
Bayesian Optimization over Bounded Domains with
Beta Product Kernels

Huy Hoang Nguyen† Han Zhou‡ Matthew B. Blaschko‡∗ Aleksei Tiulpin†∗
†Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
‡Dept. ESAT, Center for Processing Speech and Images, KU Leuven, Leuven, Belgium

{huy.nguyen,aleksei.tiulpin}@oulu.fi {han.zhou,matthew.blaschko}@esat.kuleuven.be

Abstract

Bayesian Optimization with Gaussian Process (GP) and Matérn and Radial Basis
Function (RBF) covariance functions is commonly used to optimize black-box
functions. The Matérn and the RBF kernels do not make any assumptions about the
domain of the function, which may limit their applicability in bounded domains. To
address the limitation issue, we introduce a non-stationary Beta Unit Hyper-Cube
(BUC) kernel, which is induced by a product of Beta distribution density functions,
and allows to model functions on bounded domains. To provide theoretical insights,
we provide analyses of information gain and cumulative regret bounds when using
the GP Upper Confidence Bound (GP-UCB) algorithm with the BUC kernel.
Our experiments show that the BUC kernel consistently outperforms the well-
known Matérn and RBF kernels in different problems, including synthetic function
optimization and the compression of vision and language models.

1 Introduction

Bayesian Optimization (BO) is a theoretically grounded strategy for sequential optimization of noisy
and black-box functions with costly evaluations. A surrogate model, which approximates the objective
function and guides the search process is at the core of BO. A Gaussian Process (GP) is frequently
employed here due to its flexibility, capability to quantify uncertainty, and inject priors through
covariance functions (interchangeably called kernels). A GP f ∼ GP(µ(x),K(x,x′)) is specified
by its mean µ(x) = E[f(x)] and covariance function K(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))].
The choice of kernel plays a critical role in encoding prior beliefs about the characteristics of the
target function. Among various options, Matérn and Radical Basis Function (RBF) are frequently
chosen kernels for a wide range of optimization problems due to their flexibility (Pedregosa et al.,
2011; Head et al., 2018; Gardner et al., 2018) 1 . The Matérn kernel is expressed as (Rasmussen,
2003)

KMatérn(r) =
21−ν

Γ(ν)

(√
2ν

r

ℓ

)ν

Kν

(√
2ν

r

ℓ

)
, (1)

where r = ∥x − x′∥2, ν > 0 is a smoothness parameter, ℓ is a positive length scale, Γ(·) is the
Gamma function, and Kν is a modified Bessel function (Abramowitz and Stegun, 1968). When
ν → ∞, the Matérn kernel is equivalent to the RBF kernel, formulated as

KRBF(r) = exp

(
− r2

2ℓ2

)
. (2)

∗Equal last author
1Matérn is the default kernel in various GP libraries: Scikit-optimize, GPyTorch, and GPyOpt.

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).

The Matérn and RBF kernels are defined on unbounded domains; however, in many practical
applications, a function of choice may be defined on a bounded domain, which may result in
sub-optimal performance.

In this work, we propose a novel non-stationary kernel BUC, named after Beta distribution-based
Unit Hyper-Cube, which is specifically designed for modeling functions over bounded domains.
Our kernel is constructed from a product of multiple Beta distribution density functions, each of
which naturally represents a wide range of functions defined on [0, 1]. We theoretically derive bounds
for the maximum information gain and the cumulative regret when optimizing with the GP Upper
Confidence Bound (GP-UCB) algorithm. Our results show that BUC consistently outperforms the
RBF and Matérn kernels across various tasks, including synthetic function optimization and deep
learning-based vision and language model compression.

2 Beta Distribution-based Unit HyperCube Kernel

2.1 Definition

Let x,x′ ∈ [0, 1]d denote two random variables in a d-dimensional unit hypercube. We aim to develop
some positive semi-definite function K : [0, 1]d × [0, 1]d −→ R. For that purpose, we introduce a
function ϕ : [0, 1]d −→ ([0, 1]d −→ R), that is

ϕ(x, s) =

d∏
i=1

Betahi(xi; si) =

d∏
i=1

Γ(αi + βi)

Γ(αi)Γ(βi)
sαi−1
i (1− si)

βi−1, (3)

where xi represents the mode of the i-th Beta distribution, αi =
xi

hi
+ 1, βi =

1−xi

hi
+ 1, hi is the

smoothing bandwidth of the i-th dimension, and s = [s1, . . . , sd]
⊺ ∈ [0, 1]d is the variables of the

Beta distributions. Then, the BUC kernel is expressed as

KBUC(x,x
′) =

∫
[0,1]d

ϕ(x, s)ϕ(x′, s)ds = C

∫
[0,1]

· · ·
∫
[0,1]

d∏
i=1

g(si)ds1 . . . dsd, (4)

where

C =

d∏
i=1

Γ(αi + βi)

Γ(αi)Γ(βi)

Γ(α′
i + β′

i)

Γ(α′
i)Γ(β

′
i)

and g(si) = s
αi+α′

i−2
i (1− si)

βi+β′
i−2. (5)

Based on the cumulative distribution function of the Beta distribution Beta(α, β), we have that∫
[0,1]

sα−1(1− s)β−1ds =
Γ(α)Γ(β)

Γ(α+ β)
, (6)

each individual integral becomes∫
[0,1]

g(si)dsi =
Γ(αi + α′

i − 1)Γ(βi + β′
i − 1)

Γ(αi + α′
i + βi + β′

i − 2)
. (7)

Assume that si’s are independent of each other, the BUC kernel can be simplified to

KBUC(x,x
′) = C

d∏
i=1

Γ(αi + α′
i − 1)Γ(βi + β′

i − 1)

Γ(αi + α′
i + βi + β′

i − 2)
(8)

As αi + βi = α′
i + β′

i =
1
hi

+ 2, the kernel can be expressed as

KBUC(x,x
′) =

d∏
i=1

Γ2
(

1
hi

+ 2
)

Γ
(

2
hi

+ 2
)

︸ ︷︷ ︸
C̃(h1,...,hd)

d∏
i=1

Γ(αi + α′
i − 1)Γ(βi + β′

i − 1)

Γ(αi)Γ(βi)Γ(α′
i)Γ(β

′
i)

. (9)

We graphically compare the BUC kernel to the Matérn kernel on the unit 1D domain in Figures 1a
and 1b. Whereas Matérn is a stationary kernel with a constant diagonal, our proposed kernel is
non-stationary.

2

θ
0

1θ ′

0

1

0.4

0.6

0.8

1.0

(a) Matérn kernel (ν = 5
2

)

θ
0

1θ ′

0

1

1

2

(b) BUC kernel (h = 0.25)

0 2 4 6 8 10 12 14 16 18 20

Eigenvalue Rank

10−2

10−1

100

101

102

E
ig

en
va

lu
e

h = 0.75

h = 0.25

h = 0.1

RBF

Matérn

BUC

(c) Eigenvalue decay rate

Figure 1: (a-b) Covariance matrices of the Matérn kernel and our BUC kernel on the unit 1D domain.
(c) Eigenvalue decay rate comparison between the RBF, Matérn, and BUC kernels.

2.2 Bounds on Maximum Information Gain and Cumulative Regret

Consider a GP f ∼ GP(0,KBUC(x,x
′)) on the d-dimensional unit hypercube D = [0, 1]d. Assume

that we use the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm to find the optimal
solution x∗ = argminx∈[0,1]d f(x). Here, we aim to derive bounds of the maximum information
gain γT and the corresponding cumulative regret RT after T iterations. γT is defined as

γT = max
A⊆D:|A|=T

I(yA, fA), (10)

where fA = [f(x)]x∈A, and I(yA, fA) is the information gain, defined as

I(yA, fA) = H(yA)− H(yA | fA), (11)

where H(·) is the Shannon entropy. The maximum information gain can also be expressed as
I(yA, fA) =

1
2 log |I+ σ−2KA|, where KA = [K(x,x′)]x,x′∈A (Cover, 1999; Srinivas et al., 2009).

The cumulative regret is defined as RT =
∑T

t=1 f(xt) − f(x∗). We derive the bound of γT as

O
(
d log(T23d−

2d
h h− 3d

2)
)

in Theorem 1, and the bound of the cumulative regret w.r.t. the BUC
kernel in Theorem 2.

Theorem 1. The maximum information gain γT of the BUC kernel is bounded by O
(
h̃dT

)
where

h̃ =
∣∣∣3 log 2− 2 log 2

h + 3
2 log

1
h

∣∣∣.
Proof. We directly bound I(yA, fA) = 1

2 log |I + σ−2KA| ≤ 1
2 log |diag(I + σ−2KA)| using the

Hadamard’s inequality. KBUC(x,x) can bounded by 23d−
2d
h (1h+1)d(1

hπ+
3
2π)

d
2 given that Γ2(x+1)

Γ(2x+1) =
√
πΓ(x+1)

22xΓ(x+ 1
2)

and
(

2
2x+1

) 1
2 ≤ Γ(x+ 1

2)

Γ(x+1) ≤ 2,∀x ≥ 0.

Theorem 2. Let D = [0, 1]d with d ∈ N, pick δ ∈ (0, 1), and define βt = 2 log(t22π2/(3δ) +

2d log
(
t2dbr

√
log(4da/δ)

)
. Running the GP-UCB with βt for a sample f of a GP with mean

function zero and covariance function KBUC, the cumulative regret is bounded as follows

Pr
{
RT ≤ T

√
C1βT h̃d+ 2 ∀T ≥ 1

}
≥ 1− δ,

where C1 = 8/ log(1 + σ2).

Proof. Apply Theorem 1 and Theorem 2 of Srinivas et al. (2009).

In Figure 1c, we present the spectral decay analysis for the RBF, Matérn, and BUC kernels. Our
analysis demonstrates a strong correlation between the bandwidth parameter h and the eigenvalue
decay rate of the BUC kernel. With h < 1, the BUC kernel shows a slower eigenvalue decay rate

3

0 100 200 300

Iteration

101
O

b
je

ct
iv

e
(↓

)

Kernel

Matérn

BUC

(a) Levy function
(d = 8)

RBF Matérn BUC

Kernel

0.45

0.50

0.55

0.60

0.65

0.70

O
b

je
ct

iv
e

(↓
)

(b) ViT compression on ImageNet
(d = 72)

RBF Matérn BUC

Kernel

0.30

0.35

0.40

0.45

O
b

je
ct

iv
e

(↓
)

(c) BERT-large compression on
SQuAD v1 (d = 72)

Figure 2: Comparison between GP using the Matérn kernel (ν = 2.5), and our BUC kernel

Table 1: Quantitative results on vision and language model compression. ‘LR’ indicates the latency
ratio between the original model and its compressed version. The latency measurements were
conducted on an Nvidia GTX 2080 Ti.

(a) ViT compression on ImageNet

Kernel LR (↑) R (%, ↓) Acc. (%, ↑)

RBF 12.67 41.20±0.54 74.26±0.02

Matérn 14.32 39.26±0.48 74.34±0.03

BUC 14.79 21.96±0.61 74.29±0.03

(b) BERT-large compression on SQuAD v1

Kernel LR (↑) R (%, ↓) F1 (%, ↑)

RBF 41.08 32.84±0.52 86.06±0.15

Matérn 42.17 32.18±0.21 86.47±0.06

BUC 43.68 18.09±0.69 86.44±0.05

compared to the RBF and Matérn kernels, indicating its superior capacity to capture complex function
behaviors on the unit hypercube. In addition, based on Theorem 4 of Srinivas et al. (2009), this slower
decay rate suggests that the BUC kernel has a higher upper bound on the maximum information gain
than the RBF and Matérn kernels.

3 Experiments

Levy Function We conducted experiments on the Levy function (Laguna and Marti, 2005). We
utilized the GP-UCB algorithm for the minimization. We initially selected 30 data points using the
Sobol’s algorithm (Sobol’, 1967; Owen, 1998), and performed the optimization in 300 iterations.
We present the comparisons between the BUC kernel and the Matérn kernel in Figure 2a. In both
cases of d = 4 and d = 8, our kernel converged more slowly during the early iterations but ultimately
produced better results.

Vision and Language Model Compression We formulated the compression objective as
minx∈[0,1]d L(x) + R(x), where L(·) is the error rate of the compressed model, and R(·) is the
compression rate compared to the original model. We utilized the LoSparse method (Li et al., 2023)
to perform low-rank and sparse approximation. We compressed the vision classification model
ViT (Dosovitskiy, 2020) on the ImageNet dataset (Deng et al., 2009), and the language model
BERT-large (Devlin, 2018) on the SQuAD v1 (Rajpurkar et al., 2016). For both the models, we
had d = 72. We randomly sampled 5 initial data points, and set T = 30. In each iteration, we
trained each compressed ViT model for only one epoch, while the compressed BERT-large model
was trained for 256 steps (less than one epoch). We repeated the experiments 10 times and reported
the results in Figures 2b and 2c. Accordingly, the experiments consistently indicates that the BUC
kernel substantially outperformed the two well-known baseline kernels, RBF and Matérn on both
tasks. The detailed quantitative results in Table 1 show that our kernel significantly enhanced the
compression rate while maintaining minor performance trade-offs.

4 Conclusion

We introduce a novel non-stationary kernel, called BUC, tailored specifically for BO on unit hyper-
cubes. We then derive bounds on γT and RT for optimization using the GP-UCB algorithm with the

4

BUC kernel. The experiments show that our kernel consistently outperforms the widely used RBF
and Matérn kernels across different optimization tasks.

Acknowledgments

The authors wish to acknowledge CSC—IT Center for Science, Finland, for generous computational
resources. HZ and MBB acknowledge support from the Flemish Government (AI Research Program)
and the Research Foundation - Flanders (FWO) through project number G0G2921N. HZ is supported
by the China Scholarship Council. A.T. and H.H.N. were supported by the Research Council of
Finland (Profi6 336449 funding program) and Sigrid Juselius foundation.

References
Abramowitz, M. and Stegun, I. A. (1968). Handbook of mathematical functions with formulas,

graphs, and mathematical tables, volume 55. US Government printing office.

Cover, T. M. (1999). Elements of information theory. John Wiley & Sons.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee.

Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Dosovitskiy, A. (2020). An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G. (2018). Gpytorch: Blackbox
matrix-matrix gaussian process inference with gpu acceleration. Advances in neural information
processing systems, 31.

Head, T., MechCoder, G. L., Shcherbatyi, I., et al. (2018). scikit-optimize/scikit-optimize: v0. 5.2.
Version v0, 5.

Laguna, M. and Marti, R. (2005). Experimental testing of advanced scatter search designs for global
optimization of multimodal functions. Journal of Global Optimization, 33:235–255.

Li, Y., Yu, Y., Zhang, Q., Liang, C., He, P., Chen, W., and Zhao, T. (2023). Losparse: Structured com-
pression of large language models based on low-rank and sparse approximation. In International
Conference on Machine Learning, pages 20336–20350. PMLR.

Owen, A. B. (1998). Scrambling sobol’and niederreiter–xing points. Journal of complexity, 14(4):466–
489.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python.
the Journal of machine Learning research, 12:2825–2830.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250.

Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer school on machine
learning, pages 63–71. Springer.

Sobol’, I. M. (1967). On the distribution of points in a cube and the approximate evaluation of
integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4):784–802.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2009). Gaussian process optimization in the
bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995.

5

	Introduction
	Beta Distribution-based Unit HyperCube Kernel
	Definition
	Bounds on Maximum Information Gain and Cumulative Regret

	Experiments
	Conclusion

