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ABSTRACT

We present the first self-supervised multilingual speech model trained exclusively
on African speech. The model learned from nearly 60 000 hours of unlabeled
speech segments in 21 languages and dialects spoken in sub-Saharan Africa. On
the SSA subset of the FLEURS-102 dataset, our approach based on a HuBERTbase

(0.09B) architecture shows competitive results, for ASR downstream task, com-
pared to the w2v-bert-51 (0.6B) pre-trained model proposed in the FLEURS
benchmark, while being more efficient by using 7x less data and 6x less parame-
ters. Furthermore, in the context of a LID downstream task, our approach outper-
forms FLEURS baselines accuracy by over 22%.

1 INTRODUCTION

Popular self-supervised learning (SSL) approaches have shown their potential to handle multilingual
speech recognition (ASR) and are capable of achieving top performance (Conneau et al. (2021);
Chung et al. (2021); Pratap et al. (2023)). They enable a model to be pre-trained on a vast amount
of unlabeled data, producing richer audio representation for training downstream models, compared
to standard features such as MFCCs or filterbanks. A pre-trained model can be used as a speech
encoder with a fine-tuning or as a feature extractor by freezing its weights during the downstream
task training. In any case, the performance of the downstream task models will be affected by the
characteristics of the speech data used for pre-training (Zhao & Zhang, 2022).

Although Pires et al. (2019) already demonstrated, five years ago, that transfer learning from
resource-rich to resource-poor languages is more effective when the languages share similar typo-
logical features and, later, Joshi et al. (2020), revealed that 48% of the typological features indexed
in the World Atlas of Language Structures (WALS) classification project1 do not appear in datasets,
most of the multilingual pre-trained speech models publicly released today still are mainly learned
from only very few languages, causing their over-representation at the cost of others (Valk & Alumäe
(2021); Conneau et al. (2022); Babu et al. (2022); Zhang et al. (2023)). African languages, which
have unique characteristics and are underresourced, are severely affected by this situation (Clements
& Rialland (2007); Yadav & Sitaram (2022)).

Fortunately, African languages gain interest in the NLP community. Several studies have demon-
strated the effectiveness of Africa-centric pre-trained models, showing superior performance com-
pared to large multilingual pre-trained models that are primarily trained on English (Ogueji et al.
(2021); Adelani et al. (2022); Dossou et al. (2022); Adebara et al. (2022)). In speech processing,
several challenges and publications of new resources recently appeared (Sikasote & Anastasopoulos
(2021); Boito et al. (2022); Olatunji et al. (2023); Wanjawa et al. (2023)). On the ASR downstream
task, Ritchie et al. (2022) got better performance for several African languages when applying self-
supervised techniques and multilingual modeling, compared to traditional approaches.

In line with these works, we tackle in this paper the under-representation of African languages by
proposing a multilingual speech pre-trained model specifically made for performing downstream
tasks in sub-Saharan Africa (SSA) languages, by only using spoken data from this region.

1https://wals.info/feature
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2 DATASETS

Unlabeled The pre-trained dataset we created is composed of broadcast news recordings from
diverse sources publicly available on the Web, across several countries, during May 2023. Some-
times, the same recording could be available in different languages spoken in the country. Data
collected contained both studio recordings (controlled environment, prepared talks) and street in-
terviews (noisy environment, spontaneous speech). Occasionally, jingles or songs appeared in the
audio content. We therefore applied a voice activity detection (VAD) tool (Bredin, 2023) to get seg-
ments containing only speech. Finally, we gathered a dataset which comprises nearly 60 000 hours
of speech segments and covers 21 languages and variants. For details, see appendix A.

Labeled Conneau et al. (2022) publicly released a parallel speech dataset in 102 languages and
proposed it as benchmark. Data are divided in seven macro family, including a sub-Saharan Africa
group. We therefore evaluate our approach on this SSA subset (FLEURSSSA) which is composed
of 20 languages, 5 of which are present in our pre-trained dataset.

3 EXPERIMENTS

Experiments were carried out using the well-known HuBERT approach (Hsu et al., 2021) with the
base configuration (90M parameters). The pretraining task was achieved using the unlabeled data
and the fairseq toolkit (Ott et al., 2019) through two successive iterations on 4 A100 40Gb GPUs.
The first iteration was trained for 275k steps, using a K-means clustering computed on the MFCCs
extracted from the training set as target labels. The second iteration was trained for 500k steps,
and used embeddings from the 6th transformer layer using 600 hours of the training set. The ratio
between languages has been preserved. The finally obtained pre-trained model is publicly available2.

For downstream task training, we used the SpeechBrain toolkit (Ravanelli et al., 2021). The final
pretrained model is considered as a speech encoder and is fully fine-tuned with two 1024 linear
layers and a softmax output at the top. A first pool of speech recognition system (60k(0.09B)) is
obtained by a direct fine-tuning of the whole model on each language of the FLEURS dataset. A
second pool (60kFT−ALL(0.09B)) is then obtained by first jointly fine-tuning on all languages before
fine-tuning again on each language.

Following the methodology of the FLEURS paper (Conneau et al., 2022) and to be consistent with
their results, we did not rescore the hypothesis with a language model. Average character error rates
(CERs) obtained on the 20 languages of the FLEURSSSA test set are given in table 1. The detailed
scores per language are provided in appendix B.

CER WER
60k(0.09B) 60kFT−ALL(0.09B) FLEURSw2v−bert(0.6B) 60k 60kFT−ALL

average 15.8 13.8 13.6 52.3 47.7

Table 1: Average results on SSA subpart of FLEURS-102 test set. (detailed results in appendix)

Results show that a model that is six times smaller and trained with seven times less data can achieve
a performance level that is very close to the best baseline of FLEURS. This model is a step in the
direction of more specific but cost-effective pre-trained approaches.

To ensure the quality of the speech representation, we fine-tuned our pretrained model using Speech-
Brain for a language identification (LID) downstream task. We employed adaptive average pooling
to produce output with shape [Batch,1,20] and we applied a softmax. We call this model 60KLID.
The model is trained for 15 epochs on the 20 languages of the FLEURSSSA subset.

We also propose a second scenario where we employed adaptive average pooling to produce output
with shape [Batch,1,768], with the addition of two linear layers to smoothly decrease the dimension
from 768 to 256 then from 256 to 20. We call this model 60KLID−smooth. It is trained under the
same conditions as 60KLID. Accuracy for both scenarios is presented in Table 2.

2https://huggingface.co/Orange/
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FLEURSw2v−bert FLEURSmSLAM 60KLID 60KLID−smooth

FLEURSSSA 59.1 62.2 84.9 90.4

Table 2: LID accuracy on SSA subset of FLEURS-102 test set.

Experiments have shown that our pre-trained model yields significantly improved results. This
improvement can be attributed to the model’s specialization in SSA languages. Specifically, we
utilized only SSA speech data for pretraining and, during fine-tuning, the model was trained solely
on the 20 SSA languages from the FLEURS dataset, rather than the full dataset of 102 languages.

The results obtained on both downstream tasks suggest that our models produce relevant multilingual
speech representations within the specific context of SSA languages.

4 CONCLUSION

To the best of our knowledge, we present the first open source SSL model exclusively pre-trained on
sub-Saharan African languages. By only focusing on African speech that contains specific features
unobserved in other languages spoken in the world, we improved the robustness on the ASR down-
stream task for SSA languages. While we obtain similar results on the overall SSA subset than the
best model presented in the FLEURS paper (w2v-BERT-51), yet our approach is more efficient by
using much less data and a reduced number of parameters for pre-training. On a LID downstream
task, results show that our specialized model trained on the SSA context performs better than the
two FLEURS baselines, by obtaining more than 22% in absolute accuracy.
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A PRE-TRAINED DATASET DETAILED

In the following table 3, we present the languages distribution in the pre-training set.
We applied automatic segmentation on the raw recordings.
For the French language set, only African accented French was used.
”Unknown” row at the end of the table means speech recordings with language mixing.
No automatic LID has been applied to the segments.

Language ISO-3 Hours
Bambara bam 2 552
Dyula dyu 14
French fra 5 670
Fula ful 702
Fulfulde ffm 727
Fulfulde fuh 446
Gulmancema gux 13
Hausa hau 9 211
Kinyarwanda kin 8 046
Kituba ktu 647
Lingala lin 1 269
Luba-Lulua lua 675
Mossi mos 13
Maninkakan mwk 791
Sango sag 1 268
Songhai son 780
Swahili swc 706
Swahili swh 13 926
Tamasheq taq 1 212
Wolof wol 64
Zarma dje 567
Unknown — 10 272
Total — 59 572

Table 3: Languages distribution in the pre-training set.
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B DETAILED RESULTS ON SSA SUBPART OF FLEURS-102

Results listed below are obtained when applying monolingual fine-tuning on each sub-Saharan
African languages provided in the Test set of FLEURS benchmark.
Scores in bold show the best result depending on the approach. We show character error rate (CER)
scores along with word error rates (WERs).

CER WER∗

Language 60k(0.09B) 60kFT−ALL(0.09B) 60k 60kFT−ALL

Seen languages
Fula 21.2 17.8 61.9 56.4
Hausa 10.5 9.0 32.5 29.4
Lingala 8.7 6.9 24.7 20.9
Swahili 7.1 5.5 23.8 20.3
Wolof 19.4 17.0 55.0 50.7
average 13.4 11.2 39.6 35.5
Unseen languages
Afrikaans 23.3 20.3 68.4 62.6
Amharic 15.9 14.9 52.7 49.0
Ganda 11.5 10.7 52.8 50.3
Igbo 19.7 17.2 57.5 52.9
Kamba 16.1 15.6 53.9 53.7
Luo 9.9 8.2 38.9 34.9
Northen-Sotho 13.5 11.7 43.2 38.9
Nyanja 13.3 10.9 54.2 48.3
Oromo 22.8 20.1 78.1 74.8
Shona 11.6 8.3 50.2 39.3
Somali 21.6 19.7 64.9 60.3
Umbundu 21.7 18.8 61.7 54.2
Xhosa 11.9 9.9 51.6 45.9
Yoruba 24.3 23.5 67.5 65.7
Zulu 12.2 9.6 53.4 44.9
average 16.6 14.6 56.6 51.7

overall average 15.8 13.8 52.3 47.7

Table 4: Results obtained on the Test set of the 20 languages from the SSA subpart of FLEURS-102.
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