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Abstract—In this paper, we propose a novel and enhanced
image compression framework that builds upon the state-
of-the-art (SOTA) DCVC-RT intra model, with a particular
emphasis on advancing perceptual quality in compressed
images. Although DCVC-RT demonstrates outstanding rate-
distortion performance and real-time processing capabilities,
it is still susceptible to generating perceptual artifacts, such
as blurring and loss of fine textures, especially at lower
bitrates. To effectively mitigate these issues, we introduce
a comprehensive perceptual optimization strategy that lever-
ages a semantic ensemble loss. This loss function is metic-
ulously designed by integrating multiple complementary
components, including Charbonnier loss for robust pixel-
wise fidelity, perceptual loss to preserve high-level semantic
features, style loss to maintain texture and style consistency,
and a non-binary adversarial loss to further enhance the
realism of reconstructed images. Our approach is developed
as a solution for the CLIC2025 challenge, and we partic-
ipate under the team name Vcoder. Through experiments,
we demonstrate that our method significantly improves the
perceptual quality of compressed images.

Index Terms—Generative Image Compression, Learned
Image Compression

I. INTRODUCTION

In recent years, neural image compression has
emerged as a transformative approach in the field of
image coding, leveraging deep learning techniques to
surpass the performance of traditional codecs such as
JPEG, JPEG2000, and BPG [1], [11], [12]. These neural
methods [5], [10], particularly those based on end-to-
end optimized autoencoders, have demonstrated remark-
able improvements in both rate-distortion efficiency and
perceptual quality metrics. Among these, the DCVC-
RT intra model [4] stands out for its state-of-the-art
performance in terms of objective measures like Peak
Signal-to-Noise Ratio (PSNR) and Multi-Scale Structural
Similarity (MS-SSIM), as well as its real-time processing
capabilities.

Despite these advances, a persistent challenge in neu-
ral image compression is the presence of perceptual
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artifacts, such as blurring, loss of fine textures, and
unnatural color shifts, especially at lower bitrates. These
artifacts can significantly degrade the subjective visual
quality of reconstructed images, limiting the practical
adoption of neural codecs in applications where human
perception is paramount [2], [15]. Addressing this issue
requires not only optimizing for traditional distortion
metrics but also incorporating perceptually motivated
loss functions and training strategies.

In this work, we present an enhanced version of the
DCVC-RT intra model with a strong emphasis on per-
ceptual quality improvement. Drawing inspiration from
recent advances in perceptual optimization [9], [14], we
introduce a novel semantic ensemble loss that integrates
multiple complementary components: Charbonnier loss
for robust pixel-wise fidelity [8], perceptual loss to pre-
serve high-level semantic features [6], [15], style loss to
maintain texture and style consistency [14], and a non-
binary adversarial loss to further enhance the realism
of reconstructed images [13]. This comprehensive loss
formulation is designed to guide the training process to-
wards generating images that are not only quantitatively
accurate but also visually pleasing and semantically
faithful.

Experimental results on benchmark datasets demon-
strate that our enhanced DCVC-RT intra model achieves
significant improvements in perceptual fidelity com-
pared to baseline methods, delivering superior visual
quality at equivalent bitrates.

II. MEeTHOD
A. Architecture

Recently, DCVC-RT [4] has set a new benchmark in
real-time video compression, demonstrating state-of-the-
art (SOTA) performance in both efficiency and qual-
ity. The core innovation of DCVC-RT lies in its highly
parallelizable intra-frame architecture, which leverages
efficient depth-wise separable convolution blocks (DCBs)
and a quadtree-based partitioning strategy for latent rep-
resentations. This design not only accelerates encoding



and decoding but also enhances the model’s ability to
capture diverse spatial contexts, which is crucial for
high-fidelity image reconstruction.

Building upon the strengths of DCVC-RT, we adapt
its intra-frame architecture for the task of learned image
compression, introducing several targeted enhancements
to further boost performance and perceptual quality.
Specifically, we retain the original encoder and decoder
structures from DCVC-RT, which are composed of stacks
of DCBs in both the analysis (encoder) and synthesis
(decoder) transforms. The use of DCBs, as highlighted in
the DCVC-RT paper, significantly reduces computational
complexity while maintaining strong representational
power, making the architecture well-suited for real-time
applications.

A key feature inherited from DCVC-RT is the
quadtree-based partitioning of the latent space. This
mechanism adaptively divides the latent representation
into spatially and channel-wise varying blocks. By doing
so, the model can efficiently model dependency between
latent elements, improving both rate-distortion and per-
ceptual performance. The quadtree partitioning also en-
ables parallel entropy coding of independent blocks,
further accelerating the overall compression pipeline.

To push the limits of compression quality and model
expressiveness, we scale up the network significantly.
Our enhanced model increases the total parameter count
to 149M by expanding both the depth and width of
the network. Concretely, the analysis transform is deep-
ened to 9 layers of DCBs, while the synthesis transform
is extended to 15 layers, allowing for more complex
feature extraction and reconstruction. The number of
channels in each layer is increased to 384, providing
greater capacity for feature representation. Additionally,
the dimensionality of the latent and hyper-latent spaces
is enlarged to 320 and 192 channels, respectively, which
facilitates richer modeling of both the primary and side
information required for effective entropy coding.

These architectural modifications, inspired by the de-
sign principles and empirical findings of the DCVC-RT
paper, enable our model to achieve superior compression
performance, particularly in terms of perceptual quality
at low bitrates. By combining the efficient and scalable
backbone of DCVC-RT with our enhancements, we lay
a strong foundation for the subsequent integration of
advanced perceptual optimization strategies.

B. Variable Bit-Rate Training with Semantic Ensemble Loss

DCVC-RT inherently supports variable bit-rate com-
pression within a single model by leveraging learnable
quantization vectors and hyperprior models to control
the bitrate. Building on this foundation, we propose a
three-stage training strategy to develop a perceptually
optimized variable bit-rate compression model.

In the first stage, we train the model using a standard
rate-distortion loss, as in the original DCVC-RT frame-
work. The objective function is defined as:

L= R+D 1)

where R denotes the rate, estimated from the noised
latent representations to ensure differentiability, and D
represents the distortion, initially measured by mean
squared error (MSE) between the original and recon-
structed images. To enable training across a range of
bitrates, we sample 64 different Lagrange multipliers A
per batch, which are linearly spaced in the log-domain
within the range [0.004, 0.1].

In the second stage, we fine-tune the model using a
combined distortion metric D = 150 - Lumsg + 1.0 - Liprps,
incorporating LPIPS [15]. The inclusion of LPIPS encour-
ages the model to retain more perceptually relevant and
high-frequency information in the latent representations,
thereby enhancing the perceptual quality of the recon-
structions.

In the final stage, we freeze the encoder and exclu-
sively fine-tune the decoder using a semantic ensemble
loss. This loss, which redefines the distortion term D,
integrates a Charbonnier loss [8]], a perceptual loss [15],
a style loss [14], and a non-binary adversarial loss [13].
This comprehensive formulation guides the model to
produce reconstructions that are both visually realistic
and perceptually appealing. The semantic ensemble loss
is defined as:

D = alie + Bcper + ’7£sty1e + 0Lagv )

where «, 5, 7, and § are the weighting coefficients,
which we empirically set to 64, 1.0, 0.1, and 0.01, respec-
tively. Specifically, the reconstruction loss L... employs
the Charbonnier loss [8] to assess pixel-level similar-
ity between the original and compressed images. The
perceptual loss Lper [15] is calculated as the Ly dis-
tance between VGG-extracted features of the original
and reconstructed images. The style loss Lgye [14] is
computed as the L, distance between Gram matrices
of 16 x 16 feature patches, promoting the preservation
of local texture information. The adversarial loss L.qy is
derived from the output of a discriminator network.

To further enhance the realism of the reconstructed
images, we adopt the non-binary adversarial discrimi-
nator from [13]. This discriminator, as detailed therein,
is designed to more effectively distinguish between real
and generated images at a semantic level. The adversarial
training objectives are as follows:

Laise (@) = Eanpy [ (u(x),log Dy (x))]
+ Ez~py [~ (bo,log Dy(2))]  (3)
Lagy(p,w,v) = Eznp, [~ (u(z),log Dg(2))]

where Dy denotes the discriminator parameterized by
¢. The vector u(x) is a one-hot encoding indicating the



TABLE I: Performance of our model on the CLIC2025 Test set. Objective results at 0.075, 0.15 and 0.30bpp. 1 means
higher is better and | vice versa. The decoding time is measured on whole CLIC2025 Test set using a single NVIDIA
L4 GPU and a AMD EPYC 7R13 CPU. Note that the PSNR and MS-SSIM are measured by averaging each image
in the test set, which is different from the Leaderboard metrics.

Method BPP PSNR? MSSSIM?t LPIPS] DISTS| Decoding Time (s)
0.075 28.39 0.9249 0.3965 0.2144 18
DCVC-RT 0.15 30.85 0.9572 0.3332 0.1641 18
0.30 33.68 0.9771 0.2655 0.1160 18
0.075 26.17 0.9014 0.1968 0.0495 24
Ours 0.15 28.29 0.9437 0.1458 0.0305 24
0.30 30.80 0.9716 0.1026 0.0183 24

closest codebook entry for x, and by is the label assigned
to generated (fake) samples. The encoder, entropy model,
and decoder are parameterized by ¢, w, and v, respec-
tively.

III. EXPERIMENTS

A. Experimental Settings

To train our model, we utilize image patches of size
256 x 256 randomly sampled from the test split of the
Openlmages V7 dataset [7]. The patches are augmented
with random horizontal flips and rotations. The training
process is carried out using the AdamW optimizer, with
hyperparameters set to 3; = 0.9 and 5, = 0.999. Each
stage of training is run for a total of 2 million iterations,
ensuring thorough convergence and robust learning of
the model parameters. This extensive training regimen
allows the model to effectively capture both low-level
and high-level image features, which are crucial for high-
fidelity compression and reconstruction.

For evaluation, we adopt the CLIC2025 Test set, which
consists of 30 high-resolution images at 2K resolution.
This challenging benchmark provides a comprehensive
assessment of our model’s performance in real-world
scenarios. We evaluate our method using a suite of both
distortion-based and perceptual quality metrics. Specif-
ically, we report mean squared error (MSE), multi-scale
structural similarity (MS-SSIM), and learned perceptual
image patch similarity (LPIPS) [15]. In addition, we
include the DISTS metric [3] as a reference-based percep-
tual measure. This comprehensive evaluation protocol
ensures a holistic understanding of both the objective
and subjective quality of the compressed images.

B. Quantitative Results

To rigorously validate the effectiveness of our pro-
posed approach, we conduct extensive quantitative ex-
periments on the CLIC2025 Test set. We also provide
the test results of DCVC-RT for reference. The detailed
results are summarized in Table

C. Qualitative Analysis

In addition to quantitative evaluation, we provide
qualitative comparisons to further illustrate the advan-
tages of our method. We use the perceptual optimized
MS-ILLM [13] as the baseline for comparison. As de-
picted in Fig. [1} Fig. 2} and Fig. B our approach produces
reconstructions that are visually closer to the original
images compared to competing methods, especially at
equivalent bitrates. Notably, our model excels at pre-
serving intricate details and textures, such as the fine
structure of leaves, plant surfaces, and subtle features
like eye details. These results demonstrate that our
method not only achieves high compression ratios but
also maintains a high degree of visual fidelity, making
it particularly suitable for applications where perceptual
quality is paramount.

IV. Concrusion

In this work, we propose an advanced image com-
pression framework that builds upon the state-of-the-
art (SOTA) DCVC-RT intra model, with a particular
emphasis on enhancing perceptual quality. By introduc-
ing a novel perceptual optimization strategy—centered
around a semantic ensemble loss that integrates Char-
bonnier loss, perceptual loss, style loss, and a non-binary
adversarial loss—we enable the model to generate recon-
structions that are both visually realistic and semanti-
cally meaningful. Extensive experiments on the challeng-
ing CLIC2025 Test set demonstrate that our enhanced
DCVC-RT intra model achieves significant improvements
in perceptual fidelity, delivering superior visual quality
at comparable bitrates. These results underscore the
effectiveness of our approach and its potential for ad-
vancing the field of learned image compression.
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Fig. 2: Visual comparison of Ground Truth, our method, and perceptual optimized MS-ILLM on
b0b3744cc6b5ad6426b1ac02909b4389ea7fc4140d72a888ccdfb21f573a6db4.png from the CLIC2025 Test set. The recon-
structed images are generated at 0.075bpp.
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Fig. 3:  Visual comparison of Ground Truth, our method, and MS-ILLM on
2684452db505ddbbb53f42a3f3bcfe86fdd046d48d98c029db4b4c6fc1f55b750.png  from the CLIC2025 Test set. The
reconstructed images are generated at 0.075bpp.
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