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ABSTRACT

Learning to restore multiple image degradations within a single model is quite bene-
ficial for real-world applications. Nevertheless, existing works typically concentrate
on regarding each degradation independently, while their relationship has been less
comprehended to ensure the synergistic learning. To this end, we revisit the diverse
degradations through the lens of singular value decomposition, with the observation
that the decomposed singular vectors and singular values naturally undertake the
different types of degradation information, dividing various restoration tasks into
two groups, i.e., singular vector dominated and singular value dominated. The
above analysis renders a more unified perspective to ascribe diverse degradation
connections, compared to previous task-level independent learning. The dedicated
optimization of degraded singular vectors and singular values inherently utilizes the
potential partnership among diverse restoration tasks, attributing to the Decomposi-
tion Ascribed Synergistic Learning (DASL). Specifically, DASL comprises two
effective operators, namely, Singular VEctor Operator (SVEO) and Singular VAlue
Operator (SVAO), to favor the decomposed optimization, which can be lightly
integrated into existing image restoration backbone. Moreover, the congruous
decomposition loss has been devised for auxiliary. Extensive experiments on five
image restoration tasks demonstrate the effectiveness of our method.

1 INTRODUCTION

Image restoration aims to recover the latent clean images from their degraded observations, and has
been widely applied to a series of real-world scenarios, such as photo processing, autopilot, and
surveillance. Compared to single-degradation removal Zhou et al. (2021a); Xiao et al. (2022); Qin
et al. (2020); Song et al. (2023); Lehtinen et al. (2018); Lee et al. (2022); Pan et al. (2020); Nah et al.
(2021); Li et al. (2023); Zhang et al. (2022), the recent flourished multi-degradation learning methods
have gathered considerable attention, due to their convenient deployment. However, every rose has its
thorn. How to ensure the synergy among diverse restoration tasks demands a dedicated investigation,
and it is imperative to comprehend the property of the involved degradations judiciously and include
their implicit relationship into consideration.

Generally, existing multi-degradation learning methods concentrated on regarding each degradation
independently. For instance, Chen et al. (2021); Li et al. (2020); Valanarasu et al. (2022) propose
to deal with different restoration tasks through separate subnetworks or distinct transformer queries.
Li et al. (2022); Chen et al. (2022b) propose to distinguish diverse degradation representations via
contrastive learning. Remarkably, there are also few attempts devoted to duality degradation removal
with synergistic learning. Zhang et al. proposes to leverage the blurry and noisy pairs for joint
restoration as their inherent complementarity during digital imaging. Zhou et al. (2022b) proposes
a unified network with low-light enhancement encoder and deblurring decoder to address hybrid
distortion. Wang et al. (2022a) proposes to quantify the relationship between arbitrary two restoration
tasks, and improve the performance of the anchor task with the aid of another task. However, few
efforts have been made toward the synergistic learning among more restoration tasks, and there is
desperately lacking of a general perspective to comprehend diverse degradations for combing their
implicit connections, which set up the stage for this paper.

To solve the above problem, we propose to revisit diverse degradations through the lens of singular
value decomposition, and conduct experiments on five common image restoration tasks, including
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Figure 1: An illustration of the decomposition ascribed analysis on various image restoration tasks
through the lens of the singular value decomposition. The decomposed singular vectors and singular
values undertake the different types of degradation information as we recompose the degraded image
with portions of the clean counterpart, ascribing diverse restoration tasks into two groups, i.e., singular
vector dominated rain, noise, blur, and singular value dominated low-light, haze. Dedicated to the
decomposed optimization of the degraded singular vectors and singular values rendering a more
unified perspective for synergistic learning, compared to previous task-level independent learning.

image deraining, dehazing, denoising, deblurring, and low-light enhancement. As shown in Fig. 1,
it can be observed that the decomposed singular vectors and singular values naturally undertake
the different types of degradation information, in that the corruptions fade away when we recom-
pose the degraded image with portions of the clean counterpart. Thus, various restoration tasks
can be ascribed into two groups, i.e., singular vector dominated degradations and singular value
dominated deagradations. The statistic results in Fig. 2 further validate this phenomenon, where
the quantified comparison of the recomposed image quality and singular distribution discrepancy
have been presented. Therefore, the potential partnership emerged among diverse restoration tasks
could be inherently utilized through the decomposed optimization of singular vectors and singular
values, considering their ascribed common properties. Note that more other degradation analyses and
theoretical generalization verification are provided in Appendix G.

In this way, we decently convert the previous task-level independent learning into more unified
singular vectors and singular values learning, and form our method, Decomposition Ascribed Syn-
ergistic Learning (DASL). Basically, one straightforward way to implement our idea is to directly
perform the decomposition on latent high-dimensional tensors, and conduct the optimization for
decomposed singular vectors and singular values, respectively. However, the huge computational
overhead is non-negligible. To this end, two effective operators have been developed to favor the
decomposed optimization, namely, Singular VEctor Operator (SVEO) and Singular VAlue Operator
(SVAO). Specifically, SVEO takes advantage of the fact that the orthogonal matrices multiplica-
tion makes no effect on singular values and only impacts singular vectors, which can be realized
through simple regularized convolution layer. SVAO resorts to the signal formation homogeneity
between Singular Value Decomposition and the Inverse Discrete Fourier Transform, which can both
be regarded as a weighted sum on a set of basis. While the decomposed singular values and the
transformed fourier coefficients inherently undertake the same role for linear combination. And the
respective base components share similar principle, i.e., from outline to details. Therefore, with
approximate derivation, the unattainable singular values optimization can be translated to accessible
spectrum maps. We show that the fast fourier transform is substantially faster than the singular
value decomposition. Furthermore, the congruous singular decomposition loss has been devised for
auxiliary. The proposed DASL can be lightly integrated into existing image restoration backbone for
decomposed optimization.
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Figure 2: The statistic validation that the decomposed singular vectors and singular values undertake
different types of degradation information. (a) The reconstruction error between the recomposed
image and paired clean image on five common image restoration tasks. Low error denotes the
degradation primarily distributed in the replaced portion of the image. (b) The boxplot comparison of
singular value distribution between the degraded image and corresponding clean image, where the
singular value dominated low-light and haze exhibit extraordinary difference. (c) The singular vector
difference on separate orders of the component between the degraded image and clean image, where
the singular vector dominated rain, noise, and blur present more disparity. The results are obtained
under calculation on ∼1k images for each restoration task.

The contributions of this work are summarized below:

• We take a step forward to revisit the diverse degradations through the lens of singular value
decomposition, and observe that the decomposed singular vectors and singular values natu-
rally undertake the different types of degradation information, ascribing various restoration
tasks into two groups, i.e., singular vector dominated and singular value dominated.

• We propose the Decomposition Ascribed Synergistic Learning (DASL) to dedicate the
decomposed optimization of degraded singular vectors and singular values respectively,
which inherently utilizes the potential partnership among diverse restoration tasks.

• Two effective operators have been developed to favor the decomposed optimization, along
with a congruous decomposition loss, which can be lightly integrated into existing image
restoration backbone. Extensive experiments on five image restoration tasks demonstrate
the effectiveness of our method.

2 RELATED WORK

Image Restoration. Image restoration aims to recover the latent clean images from degraded
observations, which has been a long-term problem. Traditional image restoration methods typically
concentrated on incorporating various natural image priors along with hand-crafted features for
specific degradation removal Babacan et al. (2008); He et al. (2010); Kundur & Hatzinakos (1996).
Recently, learning-based methods have made compelling progress on various image restoration tasks,
including image denoising Lehtinen et al. (2018); Lee et al. (2022), image deraining Zhou et al.
(2021a); Xiao et al. (2022), image deblurring Pan et al. (2020); Nah et al. (2021), image dehazing
Zheng et al. (2021); Song et al. (2023), and low-light image enhancement Li et al. (2023); Guo
et al. (2020), etc. Moreover, numerous general image restoration methods have also been proposed.
Zamir et al. (2021; 2022a); Fu et al. (2021) propose the balance between contextual information and
spatial details. Mou et al. (2022) formulates the image restoration via proximal mapping for iterative
optimization. Zhou et al. (2022a; 2023) proposes to exploit the frequency characteristics to handle
diverse degradations. Additionally, various transformer-based methods Zamir et al. (2022b); Liu et al.
(2022); Liang et al. (2021); Wang et al. (2022c) have also been investigated, due to their impressive
performance in modeling global dependencies and superior adaptability to input contents.

Recently, recovering multiple image degradations within a single model has been coming to the
fore, as they are more in line with real-world applications. Zhang et al. proposes to leverage the
short-exposure noisy image and the long-exposure blurry image for joint restoration as their inherent
complementarity during digital imaging. Zhou et al. (2022b) proposes a unified network to address
low-light image enhancement and image deblurring. Furthermore, numerous all-in-one fashion
methods Chen et al. (2021); Li et al. (2020; 2022); Valanarasu et al. (2022); Chen et al. (2022b) have
been proposed to deal with multiple degradations. Zhang et al. (2023) proposes to correlate various
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degradations through underlying degradation ingredients. While Park et al. (2023) advocates to
separate the diverse degradations propcessing with specific attributed discriminative filters. Besides,
most of existing methods concentrated on the network architecture design and few attempts have
been made toward exploring the synergy among diverse image restoration tasks.

Tensor Decomposition. Tensor decomposition has been widely applied to a series of fields, such
as model compression Jie & Deng (2022); Obukhov et al. (2020), neural rendering Obukhov et al.
(2022), multi-task learning Kanakis et al. (2020), and reinforcement learning Sozykin et al.. In
terms of image restoration, a large number of decomposition-based methods have been proposed for
hyperspectral and multispectral image restoration Peng et al. (2022); Wang et al. (2020; 2017), in that
establishing the spatial-spectral correlation with low-rank approximation.

Alternatively, a surge of filter decomposition methods toward networks have also been developed.
Zhang et al. (2015); Li et al. (2019); Jaderberg et al. (2014) propose to approximate the original
filters with efficient representations to reduce the network parameters and inference time. Kanakis
et al. (2020) proposes to reparameterize the convolution operators into a non-trainable shared part
and several task-specific parts for multi-task learning. Sun et al. (2022) proposes to decompose the
backbone network and only finetune the singular values to preserve the pre-trained semantic clues for
few-shot segmentation.

3 METHOD

In this section, we start with introducing the overall framework of Decomposition Ascribed Synergistic
Learning in Section 3.1, and then elaborate the singular vector operator and singular value operator
in Section 3.2 and Section 3.3, respectively, which forming our core components. The optimization
objective is briefly presented in Section 3.4.

3.1 OVERVIEW

The intention of the proposed Decomposition Ascribed Synergistic Learning (DASL) is to dedicate
the decomposed optimization of degraded singular vectors and singular values respectively, since they
naturally undertake the different types of degradation information as observed in Figs. 1 and 2. And
the decomposed optimization renders a more unified perspective to revisit diverse degradations for
ascribed synergistic learning. Through examining the singular vector dominated degradations which
containing rain, noise, blur, and singular value dominated degradations including hazy, low-light, we
make the following assumptions: (i) The singular vectors responsible for the content information
and spatial details. (ii) The singular values represent the global statistical properties of the image.
Therefore, the optimization of the degraded singular vectors could be performed throughout the
backbone network. And the optimization for the degraded singular values can be condensed to a
few of pivotal positions. Specifically, we substitute half of the convolution layers with SVEO, which
are uniformly distributed across the entire network. While the SVAOs are only performed at the
bottleneck layers of the backbone network. We ensure the compatibility between the optimized
singular values and singular vectors through remaining regular layers, and the proposed DASL can
be lightly integrated into existing image restoration backbone for decomposed optimization.

3.2 SINGULAR VECTOR OPERATOR

The singular vector operator is proposed to optimize the degraded singular vectors of the latent
representation, and supposed to be decoupled with the optimization of singular values. Explicitly
performing the singular value decomposition on high-dimensional tensors solves this problem
naturally with little effort, however, the huge computational overhead is non-negligible. Whether can
we modify the singular vectors with less computation burden. The answer is affirmative and lies in
the orthogonal matrices multiplication.

Theorem 3.1 For an arbitrary matrix X ∈ Rh×w and random orthogonal matrices P ∈ Rh×h, Q ∈
Rw×w, the products of the PX , XQ, PXQ have the same singular values with the matrix X .

We provide the proof of theorem 3.1 in the Appendix A.1. In order to construct the orthogonal
regularized operator to process the latent representation, the form of the convolution operation
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Figure 3: An illustration of the proposed Singular Vector Operator (SVEO), which is dedicated on
the optimization of the singular vector dominated degradations, i.e., rain, noise, blur. Theorem 3.1
supports the feasibility and the orthogonal regularization Lorth refers to Eq. 1.

is much eligible than matrix multiplication, which is agnostic to the input resolution. Hence the
distinction between these two forms of operation ought to be taken into consideration.

Prior works Sedghi et al. (2019); Jain (1989) have shown that the convolution operation y = conv(x)
with kernel size k × k can be transformed to linear matrix multiplication vec(y) = Avec(x).
Supposing the processed tensors y, x ∈ R1×n×n for simplicity, the size of the projection matrix A
will come to be n2 × n2 with doubly block circulant, which is intolerable to enforce the orthogonal
regularization, especially for high-resolution inputs. Another simple way is to employ the 1 × 1
convolution with regularized orthogonality, however, the singular vectors of the latent representation
along the channel dimension will be changed rather than spatial dimension.

Inspired by this point, SVEO proposes to transpose spatial information of the latent representation
X ∈ Rc×h×w to channel dimension with the ordinary unpixelshuffle operation Shi et al. (2016),
resulting in X

′ ∈ Rcr2×h/r×w/r. And then applying the orthogonal regularized 1× 1 convolution
K ∈ Rcr2×cr2 in this domain, as shown in Fig. 3. Thereby, the degraded singular vectors can be
revised pertinently, and the common properties among various singular vector dominated degradations
can be implicitly exploited. We note that the differences between SVEO and conventional convolution
lie in the following: (i) The SVEO is more consistent with the matrix multiplication as it eliminates the
overlap operation attached to the convolution. (ii) The weights of SVEO are reduced to matrix instead
of tensor, where the orthogonal regularization can be enforced comfortably. Besides, compared to the
matrix multiplication, SVEO further utilizes the channel redundancy and spatial adaptivity within a
local r × r region for conducive information utilization. The orthogonal regularization is formulated
as

Lorth = ∥WWT ⊙ (1 − I)∥2F , (1)
where W represents the weight matrix, 1 denotes a matrix with all elements set to 1, and I denotes
the identity matrix.

3.3 SINGULAR VALUE OPERATOR

The singular value operator endeavors to optimize the degraded singular values of the latent repre-
sentation while supposed to be less entangled with the optimization of singular vectors. However,
considering the inherent inaccessibility of the singular values, it is hard to perform the similar opera-
tion as SVEO in the same vein. To this end, we instead resort to reconnoitering the essence of singular
values and found that it is eminently associated with inverse discrete fourier transform. We provide
the formation of a two-dimensional signal represented by singular value decomposition (SVD) and
inverse discrete fourier transform (IDFT) in Eq. 2 and Eq. 3 as follows

X = UΣV T =
∑k

i=1 σiuiv
T
i =

∑k
i=1 σiXi, (2)

where X ∈ Rh×w represents the latent representation and U ∈ Rh×h, V ∈ Rw×w represent
the decomposed singular vectors with columns ui, vi, k = min(h,w) denotes the rank of X . Σ
represents the singular values with diagonal elements σi.

X =
1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ej2π(
um
h + vn

w ) =
1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ϕ(u, v), (3)
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Figure 4: An illustration of the core idea of the proposed Singular Value Operator (SVAO), which is
dedicated on the optimization of the singular value dominated degradations, i.e., haze and low-light.
Two-dimensional signal formations are provided for simplicity.

where G(u, v) denotes the coefficients of the fourier transform of X , and ϕ(u, v) denotes the
corresponding two-dimensional wave component. m ∈ Rh−1, n ∈ Rw−1. Observing that both SVD
and IDFT formation can be regarded as a weighted sum on a set of basis, i.e., uiv

T
i and ej2π(

um
h + vn

w ),
while the decomposed singular values σi and the transformed fourier coefficients G(u, v) inherently
undertake the same role for the linear combination of various bases.

In Fig. 5, we present the visualized comparison of the reconstruction results using partial components
of SVD and IDFT progressively, while both formations conform to the principle from outline to
details. Therefore, we presume that the SVD and IDFT operate in a similar way in terms of signal
formation, and the combined coefficients σi and G(u, v) can be approximated to each other.

Table 1: Time comparison (ms) between SVD and
FFT formation for signal representation on high-
dimensional tensor, with supposed size 64×128×128,
where the Decom. and Comp. represent the decompo-
sition and composition.

Formation Decom. time Comp.time Total time
SVD 180.243 0.143 180.386
FFT 0.159 0.190 0.349

In this way, we successfully translate the
unattainable singular values optimization to
the accessible fourier coefficients optimiza-
tion, as shown in Fig. 4. Considering the
decomposed singular values typically char-
acterize the global statistics of the signal,
SVAO thus concentrates on the optimiza-
tion of the norm of G(u, v) for consistency,
i.e., the amplitude map, since the phase of
G(u, v) implicitly represents the structural
content Stark (2013); Oppenheim & Lim (1981) and more in line with the singular vectors. The
above two-dimensional signal formation can be easily extended to the three-dimensional tensor to
perform the 1 × 1 convolution. Since we adopt the SVAO merely in the bottleneck layers of the
backbone network with low resolution inputs, and the fast fourier transform is substantially faster
than the singular value decomposition; see Table 1. The consequent overhead of SVAO can be greatly
compressed. Note that the formation of Eq. 3 is a bit different from the definitive IDFT, and we
provide the equivalence proof in the Appendix A.2.

3.4 OPTIMIZATION OBJECTIVE

The decomposition loss Ldec is developed to favor the decomposed optimization congruously,
formulated as

Ldec =

3∑
i=1

β∥U (i)
recV

(i)T
rec − U

(i)
cleV

(i)T
cle ∥1 + ∥Σ(i)

rec − Σ
(i)
cle∥1, (4)

where Ucle, Vcle, and Σcle represent the decomposed singular vectors and singular values of the clean
image, Urec, Vrec, and Σrec represent the decomposed singular vectors and singular values of the
recovered image. For simplicity, we omit the pseudo-identity matrix between UV T for dimension
transformation. β denotes the weight.

The overall optimization objective of DASL comprises the orthogonal regularization loss Lorth and
the decomposition loss Ldec, together with the original loss functions of the integrated backbone
network Lori, formulated as

Ltotal = Lori + λorthLorth + λdecLdec, (5)

where λorth and λdec denote the balanced weights.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: Visual comparison of the progres-
sive reconstruction results with SVD and
IDFT components, respectively. First row,
IDFT reconstruction result. Second row, SVD
reconstruction result. Both conform to the
principle from outline to details.

Table 2: Quantitative results on five common image restoration datasets with state-of-the-art general
image restoration and all-in-one methods. The baseline results are in grey.

Rain100L BSD68 GoPro SOTS LOL Average ParamsMethod PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NAFNet 35.56 0.967 31.02 0.883 26.53 0.808 25.23 0.939 20.49 0.809 27.76 0.881 17.11M
Restormer 34.81 0.962 31.49 0.884 27.22 0.829 24.09 0.927 20.41 0.806 27.60 0.881 26.13M
ShuffleFormer 35.23 0.966 31.53 0.894 27.14 0.828 24.98 0.938 20.12 0.814 27.80 0.888 50.60M
MPRNet 38.16 0.981 31.35 0.889 26.87 0.823 24.27 0.937 20.84 0.824 28.27 0.890 15.74M
DGUNet 36.62 0.971 31.10 0.883 27.25 0.837 24.78 0.940 21.87 0.823 28.32 0.891 17.33M
MambaIR 34.54 0.962 31.37 0.890 26.52 0.804 25.74 0.946 18.23 0.740 27.28 0.868 1.36M
IR-SDE 35.18 0.969 30.26 0.895 25.63 0.777 24.73 0.925 11.83 0.473 25.53 0.808 137.15M

DL 21.96 0.762 23.09 0.745 19.86 0.672 20.54 0.826 19.83 0.712 21.05 0.743 2.09M
Transweather 29.43 0.905 29.00 0.841 25.12 0.757 21.32 0.885 21.21 0.792 25.22 0.836 37.93M
TAPE 29.67 0.904 30.18 0.855 24.47 0.763 22.16 0.861 18.97 0.621 25.09 0.801 1.07M
IDR 35.63 0.965 31.60 0.887 27.87 0.846 25.24 0.943 21.34 0.826 28.34 0.893 15.34M
AirNet 32.98 0.951 30.91 0.882 24.35 0.781 21.04 0.884 18.18 0.735 25.49 0.846 8.93M
PromptIR 34.24 0.957 31.30 0.885 26.43 0.802 25.18 0.934 21.69 0.805 27.76 0.876 35.59M
DA-CLIP 35.69 0.974 30.45 0.898 25.92 0.786 25.24 0.938 17.96 0.738 27.05 0.867 136.82M

DASL+MPRNet 38.02 0.980 31.57 0.890 26.91 0.823 25.82 0.947 20.96 0.826 28.66 0.893 15.15M
DASL+DGUNet 36.96 0.972 31.23 0.885 27.23 0.836 25.33 0.943 21.78 0.824 28.51 0.892 16.92M
DASL+MambaIR 34.82 0.965 31.50 0.892 26.77 0.811 25.89 0.951 19.54 0.775 27.70 0.879 1.02M
DASL+IR-SDE 35.46 0.972 30.43 0.901 25.91 0.789 25.08 0.941 15.26 0.614 26.42 0.843 128.64M
DASL+AirNet 34.93 0.961 30.99 0.883 26.04 0.788 23.64 0.924 20.06 0.805 27.13 0.872 5.41M
DASL+PromptIR 36.67 0.975 31.66 0.896 27.36 0.839 25.55 0.944 21.73 0.834 28.59 0.897 32.31M
DASL+DA-CLIP 35.78 0.979 30.87 0.901 26.08 0.789 25.53 0.947 19.21 0.753 27.49 0.874 130.45M

4 EXPERIMENTS

In this section, we first clarify the experimental settings, and then present the qualitative and quan-
titative comparison results with eleven baseline methods for unified image restoration. Moreover,
extensive ablation experiments are conducted to verify the effectiveness of our method.

4.1 IMPLEMENTATION DETAILS

Tasks and Metrics. We train our method on five image restoration tasks synchronously. The
corresponding training set includes Rain200L Yang et al. (2017) for image deraining, RESIDE-
OTS Li et al. (2018) for image dehazing, BSD400 Martin et al. (2001), WED Ma et al. (2016) for
image denoising, GoPro Nah et al. (2017) for image deblurring, and LOL Chen et al. (2018) for
low-light image enhancement. For evaluation, 100 image pairs in Rain100L Yang et al. (2017), 500
image pairs in SOTS-Outdoor Li et al. (2018), total 192 images in CBSD68 Martin et al. (2001),
Urban100 Huang et al. (2015) and Kodak24 Franzen (1999), 1111 image pairs in GoPro Nah et al.
(2017), 15 image pairs in LOL Chen et al. (2018) are utilized as the test set. We report the Peak
Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) as numerical metrics.

Training. We implement our method on single NVIDIA Geforce RTX 3090 GPU. For fair comparison,
all comparison methods have been retrained in the new mixed dataset with their default hyper
parameter settings. We adopt the MPRNet Zamir et al. (2021), DGUNet Mou et al. (2022), and
AirNet Li et al. (2022) as our baseline to validate the proposed Decomposition Ascribed Synergistic
Learning. The entire network is trained with Adam optimizer for 1200 epochs. We set the batch size
as 8 and random crop 128x128 patch from the original image as network input after data augmentation.
We set the β in Ldec as 0.01, and the λorth, λdec are set to be 1e-4 and 0.1, respectively. We perform
evaluations every 20 epochs with the highest average PSNR scores as the final parameters result.
More model details and training protocols are presented in the Appendix B.
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Table 3: Quantitative results of image denoising on
CBSD68, Urban100 and Kodak24 datasets (PSNR↑).

CBSD68 Urban100 Kodak24
Method σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

NAFNet 33.67 31.02 27.73 33.14 30.64 27.20 34.27 31.80 28.62
Restormer 34.03 31.49 28.11 33.72 31.26 28.03 34.78 32.37 29.08
MPRNet 34.01 31.35 28.08 34.13 31.75 28.41 34.77 32.31 29.11
DGUNet 33.85 31.10 27.92 33.67 31.27 27.94 34.56 32.10 28.91
MambaIR 33.99 31.37 28.12 34.16 31.83 28.43 34.78 32.38 29.10
IR-SDE 33.23 30.26 26.92 32.31 29.85 26.93 33.82 31.08 27.79

DL 23.16 23.09 22.09 21.10 21.28 20.42 22.63 22.66 21.95
Transweather 31.16 29.00 26.08 29.64 27.97 26.08 31.67 29.64 26.74
TAPE 32.86 30.18 26.63 32.19 29.65 25.87 33.24 30.70 27.19
AirNet 33.49 30.91 27.66 33.16 30.83 27.45 34.14 31.74 28.59
PromptIR 33.92 31.30 28.02 34.06 31.69 28.38 34.63 32.19 29.04
DA-CLIP 33.35 30.45 27.14 32.83 30.24 27.29 34.03 31.26 27.98

DASL+MPRNet 34.16 31.57 28.18 34.21 31.82 28.47 34.91 32.46 29.18
DASL+DGUNet 33.94 31.23 27.94 33.74 31.31 27.96 34.69 32.16 28.93
DASL+MambaIR 34.12 31.50 28.27 34.31 32.04 28.61 35.04 32.64 29.36
DASL+IR-SDE 33.38 30.43 27.09 32.42 29.97 27.05 34.01 31.26 27.95
DASL+AirNet 33.69 30.99 27.68 33.35 30.89 27.46 34.32 31.79 28.61
DASL+PromptIR 34.24 31.66 28.33 34.20 31.84 28.51 34.94 32.41 29.36
DASL+DA-CLIP 33.70 30.87 27.55 33.03 30.47 27.50 34.46 31.67 28.38

Table 4: Evaluating the scalability of decom-
posed optimization on the full set with merely
trained on singular vector dominated degra-
dations (vec.) and singular value dominated
degradations (val.) (PSNR↑).

Tasks Rain100L BSD68 GoPro SOTS LOL
MPRNet (vec.) 39.47 31.50 27.61 15.91 7.77
MPRNet (val.) - - - - -
DGUNet (vec.) 39.04 31.46 28.22 15.92 7.76
DGUNet (val.) 23.10 20.39 21.84 24.59 20.45
MambaIR (vec.) 37.21 31.53 27.86 16.63 7.76
MambaIR (val.) 21.65 20.52 19.67 25.62 21.16
AirNet (vec.) 36.62 31.33 26.35 15.90 7.75
AirNet (val.) 19.52 19.1 14.47 20.63 16.01
DASL+MPRNet (vec.) 39.39 31.63 27.57 17.21 11.23
DASL+MPRNet (val.) 21.87 19.96 21.35 25.13 20.33
DASL+DGUNet (vec.) 39.11 31.55 28.16 16.87 10.21
DASL+DGUNet (val.) 23.19 20.28 22.69 25.05 20.87
DASL+MambaIR (vec.) 37.44 31.59 27.92 16.96 9.32
DASL+MambaIR (val.) 21.78 20.91 20.35 25.79 21.82
DASL+AirNet (vec.) 36.87 31.22 26.72 15.97 8.77
DASL+AirNet (val.) 21.25 20.38 21.12 24.60 20.58

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our DASL with comprehensive state-of-the-art methods, including general image restora-
tion methods: NAFNet Chen et al. (2022a), Restormer Zamir et al. (2022b), ShuffleFormer Xiao
et al. (2023), MPRNet Zamir et al. (2021), DGUNet Mou et al. (2022),MambaIR Guo et al. (2024),
IR-SDE Luo et al. (2023b), and all-in-one fashion methods: DL Fan et al. (2019), Transweather Vala-
narasu et al. (2022), TAPE Liu et al. (2022), AirNet Li et al. (2022), IDR Zhang et al. (2023),
PromptIR Potlapalli et al. (2024), and DA-CLIP Luo et al. (2023a) on five image restoration tasks.

Table 2 reports the quantitative comparison results. It can be observed that the performance of the
general image restoration methods is systematically superior to the professional all-in-one methods
when more degradations are involved, attributed to the large model size. While our DASL further
advances the backbone network capability with fewer parameters, owing to the implicit synergistic
learning. We provide more visual comparison results of the DASL integration against the vanilla
baselines in Appendix H. Consistent with existing unified image restoration methods Zamir et al.
(2022b); Li et al. (2022), we report the detailed denoising results at different noise ratio in Table 3,
where the performance gain are consistent.

Table 5: Comparison of the model size and computa-
tion complexity between baseline / DASL.

Method Params (M) FLOPs (B) Inference Time (s)
MambaIR 1.36 / 1.02 224.07 / 196.72 1.184 / 1.126
IR-SDE 137.15 / 128.64 1517.34 / 1386.27 18.10 / 17.21
MPRNet 15.74 / 15.15 5575.32 / 2905.14 0.241 / 0.210
DGUNet 17.33 / 16.92 3463.66 / 3020.22 0.397 / 0.391
AirNet 8.93 / 5.41 1205.09 / 767.89 0.459 / 0.190

In Table 5, we present the computation over-
head involved in DASL, where the FLOPs
and inference time are calculated over 100
testing images with the size of 512×512. It
can be observed that our DASL substantially
reduces the computation complexity of the
baseline methods with considerable infer-
ence acceleration, e.g.12.86% accelerated
on MPRNet and 58.61% accelerated on Air-
Net. We present the bountiful visual comparison results in the Appendix H, while our DASL exhibits
superior visual recovery quality, i.e., more precise details in singular vector dominated degradations
and more stable global recovery in singular value dominated degradations.

4.3 ABALATION STUDIES

We present the ablation experiments on the combined degradation dataset with MPRNet as the
backbone to verify the effectiveness of our method. In Table 6, we quantitatively evaluate the two
developed operators SVEO and SVAO, and the decomposition loss. The metrics are reported on the
each of degradations in detail, from which we can make the following observations: a) Both SVEO
and SVAO are beneficial for advancing the unified degradation restoration performance, attributing
to the ascribed synergistic learning. b) The congruous decomposition loss is capable to work alone,
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Table 6: Ablation experiments on the components design.

Rain100L BSD68 GoPro SOTS LOL Avg.
Method SVEO SVAO Lorth Ldec PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Baseline 38.16 0.981 31.35 0.889 26.87 0.823 24.27 0.937 20.84 0.824 28.27 0.890
With no orth. SVEO ✓ 37.73 0.981 31.31 0.889 26.79 0.819 24.63 0.939 20.83 0.824 28.26 0.890
With SVAO ✓ 37.92 0.980 31.41 0.889 26.85 0.821 25.58 0.943 21.05 0.828 28.56 0.892
With SVEO ✓ ✓ 38.04 0.981 31.46 0.890 26.97 0.826 25.53 0.945 20.76 0.822 28.55 0.893
With SVEO and SVAO ✓ ✓ ✓ 38.01 0.980 31.53 0.890 26.94 0.825 25.63 0.948 20.92 0.826 28.61 0.893
With Ldec ✓ 38.10 0.982 31.39 0.889 26.78 0.819 24.70 0.942 20.98 0.827 28.39 0.892
DASL+MPRNet ✓ ✓ ✓ ✓ 38.02 0.980 31.57 0.890 26.91 0.823 25.82 0.947 20.96 0.826 28.66 0.893

Figure 6: Evaluating the synergy effect
through training trajectory between baseline
and DASL on vec. dominated degradations.

Figure 7: Evaluating the synergy effect
through training trajectory between baseline
and DASL on val. dominated degradations.

and well collaborated with developed operators for decomposed optimization. c) The orthogonal
regularization is crucial to the reliable optimization of SVEO for preventing the performance drop.

To further verify the scalability of the decomposed optimization, Table 4 evaluates the performance
with partially trained on singular vector dominated degradations (vec.) and singular value dominated
degradations (val.). While some properties have been observed: a) Basically, the baseline methods
concentrate on the trainable degradations, while our DASL further contemplates the untrainable ones
in virtue of its slight task dependency. b) The performance of MPRNet on val. is unattainable due
to the non-convergence, however, our DASL successfully circumvents this drawback owing to the
more unified decomposed optimization on singular values rather than task-level learning. c) The vec.
seems to be supportive to the restoration performance of val., see the comparison of Tables 2 and 4,
indicating the potential relationship among decomposed two types of degradations.

We present the comparison of the training trajectory between baseline and DASL on singular vector
dominated and singular value dominated degradations in Figs. 6 and 7. It can be observed that our
DASL significantly suppresses the drastic optimization process, retaining the overall steady to better
convergence point with even fewer parameters, attributing to the ascribed synergistic learning.

4.4 LATENT SPACE ANALYSIS

The decomposition ascribed degradation analysis has been clearly unveiled in pixel space so far,
however, whether the property can be generalized to latent space is more appealing, which is exactly
what the DASL built upon for synergestic optimization. In Tab. 7, we provide the validation for
latent degradation analysis, where we train a linear projector to transform the degraded latents to
clean latents and compute the reconstruction error and transmission ratio Shi et al. (2024). The
clean latents are obtained with clean input and extracted from the same layer as degraded latents.
To see how well the singular vectors and singular values represent the degradation information, two

Table 7: Validation of the decomposition ascribed degradation analysis in latent space.

Rain100L BSD68 GoPro SOTS LOL
Source Loss Ratio Loss Ratio Loss Ratio Loss Ratio Loss Ratio

Degraded 0.00107 66.1% 0.00143 63.7% 0.00134 55.5% 0.00251 50.1% 0.00943 15.4%
Swap Vec. 0.00034 94.3% 0.00043 92.2% 0.00042 81.9% 0.00219 53.1% 0.00926 16.1%
Swap Val. 0.00091 70.1% 0.00106 70.8% 0.00129 56.3% 0.00076 76.8% 0.00118 71.2%
Clean 0.00027 100% 0.00031 100% 0.00019 100% 0.00027 100% 0.00039 100%
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variants are conducted with firstly swapping clean singular vectors or singular values to degraded
latents, and then perform the linear transformation. The singular vector dominated degradations show
noticeable transmission ratio improvement (∼30%) when swapped with clean singular vectors, and
exhibit minor transmission ratio improvement (∼5%) when swapped with clean singular values. The
same thing also happened in singular value dominated degradations with ∼ 25%-50% transmission
improvement when swapped with clean singular values and ∼3% transmission improvement when
swapped with clean singular vectors. Therefore, we have reason to suggest that the latent degradation
analysis is consistency with pixel-space degradation analysis in ascribing degradation types.

5 CONCLUSION

In this paper, we revisited the diverse degradations through the lens of singular value decomposition
and observed that the decomposed singular vectors and singular values naturally undertake the
different types of degradation information, ascribing various restoration tasks into two groups, i.e.,
singular vector dominated degradations and singular value dominated degradations. The proposed
Decomposition Ascribed Synergistic Learning dedicates the decomposed optimization of degraded
singular vectors and singular values respectively, rendering a more unified perspective to inherently
utilize the potential partnership among diverse restoration tasks for ascribed synergistic learning.
Furthermore, two effective operators SVEO and SVAO have been developed to favor the decomposed
optimization, along with a congruous decomposition loss, which can be lightly integrated into existing
image restoration backbone. Extensive experiments on bunch of image restoration tasks validated the
effectiveness of the proposed method and the generality of the SVD-based degradation analysis.
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A PROOF OF THE PROPOSITIONS

A.1 PROOF OF THEOREM 1

Theorem A.1 For an arbitrary matrix X ∈ Rh×w and random orthogonal matrices P ∈ Rh×h, Q ∈
Rw×w, the products of the PX , XQ, PXQ have the same singular values with the matrix X .

Proof. According to the definition of Singular Value Decomposition (SVD), we can decompose matrix
X ∈ Rh×w into USV T , where U ∈ Rh×h and V ∈ Rw×w indicate the orthogonal singular vector
matrices, S ∈ Rh×w indicates the diagonal singular value matrix. Thus X

′
=PXQ=PUSV TQ.

Denotes U
′
=PU and V

′T =V TQ, then X
′

can be decomposed into U
′
SV

′T if U
′

and V
′T are

orthogonal matrices.

U
′−1 = (PU)−1 = U−1P−1 = UTPT = (PU)T = U

′T (6)

(V
′T )−1 = (V TQ)−1 = Q−1(V T )−1 = QTV = (V TQ)T = V

′
(7)

Therefore, U
′
U

′T = I and V
′TV

′
= I , where I denotes the identity matrix, and U

′
, V

′T are
orthogonal. X

′
and X have the same singular values S, and the singular vectors of X can be

orthogonally transformed to PU , QTV . Correspondingly, it can be easily extended to the case of
PX and XQ. □

A.2 EQUIVALENCE PROOF OF EQUATION 3 AND IDFT

Proposition. The signal formation principle in Equation 3 is equivalence to the definitive Inverse
Discrete Fourier Transform (IDFT), where we restate the Equation 3 as following:

X =
1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ej2π(
um
h + vn

w ), m ∈ Rh−1, n ∈ Rw−1. (8)

Proof. For the two-dimensional signal X ∈ Rh×w, we can represent any point on it through IDFT.
Supposing (m,n) and (m

′
, n

′
) are two random points on X , where m, m

′ ∈ [0, h-1], n, n
′ ∈ [0,

w-1], and (m,n) ̸= (m
′
, n

′
), we have

X(m,n) =
1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ej2π(
um
h + vn

w ), (9)

X(m
′
, n

′
) =

1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ej2π(
um

′

h + vn
′

w ). (10)

X(m,n) represents the signal value at (m,n) position on X , and the same as X(m
′
, n

′
). Thus, we

can rewrite X as

X =

 X(0, 0) · · · X(0, w − 1)
...

. . .
...

X(h− 1, 0) · · · X(h− 1, w − 1)



=
1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v) •


ej2π(

u0
h + v0

w ) · · · ej2π(
u0
h +

v(w−1)
w )

...
. . .

...
ej2π(

u(h−1)
h + v0

w ) · · · ej2π(
u(h−1)

h +
v(w−1)

w )


=

1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ej2π(
um
h + vn

w ), (11)
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where m ∈ Rh−1, n ∈ Rw−1. And the two-dimensional wave ej2π(
um
h + vn

w ) ∈ Rh−1×w−1 denotes
the base component. Therefore, the formation principle of Eq 3 is equivalent to the definitive IDFT,
i.e., Eqs 9 and 10. □

B MODEL DETAILS AND TRAINING PROTOCOLS

We implement our DASL with integrated MPRNet Zamir et al. (2021), DGUNet Mou et al. (2022),
and AirNet Li et al. (2022) backbone to validate the effectiveness of the decomposed optimization.
All experiments are conducted using PyTorch, with model details and training protocols provided
in Table 8. Fig. 8 (a) presents the compound working flow of our operator. Note that the SVAO is
only adopted in the bottleneck layer, as described in Section 3.1. We introduce how we embed our
operator into the backbone network from a microscopic perspective. Sincerely, the most convenient
way is to directly reform the basic block of the backbone network. We present two fashions of the
basic block of baseline in Fig. 8 (b) and (c), where the MPRNet fashion is composed of two basic
units, e.g., channel attention block (CAB) Zhang et al. (2018), and DGUNet is constructed by two
vanilla activated convolutions. We simply replace one of them (dashed line) with our operator to
realize the DASL integration. Note that AirNet shares the similar fashion as MPRNet.

Table 8: Model details and training protocols for DASL integrated baselines.

Configurations MPRNet DGUNet AirNet

optimizer Adam Adam Adam
base learning rate 2e-4 1e-4 1e-3
learning rate schedular Cosine decay Cosine decay Linear decay
momentum of Adam β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.99
channel dimension 80 80 256
augmentation RandomCropFlip RandomCropFlip RandomCropFlip
num. of replaced operator 18 14 50
basic block channel attention block activated convolution degradation guided module
optimization objective CharbonnierLoss + EdgeLoss CharbonnierLoss + EdgeLoss L1Loss

Figure 8: The strategy of model integration with DASL. (a) The working flow of our operator. (b)
The basic building block of MPRNet fashion. (c) The basic building block of DGUNet fashion.

C TRIVIAL ABLATIONS ON OPERATOR DESIGN

The ablation experiment on the choice of scale factor r in SVEO is provided in Table 9. Note that the
larger r will incur larger model size. We empirically set the scale ratio r in SVEO as 2. The working
flow ablation of combined operator is provided in Table 10, and the compound fashion is preferred.

Table 9: Ablation experiments on the scale
ratio r in the SVEO (PSNR↑).

Scale ratio Rain100L SOTS GoPro BSD68 LOL
1 38.01 31.55 26.88 25.84 20.93
2 38.02 31.57 26.91 25.82 20.96
4 38.07 31.58 26.92 25.81 20.98

Table 10: Ablation experiments on the working flow
of the combined operator (PSNR↑).

Working flow Rain100L SOTS GoPro BSD68 LOL
cascaded 38.01 31.55 26.88 25.84 20.87
parallel 38.02 31.57 26.91 25.82 20.88

cascaded + parallel 38.02 31.57 26.91 25.82 20.96

D EXTENSION EXPERIMENTS FOR PROPERTY VALIDATION

In Table 11, we provide the performance of DASL on real-world image restoration tasks, i.e.,
under-display camera (UDC) image enhancement. Typically, images captured under UDC system
suffer from both blurring due to the spread point spread function, and lower light transmission rate.
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Compared to vanilla baseline models, DASL is capable of boosting the performance consistently.
Note that the above experiments are performed on real-world UDC dataset Zhou et al. (2021b)
without any fine-tuning, validating the capability of the model for processing undesirable degradations.
Table 12 evaluates the potential of DASL integration on transformer-based image restoration backbone.
Albeit the convolutional form of the developed decomposed operators, the supposed architecture
incompatibility problem is not come to be an obstacle. Note that we replace the projection layer at
the end of the attention mechanism with developed operators for transformer-based methods.

Table 11: Quantitative results of real-world image
restoration tasks (under-display camera image en-
hancement) on TOLED and POLED datasets.

TOLED POLED
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MPRNet 24.69 0.707 0.347 8.34 0.365 0.798
DGUNet 19.67 0.627 0.384 8.88 0.391 0.810
AirNet 14.58 0.609 0.445 7.53 0.350 0.820

DASL+MPRNet 25.65 0.733 0.326 8.95 0.392 0.788
DASL+DGUNet 25.25 0.727 0.329 9.80 0.410 0.783
DASL+AirNet 18.83 0.637 0.426 9.13 0.398 0.784

Table 12: Evaluating the generality of the
DASL integration on transformer-based image
restoration backbone among five common image
restoration tasks (PSNR↑).

Methods Rain100L BSD68 GoPro SOTS LOL
SwinIR 30.78 30.59 24.52 21.50 17.81
Restormer 34.81 31.49 27.22 24.09 20.41
ShuffleFormer 35.23 31.53 27.14 24.98 20.12
DASL+SwinIR 33.53 30.84 25.72 24.10 20.36
DASL+Restormer 35.79 31.67 27.35 25.90 21.39
DASL+ShuffleFormer 35.92 31.59 27.44 25.08 20.18

E CULTIVATING THE SVD POTENTIAL FOR IMAGE RESTORATION.

In fact, Singular Value Decomposition (SVD) has been widely applied for a range of image restoration
tasks, such as image denoising, image compression, etc., attributing to the attractive rank proper-
ties Sadek (2012) including truncated energy maximization and orthogonal subspaces projection. The
former takes the fact that SVD provides the optima low rank approximation of the signal in terms of
dominant energy preservation, which could greatly benefit the signal compression. The latter exploits
the fact that the separate order of SVD-decomposed components are orthogonal, which inherently
partition the signal into independent rank space, e.g., signal and noise space or range and null space
for further manipulation, supporting the application of image denoising or even prevailing inverse
problem solvers Wang et al. (2022b). Moreover, the SVD-based degradation analysis proposed in
this work excavates another promising property of SVD from the vector-value perspective, which is
essentially different from previous rank-based method. Encouragingly, the above two perspectives
have the potential to collaborate well and the separate order property is supposed to be incorporated
into the DASL for sophisticated degradation relationship investigation in future works. We note
that the above two SVD perspectives have the opportunity to collaborate well and the separate order
potential is supposed to be incorporated into the DASL for sophisticated relationship investigation in
future works.

F BROADER IMPACT

This work potentially release the redundant model deployments in real world scenarios, and sincerely
benefits a lot of edge applications with limited resources, such as mobile photography and 24/7
surveillance. The privacy of our method may raise potential concerns when considering the removal
of some important occlusions in the original images, resulting in the disclosure of private information.
Therefore, how to ensure the user-agnostic security of our method needs further investment.

G MORE DEGRADATION ANALYSIS AND GENERALIZABLE VERIFICATION

We provide more visual results of decomposition ascribed analysis for diverse degradations in Figs. 11
and 12, to further verify our observation that the decomposed singular vectors and singular values
naturally undertake the different types of degradation information. In Figs. 10 and 13, we provide
more degradation analysis to validate the generality of the proposed decomposition ascribed analysis,
including downsampling, compression, color shifting, underwater enhancement, and sandstorm
enhancement. The former three types are ascribed into singular vector dominated degradations and
the latter two types are ascribed into singular value dominated degradations.

Experimentally, if we reexamine the two groups of degradation through SVD-ascribed analysis,
namely, rain, noise, blur, downsampling, compression, color shifting in singular vector dominated
and hazy, low-light, underwater enhancement, sandstorm enhancement in singular value dominated,
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Figure 9: An illustration of the decomposition ascribed degradation analysis on various image
restoration tasks through the lens of the singular value decomposition.

Figure 10: An illustration of the decomposition ascribed degradation analysis on various image
restoration tasks through the lens of the singular value decomposition.

it can be concluded that the singular vectors responsible for the spatial content information, while the
singular values represent the statistical properties of the image.

Theoretically, we verify the above conjecture from the signal formation perspective of SVD, where
any signal can be regarded as a weighted sum on a set of basis, i.e., X = UΣV T =

∑k
i=1 σiuiv

T
i .

In this light, the singular vectors ∪k
i=1{uiv

T
i } represent the base components of the signal for content

composition, and the singular values ∪k
i=1{σi} represent the combined coefficients for statistical

modulation. Their respective dominated degradation types are fundamentally determined by such
signal formation properties, i.e., content corruption and statistic distortion. Owing to the closed
form of the signal formation principle of SVD, the decomposition ascribed degradation analysis is
theoretically generalizable to most of scenes.
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Figure 11: An illustration of the decomposition ascribed degradation analysis on various image
restoration tasks through the lens of the singular value decomposition.

Figure 12: An illustration of the decomposition ascribed degradation analysis on various image
restoration tasks through the lens of the singular value decomposition.

H VISUAL COMPARISON RESULTS

We present the visual comparison results of the aforementioned image restoration tasks in Figs. 14
to 18, including singular vector dominated degradations rain, noise, blur, and singular value domi-
nated degradations low-light, haze. It can be observed that our DASL exhibits superior visual recovery
quality in both types of degradation, i.e., more precise content details in singular vector dominated
degradations and more stable global recovery in singular value dominated degradations, compared to
the integrated baseline method.
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Figure 13: An illustration of the decomposition ascribed degradation analysis on compound degrada-
tions, where the pre-ascribed singular vector dominated degradations and singular value dominated
degradations are marked. The homogeneous compound degradations refer to that both degradations
are ascribed at one side of singular vectors or singular values, and the heterogeneous compound
degradations refer to that the degradations are ascribed at both side of singular vectors and singular
values, and is consistent with ascription in single degradation analysis.

Rainy Image Rainy NAFNet Restormer AirNet

MPRNet MambaIR PromptIR IR-SDE IDR

DASL+MPRNet DASL+MambaIR DASL+PromptIR DASL+IR-SDE Ground Truth

Figure 14: Visual comparison with state-of-the-art methods on Rain100L dataset.
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Noisy Image Noisy NAFNet Restormer AirNet

MPRNet MambaIR PromptIR IR-SDE IDR

DASL+MPRNet DASL+MambaIR DASL+PromptIR DASL+IR-SDE Ground Truth

Figure 15: Visual comparison with state-of-the-art methods on BSD68 dataset.

Blurry Image Blurry NAFNet Restormer AirNet

MPRNet MambaIR PromptIR IR-SDE IDR

DASL+MPRNet DASL+MambaIR DASL+PromptIR DASL+IR-SDE Ground Truth

Figure 16: Visual comparison with state-of-the-art methods on GoPro dataset.
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Hazy Image Hazy NAFNet Restormer AirNet

MPRNet MambaIR PromptIR IR-SDE IDR

DASL+MPRNet DASL+MambaIR DASL+PromptIR DASL+IR-SDE Ground Truth

Figure 17: Visual comparison with state-of-the-art methods on SOTS dataset.

Low-light Image Low-light NAFNet Restormer AirNet

MPRNet MambaIR PromptIR IR-SDE IDR

DASL+MPRNet DASL+MambaIR DASL+PromptIR DASL+IR-SDE Ground Truth

Figure 18: Visual comparison with state-of-the-art methods on LOL dataset.
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