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Abstract—In this paper, we propose a novel and enhanced
image compression framework that builds upon the state-
of-the-art (SOTA) DCVC-RT intra model, with a particular
emphasis on advancing perceptual quality in compressed
images. Although DCVC-RT demonstrates outstanding rate-
distortion performance and real-time processing capabilities,
it is still susceptible to generating perceptual artifacts, such
as blurring and loss of fine textures, especially at lower
bitrates. To effectively mitigate these issues, we introduce
a comprehensive perceptual optimization strategy that lever-
ages a semantic ensemble loss. This loss function is metic-
ulously designed by integrating multiple complementary
components, including Charbonnier loss for robust pixel-
wise fidelity, perceptual loss to preserve high-level semantic
features, style loss to maintain texture and style consistency,
and a non-binary adversarial loss to further enhance the
realism of reconstructed images. Our approach is developed
as a solution for the CLIC2025 challenge, and we partic-
ipate under the team name Vcoder. Through experiments,
we demonstrate that our method significantly improves the
perceptual quality of compressed images.

Index Terms—Generative Image Compression, Learned
Image Compression

I. Introduction

In recent years, neural image compression has

emerged as a transformative approach in the field of

image coding, leveraging deep learning techniques to

surpass the performance of traditional codecs such as

JPEG, JPEG2000, and BPG [1], [11], [12]. These neural

methods [5], [10], particularly those based on end-to-

end optimized autoencoders, have demonstrated remark-

able improvements in both rate-distortion efficiency and

perceptual quality metrics. Among these, the DCVC-

RT intra model [4] stands out for its state-of-the-art

performance in terms of objective measures like Peak

Signal-to-Noise Ratio (PSNR) and Multi-Scale Structural

Similarity (MS-SSIM), as well as its real-time processing

capabilities.

Despite these advances, a persistent challenge in neu-

ral image compression is the presence of perceptual
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artifacts, such as blurring, loss of fine textures, and

unnatural color shifts, especially at lower bitrates. These

artifacts can significantly degrade the subjective visual

quality of reconstructed images, limiting the practical

adoption of neural codecs in applications where human

perception is paramount [2], [15]. Addressing this issue

requires not only optimizing for traditional distortion

metrics but also incorporating perceptually motivated

loss functions and training strategies.

In this work, we present an enhanced version of the

DCVC-RT intra model with a strong emphasis on per-

ceptual quality improvement. Drawing inspiration from

recent advances in perceptual optimization [9], [14], we

introduce a novel semantic ensemble loss that integrates

multiple complementary components: Charbonnier loss

for robust pixel-wise fidelity [8], perceptual loss to pre-

serve high-level semantic features [6], [15], style loss to

maintain texture and style consistency [14], and a non-

binary adversarial loss to further enhance the realism

of reconstructed images [13]. This comprehensive loss

formulation is designed to guide the training process to-

wards generating images that are not only quantitatively

accurate but also visually pleasing and semantically

faithful.

Experimental results on benchmark datasets demon-

strate that our enhanced DCVC-RT intra model achieves

significant improvements in perceptual fidelity com-

pared to baseline methods, delivering superior visual

quality at equivalent bitrates.

II. Method

A. Architecture
Recently, DCVC-RT [4] has set a new benchmark in

real-time video compression, demonstrating state-of-the-

art (SOTA) performance in both efficiency and qual-

ity. The core innovation of DCVC-RT lies in its highly

parallelizable intra-frame architecture, which leverages

efficient depth-wise separable convolution blocks (DCBs)

and a quadtree-based partitioning strategy for latent rep-

resentations. This design not only accelerates encoding



and decoding but also enhances the model’s ability to

capture diverse spatial contexts, which is crucial for

high-fidelity image reconstruction.

Building upon the strengths of DCVC-RT, we adapt

its intra-frame architecture for the task of learned image

compression, introducing several targeted enhancements

to further boost performance and perceptual quality.

Specifically, we retain the original encoder and decoder

structures from DCVC-RT, which are composed of stacks

of DCBs in both the analysis (encoder) and synthesis

(decoder) transforms. The use of DCBs, as highlighted in

the DCVC-RT paper, significantly reduces computational

complexity while maintaining strong representational

power, making the architecture well-suited for real-time

applications.

A key feature inherited from DCVC-RT is the

quadtree-based partitioning of the latent space. This

mechanism adaptively divides the latent representation

into spatially and channel-wise varying blocks. By doing

so, the model can efficiently model dependency between

latent elements, improving both rate-distortion and per-

ceptual performance. The quadtree partitioning also en-

ables parallel entropy coding of independent blocks,

further accelerating the overall compression pipeline.

To push the limits of compression quality and model

expressiveness, we scale up the network significantly.

Our enhanced model increases the total parameter count

to 149M by expanding both the depth and width of

the network. Concretely, the analysis transform is deep-

ened to 9 layers of DCBs, while the synthesis transform

is extended to 15 layers, allowing for more complex

feature extraction and reconstruction. The number of

channels in each layer is increased to 384, providing

greater capacity for feature representation. Additionally,

the dimensionality of the latent and hyper-latent spaces

is enlarged to 320 and 192 channels, respectively, which

facilitates richer modeling of both the primary and side

information required for effective entropy coding.

These architectural modifications, inspired by the de-

sign principles and empirical findings of the DCVC-RT

paper, enable our model to achieve superior compression

performance, particularly in terms of perceptual quality

at low bitrates. By combining the efficient and scalable

backbone of DCVC-RT with our enhancements, we lay

a strong foundation for the subsequent integration of

advanced perceptual optimization strategies.

B. Variable Bit-Rate Training with Semantic Ensemble Loss

DCVC-RT inherently supports variable bit-rate com-

pression within a single model by leveraging learnable

quantization vectors and hyperprior models to control

the bitrate. Building on this foundation, we propose a

three-stage training strategy to develop a perceptually

optimized variable bit-rate compression model.

In the first stage, we train the model using a standard

rate-distortion loss, as in the original DCVC-RT frame-

work. The objective function is defined as:

L = λR+D (1)

where R denotes the rate, estimated from the noised

latent representations to ensure differentiability, and D
represents the distortion, initially measured by mean

squared error (MSE) between the original and recon-

structed images. To enable training across a range of

bitrates, we sample 64 different Lagrange multipliers λ
per batch, which are linearly spaced in the log-domain

within the range [0.004, 0.1].
In the second stage, we fine-tune the model using a

combined distortion metric D = 150 · LMSE + 1.0 · LLPIPS,

incorporating LPIPS [15]. The inclusion of LPIPS encour-

ages the model to retain more perceptually relevant and

high-frequency information in the latent representations,

thereby enhancing the perceptual quality of the recon-

structions.

In the final stage, we freeze the encoder and exclu-

sively fine-tune the decoder using a semantic ensemble

loss. This loss, which redefines the distortion term D,

integrates a Charbonnier loss [8], a perceptual loss [15],

a style loss [14], and a non-binary adversarial loss [13].

This comprehensive formulation guides the model to

produce reconstructions that are both visually realistic

and perceptually appealing. The semantic ensemble loss

is defined as:

D = αLrec + βLper + γL
style

+ δL
adv

(2)

where α, β, γ, and δ are the weighting coefficients,

which we empirically set to 64, 1.0, 0.1, and 0.01, respec-

tively. Specifically, the reconstruction loss Lrec employs

the Charbonnier loss [8] to assess pixel-level similar-

ity between the original and compressed images. The

perceptual loss Lper [15] is calculated as the L2 dis-

tance between VGG-extracted features of the original

and reconstructed images. The style loss L
style

[14] is

computed as the L2 distance between Gram matrices

of 16 × 16 feature patches, promoting the preservation

of local texture information. The adversarial loss L
adv

is

derived from the output of a discriminator network.

To further enhance the realism of the reconstructed

images, we adopt the non-binary adversarial discrimi-

nator from [13]. This discriminator, as detailed therein,

is designed to more effectively distinguish between real

and generated images at a semantic level. The adversarial

training objectives are as follows:

L
disc

(ϕ) = Ex∼PX
[−⟨u(x), logDϕ(x)⟩]

+ Ex̂∼PX̂
[−⟨b0, logDϕ(x̂)⟩]

L
adv

(φ,ω,v) = Ex̂∼PX̂
[−⟨u(x), logDϕ(x̂)⟩]

(3)

where Dϕ denotes the discriminator parameterized by

ϕ. The vector u(x) is a one-hot encoding indicating the



TABLE I: Performance of our model on the CLIC2025 Test set. Objective results at 0.075, 0.15 and 0.30bpp. ↑ means

higher is better and ↓ vice versa. The decoding time is measured on whole CLIC2025 Test set using a single NVIDIA

L4 GPU and a AMD EPYC 7R13 CPU. Note that the PSNR and MS-SSIM are measured by averaging each image

in the test set, which is different from the Leaderboard metrics.

Method BPP PSNR↑ MSSSIM↑ LPIPS↓ DISTS↓ Decoding Time (s)

DCVC-RT

0.075 28.39 0.9249 0.3965 0.2144 18

0.15 30.85 0.9572 0.3332 0.1641 18

0.30 33.68 0.9771 0.2655 0.1160 18

Ours

0.075 26.17 0.9014 0.1968 0.0495 24

0.15 28.29 0.9437 0.1458 0.0305 24

0.30 30.80 0.9716 0.1026 0.0183 24

closest codebook entry for x, and b0 is the label assigned

to generated (fake) samples. The encoder, entropy model,

and decoder are parameterized by φ, ω, and v, respec-

tively.

III. Experiments

A. Experimental Settings

To train our model, we utilize image patches of size

256 × 256 randomly sampled from the test split of the

OpenImages V7 dataset [7]. The patches are augmented

with random horizontal flips and rotations. The training

process is carried out using the AdamW optimizer, with

hyperparameters set to β1 = 0.9 and β2 = 0.999. Each

stage of training is run for a total of 2 million iterations,

ensuring thorough convergence and robust learning of

the model parameters. This extensive training regimen

allows the model to effectively capture both low-level

and high-level image features, which are crucial for high-

fidelity compression and reconstruction.

For evaluation, we adopt the CLIC2025 Test set, which

consists of 30 high-resolution images at 2K resolution.

This challenging benchmark provides a comprehensive

assessment of our model’s performance in real-world

scenarios. We evaluate our method using a suite of both

distortion-based and perceptual quality metrics. Specif-

ically, we report mean squared error (MSE), multi-scale

structural similarity (MS-SSIM), and learned perceptual

image patch similarity (LPIPS) [15]. In addition, we

include the DISTS metric [3] as a reference-based percep-

tual measure. This comprehensive evaluation protocol

ensures a holistic understanding of both the objective

and subjective quality of the compressed images.

B. Quantitative Results

To rigorously validate the effectiveness of our pro-

posed approach, we conduct extensive quantitative ex-

periments on the CLIC2025 Test set. We also provide

the test results of DCVC-RT for reference. The detailed

results are summarized in Table I.

C. Qualitative Analysis
In addition to quantitative evaluation, we provide

qualitative comparisons to further illustrate the advan-

tages of our method. We use the perceptual optimized

MS-ILLM [13] as the baseline for comparison. As de-

picted in Fig. 1, Fig. 2, and Fig. 3, our approach produces

reconstructions that are visually closer to the original

images compared to competing methods, especially at

equivalent bitrates. Notably, our model excels at pre-

serving intricate details and textures, such as the fine

structure of leaves, plant surfaces, and subtle features

like eye details. These results demonstrate that our

method not only achieves high compression ratios but

also maintains a high degree of visual fidelity, making

it particularly suitable for applications where perceptual

quality is paramount.

IV. Conclusion

In this work, we propose an advanced image com-

pression framework that builds upon the state-of-the-

art (SOTA) DCVC-RT intra model, with a particular

emphasis on enhancing perceptual quality. By introduc-

ing a novel perceptual optimization strategy—centered

around a semantic ensemble loss that integrates Char-

bonnier loss, perceptual loss, style loss, and a non-binary

adversarial loss—we enable the model to generate recon-

structions that are both visually realistic and semanti-

cally meaningful. Extensive experiments on the challeng-

ing CLIC2025 Test set demonstrate that our enhanced

DCVC-RT intra model achieves significant improvements

in perceptual fidelity, delivering superior visual quality

at comparable bitrates. These results underscore the

effectiveness of our approach and its potential for ad-

vancing the field of learned image compression.
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Fig. 2: Visual comparison of Ground Truth, our method, and perceptual optimized MS-ILLM [13] on

b0b3744cc6b5ad6426b1ac02909b4389ea7fc4140d72a888ccdfb21f573a6db4.png from the CLIC2025 Test set. The recon-

structed images are generated at 0.075bpp.

Fig. 3: Visual comparison of Ground Truth, our method, and MS-ILLM [13] on

2684452db505ddbbb53f42a3f3bcfe86fdd0d6d8d98c029db4b4c6fc1f55b750.png from the CLIC2025 Test set. The

reconstructed images are generated at 0.075bpp.
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