

000 001 002 003 004 005 006 007 008 009 010 011 012 GRAPHDENOISER: AN UNSUPERVISED ITERATIVE FRAMEWORK FOR NODE LABEL DENOISING IN GRAPH-STRUCTURED DATA

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
Anonymous authors
046
047
048
049
050
051
052
053
Paper under double-blind review

046 047 048 049 050 051 052 053 ABSTRACT

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887

054 world scenarios — high-quality annotations are often cost-prohibitive or even unavailable Han et al.
 055 (2018); Xia et al. (2023).

056 To address the above issues, this paper proposes an unsupervised graph label denoising framework
 057 called **GraphDenoiser**. Through multi-round iterative optimization of a node label noise prediction
 058 model and a simulated noise generation model, the framework achieves accurate detection of label
 059 noise in graphs. Without the need for additional clean annotations, the framework fully utilizes the
 060 structural information of the graph and self-generated noise data to train a robust noise detection
 061 model.

062 The main contributions of this paper are as follows:

063 1. **Proposing an iteratively optimized unsupervised denoising framework:** For the first time,
 064 forward graph noise generation and reverse graph noise prediction are closely integrated, and the two
 065 are optimized iteratively. This not only improves the quality of data generation but also enhances the
 066 prediction accuracy. The entire process does not rely on additional clean annotations, significantly
 067 reducing the application cost of the method in practical scenarios.

068 2. **Designing a noise simulation mechanism in the embedding space:** A pre-trained autoencoder
 069 is used to achieve controllable and semantically consistent noise generation, overcoming the limi-
 070 tations of adding noise in the original feature space and improving the diversity of training data for
 071 the noise predictor.

072 3. **Proposing an experience replay-enhanced iterative optimization strategy:** An experience
 073 replay mechanism is introduced to store noise feature-label sample pairs generated in multiple iter-
 074 ations. During model training, the model no longer relies solely on the data of the current round but
 075 randomly samples from the historical sample pool. This strategy prevents the model from overfit-
 076 ting to transient noise patterns, reduces training fluctuations, and significantly enhances the training
 077 stability of the noise prediction model and its robustness to different noise distributions.

078 4. **Empirical performance advantages:** Under 8 noise configurations across 3 graph datasets, the
 079 MCC, and F1 scores of the proposed method are improved by 22.81%, and 30.51% respectively
 080 compared with existing methods, verifying its effectiveness.

083 2 RELATED WORK

084 2.1 GRAPH NEURAL NETWORKS

085 GNNs (Graph Neural Networks) are one of the most effective methods for graph learning tasks.
 086 Early GNN methods Scarselli et al. (2008) iteratively update node states through recurrent units and
 087 enables end-to-end learning of graph structures. GCN (Graph Convolutional Network) Kipf (2016)
 088 extends convolutional operations to graph structures and achieves feature aggregation by weighted
 089 summation of local neighbor features, greatly improving the performance and training stability of
 090 node classification tasks. GAT (Graph Attention Network) Veličković et al. (2017) introduces a self-
 091 attention mechanism to dynamically learn the attention coefficients of neighbor nodes and performs
 092 better in heterogeneous neighbor scenarios. GraphSAGE Hamilton et al. (2017) reduces computa-
 093 tional complexity by randomly sampling neighbor nodes, enables efficient training of graphs with
 094 millions of nodes, and promotes the application of GNNs in industrial scenarios.

095 However, erroneous labels in graph datasets undermine the authenticity of graph data, interfere with
 096 the common feature aggregation and structure learning processes of graph neural networks, and
 097 cause the model to learn patterns that deviate from reality. This not only reduces task accuracy but
 098 also affects the reliability of its application in industrial scenarios, becoming a common problem that
 099 restricts the performance of graph neural networks Fox & Rajamanickam (2019); Dong & Kluger
 100 (2023).

104 2.2 GNN TRAINING UNDER NOISY DATA

105 Graph data noise is widely present in node features, topological structures, and label information.
 106 It directly undermines the ability of Graph Neural Networks to learn the structural correlations of
 107 graphs, leading to embedding distortion and degraded performance in downstream tasks. Graph

108 denoising techniques are mainly categorized into two types: noise localization and robust training
 109 NT et al. (2019); Dai et al. (2021); Zhu et al. (2021); Qian et al. (2023). These two categories work
 110 in synergy to form a complete noise-resistant framework. Specifically, noise localization can be
 111 further divided into unsupervised graph noise localization methods Chen & Eldar (2021); Zhang
 112 et al. (2022); Yang et al. (2024) and supervised graph noise localization methods Xia et al. (2023) .
 113

114 Currently, graph denoising techniques face three core limitations:

115 1. Supervised localization relies on annotations and exhibits poor generalization in scenarios where
 116 noisy annotations are scarce.

117 2. The noise judgment thresholds of unsupervised methods are mostly empirically set, which easily
 118 leads to misjudgment for complex graph structures.

119 3. Robust training improves noise resistance through additional regularization, but this significantly
 120 increases computational overhead, making it difficult to balance robustness and efficiency.

122 2.3 GRAPH NOISE GENERATION MODEL

124 In this paper, the synthetic mislabeled dataset generation mechanism proposed in the GraphCleaner
 125 Li et al. (2023) is adopted as the graph noise generation model, which specifically consists of two
 126 core stages:

128 1. **Mislabeled Transition Matrix Estimation:** Using the prediction information of the pre-trained
 129 graph neural network, the mislabel transition matrix \hat{Q} is learned on the validation set. The process
 130 is as follows: First, the high-confidence predictions of the base classifier are used to approximate
 131 the ground-truth labels, and the joint distribution of "**observed labels - high-confidence predicted
 132 labels**" is counted. Subsequently, the joint distribution is converted into a conditional probability
 133 distribution via Bayes' theorem, and finally the matrix \hat{Q} is obtained, realizing the modeling of
 134 class-dependent mislabeling patterns.

135 2. **Noisy Graph Construction:** For the sampled candidate node set V for which mislabeled data
 136 needs to be generated, controllable label flipping is performed on it based on \hat{Q} to generate the noisy
 137 label matrix Y_c . Then, combined with the adjacency matrix A of the original graph, the graph G_c
 138 with synthetic noise and the features X_i of each node i based on k-hop neighborhood information
 139 are obtained.

140 The advantage of this mechanism lies in that the noise distribution is close to real-world scenarios,
 141 which avoids the limitations of random label flipping and provides a possibility for sampling to
 142 obtain high-quality noisy data.

144 3 METHODOLOGY

147 3.1 OVERVIEW

149 In this paper, an iterative unsupervised graph data noise detection framework is proposed. It obtains
 150 supervised data for the node label noise prediction model through data sampling, and uses this
 151 data to acquire realistic input data that conforms to the noise labels of the supervised data via the
 152 graph noise generation model. This data is then used to train the node label noise prediction model,
 153 which continuously improves the prediction accuracy and data sampling quality during the iterative
 154 process, thereby achieving good noise node prediction. The overall framework is shown in Figure
 155 1.

157 3.2 AUTOENCODER

159 To ensure that the graph information sampled in the subsequent sampling stage still contains the
 160 implicit relationships in the real graph data, the autoencoder is first pre-trained. The autoencoder
 161 consists of an encoder and a decoder: the encoder maps the input features to an embedding space,
 while the decoder recovers the original features from this embedding space.

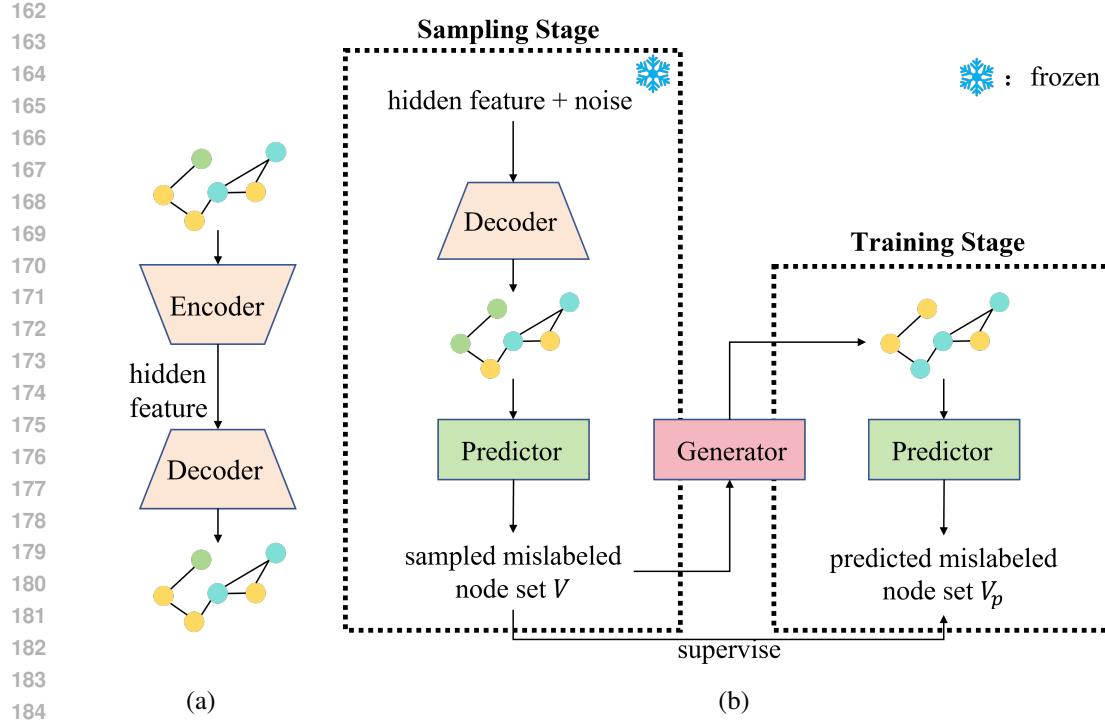


Figure 1: The Framework Diagram of GraphDenoiser. Wherein, (a) illustrates the pre-training process of the AutoEncoder, and (b) illustrates the single-iteration training process of GraphDenoiser. The Decoder used in (b) is the same as the corresponding pre-trained module in (a), and the Predictor for the Sampling Stage comes from the Predictor trained in the Training Stage of the previous iteration. The Generator refers to the graph noise generation model mentioned in the previous section.

The pre-training aims to minimize the MSE (Mean Squared Error) between the input and the reconstructed features, enabling the autoencoder to learn an accurate feature reconstruction mapping. For the input graph feature matrix X , the loss function of the autoencoder is defined as follows:

$$L_{AE} = \frac{1}{n} \sum_{i=1}^n \|X_i - \text{Decoder}(\text{Encoder}(X_i))\|_2^2$$

where n denotes the number of samples, and $\text{Encoder}(\cdot)$ and $\text{Decoder}(\cdot)$ represent the forward propagation operations of the encoder and decoder, respectively. After pre-training, the encoder constrains the embeddings to the interval $[0, 1]$ through Sigmoid activation, providing a stable feature space for subsequent noise injection.

3.3 SAMPLING STAGE

In this stage, we add Gaussian noise to the hidden features corresponding to the real data, and use the decoder from the pre-trained autoencoder to obtain sampled graph data similar to the real data. For these data, we use the frozen node label noise prediction model to predict the probability p_i that each node i is a mislabeled node, and then obtain a set of mislabeled nodes V that is similar to the mislabeled scenario in the real graph data, where:

$$V = \{i \mid p_i > (1 - p_i)\} = \{i \mid p_i > 0.5\}$$

It is worth emphasizing that, compared with traditional mislabeled node identification schemes, the above-mentioned classification method has significant advantages: traditional methods often

216 require manual adjustment of various thresholds, and slight changes in these thresholds may lead
 217 to substantial fluctuations in identification results. In contrast, the interpretable fixed threshold of
 218 this method (i.e., the probability that a node label is noise is greater than the probability that it is
 219 not) not only simplifies the operation process, but also reduces the uncertainty caused by human
 220 intervention, thereby greatly enhancing the adaptability and robustness of the model in scenarios
 221 involving different types of graph data.

222 However, due to the prediction biases of the node label noise prediction model, the sampled graph
 223 data and the set of mislabeled nodes cannot be directly used as the input and output for supervised
 224 training. For the set of mislabeled nodes, we use the graph noise generation model to generate the
 225 corresponding noisy graph G_c . G_c and V thus form a set of data that can be used to supervisedly
 226 train the node label noise prediction model.

228 3.4 TRAINING STAGE

230 To enable the model to simultaneously learn a broader range of data features and alleviate the training
 231 instability caused by dynamic changes in data distribution during the iterative process, we introduce
 232 an experience replay mechanism at this stage. The "graph feature - noisy label" sample pairs
 233 sampled in the Sampling Stage of each iteration are stored in a sliding window experience replay
 234 buffer. The buffer adopts a first-in-first-out strategy: when new samples are added and the total
 235 number exceeds the preset capacity, the earliest stored samples are removed.

236 This design not only ensures the timeliness of samples but also maintains the diversity and representativeness of data distribution by retaining samples from different iteration stages. During each
 237 Training Stage, a batch of samples is randomly extracted from this buffer to update the model
 238 parameters. This allows the model to learn the discriminative patterns between noisy samples and
 239 clean samples from more abundant historical data.

240 In the node label noise prediction task, the core objective is to accurately identify nodes with label
 241 biases in the dataset. The model architecture designed to achieve this goal exhibits a high degree
 242 of flexibility — theoretically, any model that can effectively capture node feature information and
 243 support binary classification tasks can serve as the basic architecture for a node label noise prediction
 244 model. In this paper, we employ an MLP (Multi-Layer Perceptron) as the core model.

245 For the design of the model's loss function, we adopt the BCE (Binary Cross-Entropy) Loss, whose
 246 specific formula is:

$$249 \\ 250 \\ 251 L = -\frac{1}{N} \sum_{i=1}^N [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)] \\ 252 \\ 253$$

254 where N represents the number of samples, y_i denotes the true label of the i -th sample, p_i stands for
 255 the probability predicted by the model that the i -th sample belongs to the noisy label category.

257 3.5 OVERALL ITERATIVE PROCESS

258 This paper takes "**noisy data sampling** → **training of the node label noise prediction model**"
 259 as the core cycle. With the support of feature expression from the autoencoder and continuous
 260 interaction between the two stages, the framework achieves the gradual iterative improvement of
 261 noise detection performance. Finally, the trained model is used to perform inference on the test set,
 262 output the noise probability of samples, and complete the graph data noise detection.

263 Training the node label noise prediction model can improve its prediction accuracy, thereby enabling
 264 the data sampled in the Sampling Stage to be closer to the real data. At the same time, as the data
 265 sampled in the Sampling Stage keeps approaching the real data, the data quality is continuously
 266 improved, which in turn enhances the training quality of the node label noise prediction model in
 267 the Training Stage. The two stages continuously iterate and optimize each other. The pseudocode
 268 of the iterative training process is shown in Algorithm 1.

270 **Algorithm 1** Iterative Training Process of GraphDenoiser

271 **Require:** features of each node in the graph based on k-hop neighborhood information X ,
 272 encoder and decoder from the pre-trained autoencoder $Encoder$ and $Decoder$,
 273 graph noise generation model G ,
 274 indicator function $\mathbb{I}(\cdot)$,
 275 Hyperparameters {lr, wd, batch_size, buffer_cap, . . . }
 276 1: Initialize node label noise prediction model P
 277 2: Initialize sliding window buffer \mathcal{B} with capacity buffer_cap
 278 3: **for** iter = 1 **to** max_iter **do**
 279 4: $z = Encoder(X)$
 280 5: $z_{sampled} = z + \mathcal{N}(0, \sigma^2)$ (clamped to [0, 1])
 281 6: $X_{sampled} = Decoder(z_{sampled})$
 282 7: freeze parameters in P
 283 8: $y_{NewData} = \mathbb{I}(P(X_{sampled}) > 0.5)$
 284 9: unfreeze parameters in P
 285 10: $X_{NewData} = G(y_{NewData})$
 286 11: store $(X_{NewData}, y_{NewData})$ in \mathcal{B}
 287 12: **if** size of \mathcal{B} is greater than buffer_cap **then**
 288 13: Remove oldest data
 289 14: **end if**
 290 15: **if** $|\mathcal{B}| \geq$ batch_size **then**
 291 16: Sample batch_size data (X_{batch}, y_{batch}) from \mathcal{B}
 292 17: $y_{predicted} = \mathbb{I}(P(X_{batch}) > 0.5)$
 293 18: Compute loss between $y_{predicted}$ and y_{batch}
 294 19: Update parameters of model M via backpropagation
 295 20: **end if**
 296 21: **end for**

297
 298 **4 EXPERIMENT**

300
 301 **4.1 DATASET DESIGN**

303 In the experimental validation phase of this study, to ensure the generality, reliability, and practical
 304 reference value of the experimental results, we selected three classic benchmark graph datasets,
 305 namely Cora, CiteSeer, and PubMed, as the basis for raw data. These three datasets have become
 306 standard test sets for evaluating the performance of graph learning algorithms due to their moderate
 307 data scale, clear topological structure, and coverage of features from different fields. Their specific
 308 introductions are as follows Yang et al. (2016):

309 **Cora:** It focuses on the academic paper citation network in the field of machine learning, containing
 310 2708 paper nodes. Each paper corresponds to one research topic (with a total of 7 categories). The
 311 edges between nodes represent the citation relationships among papers, and the node features are
 312 1433-dimensional vectors.

313 **CiteSeer:** It is an academic paper citation network covering 3327 paper nodes in the field of com-
 314 puter science (with a total of 6 categories), and the node features are 3703-dimensional vectors.

316 **PubMed:** It is a literature citation network oriented to the field of biomedicine. With a relatively
 317 larger scale, it includes 19717 biomedical literature nodes (with a total of 3 categories). The node
 318 features are 500-dimensional vectors, and its network topological structure is more complex, which
 319 can effectively test the adaptability of algorithms to large-scale graph data.

320 To simulate the problem of node label mislabeling in real-world scenarios, which is prone to be
 321 caused by factors such as data collection errors and manual annotation biases - we designed a two-
 322 dimensional combination scheme of **”noise injection method × noise frequency”** for each of the
 323 aforementioned raw datasets, and constructed multiple groups of graph datasets with node type
 mislabeling. The specific design logic and implementation details are as follows:

324 Table 1: Results of Comparative Experiments on 8 Noise Injection Methods Across 3 Datasets.
 325 'sym' and 'asym' denote symmetric and asymmetric noise. Items in bold represent the best results,
 326 while underlined items represent the second-best results.

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Noise Type	Noise Rate	Method	Cora		CiteSeer		PubMed	
				P@T	MCC	F1	P@T	MCC	F1
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	sym	10%	baseline	0.175	0.388	0.296	0.235	0.333	0.336
			DYB	0.289	0.437	0.425	0.184	0.320	0.333
			AUM	0.598	0.038	0.179	0.439	0.021	0.179
			CL	0.722	0.608	0.633	0.520	0.432	0.448
			GraphCleaner	0.794	<u>0.766</u>	<u>0.785</u>	<u>0.531</u>	0.489	<u>0.514</u>
			Ours	0.804	0.795	0.809	0.541	0.560	0.596
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	sym	7.5%	baseline	0.086	0.259	0.156	0.153	0.256	0.237
			DYB	0.286	0.405	0.371	0.125	0.297	0.274
			AUM	0.600	0.019	0.132	0.458	0.034	0.136
			CL	0.629	0.544	0.564	<u>0.486</u>	0.383	0.372
			GraphCleaner	<u>0.686</u>	<u>0.668</u>	<u>0.682</u>	0.472	<u>0.501</u>	<u>0.494</u>
			Ours	0.743	0.700	0.708	0.500	0.553	0.560
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	sym	5%	baseline	0.106	0.289	0.189	0.208	0.293	0.290
			DYB	0.277	0.350	0.286	0.063	0.239	0.198
			AUM	0.596	0.028	0.091	0.354	0.021	0.092
			CL	0.660	0.558	0.555	0.458	0.368	0.318
			GraphCleaner	0.723	<u>0.648</u>	<u>0.637</u>	0.375	<u>0.398</u>	<u>0.378</u>
			Ours	<u>0.702</u>	0.743	0.755	0.458	0.510	<u>0.524</u>
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	sym	2.5%	baseline	0.095	0.212	0.160	<u>0.318</u>	0.349	<u>0.359</u>
			DYB	0.143	0.222	0.130	<u>0.000</u>	0.145	0.088
			AUM	0.476	0.012	0.041	0.182	0.017	0.044
			CL	0.476	0.335	0.320	<u>0.318</u>	0.197	0.138
			GraphCleaner	<u>0.524</u>	<u>0.506</u>	<u>0.462</u>	0.273	0.303	0.232
			Ours	0.619	0.629	0.636	0.364	0.395	<u>0.378</u>
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	asym	10%	baseline	0.103	0.307	0.187	0.102	0.158	0.161
			DYB	0.309	0.407	0.417	0.174	0.268	0.299
			AUM	0.536	0.040	0.179	0.378	0.030	0.180
			CL	0.608	0.598	0.624	0.357	0.375	0.409
			GraphCleaner	<u>0.629</u>	<u>0.616</u>	<u>0.650</u>	0.429	0.420	0.463
			Ours	0.670	0.652	0.686	0.408	0.435	0.483
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	asym	7.5%	baseline	0.100	0.234	0.173	0.056	0.111	0.095
			DYB	0.257	0.347	0.311	0.111	0.225	0.229
			AUM	0.571	0.040	0.134	0.361	0.027	0.136
			CL	0.529	0.509	0.513	0.444	0.357	0.354
			GraphCleaner	0.614	0.586	0.602	0.403	0.389	0.403
			Ours	0.657	0.641	0.667	<u>0.417</u>	0.412	0.449
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	asym	5%	baseline	0.043	0.118	0.077	0.167	0.270	0.250
			DYB	0.213	0.315	0.252	0.063	0.218	0.182
			AUM	0.447	0.021	0.091	0.354	0.030	0.093
			CL	0.553	0.518	0.510	0.417	0.329	0.291
			GraphCleaner	<u>0.619</u>	<u>0.585</u>	<u>0.525</u>	0.333	<u>0.374</u>	<u>0.360</u>
			Ours	0.638	0.628	0.633	0.354	0.418	0.400
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	asym	2.5%	baseline	0.048	0.120	0.083	0.091	0.090	0.105
			DYB	0.143	0.231	0.137	0.000	0.128	0.082
			AUM	0.429	0.015	0.042	0.227	0.013	0.043
			CL	0.571	0.454	0.410	0.182	0.203	0.143
			GraphCleaner	0.476	0.596	0.539	0.182	0.231	0.197
			Ours	<u>0.524</u>	0.627	0.618	<u>0.227</u>	0.236	<u>0.237</u>

- 1. Design of Noise Injection Methods:** Considering the different generation mechanisms of label noise in reality, we adopted two representative noise injection strategies, symmetric and asymmetric, to cover different types of label error scenarios Tan et al. (2021); Xia et al. (2022); Chen et al. (2019).
- 2. Setting of Noise Frequency:** With reference to the statistical results of label noise frequency in real graph datasets from existing literature, we selected four gradient noise frequencies: 10%, 7.5%, 5%, and 2.5%, so as to cover real-world scenarios ranging from high noise to low noise Northcutt et al. (2021a).
- 3. Dataset Construction:** Through the full combination strategy of "noise injection method \times noise frequency", we constructed 8 groups of graph datasets with node type mislabeling for each

378
 379 Table 2: Results of Ablation Studies on 8 Noise Injection Methods for the Cora Dataset. 'sym' and
 380 'asym' denote symmetric and asymmetric noise. w/o Buffer denotes removing the sliding window
 381 experience replay buffer. w/o AE denotes further removing the autoencoder based on the former.
 382 Items in bold indicate the best results.

Method	sym											
	10% P@T MCC		7.5% P@T MCC		5% P@T MCC		2.5% MCC		F1			
Ours	0.804	0.795	0.809	0.743	0.700	0.708	0.702	0.743	0.755	0.619	0.629	0.636
w/o Buffer	0.814	0.473	0.461	0.714	0.403	0.369	0.723	0.327	0.259	0.571	0.562	0.571
w/o AE	0.794	0.404	0.393	0.757	0.331	0.293	0.745	0.264	0.204	0.619	0.192	0.108

Method	asym											
	10% P@T MCC		7.5% P@T MCC		5% P@T MCC		2.5% MCC		F1			
Ours	0.670	0.652	0.686	0.657	0.641	0.667	0.638	0.628	0.633	0.524	0.627	0.618
w/o Buffer	0.660	0.646	0.679	0.629	0.614	0.630	0.617	0.361	0.297	0.429	0.611	0.590
w/o AE	0.650	0.384	0.377	0.614	0.318	0.285	0.575	0.273	0.215	0.619	0.157	0.086

397 raw dataset (calculated as 2 noise injection methods \times 4 noise frequencies). Finally, a total of 24
 398 groups of experimental graph datasets with node mislabeling were constructed.
 399

400 4.2 METRICS DESIGN

401 This paper adopts three metrics — P@T, MCC, and F1 — as the evaluation metrics for the model.
 402 These three types of metrics complement each other from distinct evaluation perspectives: P@T
 403 ensures the accuracy of high-priority results, MCC addresses the evaluation bias in class imbalance
 404 scenarios, and F1 balances the trade-off between precision and recall. The combination of the three
 405 can comprehensively cover the model’s performance across different scenarios, providing a reliable
 406 basis for the objective assessment of model effectiveness Chicco & Jurman (2020); Diallo et al.
 407 (2024).

410 4.3 COMPARATIVE EXPERIMENTS

411 We conducted comparative experiments among GraphDenoiser, DYB Arazo et al. (2019a), AUM
 412 Pleiss et al. (2020), CL Northcutt et al. (2021b), GraphCleaner Li et al. (2023) and the baseline.
 413 Here, the baseline simply treats samples whose argmax predictions differ from the given labels as
 414 mislabeled nodes. Experiments were performed on the 24 noisy graph datasets mentioned above,
 415 and the results are presented in Table 1.

416 Analysis of the experimental results shows that our method performs the best in most metrics. To
 417 more intuitively demonstrate the performance improvement of GraphDenoiser, this study conducts
 418 a quantitative comparison between GraphDenoiser and the best-performing method among previous
 419 methods on each dataset (i.e., for each dataset, the method with the optimal comprehensive per-
 420 formance is selected from DYB, AUM, CL, GraphCleaner and the baseline). The results indicate that
 421 in terms of the average performance across 24 noisy graph datasets, the MCC metric of GraphDe-
 422 noiser is 22.81% higher than that of the previous best method, and the F1 score is 30.51% higher
 423 than that of the previous best method. This significant improvement shows that GraphDenoiser can
 424 effectively overcome the performance bottlenecks of traditional methods under complex noise dis-
 425 tributions and diverse graph structures, and greatly improve the recognition accuracy of mislabeled
 426 nodes.

428 4.4 ABLATION STUDIES

429 To verify the effectiveness of each module in our method, we constructed eight noisy graph datasets
 430 based on the Cora dataset. We sequentially removed the **sliding window experience replay buffer**

432 and **autoencoder** from the complete method, followed by testing its performance. The experimental
 433 results are presented in Table 2.

434 Analysis of the experimental results reveals that all metrics decreased significantly after removing
 435 the sliding window experience replay buffer, indicating that this module contributes to the effectiveness
 436 of the proposed method. On this basis, after further removing the autoencoder, it was found
 437 that although P@T showed no significant change, MCC and F1 decreased sharply. This proves that
 438 the autoencoder also plays a crucial role in ensuring the effectiveness of the proposed method.

439 In conclusion, all modules of the proposed method support each other functionally and are indispensable.
 440 Together, they form a key guarantee for the model to achieve high-performance detection
 441 of node label mislabeling in noisy data scenarios.

443 5 CONCLUSION

444 Addressing the core issues where node label noise in graph-structured data interferes with the performance
 445 of supervised learning and traditional denoising methods struggle to adapt to the non-independent
 446 distribution characteristics of graph data, this study proposes an iterative graph label
 447 denoising framework called GraphDenoiser based on unsupervised learning. This framework
 448 systematically addresses the key limitations of existing methods, such as neglecting graph structural
 449 correlations and over-relying on clean annotations, and provides an efficient and low-cost solution
 450 for detecting mislabeled nodes in graph data.

451 The experimental results fully verify the effectiveness and superiority of the proposed method: Under 8 noise
 452 configurations across 3 graph datasets, GraphDenoiser achieves outstanding performance
 453 in the three core metrics of P@T, MCC, and F1. Compared with existing methods, the average
 454 improvements in MCC and F1 reach 22.81% and 30.51% respectively. Further ablation studies show
 455 that each module supports each other functionally and is indispensable, collectively forming a key
 456 guarantee for the model’s robustness.

459 6 PROSPECT

460 Future research can further expand the application scenarios of the framework. For instance, it
 461 can be applied to label denoising tasks for heterogeneous graphs and dynamic graphs, or focus on
 462 denoising the edges between nodes and edge labels. Ultimately, this aims to achieve comprehensive
 463 mislabel detection for various types of graphs.

466 7 THE USE OF LARGE LANGUAGE MODELS (LLMs)

467 In this paper, LLMs are used to detect spelling errors and grammatical errors.

471 REFERENCES

472 Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor, and Kevin McGuinness. Unsupervised
 473 label noise modeling and loss correction. In Kamalika Chaudhuri and Ruslan Salakhutdinov
 474 (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of
 475 *Proceedings of Machine Learning Research*, pp. 312–321. PMLR, 09–15 Jun 2019a.

476 Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor, and Kevin McGuinness. Unsupervised
 477 label noise modeling and loss correction. In *International conference on machine learning*, pp.
 478 312–321. PMLR, 2019b.

479 Pengfei Chen, Ben Ben Liao, Guangyong Chen, and Shengyu Zhang. Understanding and utilizing
 480 deep neural networks trained with noisy labels. In *International conference on machine learning*,
 481 pp. 1062–1070. PMLR, 2019.

482 Siheng Chen and Yonina C Eldar. Graph signal denoising via unrolling networks. In
 483 *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing*
 484 (*ICASSP*), pp. 5290–5294. IEEE, 2021.

486 Yao Cheng, Caihua Shan, Yifei Shen, Xiang Li, Siqiang Luo, and Dongsheng Li. Resurrecting
 487 label propagation for graphs with heterophily and label noise. In Proceedings of the 30th ACM
 488 SIGKDD conference on knowledge discovery and data mining, pp. 433–444, 2024.

489

490 Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coefficient (mcc)
 491 over f1 score and accuracy in binary classification evaluation. BMC genomics, 21(1):6, 2020.

492

493 Enyan Dai, Charu Aggarwal, and Suhang Wang. Nrgnn: Learning a label noise resistant graph
 494 neural network on sparsely and noisily labeled graphs. In Proceedings of the 27th ACM SIGKDD
 495 conference on knowledge discovery & data mining, pp. 227–236, 2021.

496

497 Ramatoulaye Diallo, Codjo Edalo, and O Olawale Awe. Machine learning evaluation of imbalanced
 498 health data: a comparative analysis of balanced accuracy, mcc, and f1 score. In Practical Statistical
 499 Learning and Data Science Methods: Case Studies from LISA 2020 Global Network, USA, pp.
 500 283–312. Springer, 2024.

501

502 Mingze Dong and Yuval Kluger. Towards understanding and reducing graph structural noise for
 503 gnns. In International Conference on Machine Learning, pp. 8202–8226. PMLR, 2023.

504

505 James Fox and Sivasankaran Rajamanickam. How robust are graph neural networks to structural
 506 noise? arXiv preprint arXiv:1912.10206, 2019.

507

508 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
 509 MIT press Cambridge, 2016.

510

511 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 512 Advances in neural information processing systems, 30, 2017.

513

514 Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
 515 Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
 516 Advances in neural information processing systems, 31, 2018.

517

518 Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
 519 learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
 520 conference on knowledge discovery & data mining, pp. 66–74, 2020.

521

522 TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
 523 arXiv:1609.02907, 2016.

524

525 Yi Li and Nuno Vasconcelos. Repair: Removing representation bias by dataset resampling. In
 526 Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9572–
 527 9581, 2019.

528

529 Yuwen Li, Miao Xiong, and Bryan Hooi. Graphcleaner: Detecting mislabelled samples in popular
 530 graph learning benchmarks. In International Conference on Machine Learning, pp. 20195–20209.
 531 PMLR, 2023.

532

533 Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets destabilize
 534 machine learning benchmarks. In Thirty-fifth Conference on Neural Information Processing
 535 Systems Datasets and Benchmarks Track (Round 1), 2021a.

536

537 Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. Confident learning: Estimating uncertainty in
 538 dataset labels. 2021b.

539

540 Hoang NT, Choong Jun Jin, and Tsuyoshi Murata. Learning graph neural networks with noisy
 541 labels. arXiv preprint arXiv:1905.01591, 2019.

542

543 Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled data
 544 using the area under the margin ranking. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
 545 and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 17044–
 546 17056. Curran Associates, Inc., 2020.

547

548 Siyi Qian, Haochao Ying, Renjun Hu, Jingbo Zhou, Jintai Chen, Danny Z Chen, and Jian Wu.
 549 Robust training of graph neural networks via noise governance. In Proceedings of the sixteenth
 550 ACM international conference on web search and data mining, pp. 607–615, 2023.

540 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 541 generalize to imagenet? In *International conference on machine learning*, pp. 5389–5400. PMLR,
 542 2019.

543 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
 544 The graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.

545 Cheng Tan, Jun Xia, Lirong Wu, and Stan Z Li. Co-learning: Learning from noisy labels with
 546 self-supervision. In *Proceedings of the 29th ACM international conference on multimedia*, pp.
 547 1405–1413, 2021.

548 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 549 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

550 Jun Xia, Cheng Tan, Lirong Wu, Yongjie Xu, and Stan Z Li. Ot cleaner: Label correction as optimal
 551 transport. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal
 552 Processing (ICASSP)*, pp. 3953–3957. IEEE, 2022.

553 Jun Xia, Haitao Lin, Yongjie Xu, Cheng Tan, Lirong Wu, Siyuan Li, and Stan Z Li. Gnn cleaner:
 554 Label cleaner for graph structured data. *IEEE Transactions on Knowledge and Data Engineering*,
 555 36(2):640–651, 2023.

556 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 557 networks? *arXiv preprint arXiv:1810.00826*, 2018.

558 Tianmeng Yang, Jiahao Meng, Min Zhou, Yaming Yang, Yujing Wang, Xiangtai Li, and Yunhai
 559 Tong. You can't ignore either: Unifying structure and feature denoising for robust graph learning.
 560 In *Proceedings of the 33rd ACM International Conference on Information and Knowledge
 561 Management*, pp. 4178–4182, 2024.

562 Weikai Yang, Changjian Chen, Jiangning Zhu, Lei Li, Peng Liu, and Shixia Liu. A survey of visual
 563 analytics research for improving training data quality. *Journal of Computer-Aided Design &
 564 Computer Graphics*, 35(11):1629–1642, 2023.

565 Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
 566 graph embeddings. In *International conference on machine learning*, pp. 40–48. PMLR, 2016.

567 David W Zhang, Gertjan J Burghouts, and Cees GM Snoek. Pruning edges and gradients to learn
 568 hypergraphs from larger sets. In *Learning on Graphs Conference*, pp. 53–1. PMLR, 2022.

569 Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming the
 570 limitations of localized graph training data. *Advances in Neural Information Processing Systems*,
 571 34:27965–27977, 2021.

572 Zhaowei Zhu, Zihao Dong, and Yang Liu. Detecting corrupted labels without training a model to
 573 predict. In *International conference on machine learning*, pp. 27412–27427. PMLR, 2022.

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593