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Abstract

Counterfactual reasoning in narratives requires001
predicting how alternative conditions, contrary002
to what actually happened, might have resulted003
in different outcomes. One major challenge004
is to maintain the causality between the coun-005
terfactual condition and the generated counter-006
factual outcome. In this paper, we propose a007
basic VAE module for counterfactual reason-008
ing in narratives. We further introduce a pre-009
trained classifier and external event common-010
sense to mitigate the model collapse problem in011
the VAE approach, and improve the causality012
between the counterfactual condition and the013
generated counterfactual outcome. We evaluate014
our method on two public benchmarks. Experi-015
ments show that our method is effective.016

1 Introduction017

Counterfactual reasoning in narratives (CRN) is018

commonly known as predicting how alternative019

events, contrary to what actually happened, might020

have resulted in different outcomes (Qin et al.,021

2019; Ashida and Sugawara, 2022). Specifically,022

given the observed narrative S = (c, x, y), where023

c, x, and y denote the context, condition, and out-024

come, respectively, CRN considers how y′ would025

be if keeping the context c unchanged while per-026

turbing x to a similar but different x′. Figure 1027

presents a case of CRN.028

Even though it is considered a crucial compo-029

nent of intelligent systems (Pearl, 2009; Pearl and030

Mackenzie, 2018), only a few resources have been031

devoted to CRN. Some of the works (Hao et al.,032

2021; Chen et al., 2022; Li et al., 2023) design033

dataset-specific heuristic methods, but they are ac-034

tually abusing unique patterns, i.e., the feature of035

minimum editing, in the dataset, which limits the036

generality of their methods. Other works (Qin037

et al., 2019; Zhou et al., 2022) take advantage of the038

progress of pre-trained language models (PLMs),039

Figure 1: An example of counterfactual reasoning in
narratives. The example comes from TimeTravel (Qin
et al., 2019). The colored text in the counterfactual
outcome denotes the modified parts.

and fine-tune PLMs for CRN, i.e., learning the con- 040

ditional distribution p(y′|c,x′,S). Despite the suc- 041

cess of simulating real examples, the conditional 042

distribution is notorious for being susceptible to 043

exploiting artifacts of the dataset, instead of learn- 044

ing to robustly reason about counterfactuals (Qin 045

et al., 2019). For example, the models often directly 046

copy the original y or learn to paraphrase y without 047

acknowledging the counterfactual condition (Qin 048

et al., 2019; Hao et al., 2021). As a result, the pre- 049

dicted counterfactual outcome y′ usually conflicts 050

with the counterfactual condition x′. 051

Generally, CRN relies on the ability to find 052

causality in narratives (Chen et al., 2022), i.e., y′ 053

should express a clear causal relation to x′ to make 054

it clear how the perturbation makes the observed 055

outcome change. This problem naturally fits to 056

be formulated with causal mechanism (Pearl et al., 057

2016), which requires us to infer the background 058

knowledge that is compatible with (c, x′, y′). How- 059

ever, this is non-trivial as it involves estimating 060

the posterior of the background knowledge. Luck- 061

ily, with the variational technique (Kingma and 062

Welling, 2013), we are able to use the background 063

compatible with the observed S to approximate 064

the posterior distribution. In fact, the variational 065

process provides an approximation of the back- 066

ground of (c, x′, y′), but it may face the problem 067

of model collapse (Razavi et al., 2019). As a result, 068

the generated y′ may not be the precise effect of 069

x′, and the resulting model may be sub-optimal. 070

To mitigate this problem, we further propose two 071
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intuitive strategies, which introduce a pre-trained072

classifier and commonsense causality, to enhance073

the causality between (c, x′) and the generated y′.074

In this work, we propose a causal approach for075

CRN. We utilize the variational process to approx-076

imate the implicit background of counterfactual077

scenarios. In addition, we devise two strategies to078

alleviate the model collapse problem in this varia-079

tional process. First, inspired by research on natural080

language inference (Kang et al., 2018; Dziri et al.,081

2019), we want to ensure that the generated y′ en-082

tails its true condition x′. In other words, the model083

should correctly learn the influence of the condi-084

tion on the outcome. Therefore, we introduce a pre-085

trained classifier that estimates the likelihood of a086

text y entails an input (c, x). We use the Gumbel-087

softmax technique (Jang et al., 2016; Hu and Li,088

2021) to enable gradient back-propagation. Second,089

we exploit COMeT (Hwang et al., 2021) to retrieve090

diverse event causality tailored for (c, x′), which091

allows for deducing plausible event sequences and092

provides an explicit background for the unobserved093

counterfactual outcome y′.094

To summarize, we formulate CRN in a vari-095

ational framework and introduce event causality096

and a pre-trained classifier to further improve the097

causality between x′ and the generated y′. Our098

method is a general approach that is applicable to099

multiple tasks. The experiment proves the effective-100

ness of our method. We also study the practicality101

of the generated counterfactual narratives via a data102

augmentation experiment.103

2 Related Work104

Causality for NLP Causality targets to explore105

the causal relationships in the data (Pearl, 2009;106

Yao et al., 2021). Recently, there has been a strong107

interest in utilizing causal inference to enhance cur-108

rent natural language understanding and generation.109

These works are mainly studied in event detect110

(Chen et al., 2021), text classification (Mu and Li,111

2023), relation extraction (Liu et al., 2021a), etc.112

Another line of research attempts to equip the cur-113

rent text generation with counterfactual reasoning114

ability. These works involve fields such as dialogue115

generation (Ou et al., 2022), machine translation116

(Liu et al., 2021b), style transferring (Hu and Li,117

2021), etc. Yet there have been few works that118

apply causal perspective to counterfactual reason-119

ing in narratives. We adapt the ideas of the above120

works and propose additional strategies to improve121

the causality between the counterfactual condition 122

and the generated counterfactual outcome. 123

Counterfactual Story Generation Counterfac- 124

tual story generation aims to revise an original story 125

ending guided by a modified condition (Qin et al., 126

2019). Previous works (Chen et al., 2022; Li et al., 127

2023) usually utilize a two-stage approach. Gen- 128

erally, in the first stage, each token in the original 129

story ending is determined if it requires modifica- 130

tion. In the second stage, the identified words are 131

modified to align with the story logic under the 132

counterfactual condition. However, it is difficult 133

to migrate this dataset-specific framework to other 134

datasets (Ashida and Sugawara, 2022). Instead, 135

motivated by counterfactual reasoning (Pearl and 136

Mackenzie, 2018), we propose a general frame- 137

work for counterfactual reasoning in narratives. 138

Knowledge-Enhanced Narrative Generation 139

Narrative generation requires models to produce 140

fluent and coherent stories under predefined con- 141

ditions. Many studies inject structured knowledge 142

into the generation process. For example, Ji et al. 143

(2020) introduces explicit knowledge from Con- 144

ceptNet, and Mu and Li (2022) introduces struc- 145

tural event causality to improve narrative genera- 146

tion. These works prove that external knowledge 147

helps to enhance the coherence between the input 148

and output text. Motivated by these works, we 149

introduce commonsense causality tailored for the 150

counterfactual condition to improve the causality 151

between (c, x′) and the generated y′. 152

3 Methods 153

3.1 Problem Setting with Causal Mechanism 154

Figure 2: The proposed structural causal model. The
dashed circle indicates that the variable is latent, while
the solid circle indicates that the variable is observed.

Given a narrative S = (c, x, y), we perturb x 155

into a counterfactual condition x′ and want to pre- 156

dict the new outcome y′. To solve this problem, 157

we need to speculate on the background knowl- 158

edge compatible with (c, x′, y′), which allows us 159

to predict the precise effect of x′. This problem 160

is naturally suitable to be expressed with a causal 161

mechanism. Figure 2 shows the structural causal 162
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model (SCM) (Pearl, 2009) that describes the gener-163

ation process of narratives. Here the latent variable164

z denotes the unobserved background knowledge.165

The SCM thus defines a joint distribution:166

p(y,x, c, z) = p(y|x, c, z)p(x, c|z)p(z), (1)167

where p(z) is a standard Gaussian distribution fol-168

lowing common practices. Similarly, conditioned169

on the observed S, the joint distribution of the coun-170

terfactual scenario is defined as:171

p(y′,x′, c, z|S) =
p(y′|x′,c, z,S)p(x′, c|z,S)p(z|S),

(2)172

where p(y′|x′, c, z,S) is the decoder model re-173

quiring us to infer z from all (S, c, x′, y′) data.174

However, the inference of z involves estimating175

the posterior distribution of the knowledge, i.e.,176

p(z|c,x′,y′,S). We next introduce our basic vari-177

ational process to approximate the distribution.178

3.2 The Basic Variational Objective179

3.2.1 Variational Inference180

Our basic objective follows the common VAE ap-181

proach (Kingma and Welling, 2013). By intro-182

ducing the approximate network q(z|c,x′,y′,S), a183

lower bound of the model’s marginal log-likelihood184

(that marginalizes out z) is:185

log p(y′|c,x′,S) = log

∫
z

p(y′, z|c,x′,S)

≥ ELBO = Ez∼q(z|c,x′,y′,S) log
p(y′, z|c,x′,S)

q(z|c,x′,y′,S)
.

(3)186

For simplicity, we denote q(z|c,x′,y′,S) as q(z|·).187

Then, according to Equation 2, we have:188

ELBO

= Ez∼q(z|·)[log
p(y′, z, c,x′|S)

q(z|·) − log p(c,x′|S)]

≈ Ez∼q(z|·)[log p(y
′|z, c,x′,S) + log p(c,x′|z,S)]

− KL[q(z|·)||p(z|S)],

(4)189

where p(c,x′|S) is a constant for the given dataset190

and independent of the parameterized model.191

Hence, given the labeled set D which contains all192

(S, c, x′, y′) examples, our basic objective is:193

LVAE = − 1

|D|
∑
D

Ez∼q(z|·)[log p(y
′|z, c,x′,S)

+ λx log p(c,x
′|z,S) + λkKL[q(z|·)||p(z|S)].

(5)194

λx and λk are hyper-parameters. We use the cyclic195

schedule (Li et al., 2020) to anneal λk from 0 to 1196

to avoid excessive regularization of the KL term.197

3.2.2 p(y′|z, c,x′,S) vs. p(y′|c,x′,S)198

Current generative models follow the auto-199

regressive paradigm, but suffer from exposure bias.200

Note that (c, x, y) and (c, x′, y′) have similar con- 201

tent. When inference, given the input (S, c, x′), 202

p(y′|c,x′,S) have no information about the gold 203

y′, so it may paraphrase y. Differently, we encode 204

y′ into q(z|·), and use the KL term to bridge the gap 205

between q(z|·) and p(z|S). When inference, we 206

sample z ∼ p(z|S) and feed it into p(y′|z, c,x′,S). 207

This can somewhat alleviate the issue of exposure 208

bias and mitigate the problem of paraphrasing y. 209

3.2.3 Model Implementation 210

We use PLMs, e.g., BART (Lewis et al., 2019), 211

as backbone to implement p(y′|z, c,x′,S). We 212

first encode the input part (S, c, x′) into the con- 213

text vectors HC = BARTEncoder(S, c, x′), where 214

HC ∈ Rl×d, l is the total length of [S; c, x′], d is 215

the hidden size. To fuse z ∼ q(z|·) into PLMs, 216

as suggested in (Li et al., 2020), we concatenate z 217

with HC , and pass it into the decoder for autore- 218

gressive learning. The hidden state of t-th time step 219

of the target sequence hyt is computed by: 220

hyt = BARTDecoder(Y<t, [HC ; z]). (6) 221

The word distribution of t-th time-step over the 222

standard vocabulary V is: 223

P (yt|Y<t) = softmaxV (Wvhyt + b). (7) 224

To implement q(z|·) and p(z|S), we approxi- 225

mate them to Gaussian distributions. We use the 226

pre-trained BARTEncoder to initialize different 227

text encoders, which are used to encode S and 228

(c, x′, y′, S). Following several linear layers, we 229

obtain the mean and log-variance of two distribu- 230

tions, which are used to calculate the KL loss. To 231

implement P (c,x′|z,S), we adopt the in-batch 232

contrastive learning. For the positive example 233

(c, x′, z, S), we collect different x̄′ from the mini- 234

batch and regard (c, x̄′, z, S) as negative examples. 235

Then the representations of examples are projected 236

into scalar values for binary classification. 237

Training with the above base objective alone can 238

lead to model collapse, i.e., the KL term tends to 239

be zero. As a result, the decoder will ignore the 240

information from q(z|·), and the generated text is 241

not the precise result of x′. We next introduce 242

our two strategies, which introduce the pre-trained 243

classifier and external event causality to improve 244

the causality between (c, x′) and the generated y′. 245

3.3 Introducing the Pre-trained Classifier 246

Intuitively, we expect that the generated y′ truly 247

entails its condition x′. To achieve this goal, we 248

pre-train a classifier f([c, x, y]) that estimates the 249
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likelihood of the input (c, x) entailed by the output250

y. Motivated by (Chen et al., 2022), we use the251

training set of the used datasets to obtain positive252

and negative examples. For example, given the ex-253

ample (c, x, y, x′, y′), (c, x′) should entail by y′ but254

contradict with y, and (c, x) should entail by y but255

contradict with y′. That is, (c, x, y) and (c, x′, y′)256

are positive, and (c, x′, y) and (c, x, y′) are nega-257

tive. We initialize f(·) with BARTEncoder to keep258

the embedding space the same as the generator.259

Then, we train the generator so that its predicted260

outcome entails the corresponding condition with261

a high likelihood measured by the classifier:262

LCla =− 1

|D|
∑
D

Ez∼q(z|·),ỹ∼p(y|z,c,x,S′)[

log f([c, x, ỹ]) + log(1− f([c, x′, ỹ]))],

(8)263

where S′ = (c, x′, y′) and p(y|z, c,x,S′) is264

the mirror of p(y′|z, c,x′,S). Here, we con-265

sider p(y|z, c,x,S′) rather than p(y′|z, c,x′,S)266

because it has been optimized in Equation 4. In267

fact, we use the classifier to restrict the generated268

ỹ entails its true condition x but contradicts with269

x′. As in (Hu et al., 2017; Hu and Li, 2021), we270

use Gumbel-softmax technique to enable gradient271

backpropagation for the discrete text.272

3.4 Utilizing External Event Causalities273

The variational process provides an implicit back-274

ground for unobserved counterfactual outcomes,275

this further motivates us to utilize external event276

causalities which allows for introducing diverse277

event commonsense and providing an explicit back-278

ground for generating counterfactual outcomes.279

3.4.1 Retrieving Event Causality280

We use COMeT (Hwang et al., 2021) as the event281

knowledge base. We first feed the zero-hop events282

(c, x′) into COMeT to generate one-hop events with283

corresponding relations. The one-hop events are284

then fed into COMeT to generate two-hop events.285

We leave the details in Appendix A. We next orga-286

nize the retrieved knowledge into an event graph287

G = (V,E) where V denotes the node set and288

E denotes the edge set. Each node e ∈ V is an289

event which is a word sequence. Each edge in E290

is a tuple (eh, r, et) containing a head event eh, a291

relation r, and a tail event et. Then, we perform292

reasoning on G to select guided events, which are293

the possible effects of (c, x′). We use the selected294

events as guidance for generating y′.295

Figure 3: (a) The scores of one-hop and two-hop events
are parallelly calculated in each iteration. Color inten-
sity indicates the score difference. In each iteration,
the black arrows denote used edges, while the grey ar-
rows denote unused edges. (b) We concatenate Ek with
(S, c, x′) for the auto-regressive decoding.

3.4.2 Selecting Guided Events 296

Motivated by (Ji et al., 2020; Mu and Li, 2022), 297

we perform multi-hop reasoning on G to select 298

important event nodes. We iteratively compute the 299

relevance scores of multi-hop events with respect 300

to (c, x′), as shown in Figure 3(a). In each iteration, 301

we parallelly calculate the scores of events in the 302

same hop. For the tail event et, the score s(et) is 303

calculated by polymerizing information from its 304

neighbors Net including pairs of (eh, r): 305

s(et) =
1

|Net |
∑

(eh,r)∈Net

(s(eh) +R(eh, r, et)). (9) 306

At the beginning, zero-hop events, i.e., (c, x′), are 307

assigned a score of 1, e.g., s(c) = s(x′) = 1, while 308

other events are assigned a score of 0. R(·) is the 309

relevance of the edge (eh, r, et) with respect to the 310

(c, x′), which is calculated by: 311

R(eh, r, et) = σ(hT
(c,x′)Wk · [heh ;hr;het ]), (10) 312

where Wk ∈ Rd×3d, [·; ·] denotes the concate- 313

nation, h(c,x′) ∈ Rd is the embedding of (c, x′), 314

heh ,hr,het are the embeddings of eh, r, et. 315

We select the top-k events according to their 316

scores: Ek = topki(s(ei)). k is set to 4 af- 317

ter searching on the dev set. To fuse the guided 318

Ek into the generation, we concatenate (S, c, x′) 319

with Ek, and pass them to BARTEncoder to ob- 320

tain knowledge-enhanced context vectors HC̃ = 321

BARTEncoder(S, c, x′, Ek). Then, we concate- 322

nate HC̃ with z ∼ q(z|·), and feed it into the 323

decoder for autoregressive learning, i.e., y′ ∼ 324

p(y′|z, c,x′,S,Ek), as shown in Figure 3(b). 325

3.5 Training and Inference 326

Similar to (Mu and Li, 2022), we add an additional 327

object to guide the event selection. We maximize 328

the probability of selecting positive events by: 329

LE =

∑
D

|D|
∑
i

−li log p(ei)−(1−li) log(1−p(ei)), (11) 330

where p(ei) = σ(s(ei)) is the probability that the 331

event ei is selected. li is the label of ei which is 332
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subject to the overlap between ei and the gold y′.333

The details are in Appendix A. The final object is:334

L = LV AE + αLCla + βLE , (12)335

where α and β are hyper-parameters.336

When inference, given input (S, c, x′), we first337

sample z ∼ p(z|S), then we select guided event338

Ek according to (c, x′), at last we generate the339

counterfactual outcome y′ ∼ p(y′|z, c,x′,S,Ek).340

4 Experiment341

4.1 Datasets342

We evaluate our method on two datasets.343

(1) TimeTravel (Qin et al., 2019) is a counter-344

factual story rewriting dataset. It is built on the345

ROCStories (Mostafazadeh et al., 2016) corpus,346

which consists of a large set of five-sentence sto-347

ries S = s1:5. s1 is set as the context c, s2 is set as348

the condition x, and s3:5 sets up the outcome y. In349

TimeTravel, the initial condition x is rewritten by350

humans into a counterfactual condition x′, and then351

annotators perform minimal edits to the original352

ending y to create the counterfactual outcome y′.353

In TimeTravel, the major challenge is the trade-off354

between generating natural stories and modifying355

the original y with minimal edits.356

(2) PossibleStories (Ashida and Sugawara,357

2022), also built on the ROCStories corpus, con-358

siders the problem that possible consequences for359

the same context may vary depending on the situa-360

tion we refer to. It is originally a multiple-choice361

dataset, where each example consists of the original362

context c, the original ending y, the counterfactual363

question x′, and candidate options including the364

counterfactual ending y′. To adapt it to text gener-365

ation, we set the original condition x as a simple366

text “what’s the most likely story ending?", then we367

generate y′ according to (c, x, y, x′).368

The statistics of two datasets are in Appendix B.369

4.2 Baselines370

We produce the following kinds of baselines:371

• Prompting large chat models, e.g., Chat-372

GLM2(6B) (Zeng et al., 2022), Llama2Chat(7B)373

(Touvron et al., 2023), ChatGPT (OpenAI. ,374

2023). We use one-shot prompting for exper-375

iments, the used prompts are in Appendix C.376

• Supervised fine-tuning. We fine-tune sev-377

eral pre-trained language models, including378

GPT2(base) (Radford et al., 2019), T5(base)379

(Raffel et al., 2020), BART(base) (Lewis et al.,380

2019), and Llama2(7B) (Touvron et al., 2023).381

We use QLoRA (Dettmers et al., 2023) to adapt 382

Llama2(7B) on a single 3090 GPU. 383

For TimeTravel, we additionally compare our 384

method with some task-specific methods: 385

• DELOREAN (Qin et al., 2020) and EDUCAT 386

(Chen et al., 2022) which regard the task as a con- 387

trollable generation problem, and unsupervised 388

edit the original y to the counterfactual y. 389

• CLICK, a two-stage method, first detects which 390

words in the original ending need to be modified, 391

and then implements the modification. 392

4.2.1 Implementation Details 393

We use the train set of the two datasets to train the 394

classifier. We use the AdamW optimizer and set 395

lr to 5e-6. We select checkpoint according to F1 396

on the dev set. The best checkpoint achieves the 397

F1 scores of 66.1 and 70.1 in the test set of two 398

datasets. When training the counterfactual genera- 399

tor, we use the AdamW optimizer and set lr to 5e-5. 400

We linearly decrease lr to zero with a 10% warmup 401

ratio. We search for the best hyper-parameters ac- 402

cording to ENTScore on the dev set of each dataset. 403

The searched parameters are in Appendix D. When 404

inference, we adopt the multinomial sampling strat- 405

egy to generate y′, and we repeat for 5 times to 406

calculate the average performance. 407

4.3 Automatic Evaluation 408

Metrics For Timetravel, we follow the previ- 409

ous works and use BLEU (Papineni et al., 2002), 410

BertScore (Zhang et al., 2019), ENTScore (Chen 411

et al., 2022), and HMean = 2·BLEU·ENTScore
BLEU+ENTScore as met- 412

rics. BLEU and BertScore evaluate the similar- 413

ity between the generated y′ and the ground truth. 414

ENTScore evaluates the coherence between (c, x′) 415

and the generated y′. For PossibleStories, we use 416

BLEU, BertScore, and ENTScore as metrics. 417

4.3.1 Our Method vs. Baselines 418

The automatic evaluation result is shown in Table 1 419

and 2. We can see BART generally performs better 420

than GPT2 and T5, therefore we use BART as the 421

backbone. In addition, we observe that: 422

• In Table 1, unsupervised editing-based methods 423

have poor performances, indicating that this kind 424

of unsupervised approach is unable to produce 425

qualified counterfactual stories. 426

• Compared with BART, our method achieves 427

an obvious improvement, especially in the 428

ENTScore metric, e.g., obtaining a 4.2/4.0 gain 429

on two datasets. In addition, our method out- 430
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TimeTravel

Methods BLEU BertS. ENTS. HMean

Prompting Chat Models
ChatGLM2(6B) 16.5 60.0 66.2 26.4
Llama2Chat(7B) 16.9 58.8 77.8 27.8
ChatGPT 36.4 69.8 82.6 50.6

Unsupervised Editing-based Methods
DELOREAN 23.9 59.9 51.4 32.6
EDUCAT 44.1 74.1 32.3 37.3

Supervised Fine-tuning
CLICK 46.7 73.2 36.7 41.1
GPT2 63.5(0.2) 77.8(0.3) 43.5(1.0) 51.6(0.7)
T5 71.2(0.3) 80.1(0.1) 42.7(0.8) 53.3(0.6)
BART 66.5(0.3) 79.4(0.2) 52.0(1.0) 58.3(0.6)
Llama2(7B) 70.3(0.4) 79.9(0.2) 54.1(0.7) 60.9(0.5)
Ours 67.0(0.1) 79.5(0.1) 56.2(0.4) 61.1(0.2)

Ablation Experiment

w/o Clas 67.5(0.2) 79.8(0.1) 54.6(0.6) 60.4(0.4)
w/o Event 65.6(0.4) 79.0(0.1) 55.2(0.5) 60.0(0.4)
w/ VAE 65.9(0.3) 79.2(0.1) 54.1(0.6) 59.4(0.4)

Table 1: The automatic and ablation-study result on
TimeTravel. We report the mean(std) under 5 random
experiments. Scores with bold denote the best results.

PossibleStories

Methods BLEU BertScore ENTScore

Prompting Chat Models
ChatGLM2(6B) 1.9 48.4 38.8
Llama2Chat(7B) 3.0 49.9 43.8
ChatGPT 5.0 53.5 48.5

PLMs-based Finetuning
GPT2 6.0(0.7) 49.4(0.3) 37.3(0.4)
T5 5.7(0.3) 49.2(0.3) 35.8(0.7)
BART 13.2(0.5) 53.8(0.2) 42.9(1.0)
Llama2(7B) 16.3(1.1) 54.4(0.6) 45.1(0.9)
Ours 16.1(0.2) 56.2(0.1) 46.9(1.0)

Ablation Experiment

w/o Clas 15.7(0.4) 55.6(0.3) 45.6(0.7)
w/o Event 15.5(0.4) 55.8(0.2) 46.0(0.5)
w/ VAE 15.5(0.5) 55.9(0.3) 45.0(0.4)

Table 2: The automatic and ablation-study result on Pos-
sibleStories. We report the mean(std) under 5 random
experiments. Scores with bold denote the best results.

performs Llama2(7B), which indicates that our431

method is effective in improving the causality432

between (c, x′) and the generated y′.433

• Due to the extremely large-scale pre-training,434

Chat models, e.g., ChatGLM2, Llama2Chat, and435

ChatGPT, have a strong ability to generate co-436

herent stories. However, chat models get a low437

BLEU and BertScore, indicating that they tend438

to less consider what has happened.439

• On TimeTravel, the ENTScore result of our440

method is not as good as the results of chat mod- 441

els, but our method achieves the best trade-off 442

between BLEU and ENTScore. On PossibleSto- 443

ries, our method approximates ChatGPT and sur- 444

passes ChatGLM2 by a large margin. This indi- 445

cates that the small-model-based sophisticated 446

method is expected to be comparable to LLM- 447

based prompting, indicating that it still has re- 448

search value in the era of LLMs. 449

4.3.2 Ablation Study 450

Settings To investigate the effectiveness of differ- 451

ent components, we devise the following ablated 452

variants to compare with our full model. (1) “w/o 453

Event" means we do not use event causality. (2) 454

“w/o Cla" means we remove the pre-trained clas- 455

sifier. (3) “w/ VAE" means we ablate both event 456

causality and the pre-trained classifier. In this case, 457

this variant degenerates into the basic VAE module. 458

Result The ablation study result is shown in Ta- 459

ble 1 and 2. We have the following observations. 460

• Compared with BART, “w/ VAE" achieves a 461

2.1/2.1 gain in ENTScore on both datasets. This 462

demonstrates the effectiveness of the variational 463

process. The possible reason is that the varia- 464

tional process learns an approximation of the 465

latent z, which provides an implicit background 466

for generating counterfactual outcomes. 467

• Compared with “w/ VAE", “w/o Clas" and 468

“w/o Event" achieve higher ENTScore on both 469

datasets, indicating the two strategies contribute 470

to improving the causality between x′ and the 471

generated y′. This makes sense because (1) exter- 472

nal event causality provides a causal background 473

for generating y′ and (2) the classifier will pun- 474

ish the unqualified generation. The best result is 475

achieved when combining two strategies, these 476

show that two strategies complement each other. 477

• “w/o Clas" performs better than “w/o Event" 478

on both datasets. This shows that the classifier 479

is more important than event knowledge. The 480

possible reason lies in two aspects. (1) Though 481

retrieved event causality may contain useful in- 482

formation for generation, unrelated and noisy 483

knowledge may also be retrieved. (2) The clas- 484

sifier directly measures the causality between 485

the condition and the generated outcome, and 486

penalizes incoherent generation. 487

4.4 Manual Evaluation 488

Setting For TimeTravel, we follow previous 489

works and use Minimal-Edits and Coherence as 490

6



Methods
TimeTravel PossibleStories

MinEdits Coherence Similarity Coherence
W L W L W L W L

vs. w/o Clas 14.7 23.7 28.0 10.3 10.0 9.0 16.3 7.0
vs. w/o Event 17.0 25.3 37.3 10.0 13.3 7.0 24.3 6.7
vs. Llama2Chat(7B) 61.0 11.0 24.3 37.7 32.3 12.7 41.7 20.7
vs. ChatGPT 52.3 15.7 16.7 47.0 21.7 13.0 23.7 27.3

Table 3: The manual evaluation result. MinEdits de-
notes Minimal-Edits.

manual evaluation metrics. Coherence denotes the491

logical consistency between the counterfactual con-492

text (c, x′) and generated y′. Minimal-Edits de-493

notes the extent of minimal revision between the494

original y and the generated y′. For PossibleStories,495

we use Similarity and Coherence as metrics, where496

Similarity evaluates the similarity between the gen-497

erated y′ and the ground truth. We carry out pair-498

wise comparisons between our method with some499

baselines, including Llama2Chat, ChatGPT, and500

two ablated models “w/o Event" and “w/o Clas".501

We randomly sample 100 cases from the two test502

sets for each pair of models, respectively. Three an-503

notators are recruited to make a preference among504

Win, Tie, and Lose given the input and two outputs505

generated by our model and a baseline respectively.506

The annotators are research students from the field507

of commonsense text generation to make sure they508

have a fair judgment of used metrics.509

Result The result is shown in Table 3. Com-510

pared with the two ablated variants, our full method511

shows an increase in Coherence, but a decrease in512

Minimal-Edits. This is because both of the two513

strategies prevent copying the original ending y.514

On TimeTravel, our full model performs better in515

Minimal-Edits, but not as well in Coherence as516

the chat models. This is consistent with automatic517

evaluation. We calculate Fleiss’s kappa reliability518

as the inter-rater agreement. For TimeTravel, the519

agreement of Minimal-Edits and Coherence is 0.43520

and 0.56. For PossibleStories, the agreement of521

Similarity and Coherence is 0.50 and 0.52.522

4.5 Further Discussion523

4.5.1 Analyzing the VAE Module by524

Manipulating z525

Since the strength of our VAE module lies in its526

ability to approximate the posterior distribution,527

we are interested in whether the encoded z benefits528

counterfactual narrative generation. We conduct a529

pilot study on TimeTravel. We first replace z ∼530

Figure 4: Linearly interpolating zprior and zposterior
for the VAE decoding, i.e., y′ ∼ p(y′|z, c,x′,S).

p(z|S) with a random noise znoise ∼ N (0, 1), and 531

feed znoise into the VAE decoder p(y′|z, c,x′,S) 532

for generation. We get a 43.8 ENTScore, which is 533

significantly worse than the result of BART. This is 534

reasonable because the random noise disrupts the 535

model structure and brings about a significant nega- 536

tive impact. Next, we make a linearly interpolation 537

z̄ = α ·zprior+(1−α) ·zposterior, where zprior ∼ 538

p(z|S) and zposterior ∼ q(z|c,x′,y′,S), and feed 539

z̄ for generation. The result is shown in Figure 4. 540

The larger the proportion of zposterior, that is, the 541

more posterior information about the gold y′, the 542

better the result is achieved. When using zposterior 543

for generation, we get a 56.5 ENTScore, but the 544

value is still not satisfactory enough. The possible 545

reason is that too much information is lost during 546

the process of encoding the sequence into a vec- 547

tor z, making it hard for the model to reconstruct 548

the gold y′. According to above results, we specu- 549

late that the more effective solution to this problem 550

is to introduce more diverse and more large-scale 551

data. Therefore, we conduct the following data 552

augmentation experiment. 553

4.5.2 Generating Counterfactual Stories for 554

Data Augmentation 555

(Qin et al., 2019) provides an additional data parti- 556

tion that only has counterfactual conditions x′ but 557

no counterfactual outcomes. This partition contains 558

about 97k examples. We use this partition to study 559

the practicality of the generated counterfactual sto- 560

ries via a data augmentation experiment. Specif- 561

ically, we use our ablated variant “w/o Event" as 562

the generator since its performance is not signifi- 563

cantly worse than our full model, and there is no 564

need for external knowledge, making it easy to use. 565

For each (S, c, x′), we use “w/o Event" to generate 566

60 candidates and keep the one with the highest 567

ENTScore as the pseudo counterfactual outcome, 568

denoted as ỹ′. Finally, we obtain the pseudo set 569

DP = {(S, c, x′, ỹ′)}. We test this set for both 570

generation and classification tasks. 571

Testing for the Generation Task First, We only 572

use DP to directly fine-tune BART and Llama2, 573
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(a) (b)

Figure 5: (a): Fine-tuning BART and Llama2(7B) with
a different number of pseudo examples. (b): Fine-tuning
BART via mixing the labeled set D and a different num-
ber of pseudo examples.

Figure 6: Fine-tuning RoBERTa-large with different
types of training examples.

i.e., learning p(y′|c,x′,S). The result is shown in574

Figure 5(a). When training with about 32k pseudo575

examples, BART achieves a 52.0 ENTScore, which576

is obtained using the labeled set D. When using577

more pseudo examples for training, the result con-578

tinuously improves. We have a similar observation579

from the result of Llama2(7B). Because finetun-580

ing Llama2(7B) is time-consuming, e.g., it takes581

about 1.5 hours to train an epoch with 30k samples,582

we use a maximum of 50k samples for fine-tuning.583

Next, we mix the labeled set D and a different584

number of pseudo examples to fine-tune BART.585

The result is shown in Figure 5(b). When mixing586

D and all pseudo examples, BART obtained a 70.1587

ENTScore, which is better than ChatGLM2 and588

closer to Llama2Chat. However, as the number589

of pseudo examples increases, BLEU continues to590

decline, but overall the decline is acceptable.591

Testing for the Classification Task Motivated592

by (Chen et al., 2022), we construct a binary classi-593

fication task to test the quality of pseudo examples,594

which is the same as training the classifier. We595

explore three types of training examples to train596

RoBERTa-large (Liu et al., 2019) and then validate597

on the test set of TimeTravel: (1) the labeled set598

D, (2) the pseudo set DP in which we randomly599

sample a different number of pseudo examples, and600

(3) the mixed set in which we mix the label set D601

and a different number of pseudo examples. The F1602

result on the test set of TimeTravel is shown in Fig-603

ure 6. When training with more pseudo examples,604

F1 achieves a stable improvement. The F1 under605

the mixed set is better than that under the labeled606

set, indicating that the pseudo set is an effective 607

supplement to the labeled set. 608

Overall, these results demonstrate the practical- 609

ity of the generated pseudo examples, which further 610

proves the effectiveness of our method. 611

4.5.3 Case Study and Error Analysis 612

Original
Story

A man dug a well on his farm. Instead of water,
though, he struck oil. Jubilant, he placed some calls.
A large oil company arrived the next day. They bought
the land from the man for a million dollars.

Counterfact-
ual Context

A man dug a well on his farm.
Instead of water, though, he struck fossils.

w/o Clas
Jubilant, he placed some calls. A large fossils
company arrived the next day. They bought the land
from the man for a million dollars.

w/o Event
Jubilant, he placed some calls. A large oil company
arrived the next day. They bought the land from the
man for a million dollars.

Llama2Chat
Excited, he placed some calls. A paleontology company
arrived the next day. They bought the land from the
man for a large sum of money!

ChatGPT

Jubilant, he contacted a local museum to share his
discovery. A team of paleontologists arrived the next
day. They offered to buy the fossils from the man
for a substantial amount of money.

Ours
Jubilant, he placed some calls. A large fossil
company arrived the next day. They bought the fossils
from the man for a million dollars.

Table 4: A case study with the generated texts by differ-
ent models. The case is from the test set of TimeTravel.
Green text denotes the coherent words. Red text denotes
the incoherent words.

Table 4 presents a case study. The counterfactual 613

ending generated by ChatGPT is coherent, but it 614

differs significantly from the original ending. Our 615

model generates a coherent counterfactual ending 616

with minimal-edits. However, we find that the is- 617

sue of paraphrasing y still exists in our method, as 618

shown in Appendix E, Table 5. But this issue less- 619

likely occurs in large chat models. We speculate 620

that there are two reasons: (1) the problem of expo- 621

sure bias cannot be completely eliminated; (2) The 622

used model is small, and the scale and diversity of 623

data are insufficient. More examples can be seen 624

in Appendix E, Table 9. 625

5 Conclusion 626

In this work, we formulate counterfactual reason- 627

ing in narratives in a VAE framework. In addi- 628

tion, we introduce a pre-train classifier and exter- 629

nal event causality to further improve the causality 630

between the counterfactual condition and the gen- 631

erated counterfactual outcome. The experiment 632

proves the effectiveness of our method. We also 633

conduct a data augmentation experiment to verify 634

the practicality of our method. 635
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6 Limitations636

We construct our method based on small-scale637

datasets and the small model, e.g., BART, there-638

fore our method cannot outperform large language639

models. In the experiment, we find that fine-tuned640

Llama2 performs better than fine-tuned BART. This641

indicates that constructing our method upon larger642

pre-trained models may have a better performance.643

In addition, the generated counterfactual stories are644

beneficial for counterfactual narrative reasoning.645

This foreshadows the future direction, that is, we646

can transform x into different x′ through different647

perturbations, thus generating diverse counterfac-648

tual stories for data augmentation. Different from649

predicting counterfactual outcomes, it is easy to650

perturb x into x′, and there have been a lot of re-651

lated research works. We leave this in the future652

work.653

7 Ethical Considerations654

This paper mainly focuses on narrative reasoning.655

It describes event relationships in human daily life,656

and does not involve sensitive, biased, or harmful657

content. The datasets used in this work does not658

involve any sensitive data, but only crowd-sourced659

datasets released in previous works, including Roc-660

Stories (Mostafazadeh et al., 2016), TimeTravel661

(Qin et al., 2019), and PossibleStories (Ashida and662

Sugawara, 2022). We believe that our research663

work meets the ethics of ACL.664
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A Details for Constructing Event836

Causality Graph837

To obtain event causality knowledge for counterfac-838

tual narrative generation, we use COMeT as event839

knowledge base. COMeT is a transformer model840

trained on ATOMIC (Sap et al., 2019) that gener-841

ates nine kinds of inferences of events in natural842

language. In our work, we select 8 relations that are843

causal related for retrieving event knowledge. They844

are xNeed, xIntent, Causes, HasSubEvent, oEffect,845

oWant, xEffect, xWant. Given a query event, we846

retrieve 5 knowledge tuples for each relation. We847

first feed the central events (c, x′) into COMeT to848

generate one-hop events with corresponding rela-849

tions. The one-hop events are then fed into COMeT850

to generate two-hop events. After that, we obtain851

many event paths. Several heuristic rules are ap-852

plied to filter low-quality paths. For example, if853

an event in a path contains less than 2 words or854

more than 8 words, the path will be discarded. Fi-855

nally, we transform the retained event chains into856

an event graph that simulates the evolution ten-857

dency of events centered on (c, x′), and provides a858

explicit background for the unseen counterfactual859

outcome.860

We heuristically use the word-overlap ratio to861

label event nodes. That is, an event is labeled as862

positive if 60% of event tokens are contained by the863

gold y′. The event labels are used as supervision864

for selecting guided events.865

B Statistics of the Used Datasets866

The statistics of the used datasets are shown in867

Table 6.868

C The Prompts for Different Tasks869

Table 8 presents the prompts we used for utilizing870

chat models.871

D Hyper-Parameters Used in This Work872

The searched hyper-parameters on two datasets are873

shown in Table 7.874

E Supplementary Cases875

Table 5 shows a case for error analysis, in which our876

method still copies the original y. Table 9 presents877

some cases with the generated counterfactual out-878

come by different models. The case #1 is from the879

test set of TimeTravel, and the case #2 is from the880

test set of PossibleStories.881

Original Story

Megan loved her sock monkey. She took
it to her grandad’s house when she
visited him. Megan got home and
realized she had left her monkey. I
had to meet grandad halfway to his
house and pick up her monkey.

Original ending Megan was so happy and she
was then able to go to bed.

Counterfactual
question:

Why was it so important to get the
sock monkey back before bedtime?

w/o Clas The monkey needed to be taken back
before Megan got to play with it.

w/o Event Megan was so happy and she was
then able to go to bed.

Llama2Chat Megan needs to play with her
sock monkey before going to bed.

ChatGPT Megan couldn’t sleep without
her sock monkey by her side.

Ours Megan was so happy and she
was then able to go to bed.

Table 5: An example for error analysis. The case is from
the test set of PossibleStories.

Datasets Train Dev Test

TimeTravel 28363 1871 1871
PossibleStories 3404 458 671

Table 6: Statistics of the datasets used in this work.

Datasets bs lr α β λx

TimeTravel 8 5e-5 1.0 0.5 1.0
PossibleStories 8 5e-5 0.5 0.5 0.5

Table 7: The searched hyper-parameters.

11



Tasks Prompt

TimeTravel

Each story contains 5 sentences, where the first two sentences are the story premise, and the last
3 sentences are the story ending. I will apply subtle a perturbation to the second sentence, making
the first two sentences a counterfactual story premise. Due to the slight perturbation, the
counterfactual premise is very similar to the original premise, with only some words being different.
According to the original story and the counterfactual story premise, you are required to predict the
counterfactual story ending. Note that the counterfactual story ending should be similar to the
original story ending, as well as being coherent with the counterfactual story premise.

Here is one example:

###
<Original 5-sentences story>
1. Bella wanted to cook some spaghetti and meatballs.
2. She discovered she had no pasta noodles.
3. She found a recipe online that used spaghetti squash instead.
4. Bella luckily had a spaghetti squash on hand.
5. She was surprised to find the spaghetti and meatballs delicious!

<Counterfactual story premise>
1. Bella wanted to cook some spaghetti and meatballs.
2. She realized she didn’t have the time to make it properly so she changed made an omelette instead.

<Counterfactual story ending >
3. She found a recipe online that used egg whites instead.
4. Bell luckily had many eggs on hand. \\
5. She was surprised to find the egg white omelette delicious!

###

Now, given the following example, please write the counterfactual story ending.
There should be only three sentences at the counterfactual story ending.

<Original 5-sentences story>
{original_story}

<Counterfactual story premise>
{counterfactual_premise}

<Counterfactual story ending>

PossibleStories

You will observe a story that consists of a context and an ending. Then given the counterfactual
question, please generate a new story ending that is compatible with the question.

Here is an example:

###<Observed story context>
Fred and James both claimed they were the best basketball player. One day they decided to find
out who was better. James loved to brag, but Fred was focused on the game. Eventually Fred beat
James by 1 point.

<Observed story ending>
James learned that day to focus on the game, not on bragging.

<Counterfactual question>
What is most likely to happen if Fred has a lot of empathy for others?

<Counterfactual story ending>
Fred felt bad that he won, so the next game he eased up and let James win.

###

Now, given the following example, please write the counterfactual story ending.
You can only generate one sentence, do not add additional content.

<Observed story context>
{original_context}

<Observed story ending>
{original_ending}

<Counterfactual question>
{cf_context}

<Counterfactual story ending>

Table 8: The prompts used for different tasks.
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#1

Original
Story

Myla was asked to be in a play. She a had a leading role.
Myla was struggling to remember her lines.
Her mother began helping her practice daily.
With her mother’s help Myla memorized her lines quickly.

Counterfact-
ual Context

Myla was asked to be in a play.
She declined because she wasn’t interested.

w/o Clas
Myla was struggling to remember her lines.
Her mother began helping her practice daily.
With her mother’s help Myla memorized her lines quickly.

w/o Event
Myla was struggling with her singing.
Her mother began watching her practice daily.
With her mother’s help Myla practiced her singing quickly.

Llama2Chat She wished she had taken the opportunity when it was offered.
Myla realized her mistake and tried to find another chance.

ChatGPT
Myla’s friend offered to take her place in the play. Her friend’s
mother began helping her practice daily. With her friend’s
mother’s help, Myla’s friend memorized her lines quickly.

Ours

Myla decided to audition for a different play,
and Myla was struggling to remember her lines.
Her mother began helping her practice daily.
With her mother’s help Myla memorized her lines quickly.

#2

Original Story
Anne liked to bake. She bought a new pie pan for baking pies.
She planned on using it a lot this fall.
When it was time to test it out, she couldn’t find it.

Original ending Her son had taken it and used it in the sandbox!

Counterfactual question: What is most likely to happen after this if she
was still able to make the pies?

w/o Clas Her son had taken it and used it in the sandbox!

w/o Event When she tried to bake them last year, the butter
burnt off the pan and they all melted.

Llama2Chat She made a delicious pie that everyone loved.

ChatGPT She would have baked a delicious pie using a different pan.

Ours She could try it out a little more time later
and it gave her better results.

Table 9: Some cases with the generated counterfactual outcomes by different models.
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