found
to give models with better predictive accuracy. To compare different models’ predictive accuracy,
mean squared (Lro) and relative absolute (Rgo) rollout errors are used. Lo is the same as Eq. @
but with different rollout n; values. Rgo is similar, but measures the absolute difference between
the ground truth and predicted values, normalized by the ground truth value, and is commonly used
in the neural ODE literature.

3 RESULTS

Figure (1| (left) shows limiting time-scales ¢y, (¢) in the latent space for autoencoders with different
latent dimensions N,,, convolutional layer counts, and training trajectory lengths (7;) under both
coupled and decoupled training methods. It can be seen that the number of convolutional layers and
latent space dimensionality do not have a significant impact on the limiting time-scales. As for the
effect of the training trajectory length n,, the figure demonstrates that increasing the training trajec-
tory length increases the limiting time-scale in latent space for both decoupled and coupled training
methods, resulting in smoother trajectories and larger permissible explicit time-steps. Specifically,
in both coupled and decoupled training strategies, raising n; from 100 to 4000 markedly amplifies
limiting time-scale in latent space by roughly two orders of magnitude. It is evident that among all
the studied hyperparameters, the training trajectory length (n;) is the sole parameter with a substan-
tial impact on Zjp,.

Figure[I|e) and (f) compare, respectively, the ground truth spatio-temporal evolution of the KSE ve-
locity field u with rollout predictions by the autoencoder neural ODE framework, which was trained
using n; = 500 in a decoupled manner. Corresponding target (w) and predicted (w) latent space
trajectories for n, = 500 and 4000 are provided in Fig. [T{g). It can be seen that the latent space
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trajectories predicted by the neural ODE with n, = 500 more closely matches the ground truth tra-
jectories as compared to the neural ODE with n; = 4000. These noticeable differences in accuracy
suggest that the relationship between increasing n; and predictive strength is not straightforward,
as discussed later. Additionally, latent space trajectories are smoother than state space fields, with
ns = 4000 trajectories being smoother than n; = 500, reflecting an increase in ¢;,, with larger n;.
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Figure 1: (Left) Limiting time-scale in the latent space (¢, (t)) for neural ODEs trained with
varying: (a) number of latent dimensions (with n; = 500 and 4 encoder convolution layers), (b)
number of autoencoder convolutional layers (with n; = 500 and latent dimension of 25), (¢) n; using
a decoupled training approach, and (d) n; using a coupled training approach. Latent dimension of
25 and 4 convolution layers are used in (c) and (d). (Right) Neural ODE (latent dimension of 25
and 4 convolution layers) predictions for an unseen initial condition, where (e) shows ground-truth
trajectory in physical space, (f) shows decoded rollout predictions in physical space for an n; = 500
model using a decoupled training approach, and (g) shows corresponding latent space trajectories
(solid line is target latent variable w, dashed is predicted w for n; = 500, and dotted is predicted w
for n; = 4000).

Figure [2| displays the mean-squared (Lro) and relative absolute (Rgo) errors for neural ODEs
trained using varying n; values in a decoupled training approach, across a 500 time-step predicted
rollout trajectory. It can be seen that the rollout losses initially rise with increasing n;, and reach
a minimum at an optimal n; of 500, indicating this value best represents the system’s physics for
enhanced predictive accuracy at this tested rollout length. Although this may seem expected, as
the optimal n; coincides with the trajectory length used to evaluate the error, identification of this
’optimal’ n; is crucial for achieving maximum prediction precision. Figurealso Shows tax (t) for
neural ODEs with different training trajectory lengths n,. Interestingly, neural ODEs with n, = 8
and n; = 4000 have ¢y, values diverging from the full system, while n, = 500 aligns closely,
correlating with the lowest rollout errors. This suggests neural ODEs with the best accuracy have
tmax Values matching the full system’s slowest physics. Although determining the exact optimal 7,
a-priori is still an open problem, analyzing t,,,, can guide the selection of effective n; values for
maximizing predictive accuracy.

4 CONCLUSION

This study explores the impact of training parameters on latent time-scales within neural ODE-based
surrogate models. Key insights include the pivotal role of training trajectory length in influencing
the latent system time-scales and model acceleration. The eigenvalue analysis method employed
here proves effective in quantifying the fastest and slowest time-scales in the latent space, further
highlighting the critical importance of training trajectory length (n;). This study also underscores
the significance of the optimal n; in neural ODE-based models, emphasizing its correlation with
the largest eigenvalues of the system’s dynamics. The optimal n; is crucial for achieving predictive
accuracy, as it aligns the neural ODE’s time-scales with the full system’s slowest evolving physics.
This correlation between n; and the largest eigenvalues offers a novel perspective in neural ODE
training, guiding future research and practical applications in dynamical system modeling.



Accepted at the ICLR 2024 Workshop on Al4Differential Equations In Science

ny
4 — 8
2 10 500
10 100 —— 4000
—— Full System
I o £102
@ g
10! S 45
109
100
1071
10* 102 108 2.0 2.5 3.0 3.5 4.0

ne t

Figure 2: (Left) Mean squared (Lgo) and relative absolute (Rgo) rollout errors as functions of
n; (Right) Largest time-scale in the latent space ¢,,4,(t) for neural ODEs with different training
trajectory lengths n;.
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A  EXTENSION TO UNSTEADY DETONATIONS

To better evaluate how the time-scale trends in the autoencoder-neural ODE framework generalize
beyond the KS equation, this section serves as an extension of the approach to unsteady detonations,
a more realistic and highly advection-dominated benchmark problem. In broad terms, detonations
are being actively explored as driving modes for combustion in next-generation power and propul-
sion concepts (Raman et al., |2023; |Shepherd, [2009). The dynamical complexity of the detonation
wave front motivates development of surrogate models that accelerate the solution of respective
governing equations, which are the compressible reacting Navier-Stokes equations. Considering the
analysis of the KS equations in the main text, the goal of this section is to highlight the consis-
tent relationship between training trajectory length (n;) and limiting latent timescale (¢;,) across
fundamentally different PDEs.

Training data is generated using resolved simulations of the compressible reacting Navier-Stokes
equations in one spatial dimension in a standard channel detonation configuration. The resulting
dataset can be described by the unsteady, self-sustained propagation of a hydrogen-air detonation
wave through the spatial domain, where a detonation is characterized as a shock-wave coupled with
a strong chemical reaction zone (see Fig.[3). Data is generated using a solver based on UMReact-
ingFlow (Bielawski et al.l|[2023)) built on the AMReX framework (Zhang et al.;,[2019), with chemistry
modeled using the detailed chemical kinetic mechanism from |Mueller et al.| (1999). For a complete
description of the simulation configuration and dataset, the reader is directed to Nair et al.| (2024).
In summary, two detonation trajectories are simulated to populate the dataset, each described by
the pressure ratio between the driver and ambient gas, Py/Pymp, With testing set evaluations per-
formed on the same pressure ratios, but extrapolated in time. Each temporal snapshot captures fluid
density, pressure, temperature, velocity, and species mass fractions at each spatial point (6000 total
spatial points), giving an input channel depth of 13, unlike the unity depth in the KS equation. The
snapshots were recorded at intervals of At = 10~ 5s.

The predictive accuracy of the autoencoder-based neural ODE, trained with a decoupled approach
using n; = 250, latent dimension of 10, and 4 encoder convolutional layers, is assessed by extrapo-
lating beyond the training data until the detonation exits the domain. Figure [3|shows predicted and
target profiles for pressure, temperature, and mass fractions of two intermediate species (HoO2 and
H>0), indicating that the model effectively extrapolates beyond the training set for different pressure
ratios and can properly represent the self-sustained detonation propagation.

Figure [] (left) shows the limiting time-scale, tjin, in the latent space versus time for neural ODEs
trained with various n; values (using latent dimension of 10 and 4 encoder convolution layers).
Although the configuration is significantly different here, Fig. ] reveals that higher n; generally in-
creases tjiy in a similar manner as the KS equation trends shown in Fig. E} Although not shown here,
the latent variable evolution — which captures the propagation of detonation wave front (a shock cou-
pled with a cheimcal reaction zone) — was also found to exhibit smoothness for this problem, which
has significant implications for acceleration of detonation-containing flow simulations. Interestingly,
Fig. 4| (right) — which shows the rollout error of predicted trajectories (evaluated using 1250 rollout
steps) as a function of n; — also indicates an optimal n; value akin to observations in Figure 2| for the
KS equation. Although this optimal value is present, it should be noted that comparing the neural
ODE limiting time-scales (¢, (¢)) to their full-system counterparts in this configuration (i.e., pro-
ducing an analog to Fig. 2] (right) for the detonation) was not possible, since this requires full-system
Jacobians (g—f) of the compressible reacting Navier-Stokes equations and the solver used here was
not differentiable. However, the general consistency in trends with respect to the training trajectory
length is promising, and motivates further neural ODE analysis for complex advection-dominated
configurations in future work.
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Figure 3: Comparison of the ground truth (solid blue) and predicted (dashed red) fields for outside
the training set for (left) Py/Pymp = 40 and (right) Py/Pymp = 20. Results are shown for n; = 250,
latent dimension of 10, and four convolutional layers, with extrapolation time of 37.5 s (7500 time-
steps).
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Figure 4: (Left) Limiting time-scale in the latent space ¢;;,, for neural ODEs with different training
trajectory lengths n;. (Right) Mean squared rollout error Lro and relative rollout error Rro as
functions of n, for a rollout trajectory length of 1250 time-steps.
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