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ABSTRACT

Visual foundation models have achieved remarkable progress in scale and versa-
tility, yet understanding the 3D world remains a fundamental challenge. While
2D images contain cues about 3D structure that humans readily interpret, deep
models often fail to exploit them, underperforming on tasks such as multiview
semantic consistency–crucial for applications including robotics and autonomous
driving. We propose a self-supervised approach to enhance the 3D understand-
ing of vision foundation models by (i) introducing a temporal nearest-neighbor
consistency loss that finds corresponding points across video frames and enforces
consistency between their nearest neighbors, (ii) incorporating reference-guided
ordering that requires patch-level features to be not only expressive but also con-
sistently aligned, and (iii) constructing a mixture of video datasets tailored to these
objectives, thereby leveraging rich 3D information. Our method, 3DPoV, achieves
state-of-the-art performance in keypoint matching under viewpoint variation, as
well as in depth and surface normal estimation, and consistently improves a di-
verse set of backbones, including DINOv3.

1 INTRODUCTION

Recent advances in dense self-supervised learning have yielded feature representations that are re-
markably effective for a variety of vision tasks, including object part recognition, dense retrieval,
and semantic matching. Models like DINO (Caron et al., 2021) and its successors demonstrate that
fine-grained correspondence can emerge even without explicit labels. However, a critical shortcom-
ing remains: robustness to viewpoint change. When the camera pose shifts, these representations
often degrade substantially, revealing a lack of true 3D spatial understanding.

This challenge is especially important in real-world scenarios where objects are seen from multi-
ple perspectives, and consistent recognition across views is crucial. Existing self-supervised ap-
proaches based on static images or temporally adjacent frames–while effective in learning texture
and semantics–struggle to capture geometric cues like depth, structure, or object permanence under
motion. This gap has been increasingly highlighted by benchmarks like Probe3D (El Banani et al.,
2024), which systematically exposes these limitations across keypoint matching, depth prediction,
and surface normal estimation tasks.

To address this, we propose 3DPoV (3D understanding via Patch Ordering on Videos), a post-
training strategy for enhancing multiview spatial consistency by enforcing temporal alignment
across tracked patches. Our method builds on the insight that viewpoint changes induce system-
atic deformations in patch-level similarity patterns. By supervising the relative ranking of features
extracted along point tracks over time, 3DPoV encourages the network to learn descriptors that
remain consistent across large temporal and viewpoint shifts.

Unlike prior approaches such as TimeTuning (Salehi et al., 2023) and MoSiC (Salehi et al., 2024),
which operate through temporal propagation of segmentation maps, or NeCo (Pariza et al., 2025),
which focuses on intra-image part ordering, our framework directly aligns patch-wise relationships
across frames. It leverages differentiable sorting (Petersen et al., 2022) to compare similarity struc-
tures over reference patches, and uses a teacher-student setup grounded in explicit temporal tracking
to provide stable supervision under motion and occlusion.
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By leveraging video sequences and lightweight fine-tuning, 3DPoV instills emergent 3D reasoning,
with consistent gains across all Probe3D tasks–particularly under large viewpoint changes, occlu-
sion, and lighting variation. Our approach narrows the gap between 2D feature learning and 3D
understanding, offering an efficient and scalable path to enhance foundation models for geometry-
aware visual reasoning. The main contributions of 3DPoV are as follows:

• We introduce a temporal permutation loss anchored by point tracks, which supervise the
relative ordering of patch features across frames. This directly trains the model to produce
viewpoint-invariant descriptors without relying on crops or masks.

• We propose a teacher–student setup where reference frames are also passed through the
student–unlike prior works–yielding features that are both discriminative and sortable un-
der motion and occlusion; stability is further ensured through a reference pool mixing ex-
ternal frames with internal samples from the same video

• We demonstrate that 3DPoV achieves consistent improvements across all Probe3D diffi-
culty regimes. Unlike prior approaches that trade robustness at large viewpoint shifts for
small-viewpoint gains, our method improves uniformly across viewpoint variation, occlu-
sion, and lighting changes.

2 BACKGROUND

Self-supervised learning on videos has leveraged temporal coherence to improve semantic con-
sistency, but often without explicitly modeling spatial alignment. TimeTuning (Salehi et al., 2023)
propagates cluster assignments across frames to stabilize semantics, while MoSiC (Salehi et al.,
2024) strengthens this with point tracks for improved consistency. However, both methods remain
centered on propagating semantic groupings rather than directly optimizing for viewpoint-robust
spatial understanding.

Spatially-aware ordering methods such as NeCo (Pariza et al., 2025) address viewpoint sensitivity
in images by supervising the relative ordering of patch similarities via differentiable sorting. This
approach enhances local spatial structure and yields more context-aware representations, making
it particularly relevant to our work. However, NeCo is restricted to static images and overlapping
crops, which assume a fixed viewpoint and discard the global context that intrinsically encodes
spatial structure. These assumptions limit its applicability to videos, where motion and viewpoint
changes dominate.

Evaluation frameworks such as Probe3D (El Banani et al., 2024) expose these gaps by probing ro-
bustness under viewpoint changes across tasks like keypoint matching, depth estimation, and surface
normal prediction. Existing models tend to perform well under small viewpoint differences but suf-
fer a sharp drop in accuracy as the viewpoint gap increases, highlighting the need for methods that
improve consistently across all regimes. More recently, models such as DINOv3 (Siméoni et al.,
2025) have explicitly targeted these evaluations, reporting strong results and emphasizing the grow-
ing role of geometry-aware benchmarks in guiding self-supervised learning. In addition, Probe3D
combines quantitative metrics with qualitative inspection, offering a diagnostic lens into whether
models truly encode intrinsic 3D structure rather than relying on priors, appearance, or texture cues.
The systematic gaps highlighted by Probe3D motivate our approach, which is designed to improve
spatial consistency across viewpoint variation.

3 METHOD

We propose 3DPoV, a frameworl for learning temporally consistent dense features from videos by
leveraging point tracks and patch-level ordering. The method builds on a teacher–student archi-
tecture, where the student processes video frames independently and the teacher provides a stable
anchor frame for supervision (Figure 1). To enforce temporal consistency, we track a grid of points
across frames and extract features at aligned locations.

Rather than matching features directly, we align the relative similarity structure of tracked patches
over time. For each frame, we compute similarity rankings with respect to a shared set of reference
features and use differentiable sorting to obtain soft permutation matrices. The student is then trained
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to match the teacher’s anchor-frame permutations, encouraging viewpoint-invariant descriptors that
remain consistent under motion, occlusion, and appearance changes.

Figure 1: 3DPoV: Learning 3D-aware representations via Patch Ordering in Videos. We begin by
extracting motion trajectories Trajf,i from raw video clips using CoTrackerV3. The video is parsed
into frames, and each is processed by the student and teacher networks to produce feature maps
Zstu, Z teach ∈ Rp×d×nf . Using the tracked coordinates from Trajf,i, we resample features to obtain
patch sequences Fs (student) and Ft (teacher). Reference features Fr are extracted from other batch
frames using the student network. Pairwise cosine distances Di,j are computed between Fs and Fr,
and between Ft and Fr. These distances are sorted via a Differentiable Sorting module, producing
permutation matrices Perm ∈ Rnpq×npr×npr that enforce consistent patch ordering across time.

Preliminaries Given a video clip X ∈ Rh×w×c×nf , where h × w is the spatial resolution, c
the number of channels, and nf the number of frames, we extract dense patch-level features using a
Vision Transformer (ViT) (Dosovitskiy et al., 2021) backbone. Each frame is encoded independently
by a student network ΨS , while the first frame is also processed by a teacher network ΨT , updated
as an exponential moving average (EMA) of the student.

Point tracking across frames To obtain spatial correspondences over time, we leverage an off-
the-shelf point tracking module to estimate the trajectories Trajf,i and visibility masks Visf,i for a
set of points initialized on the first frame. Trackers such as CoTrackerV3 (Karaev et al., 2024) are
capable of producing temporally consistent tracks over long video sequences, while being robust to
challenges such as occlusion, lighting variation, and large viewpoint changes (Figure 2).

Specifically, we initialize a regular grid of size g× g on the first frame, yielding N = g2 points with
coordinates (xi, yi)}Ni=1. Given the video clip X and this grid, the tracker predicts the trajectories
of all N points across the sequence as:

Trajf,i := Tracker(X, (xi, yi)) ∈ Rnf×N×2, (1)

where Trajf,i denotes the coordinate location of the ith point in each framef , for all nf frames in
the video.

Since tracking is initialized on the first frame, all points are guaranteed to be visible at t = 0. We
therefore designate frame 0 as the anchor and extract its features with the teacher network, which
provides a stable reference throughout training. Later frames, processed by the student, may contain
occlusions or appearance changes; aligning them with the clean anchor frame encourages viewpoint-
and occlusion-invariant representations.

Feature Extraction and Alignment Features Zstu, Z teach ∈ Rp×d×nf are extracted from raw
frames using the student ΨS and teacher ΨT networks, where p denotes the number of patches, d
is the feature dimension, and nf the number of frames per video. While NeCo (Pariza et al., 2025)
leverages ROI align to extract overlapping patches between paired crops of a single image, our ap-
proach instead samples full-frame patches and uses point tracks to extract aligned patch trajectories
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Figure 2: CoTrackerV3 maintains high tracking accuracy across lighting changes, viewpoint shifts,
and forward camera motion in a CO3D sample.

throughout time. Given a tracked trajectory Trajf,i for the ith point, we sample back corresponding
patch features from Zstu and Z teach to obtain temporally aligned patch sequences Fs and Ft.

To balance generalization and alignment quality, we consider two strategies for retrieving patch
features from tracked coordinates. In resized sampling, feature maps are upsampled to the input res-
olution and features are retrieved via nearest-neighbor indexing. In latent-space sampling, features
are extracted directly from the native feature grid using bilinear interpolation.

Similarity via Differentiable Sorting To supervise the temporal consistency of patch features,
we adopt a differentiable sorting mechanism that aligns the relative similarity structure of patches
over time. Rather than enforcing direct feature similarity between frames, we compare the ranking
distributions of each patch with respect to a shared set of reference features. This encourages the
model to learn a structured, viewpoint-invariant representation of similarity–crucial for robust dense
correspondence.

For each video clip, we construct a reference feature bank by sampling local crops from frames of
other videos in the batch, as well as from a non-anchor frame k ̸= 0 of the current video. These
reference crops preserve spatial layout and introduce both intra-video and inter-video diversity. In-
stead of cropping raw input images, we apply spatial cropping in feature space after forwarding the
reference frames through the student network ΨS . This yields a reference feature bank of patch
features Fr ∈ RB×npr×d, where npr is the number of reference patches per sample and d is the
feature dimension.

As such, the Differentiable Sorting module operates on a per-sample basis. It receives a set of query
patch features Fq ∈ RB×npq×d, extracted from either the student at a future frame t > 0 or the
teacher at the anchor frame t = 0, where npq denotes the number of query patches. It also receives
a set of reference features Fr ∈ RB×npr×d obtained from the reference bank.

To compare the query features with the reference features, we compute cosine similarity:

Si,j =
⟨F i

q , F
j
r ⟩

∥F i
q∥ · ∥F

j
r ∥

, Di,j = 1− Si,j (2)

for i ∈ [1, npq], j ∈ [1, npr]. Each row of S encodes the similarity between one query patch and all
reference patches. Since our goal is to capture relative ordering rather than absolute scores, we pass
the distance matrix D = 1 − S to the differentiable sorting module (Petersen et al., 2022) which
outputs soft permutation matrices P that approximate the ranking distribution of each query patch
over the reference set. Full details of the sorting procedure are provided in Appendix B.

Patch-Wise Permutation Loss for Temporal Alignment To supervise the temporal consistency
of patch-level features, we compare the sorting behavior of the student network across time to that of
the teacher network at a fixed anchor frame. Rather than enforcing direct similarity in feature space,
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we align their respective soft permutation matrices over a shared set of reference patches. This
encourages the student to match the teacher’s viewpoint-invariant similarity structure, even under
occlusions and appearance shifts.

Let FS
t ∈ RB×npq×d denote student features at a future frame t > 0, and FT

0 the teacher features
at the anchor frame t = 0. For each of the Nref reference crops FR

r ∈ RB×npr×d, we compute soft
permutation matrices via differentiable sorting:

PS
t,r = DiffSort(FS

t , FR
r ) PT

0,r = DiffSort(FT
0 , FR

r ) (3)

Each soft permutation matrix P ∈ RB×npq×npr×npr encodes, for every query patch, a distribution
over the ranked positions of reference patches.

Patch-wise Cross-Entropy Loss We supervise the student permutation matrix PS
t,r with respect

to the teacher matrix PT
0,r. For each query patch i, we compute the cross-entropy where the student

distribution provides the weighting:

Li
CE = −

npr∑
j=1

PS
0,r[i, j] · log

(
PT
t,r[i, j] + ϵ

)
(4)

This formulation encourages the student to place probability mass in regions where the teacher
also provides support, while simultaneously promoting disentangled and confident predictions. In
practice, this leads to sharper spatial rankings and improves patch-level discrimination. We then
average this loss across all query patches i and samples b in the batch:

L(t,r)
CE =

1

B

B∑
b=1

1

npq

npq∑
i=1

L(b,i)
CE (5)

Visibility-Weighted Loss To account for occlusion and tracking failures, we weight each patch by
its visibility at both the anchor and current frames. Let v(b,i)0,t = V

(b)
0,i ·V

(b)
t,i denote the joint visibility

of patch i in sample b.

The visibility-weighted cross-entropy becomes:

L(t,r)
CE =

1

B

B∑
b=1

npq∑
i=1

v
(b,i)
0,t∑

j v
(b,j)
0,t + ϵ

· L(b,i)
CE (6)

Final Loss Across Time and References To enforce alignment throughout the sequence, we apply
the patch-wise loss across all compared frames nf − 1 and all references r = 1, . . . , Nref. The final
permutation alignment loss is:

L3DPoV =
1

nf − 1

T∑
t=tstart

1

Nref

Nref∑
r=1

L(t,r)
CE (7)

This objective encourages the student network to produce temporally aligned, viewpoint-consistent
patch-level rankings relative to shared reference crops (Figure 5)–anchored by the teacher signal–
while softening the contribution of low-confidence or occluded regions via visibility weighting.

An equally important factor is the choice of fine-tuning data, which plays a central role in shaping
the model’s ability to learn viewpoint-invariant and geometry-aware representations from videos.
To capture complementary aspects of variability, we fine-tune on a blend of three datasets: (i)
CO3D (Reizenstein et al., 2021), which provides long object-centric multiview sequences with large
viewpoint shifts; (ii) DL3DV (Ling et al., 2024), which offers diverse dynamic scenes and spatial
layouts; and (iii) YouTube-VOS (Xu et al., 2018), which introduces unconstrained motion, occlu-
sions, and real-world camera trajectories. Together, this mixture spans single-object, scene-level,
and natural video variability, supporting robust learning of dense, temporally consistent features.
Full dataset descriptions and preprocessing details are provided in Appendix D.
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4 EXPERIMENTS

We evaluate our method on the Probe3D benchmark (El Banani et al., 2024), which assesses 3D
spatial understanding through keypoint matching, depth estimation, and surface normal estimation.
Unless otherwise stated, we use the DINOv2-R backbone, fine-tuning only the final layer of the
frozen network. All comparisons are made against models with identical backbone architectures,
isolating the effect of our method. To ensure fair placement of results, we reproduce all Dino base-
lines from (El Banani et al., 2024) and use publicly available checkpoints for prior post-training
baselines (TimeTuning, NeCo, MoSiC). Dataset details and reproduction studies are provided in
Appendix E and Appendix H.

Keypoint Matching. We evaluate on SPair-71k (2D human-annotated keypoints) and Navi (syn-
thetic data with 3D geometry and calibrated cameras). On SPair, recall is measured by predicting
target keypoints from feature similarity. Results are reported across viewpoint bins (small, medium,
large) as well as the “All” split, which aggregates all pairs but is biased toward small-viewpoint
cases. Navi supports 3D-aware evaluation: correspondences are matched directly in 3D and as-
sessed both by Euclidean error in 3D space and reprojection error in 2D. We report recall at multiple
thresholds and analyze results as a function of relative camera rotation. Full experimental details are
deferred to Appendix E.

Table 1 reports results on SPair-71k. NeCo improves over its baseline mainly for small viewpoint
differences but degrades sharply under larger shifts. In contrast, 3DPoV surpasses both DINO base-
lines and NeCo while maintaining balanced performance across all viewpoint bins, demonstrating
stronger spatial consistency under diverse transformations. Segmentation-focused approaches such
as TimeTuning and MoSiC achieve temporal semantic propagation but fail to retain the spatial dis-
crimination required for robust keypoint matching. This indicates that improvements in semantic
consistency over time do not directly translate into stronger spatial semantic correspondence.

Model Backbone Data S / 0 M / 1 L /2 All
Dino ViT-S16 IN-1k 28.34 23.38 24.44 25.63
TimeTuning ViT-S16 YTVoS 26.76 22.48 23.45 23.96
MoSiC ViT-S16 YTVoS 26.73 21.97 22.98 23.76
Dino ViT-B16 IN-1k 30.19 24.22 24.35 26.39
NeCo ViT-B16 COCO 30.24 24.45 23.10 26.32
3DPoV ViT-B16 CO3-YT-DL 31.77 25.74 25.80 28.16
DinoV2-reg ViT-B14 LVD 58.20 51.56 53.41 53.47
NeCo-reg ViT-B14 COCO 59.57 49.06 52.35 54.42
MoSiC-reg ViT-B14 YTVoS 56.37 50.70 51.75 51.72
3DPoV ViT-B14 CO3-YT-DL 60.16 52.79 54.50 55.40
DinoV3 ViT-B16 LVD 61.95 48.69 46.77 55.73
3DPoV ViT-B16 CO3-YT-DL 62.24 48.56 46.81 55.84

Table 1: SPair-71k viewpoint difference. 0: No significant view difference (same view or minimal
changes), 1: Moderate viewpoint difference, 2: Large viewpoint difference.

A similar pattern is observed on Navi (Table 2). While NeCo shows gains on SPair, its improvements
do not transfer as effectively, reflecting the added difficulty of enforcing 3D-consistent correspon-
dences. 3DPoV, on the other hand, consistently improves across all relative viewpoint bins, with
only a minor drop in the θ18060 range for the DINOv2 variant, underscoring its robustness under large
viewpoint changes.

Finally, the breakdown in Table 6a and Table 6b shows that 3DPoV achieves consistent gains in
both 3D correspondence accuracy and 2D reprojection alignment across all thresholds. This dual
improvement highlights that the learned features are geometrically faithful in 3D space while also
preserving accurate alignment in 2D.

Depth and Surface normal estimation We evaluate our model’s geometric understanding using
depth and surface normal estimation on the Navi benchmark, following the standardized protocol
introduced in Probe3D. This evaluation tests whether the learned features encode meaningful 3D
spatial geometry beyond keypoint-level correspondences.
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Model Backbone Data θ150 θ3015 θ6030 θ18060

Dino ViT-S16 IN-1k 84.36 55.17 34.58 20.48
TimeTuning ViT-S16 YTVoS 80.81 52.61 33.93 19.96
MoSiC ViT-S16 YTVoS 80.21 52.07 33.37 19.59
Dino ViT-B16 IN-1k 86.13 56.92 33.37 19.74
NeCo ViT-B16 COCO 84.94 53.52 31.80 18.47
3DPoV ViT-B16 CO3-YT-DL 86.42 57.18 33.77 20.42
DinoV2-reg ViT-B14 LVD 87.92 67.74 47.18 31.57
NeCo-reg ViT-B14 COCO 88.69 64.61 43.47 28.68
MoSiC-reg ViT-B14 YTVoS 87.11 66.49 46.85 31.55
3DPoV ViT-B14 CO3-YT-DL 89.22 69.23 47.48 31.33
DinoV3 ViT-B16 LVD 94.40 74.73 48.64 31.45
3DPoV ViT-B16 CO3-YT-DL 94.47 74.74 48.65 31.36

Table 2: Navi Performance Comparison Across Models with performance binned for different rela-
tive viewpoint changes between image pairs. Best results are in bold.

Since the backbone models do not inherently predict depth or surface normals, we follow the
Probe3D protocol on training lightweight linear probes on top of frozen features for each task. This
setup isolates the quality of the learned representations, ensuring that performance reflects spatial
awareness embedded in the features rather than downstream training capacity.

In line with (El Banani et al., 2024), we conduct both quantitative evaluation using ground-truth 3D
signals and qualitative inspection to better interpret the spatial reasoning captured by the features.
Full definitions of the evaluation metrics are deferred to Appendix E.

Figure 3: Depth Qualitative Examples. Comparing predicted depth maps from Baseline (DinoV2-
reg) and 3DPoV. Ground truth (GT) depth is provided for reference

Qualitative depth results (Figure 3) show that 3DPoV produces more coherent maps than the base-
line, preserving boundaries and geometric detail across diverse object types. For instance, in the
dinosaur example, our method resolves the lower leg despite heavy shadow, and on the tractor it
avoids interpreting a painted stroke as spurious geometry, yielding a more plausible depth map.
These improvements align with the quantitative gains in Table 3.

For surface normals (Figure 4), we visualize both predictions and angular error maps to highlight
regions of divergence between 3DPoV and the baseline. 3DPoV provides more faithful orientation
estimates, particularly under challenging conditions: on the eagle, it better recovers fine structure
along the body and wing edges, and in the can example it reduces errors caused by reflective sur-
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Model Backbone Scale-Aware Scale-Invariant
δ1 ↑ δ2 ↑ δ3 ↑ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑ RMSE ↓

Dino ViT-B16 47.16 73.83 86.70 0.1237 58.64 81.85 90.43 0.1022
3DPoV ViT-B16 47.93 74.77 87.45 0.1218 58.83 82.20 90.67 0.1014
DinoV2-reg ViT-B14 57.62 82.49 91.97 0.0960 68.49 87.89 93.95 0.0778
3DPoV-reg ViT-B14 59.17 83.61 92.59 0.0933 69.61 88.47 94.19 0.0757

Table 3: Depth estimation results on Navi. Accuracy is reported using the threshold-based metrics
δ1 (< 1.25), δ2 (< 1.252), and δ3 (< 1.253), as introduced by (Eigen et al., 2014). We also report
RMSE in meters. Both scale-aware and scale-invariant scores are shown for completeness.

Figure 4: Surface Normal Qualitative Examples. To highlight differences between models with
shared architecture, we visualize the angular error between the Baseline and 3DPoV predictions,
which highlights regions where surface normal estimates differ. ∆Error to GT denotes the difference
in angular error between baseline and 3DPoV predictions with respect to the ground truth normals,
shown only in regions of disagreement (error > 5◦).Red areas indicate where 3DPoV predictions
align more closely with the ground truth, while blue areas indicate where the baseline is closer. For
baseline we use DinoV2 with Registers.

faces. These qualitative trends are consistent with the quantitative improvements reported in Table 4.
Additional visualizations, including relative error maps with respect to ground truth, are provided in
Figure 7.

5 ABLATION STUDIES

Model Backbone 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑ RMSE ↓
Dino ViT-B16 31.47 58.61 70.62 31.83
3DPoV ViT-B16 31.67 58.82 70.71 31.78
DinoV2-reg ViT-B14 37.10 65.93 77.09 28.07
3DPoV-reg ViT-B14 38.29 67.00 77.86 27.78

Table 4: Surface normal estimation results on Navi.
We report accuracy at angular thresholds as well as the
RMSE in degrees between predicted and GT normals.

We conduct ablation studies to isolate the im-
pact of key design choices in 3DPoV. All ex-
periments are based on the DinoV2-Reg back-
bone. To ensure fair comparisons, we vary only
one factor per experiment and report perfor-
mance at matched training durations.

Reference extraction. As shown in Table 5a,
student-extracted references improve average
performance by +2.37%, with the largest gains
on small viewpoint differences. This supports
our design choice of letting the student process references, as it encourages more discriminative and
sortable features.
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Number of frames. Table 5b compares training with 1, 2, and 4 frames. Since our flow does not
intrinsically operate on a single frame, the 1-frame setup leverages NeCo-style overlapping crops as
a proxy. Performance improves steadily with more frames: 4 frames bring +1.01% over 1 frame and
+0.13% over 2 frames, indicating that temporal supervision benefits from richer context across all
viewpoint regimes.

Dataset choice. Table 5c shows that the CO3-YT-DL mixture outperforms any single dataset,
confirming that diversity is key to robustness. While CO3D alone yields the weakest overall scores,
adding it to YT–DL still improves the large-viewpoint bin (+0.26), highlighting that object-centric
multiview footage provides complementary signal.

Step size. Varying the temporal step between frames (Table 5d) shows that step 2 captures too
little variation, while step 6 reduces visibility in multi-view datasets like CO3D and DL3DV, biasing
tracks towards uninformative regions (sky/ground). Step 4 achieves the best trade-off, maintaining
many visible points while capturing meaningful viewpoint changes.

Resampling strategy. Latent-space interpolation (Table 5e) outperforms resized sampling (+0.36
overall), suggesting that operating directly in the feature grid avoids artifacts from upsampling and
preserves finer spatial detail.

Point tracker. Table 5f compares RAFT (Teed & Deng, 2020) and CoTrackerV3 (Karaev et al.,
2024). Our method improves with both, showing independence from tracker choice, but CoTrack-
erV3 performs best (+0.33 overall), likely due to its robustness to occlusions and sudden motion
compared to optical flow methods.

Table 5: Ablation of Key Design Choices in 3DPoV. We report Keypoint Matching Recall on
SPair-71k across viewpoint difficulty levels–Small, Medium, Large, and All.

(a) References Extracted by

MODEL S / 0 M / 1 L /2 ALL

Teacher 57.95 51.04 53.05 53.03
Student 60.16 52.79 54.50 55.40

(b) Number of frames

FRAMES S / 0 M / 1 L /2 ALL

1 59.26 52.02 54.00 54.39
2 60.04 52.72 54.35 55.27
4 60.16 52.79 54.50 55.40

(c) Dataset choice

DATA S / 0 M / 1 L /2 ALL

CO3D 59.32 52.29 54.08 54.58
YTVoS 59.71 52.56 54.34 55.02
DL3DV 59.84 52.41 54.24 55.02
YT-DL 60.02 52.66 54.24 55.25
CO3-YT-DL 60.16 52.79 54.50 55.40

(d) Step size on frame sampling

STEP S / 0 M / 1 L /2 ALL

2 60.04 52.75 54.50 55.22
4 60.16 52.79 54.50 55.40
6 59.70 52.28 54.06 55.02

(e) Type of Resampling

METHOD S / 0 M / 1 L /2 ALL

Resized 59.83 52.42 54.20 55.04
Latent 60.16 52.79 54.50 55.40

(f) Choice of Point Tracker

TRACKER S / 0 M / 1 L /2 ALL

RAFT 59.81 52.43 54.31 55.07
CoTrackerV3 60.16 52.79 54.50 55.40

6 CONCLUSION

In this paper, we introduced 3DPoV, a framework for learning dense, viewpoint-invariant features
through temporally anchored permutation supervision. By integrating point tracks with reference-
based sorting, our method enforces relative similarity structures that remain stable across time, oc-
clusion, and viewpoint variation. Evaluations across Probe3D tasks demonstrate consistent im-
provements over all baselines, with balanced gains across both small and large viewpoint shifts and
emerging robustness to challenging lighting conditions. These results highlight the value of tempo-
ral ranking as a supervisory signal and suggest that point tracking can serve as a powerful tool for
geometry-aware representation learning without requiring explicit 3D labels.

9
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Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel
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A DISCLOSURE OF LLM USAGE

We declare that the use of LLMs for writing this paper was limited to general-purpose writing
assistance. Specifically, we used them only to polish the wording of text sections and in no way to
generate the research ideas or technical results and proofs presented in this paper.

B RELAXED SORTING AND SOFT PERMUTATION MATRICES

Sorting is a non-differentiable operation, which prevents gradient-based optimization when com-
paring ranked outputs. Traditional sorting uses discrete element swaps, such as d′i ← min(di, dj),
which introduce discontinuities. To enable smooth learning, we adopt a differentiable sorting ap-
proach that relaxes these comparisons into continuous, pairwise soft-sorting operations.

Following (Lee et al., 2017), for any pair of distances di, dj (drawn from a row of the distance
matrix D), the relaxed sorting step is defined as:

softmin(di, dj) = dif(dj − di) + djf(di − dj) (8)
softmax(di, dj) = dif(di − dj) + djf(dj − di) (9)

where f(x) = 1
π arctan(βx) + 0.5 is a sigmoid-shaped function centered at x = 0, and β > 0

controls the steepness of the relaxation.

As β → ∞, the function f(x) approaches a step function, and the sorting converges to discrete
behavior. In practice, we use moderate values (β = 3 or 20), which result in soft permutations
that retain uncertainty and allow smooth gradient flow–ideal for ambiguous or occluded regions in
video.

These pairwise comparisons are composed into elementary swap matrices Pswap(di, dj) ∈
Rnpr×npr , each being a near-identity matrix except for a 2 × 2 block that softly mixes elements
i and j. The full differentiable sorting process applies a sequence of these swaps using the Odd-
Even Sorting Network (Petersen et al., 2022):

Pt =
∏

(i,j)∈Mt

Pswap(di, dj), Mt =

{
odd indices, if t odd
even indices, if t even

(10)

After L = npr steps, the final soft permutation matrix is obtained by composing all swap layers:

P =

L∏
t=1

Pt ∈ Rnpr×npr (11)

Each P matrix describes a probabilistic ranking over reference patches. Each row of P encodes
a distribution over rank positions for one reference patch, while each column reflects the expected
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occupant of that rank. This soft structure captures a smooth approximation of the discrete sorting
behavior.

In our implementation, we apply this procedure independently to each query patch. The resulting
permutation matrices for a batch of size B with npq query patches form a tensor:

P ∈ RB×npq×npr×npr (12)

These permutation matrices capture the relative ordering of reference patches with respect to each
query patch and serve as the foundation for our temporal consistency loss.

C FURTHER DETAILS OF LOSS FORMULATION

Figure 5 illustrates how multiple reference frames contribute to the loss.

Figure 5: Multiple reference contribution to the final loss. Given two reference features Fr1

and Fr2 sampled from the feature bank, we compute corresponding permutation matrices PT
0,r and

PS
t,r for each reference crop, comparing teacher (anchor frame t = 0) and student (future frame t)

features. The permutation-based loss is computed for each reference independently by aligning the
student and teacher permutations. The final loss is obtained by averaging over all such reference-
specific losses.

D DATASET CHOICE

The choice of fine-tuning data significantly shapes the model’s capacity to learn meaningful cor-
respondences and geometric understanding from videos. Using video as a modality introduces
variability along several axes: camera motion (static vs. dynamic), object movement, scene com-
position, occlusion patterns, viewpoint shifts, and lighting conditions. Capturing this diversity is
essential for enhancing dense self-supervised learning, particularly when supervision operates at the
level of patch correspondences and temporal consistency.

To this end, we fine-tune on a blend of complementary datasets, each contributing to different facets
of the video distribution. For learning object-centered 3D structure and viewpoint-invariant patterns,
we rely on CO3D (Reizenstein et al., 2021), which provides long video sequences of individual

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

objects viewed under large viewpoint variations, often spanning 180 degrees or more (Figure 8). The
dataset spans both indoor and outdoor contexts, and includes challenging factors such as occlusion,
background clutter, and varying lighting conditions–making it especially well-suited for learning
spatially consistent patch-level features under changing viewpoints and appearances.

For scene-level understanding, we incorporate DL3DV (Ling et al., 2024), a large-scale dataset of
RGB-D video sequences captured using a commodity LiDAR-equipped phone. DL3DV contains
over 10,000 dynamic scenes recorded in both indoor and outdoor settings, offering a wide range
of spatial layouts and motion patterns (Figure 9). While we do not use depth annotations, the di-
versity in geometry and camera motion supports learning structure-aware features that generalize to
complex 3D environments.

To encourage temporal coherence and robustness to real-world motion, we also train on YouTube-
VOS (Xu et al., 2018), a large-scale video dataset containing high-resolution clips of everyday activ-
ities involving multiple objects, scene changes, occlusion events, and complex camera trajectories.
These sequences provide valuable temporal signal, allowing the model to learn how to maintain
patch-level consistency across time under natural, unconstrained motion.

Together, these datasets span a wide range of visual conditions–from single-object multiview
videos to dynamic, cluttered scenes with complex motion. This diversity supports learning dense,
geometry-aware representations that generalize across tasks such as surface normal estimation,
depth prediction, and keypoint correspondence.

E EXPERIMENTAL SETUP

Following TimeTuning (Salehi et al., 2023), we initialize our models using publicly available pre-
trained DINO backbones. Specifically, we experiment with ViT-Base backbones from DINOv1
(Caron et al., 2021), DINOv2 with Registers (Oquab et al., 2023) and DINOv3(Siméoni et al.,
2025). Unless otherwise stated, we use DINOv2R as our reference baseline and fine-tune only the
final layer of the frozen backbone.

We train all models on 4 NVIDIA A100 GPUs using AdamW with cosine learning rate decay. For
DINOv1-based variants, the feature extractor is updated with a learning rate of 1e-5 and the remain-
ing layers with 1e-4, applying a weight decay of 1e-4. For DINOv2-reg models, which converge
faster, we use 1e-7 for the extractor and 1e-6 for the rest of the model, with a weight decay of 1e-5.
All DINOv3 experiments are conducted using the same training setup and evaluation protocol as
DINOv2 to ensure comparability. DINOv3 experiments are performed under the same fine-tuning
regime as DINOv2 to ensure comparability, though more tailored settings will be explored in future
work.

Training is lightweight compared to large-scale pretraining: fine-tuning requires roughly 5 hours
on 4×A100 GPUs (≈20 GPU-hours) for 9,242 samples. For perspective, this is less than the cost
of a single additional epoch of DINOv2 pretraining, which was conducted on 142M images and
demanded multi-week training on large-scale GPU clusters. Thus, the reported improvements are
achieved with a negligible fraction of the original pretraining cost. These configurations follow
the same optimization strategy as MoSiC (Salehi et al., 2024), with adjustments tailored to each
backbone variant.

E.1 DATASET CONFIGURATION

Due to the substantial imbalance in dataset sizes, we subsampled CO3D to ensure a more even
distribution of training samples across the three sources. Specifically, with a frame sampling step of
10, the full CO3D dataset yielded 16,345 samples, while YouTube-VOS and DL3DV provided only
3,471 and 1,150 samples, respectively. To avoid training bias, we reduced the CO3D sample count
to match that of YouTube-VOS.

Additionally, to compensate for the lower volume and higher complexity of DL3DV scenes–often
containing multiple objects and fine structural details–we applied two different preprocessing strate-
gies. One variant followed the standard resizing pipeline used across all datasets (resizing to
224×224). The other employed a center crop to match the 224×224 resolution used in our train-
ing pipeline. This center crop was necessary to ensure frame alignment required by the tracking

13
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module, and it is particularly favorable for preserving spatial and scene-level details that could oth-
erwise be degraded by uniform resizing. The final training distribution consisted of 3,471 samples
from CO3D, 3,471 from YouTube-VOS, and 2,300 from DL3DV.

E.2 KEYPOINT MATCHING

On SPair-71k, we follow the Probe3D protocol. Dense spatial features are extracted from both im-
ages in a pair, and cosine similarity is computed between all spatial locations. For each annotated
keypoint in the source image, the target location is predicted as the position with the highest sim-
ilarity. Recall is then computed based on the spatial distance between predicted and ground-truth
keypoints at varying thresholds.

The benchmark categorizes pairs into three viewpoint groups (small, medium, large). The “All”
split aggregates these categories and additionally includes pairs that do not fall into any viewpoint-
defined subset. Due to the imbalance in dataset distribution, the “All” score is heavily influenced by
small-viewpoint pairs and should not be interpreted as a direct average across difficulty regimes.

On Navi, evaluation leverages access to ground-truth 3D geometry and calibrated cameras. Fol-
lowing Probe3D, dense features are projected onto a 3D grid, and correspondences are established
directly in 3D space. Performance is assessed in two complementary ways:

• 3D error – the Euclidean distance between predicted and ground-truth 3D points, aligned
into a shared coordinate frame using camera pose.

• 2D reprojection error – the pixel-level distance between the reprojected 3D predictions
and the ground-truth 2D keypoints.

We report recall at multiple thresholds (e.g., <2cm in 3D, <5px in 2D) and break down results by
relative camera rotation. This dual evaluation provides a comprehensive test of whether features
preserve geometric consistency across views.

E.3 DEPTH ESTIMATION

Depth evaluation follows the protocol introduced by (Eigen et al., 2014), which includes both
error-based and accuracy-based metrics. The primary error metric is the root mean squared error
(RMSE), computed between the predicted depth values dpred and ground truth dgt. In addition,
accuracy is measured using threshold-based metrics defined as the percentage of pixels for which
the ratio between prediction and ground truth is within a multiplicative threshold. More formally,
accuracy at threshold is

δi(d
pr, dgt) =

1

N

∑
j∈N

max

(
dprj

dgtj
,
dgtj
dprj

< 1.25i

)
(13)

where i ∈ 1, 2, 3. The thresholds δ1, δ2, δ3 therefore correspond to tolerance levels of 1.25, 1.252
and 1.253 respectively.

For depth estimation, we report both scale-aware and scale-invariant metrics. The scale-aware
RMSE (in meters) reflects absolute depth accuracy and is sensitive to global scale. In contrast, the
scale-invariant RMSE normalizes per-frame predictions to account for scale ambiguity, capturing
relative depth structure. Both are included for completeness.

As NAVI was not originally created as a depth benchmark, the authors of Probe3D adapt it by
leveraging the underlying 3D geometry from multiview reconstructions to define a relative depth
signal between pixels across view pairs. In this context, scale-invariant results are more aligned
with the intent of the benchmark, as they emphasize relative spatial structure rather than absolute
scale.

E.4 SURFACE NORMAL ESTIMATION

For surface normal evaluation, we follow the setup described in .(Bae et al., 2021), where the goal
is to assess the angular consistency between predicted normals npred and ground truth normals ngt.

14
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Specifically, we compute the angle θ between the two vectors at each pixel and report the percentage
of pixels for which this angular error is below predefined thresholds. Following the benchmark, we
report accuracy at 11.25◦, 22.5◦, 30◦ along with RMSE for the angular error.

F FURTHER RESULTS

(a) 3D keypoint matching
Model Backbone 0.01m 0.02m 0.05m
Dino ViT-S16 26.12 43.10 74.80
TimeTuning ViT-S16 24.17 41.44 73.36
MoSiC ViT-S16 23.69 40.94 72.98
Dino ViT-B16 26.12 43.10 74.80
NeCo ViT-B16 24.24 41.20 73.20
3DPoV ViT-B16 26.52 43.53 74.99
DinoV2-reg ViT-B14 34.10 53.79 82.43
MoSiC-reg ViT-B14 33.26 53.24 82.53
NeCo-reg ViT-B14 31.70 51.13 81.22
3DPoV-reg ViT-B14 34.82 54.39 82.56
DinoV3-reg ViT-B16 38.33 56.95 83.69
3DPoV-reg ViT-B16 38.36 56.93 83.72

(b) 2D keypoint matching
Model Backbone 5px 25px 50px
Dino ViT-S16 3.47 22.69 37.49
TimeTuning ViT-S16 2.86 20.33 35.32
MoSiC ViT-S16 2.78 20.04 34.82
Dino ViT-B16 3.47 22.69 37.49
NeCo ViT-B16 3.18 21.05 35.68
3DPoV ViT-B16 3.58 23.07 37.71
DinoV2-reg ViT-B14 4.34 30.28 48.00
MoSiC-reg ViT-B14 4.14 29.51 47.59
NeCo-reg ViT-B14 4.36 29.37 46.51
3DPoV-reg ViT-B14 4.54 31.08 48.65
DinoV3-reg ViT-B16 5.76 36.68 53.44
3DPoV-reg ViT-B16 5.77 36.68 53.46

Table 6: Comparison of Navi Recall for 3D (a) and 2D (b) keypoint matching at different thresholds.
Higher is better.

G FURTHER ABLATIONS

For completeness, we also report ablation results on Navi keypoint matching in Table 7, comple-
menting the SPair analysis presented in the main paper. The overall trends are consistent across
the two benchmarks, confirming that our design choices generalize beyond 2D correspondence.
On Navi, improvements under large viewpoint changes are smaller in magnitude compared to our
preferred setup, yet the performance remains competitive. Taken together, the results across SPair
and Navi highlight that 3DPoV delivers consistent benefits across both 2D and 3D correspondence
evaluations.

H MAPPING TO PROBE3D BENCHMARK

We compare our reproduced baselines and reported results with the original Probe3D study in Ta-
ble 8, Table 9, Table 10, Table 11. Minor misalignments are expected due to differences in environ-
ment and training setup, but overall trends are consistent with the original benchmark.
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Table 7: Ablation of Key Design Choices in 3DPoV. We report Keypoint Matching Recall on
NAVI. Each experiment isolates one design parameter, with other settings held fixed.

(a) References Extracted by

MODEL θ150 θ3015 θ6030 θ18060

Teacher 87.56 67.61 47.10 31.35
Student 89.22 69.23 47.48 31.33

(b) Number of frames - Use all frames

FRAMES θ150 θ3015 θ6030 θ18060

1 88.47 68.34 47.46 31.52
2 89.12 69.17 47.51 31.42
4 89.22 69.23 47.48 31.33

(c) Dataset choice - Navi eval

DATA θ150 θ3015 θ6030 θ18060

CO3D 88.79 68.57 47.31 31.37
YTVoS 88.76 68.64 47.34 31.37
DL3DV 88.82 68.88 47.55 31.37
YT-DL 88.91 69.00 47.55 31.33
CO3-YT-DL 89.22 69.23 47.48 31.33

(d) Step size on frame sampling

STEP SIZE θ150 θ3015 θ6030 θ18060

2 89.13 69.20 47.54 31.42
4 89.22 69.23 47.48 31.33
6 88.87 68.81 47.32 31.24

(e) Type of Resampling

RESAMPLING θ150 θ3015 θ6030 θ18060

Resized 88.82 68.91 47.60 31.52
Latent 89.22 69.23 47.48 31.33

(f) Choice of Point Tracker

TRACKER θ150 θ3015 θ6030 θ18060

RAFT 88.91 69.03 47.46 31.37
CoTrackerV3 89.22 69.23 47.48 31.33

Model Backbone Data S / 0 M / 1 L /2 All
Dino † ViT-B16 IN-1k 30.4 24.0 24.3 26.8
Dino ViT-B16 IN-1k 30.19 24.22 24.35 26.39
3DPoV ViT-B16 CO3-YT-DL 31.66 25.74 25.94 28.12
DinoV2-reg† ViT-B14 LVD 58.3 51.4 53.4 53.7
DinoV2-reg ViT-B14 LVD 58.20 51.56 53.41 53.47
3DPoV ViT-B14 CO3-YT-DL 60.16 52.79 54.50 55.40

Table 8: SPair-71k viewpoint difference. 0: No significant view difference (same view or minimal
changes), 1: Moderate viewpoint difference, 2: Large viewpoint difference. Here † represents the
bechmark reported values

Model Backbone Data θ150 θ3015 θ6030 θ18060

Dino† ViT-B16 IN-1k 86.0 56.0 31.3 20.3
Dino ViT-B16 IN-1k 86.13 56.92 33.37 19.74
3DPoV ViT-B16 CO3-YT-DL 86.42 57.18 33.77 20.42
DinoV2-reg† ViT-B14 LVD 89.0 67.3 44.8 31.1
DinoV2-reg ViT-B14 LVD 87.92 67.74 47.18 31.57
3DPoV ViT-B14 CO3-YT-DL 89.22 69.23 47.48 31.33

Table 9: Navi Performance. Here † represents the bechmark reported values.

Model Backbone Scale-Aware Scale-Invariant
δ1 ↑ δ2 ↑ δ3 ↑ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑ RMSE ↓

DinoV2-reg† ViT-B/14 - - - - 66.56 87.94 94.74 0.0806
DinoV2-reg ViT-B14 57.62 82.49 91.97 0.0960 68.49 87.89 93.95 0.0778
3DPoV-reg ViT-B14 59.17 83.61 92.59 0.0933 69.61 88.47 94.19 0.0757

Table 10: Depth estimation results on Navi.
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Model Backbone 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑ RMSE ↓
DinoV2-reg† ViT-B/14 45.81 72.00 81.28 25.66
DinoV2--reg ViT-B14 37.10 65.93 77.09 28.0693
3DPoV-reg ViT-B14 38.29 67.00 77.86 27.7798

Table 11: Surface normal estimation results on Navi.

I COMPARING WITH THE MOST SIMILAR MODEL

During our ablation studies, we adopted an image processing strategy similar to NeCo–cropping
frames followed by ROI alignment of the crops. This defines the 3DPoV-1frame experiment. As
shown in Table 12, when compared directly to the baseline and NeCo, our approach demonstrates
stronger ability to learn robust 3D representations, particularly under medium and large viewpoint
shifts. This trend is consistent with the central challenge emphasized by the Probe3D benchmark,
where performance typically drops sharply at larger viewpoint changes. We also note that the ‘All’
score–an aggregate over all categories, including samples not belonging to any category–is biased
toward easier (small-shift) cases, and therefore differs in interpretation from a category-wise aver-
age.

Model Backbone Data S / 0 M / 1 L /2 All
DinoV2-reg ViT-B14 LVD 58.20 51.56 53.41 53.47
NeCo-reg ViT-B14 COCO 59.57 49.06 52.35 54.42
3DPoV-1Frame-reg ViT-B14 CO3-YT-DL 59.49 52.18 54.22 54.66

Table 12: SPair71k Keypoint Matching results. Compared to the most relevant prior method (NeCo),
3DPoV attains similar performance in the ‘All’ category while offering improvements in the more
challenging Medium and Large viewpoint shift categories.

J ADDITIONAL VISUALIZATIONS

Figure 6: Examples of YTVoS movements and tracking quality
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Figure 7: More examples of surface normal qualitative results

Figure 8: More samples of CO3D movements and tracks

Figure 9: Tracking behaviour acros DL3DV samples
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