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ABSTRACT

Variance-dependent regret bounds for linear contextual bandits, which improve

upon the classical Õ(d
√
K) regret bound to Õ(d

√∑K
k=1 σ

2
k), where d is the con-

text dimension, K is the number of rounds, and σ2
k is the noise variance in round

k, has been widely studied in recent years. However, most existing works focus
on the regret upper bounds instead of lower bounds. To our knowledge, the only
lower bound is from Jia et al. (2024), which proved that for any eluder dimen-
sion delu and total variance budget Λ, there exists an instance with

∑K
k=1 σ

2
k ≤ Λ

for which any algorithm incurs a variance-dependent lower bound of Ω(
√
deluΛ).

However, this lower bound has a
√
d gap with existing upper bounds. More-

over, it only considers a fixed total variance budget Λ and does not apply to a
general variance sequence {σ2

1 , . . . , σ
2
K}. In this paper, to overcome the limita-

tions of Jia et al. (2024), we consider the general variance sequence under two
settings. For a prefixed sequence, where the entire variance sequence is revealed
to the learner at the beginning of the learning process, we establish a variance-

dependent lower bound of Ω(d
√∑K

k=1 σ
2
k/ logK) for linear contextual bandits.

For an adaptive sequence, where an adversary can generate the variance σ2
k in

each round k based on historical observations, we show that when the adversary
must generate σ2

k before observing the decision set Dk, a similar lower bound

of Ω(d
√∑K

k=1 σ
2
k/ log

6(dK)) holds. In both settings, our results match the up-
per bounds of the SAVE algorithm (Zhao et al., 2023) up to logarithmic factors.
Furthermore, if the adversary can generate the variance σk after observing the
decision set Dk, we construct a counter-example showing that it is impossible
to construct a variance-dependent lower bound if the adversary properly selects
variances in collaboration with the learner. Our lower bound proofs use a novel
peeling technique that groups rounds by variance magnitude. For each group,
we construct separate instances and assign the learner distinct decision sets. We
believe this proof technique may be of independent interest.

1 INTRODUCTION

We consider the linear contextual bandit problem, where each arm is represented by a feature vector
and the expected reward is a linear function of this feature vector with an unknown parameter vec-
tor. Numerous studies have developed algorithms achieving optimal regret bounds for linear bandits
(Chu et al., 2011; Abbasi-Yadkori et al., 2011). However, while these works establish minimax-
optimal regret bounds in the worst-case, they do not exploit additional problem-dependent struc-
tures. Our work focuses on incorporating reward variance information into the analysis, building
upon a line of research studying variance-dependent regret bounds for linear bandits (Zhou et al.,
2021; Zhang et al., 2021; Zhou & Gu, 2022; Zhao et al., 2022; Kim et al., 2022; Zhao et al., 2023)
and general function approximation (Jia et al., 2024), which includes linear bandits as a special
case. Notably, Zhao et al. (2023) established a near-optimal regret guarantee without requiring prior
knowledge of the variances:
Theorem 1.1 (Theorem 2.3, Zhao et al. 2023). For any linear contextual bandit problem, the regret
of the SAVE algorithm in the first K rounds is upper bounded by:

Regret(K) ≤ Õ
(
d

√∑K
k=1 σ

2
k + d

)
,

1
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where d is the dimension and σ2
k is the noise variance of the selected action in round k.

However, most of these works have focused on developing algorithms with regret upper bound
guarantees, while variance-dependent lower bounds remain understudied. The only exception is
Jia et al. (2024), which focuses on general function classes with finite eluder dimension delu and
provides the following variance-dependent lower bound:
Theorem 1.2 (Theorem 5.1, Jia et al. 2024). For any dimension d ≥ 2, action space size A, number
of rounds K ≥ 2, and total variance budget Λ ∈ [0,K], there exists a contextual bandit problem with
eluder dimension delu = d, action space size A, and an adversarial sequence of variances satisfying∑K

k=1 σ
2
k ≤ Λ such that for any algorithm, the regret is lower bounded by:

Regret(K) ≥ Ω
(
min(

√
dΛ + d,

√
AK)

)
.

When restricted to the linear bandit case, where d ≥
√
A, the above lower bound reduces to

√
dΛ,

which has a gap of
√
d factor compared with the upper bound in Zhao et al. (2023). Moreover, Jia

et al. (2024) only considers instances with a fixed budget Λ and relies on carefully designed vari-
ance sequences {σ2

1 , σ
2
2 , . . . , σ

2
K}, failing to provide lower bounds for general variance sequences.

Therefore, an open question arises:

Can we prove variance-dependent regret lower bounds for general variance sequences?

1.1 OUR CONTRIBUTIONS

In this paper, we answer this question affirmatively by constructing hard-to-learn instances in sev-

eral different settings. For any prefixed sequence {σ2
1 , . . . , σ

2
K}, we achieve a Ω̃(d

√∑K
k=1 σ

2
k)

variance-dependent expected lower bound, which matches the upper bound in Zhao et al. (2023)
up to logarithmic factors and demonstrates its optimality. For general adaptive variance sequences
where a weak adversary (potentially collaborating with the learner) can generate variance σ2

k in each
round k based on historical observations, our instance provides a high-probability lower bound of

Ω̃(d
√∑K

k=1 σ
2
k), which also matches the upper bound in Zhao et al. (2023) up to logarithmic fac-

tors. To the best of our knowledge, this is the first high-probability lower bound for linear contextual
bandit.
Our construction and analysis rely on the following new techniques:

• A peeling technique for prefixed variance sequences that divides rounds into groups based on
variance magnitude. Through orthogonal decision set construction, each group only interacts with
its corresponding parameters, allowing us to establish separate lower bounds for different variance
scales and combine them effectively.

• A multi-instance framework that handles unknown group sizes in the adaptive setting. For each
variance group, we maintain multiple instances designed for different possible intervals of round
numbers and assign the learner to these instances in a cyclic manner, ensuring uniform visits
across instances and guaranteeing the visiting times of one instance matches its designed interval.

• A high-probability lower bound that handles adaptive group sizes through a union bound. We
first convert expected regret bounds to constant-probability bounds through careful variance con-
trol and auxiliary algorithms, then boost these to high-probability bounds by creating multiple
independent instances.

Furthermore, we also study the setting with a strong adversary that can generate the variance σk

after observing the decision set Dk. Under this scenario, we proposed a counter algorithm that can
collaborate with the adversary by properly selecting variance, achieving an O(d) regret even the
total variance

∑K
k=1 σ

2
k = Ω(K). This implies that it is impossible to derive a variance-dependent

lower bound for general variance sequence with strong adversary. As a direct extension of this result,
we also show that it is impossible to derive a variance-dependent lower bound for stochastic linear
bandits, where the decision set is fixed even for a general prefixed variance sequence.
Notation We use lower case letters to denote scalars, and use lower and upper case bold face letters
to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For a vector
x ∈ Rd and a positive semi-definite matrix Σ ∈ Rd×d, we denote by ∥x∥2 the vector’s ℓ2 norm
and by ∥x∥Σ =

√
x⊤Σx the Mahalanobis norm. For two positive sequences {an} and {bn} with

n = 1, 2, . . . , we write an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn
holds for all n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0 such that
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an ≥ Cbn holds for all n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors. We use 1{·}
to denote the indicator function.

2 RELATED WORK

Heteroscedastic Linear Bandits. For linear bandit problems, the worst-case regret has been widely
studied (Auer, 2002; Dani et al., 2008; Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al.,
2011; Li et al., 2019), achieving Õ(

√
K) bounds in the first K rounds. Recently, a series of works

has considered heteroscedastic variants where noise distributions vary across rounds. Kirschner &
Krause (2018) first formally proposed a linear bandit model with heteroscedastic noise, assuming
σk-sub-Gaussian noise in round k ∈ [K]. Subsequently, (Zhou et al., 2021; Zhang et al., 2021;
Kim et al., 2022; Zhou & Gu, 2022; Dai et al.; Zhao et al., 2023; Jia et al., 2024) relaxed this to
variance-based constraints where round k has variance σ2

k. Among these works, Zhou et al. (2021)

and Zhou & Gu (2022) obtained near-optimal regret guarantees of Õ(d
√∑K

k=1 σ
2
k), but required

knowledge of σk after observing the reward in round k. In contrast, Zhang et al. (2021); Kim et al.
(2022) handled unknown variances with computationally inefficient algorithms, achieving a weaker

Õ(poly(d)
√∑K

k=1 σ
2
k) bound. Recently, Zhao et al. (2023) improved upon these results with an

efficient algorithm (SAVE) achieving the near-optimal Õ(d
√∑K

k=1 σ
2
k) bound without requiring

variance knowledge. Beyond standard linear bandits, two directions have been explored. Dai et al.
studied heteroscedastic sparse linear bandits, providing a framework to convert standard algorithms
to the sparse setting. In a different direction, Jia et al. (2024) extended the analysis to contextual
bandits with general function classes having finite eluder dimension, which includes linear bandits
as a special case, and achieved a variance-dependent regret upper bounds.
Lower Bounds for Linear Contextual Bandits. For linear contextual bandit problems, several
works (Dani et al., 2008; Chu et al., 2011; Li et al., 2019) have established theoretical lower bounds
to illustrate the fundamental difficulty in learning process. For linear bandits with finite action sets,
Chu et al. (2011) established an Ω̃(

√
dK) lower bound, matching the upper bound up to logarithmic

factors in the action set size and number of rounds K. For general stochastic linear bandits, Dani
et al. (2008) constructed an instance with 2Ω(d) actions and obtained an Ω(d

√
K) lower bound.

Later, Li et al. (2019) focused on linear contextual bandits, where the decision set can vary across
rounds, and provided an Ω(d

√
K logK) lower bound. However, all these works only focus on

worst-case regret bounds and do not consider the heteroscedastic variance information. The only
exception is Jia et al. (2024), which provided an Ω(

√
dΛ) variance-dependent lower bound for a

fixed total variance budget Λ. Nevertheless, this work cannot handle general variance sequences and
leaves open the question of variance-dependent lower bounds in the general setting.
Variance-dependent Bounds for Multi-armed Bandits. Auer et al. (2002) studied a multi-armed
bandit problem in which the rewards are normally distributed with unknown mean and variance,
and proposed the UCB1-NORMAL algorithm, which achieves a variance-dependent regret bound
of Õ(

∑n
i=1,∆i ̸=0

σ2
i

∆i
+∆i) logK). Here σ2

i is the variance of the reward for the i-th arm, ∆i is the
suboptimality gap between i-th arm and the best arm, n is the number of arms, and K is the number
of rounds. Audibert et al. (2009) considered a multi-armed bandit (MAB) problem with bounded
reward (by b > 0) and unknown mean and variance. They proposed the UCB-V algorithm that
achieves a variance-dependent regret bound of Õ(

∑n
i=1,∆i ̸=0

σ2
i

∆i
+ b) logK. They also established

a matching lower bound. Variance-dependent regret bounds have also been established for best-arm
identification problem (Audibert & Bubeck, 2010) in multi-armed stochastic bandits. For example,
Lu et al. (2021) studied the best-arm identification problem in stochastic multi-armed bandits, and
proved a variance dependent lower bound of Ω̃(

∑n
i=1,∆i ̸=0

σ2
i

∆2
i
+ 1

∆i
). They also proposed an

algorithm that achieves a nearly matching upper bound. Lalitha et al. (2023) studied fixed-budget
best-arm identification with heterogeneous reward variances. It is worth noting that these variance-
dependent regret results for MAB rely on the assumption that the arms are fixed. Consequently,
the sub-optimality gap ∆i and the variance σ2

i are assumed to remain constant across all rounds.
In sharp contrast, our focus is on the linear contextual bandits, where the decision set Dk changes
adaptively. This change depends on the history of actions and rewards, meaning the set of available
arms (and even the size of the action set) is not fixed.

3
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3 PRELIMINARIES

In this work, we consider the heteroscedastic linear contextual bandit (Zhou et al., 2021; Zhang
et al., 2021), where the noise variance varies across rounds. Let K be the total number of rounds. In
each round k ∈ [K], the interaction between the learner and the environment proceeds as follows:

1. The environment generates an arbitrary decision set Dk ⊆ Rd, where each element repre-
sents a feasible action that can be selected by the learner;

2. The learner observes Dk and selects xk ∈ Dk;

3. The environment generates the stochastic noise ϵk and reveals the stochastic reward rk =
⟨µ,xk⟩+ ϵk to the learner, where µ ∈ Rd is the unknown weight vector for the underlying
linear reward function.

Without loss of generality, we assume the random noise ϵk in each round k satisfies:

P(|ϵk| ≤ R) = 1, E[ϵk|x1:k, ϵ1:k−1] = 0, E[ϵ2k|x1:k, ϵ1:k−1] = σ2
k ≤ 1,∀k ∈ [K] (3.1)

For any algorithm Alg and linear bandit instance M, the cumulative regret is defined as follows:

RegretAlg(K,M) =
∑

k∈[K]

⟨x∗
k,µ⟩ − ⟨xk,µ⟩, where x∗

k = argmax
x∈Dk

⟨x,µ⟩. (3.2)

For simplicity, we may omit the subscripts Alg and/or M when there is no ambiguity. Additionally,
with a slight abuse of notation, we may use σk to represent the variance σ2

k (which is originally
the standard deviation) when there is no ambiguity. In this work, we focus on providing variance-
dependent lower bounds for the regret based on the variances sequence {σ1, ..., σK}. We consider
two settings for the variance sequence {σ1, . . . , σK}:

• Prefixed Sequence: The variance sequence is revealed to the learner at the beginning of
the learning process.

• Adaptive Sequence: An adversary (potentially collaborating with the learner) can generate
the variance σk in each round k based on historical observations, with the learner receiving
each variance at the beginning of the corresponding round. This setting can be further
divided into two categories based on the power of the adversary:

– Weak Adversary: The adversary must generate the variance σk before observing the
decision set Dk.

– Strong Adversary: The adversary can generate the variance σk after observing the
decision set Dk.

Remark 3.1. Unlike the typical adversarial setting focused on maximizing regret for a specific
algorithm, our work uses the idea of an “adversary” to represent the environment’s inherent ability to
select the variance sequence. This “adversary” might even strategically choose variance levels (σk)
based on the past decision sets Dk observed so far, potentially leading to variance levels that could
temporarily improve the learner’s performance or make the learning process appear easier. This
seeming “cooperation,” however, is ultimately aimed at exploring the fundamental lower bounds on
regret that must hold for any learner in any environment. The key is that the variance is chosen
without direct knowledge of the true underlying patterns µ. When this “adversary” (our “strong
adversary”) can adjust the variance based on the learner’s actions (Dk), this strategic “cooperation,”
informed by past observations but blind to µ, becomes more effective in probing the true limits of
learnability and challenging our lower bound results.

4 VARIANCE-DEPENDENT LOWER BOUND WITH PREFIXED VARIANCE
SEQUENCE

In this section, we consider the setting where the variance sequence {σ1, . . . , σK} is prefixed and
fully revealed to the learner at the beginning of the learning process.

4.1 MAIN RESULTS

We establish the following theorem for the variance-dependent lower bound.

Theorem 4.1. Let d > 1 and consider any prefixed sequence of variances {σ1, ..., σK} satisfying∑K
k=1 σ

2
k ≥ 1 + 384d2. For any algorithm Alg, there exists a hard linear contextual bandit instance

4
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such that each action a ∈ Dk in round k has variance bounded by σk. For this instance, the expected
regret of algorithm Alg over K rounds is lower bounded by:

E[Regret(K)
]
≥ Ω

(
d

√∑K
i=1 σ

2
k/(logK)

)
.

Remark 4.2. For a prefixed sequence {σ1, ..., σK}, Theorem 4.1 shows that any algorithm incurs a

regret lower bounded of Ω̃(d
√∑K

k=1 σ
2
k), which matches the upper bound in Zhao et al. (2023) up

to logarithmic factors. Compared to the lower bound in Jia et al. (2024), Theorem 4.1 focuses on
the linear contextual bandit setting and achieves a

√
d improvement over the standard linear bandit

setting. It is also worth noting that the lower bound in Jia et al. (2024) only considers instances with
a fixed total variance

∑K
k=1 σ

2
k, constructed by using constant variance in the early rounds and zero

variance in later rounds. In comparison, Theorem 4.1 applies to any fixed variance sequence and is
more flexible.

In Theorem 4.1, we require that the total variance is no less than Ω(d2), which reduces to K ≥ Ω(d2)
when all variances σk = 1. A similar requirement exists in standard linear bandits, since a trivial
lower bound of Ω(K) always holds for any algorithm, and the lower bound of Ω(d

√
K) can only

be achieved when K ≥ Ω(d2). Furthermore, for general sequences of variances with total variance
smaller than O(d2), a large number of rounds K alone is not sufficient to establish the desired
lower bound. The presence of early rounds with zero variance would increase the total number of
rounds without affecting the fundamental complexity of the problem. This observation suggests that
requiring total variance no less than Ω(d2) (or other equivalent conditions) may be necessary for
establishing the lower bound.

4.2 PROOF OVERVIEW OF THEOREM 4.1

In this subsection, we prove the variance-dependent lower bound in Theorem 4.1. We first start
with a fixed variance threshold σ, and construct a class of hard-to-learn instances where actions are
chosen from a hypercube action set A = {−1, 1}d, and for any action a ∈ A, the reward follows a
scaled Bernoulli distribution σ ·B(1/3+ ⟨µ,a⟩), where ∆ = 1/

√
96K and µ ∈ {−∆,∆}d. In this

setting, the variance for each action is upper bounded by σ2, and these instances can be represented
as a linear bandit problem with feature (σ, σ · a) and weight vector µ′ = (1/3,µ). Based on these
hard-to-learn instances, we have the following variance-dependent lower bound for the regret:

Lemma 4.3. For a fixed variance threshold σ and any bandit algorithm Alg, if the weight vector µ ∈
{−∆,∆}d is uniformly random selected from {−∆,∆}d, the variance in each round is bounded by
σ2, and the expected regret over K ≥ 1.5 · d2 rounds is lower bounded by:

Eµ[Regret(K)] ≥ d
√
Kσ2/8

√
6.

Remark 4.4. Lemma 4.3 establishes a variance-dependent lower bound for the regret with a fixed
variance threshold σ. When all variances are equal (σ1 = ... = σK = σ), this bound matches the
upper bound in Zhao et al. (2023) up to logarithmic factors. In addition, under this fixed-variance
setting, this lemma provides a tighter logarithmic dependency on the number of rounds K compared
to Theorem 4.1, though it does not extend to dynamic variances.

Now, for any prefixed variance sequence {σ1, ..., σK}, we divide the rounds into L = ⌈log2 K⌉+1
different groups based on the range of their variance as follows:

K0 = {k : σk ≤ 1/K},
Ki = {k : 2i−1/K < σk ≤ 2i/K}, for i = 1, . . . , L− 1.

For each group Ki with i ∈ [L − 1], we construct a bandit instance Mi with weight vector µi

following Lemma 4.3, where:

• the variance threshold is set to be σ(i) = 2i−1/K;

• the number of rounds is Ki = |Ki|;
• the dimension is di = d/L.

For group K0, we construct a different type of instance M0: a d/L-armed bandit, where one ran-
domly chosen arm gives constant reward 1 while all other arms give reward 0. Note that this instance

5
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in M0 can be equivalently represented as a d0 = d/L-dimensional linear bandit where actions are
one-hot vectors ei.
The basic idea for the lower regret bound is to assign different orthogonal sub-instances based on the
range of the variance σk at the beginning of each round. This method ensures that each orthogonal
instance will be learned with comparable variance, which makes it easier to derive a tighter lower
regret bound. Finally, since the orthogonal instances cannot provide mutual information, the total
regret can be decomposed into the summation of the regret accumulated in each sub-instance.
Based on these sub-instances, we create a combined linear bandit instance with dimension
d0 + d1 + ... + dL−1 = d with weight vector µ = (µ0, ...,µL−1): At the beginning of
each round k, if round k belongs to group Ki, then the learner receives the decision set Dk ={
(0d0 , ...,0di−1 ,x,0di+1 , ...,0dL−1

) : x ∈ Ai

}
, where 0dj corresponds to a zero vector with di-

mension dj and Ai is the action set in the bandit instance Mi. Under this construction, for any round
k ∈ Ki, the reward in the combined instance coincides with that of sub-instance Mi. Specifically,
after the learner selects action x, they receive a reward drawn from a scaled Bernoulli distribution
with variance upper bounded by σ2(i) =

(
2i−1/K

)2
for i ̸= 0, and variance 0 for i = 0. Note

that in all groups, the variance is bounded by σ2
k. With this construction in hand, we now proceed to

prove the lower bound in Theorem 4.1.
Remark 4.5 (Linear Contextual Bandits vs. Stochastic Linear Bandits). In the proof of The-
orem 4.1, we heavily rely on assigning different decision sets to rounds in the contextual bandit
environment. This approach, however, does not extend to stochastic linear bandit problems, where
all rounds share the same decision set. To see this limitation, consider any prefixed variance se-
quence with σ1 = · · · = σd = 0. In this case, the learner can select canonical basis of the decision
set in the first d rounds. Since these rounds have zero variance, the learner learns the exact rewards
for all actions in the decision set and incurs no regret in subsequent rounds, regardless of the val-
ues of σd+1, . . . , σK . Consequently, it is impossible to establish an variance-aware lower bound of

Ω̃(d
√∑K

k=1 σ
2
k) for stochastic linear bandits.

Proof of Theorem 4.1. Due to the orthogonal construction of decision sets across different groups
Ki, actions in group Ki provide no information about the weight vector µj for j ̸= i. Consequently,
the total regret can be decomposed into the sum of regrets from each sub-instance. For each sub-
instance Mi with i ̸= 0, the regret is lower bounded by:

Eµi

[ ∑
k∈Ki

max
x∈Dk

⟨µi,x⟩ − ⟨µi,xk⟩
]
≥ 1(Ki ≥ 1.5d2i ) ·

di
√
Kiσ2(i)

8
√
6

≥
di
√

Kiσ2(i)

8
√
6

−
di
√
1.5d2i · σ2(i)

8
√
6

≥
di

√∑
k∈Ki

σ2
k

16
√
6

− d2i · σ(i)
16

, (4.1)

where the first inequality follows from Lemma 4.3, the second inequality holds due to 1(x ≥
y)
√
x ≥

√
x−√

y, and the last inequality follows from the definition of group Ki.
Taking a summation of (4.1) over all groups, the total regret can be lower bounded as follows:

Eµ[Regret(K)] =

L−1∑
i=0

Eµi

[ ∑
k∈Ki

max
x∈Dk

⟨µi,x⟩ − ⟨µi,xk⟩
]

≥
L−1∑
i=1

di

√∑
k∈Ki

σ2
k

16
√
6

− d2i · σ(i)
16

≥
L−1∑
i=1

d
√∑

k∈Ki
σ2
k

16
√
6L

− d2

4L2

≥
d
√∑L−1

i=1

∑
k∈Ki

σ2
k

16
√
6L

− d2

4L2
, (4.2)
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where the first inequality follows from (4.1), the second inequality follows from the definition of
variance threshold σ(i) and dimension di = d/L, and the last inequality holds due to

∑
i

√
xi ≥√∑

i xi. In addition, for the group K0, we have∑
k∈K0

σ2
k ≤

∑
k∈K0

1/K ≤ 1, (4.3)

where the first inequality follows from the definition of group K0 and the second inequality follows
from |K0| ≤ K. Therefore, we have

Eµ[Regret(K)] ≥
d
√∑L−1

i=1

∑
k∈Ki

σ2
k

16
√
6L

− d2

4L2

≥
d
√∑K

k=1 σ
2
k − 1

16
√
6L

− d2

4L2

≥
d
√∑K

k=1 σ
2
k − 1

32
√
6L

,

where the first inequality follows from (4.2), the second inequality follows from (4.3), and the last
inequality follows from the fact that

∑K
k=1 σ

2
k ≥ 1 + 384d2. This completes the proof.

5 VARIANCE-DEPENDENT LOWER BOUNDS WITH ADAPTIVE VARIANCE
SEQUENCE

In the previous section, we focused on the setting where the variance sequence is prefixed and
revealed to the learner at the beginning of the learning process. In this section, we extend our
analysis to the setting where the variance sequence can be adaptive based on historical observations,
with the learner receiving the adaptive variance at the beginning of each round.

5.1 MAIN RESULTS

5.1.1 WEAK ADVERSARY

We first describe the learning process and the mechanism of variance adaptation. In detail, the
adaptive variance process proceeds as follows:

1. At the beginning of each round k, a (weak) adversary selects the variance level σk based on
the historical observations, including actions {a1, . . . , ak−1}, rewards {r1, . . . , rk−1}, and
decision sets {D1,D2, . . . ,Dk−1}. The adversary has access to all historical information
but not to the underlying reward model parameters;

2. Given the selected variance level σk, we construct and assign a decision set Dk to the
learner, where the variance of the reward for each action a ∈ Dk is bounded by σ2

k;
3. The learner observes the decision set Dk and variance level σk, then determines an action

ak from Dk based on its historical observations and current information. After selecting
the action, the learner receives a reward rk with variance bounded by σ2

k.
Remark 5.1. It is worth noting that our concept of adversary differs from the weak/strong adversary
in Jia et al. (2024). Specifically, Jia et al. (2024) considers an adversary that attempts to hinder the
learner’s learning by allocating a fixed total variance budget

∑K
k=1 σ

2
k ≤ Λ across rounds to max-

imize regret. In contrast, our work considers an adversary that attempts to break the lower bounds
themselves by collaborating with the learner. To prevent such exploitation, we must restrict the ad-
versary from knowing the weight vector of the underlying reward model. Without this restriction,
the adversary could encode each entry µi of the weight vector µ through the corresponding variance
σi = µi, allowing the learner to learn the weight vector after d rounds.
Under this setting, we establish the following theorem for the variance-dependent lower bound.
Theorem 5.2 (Weak Adversary). For any dimension d > 1, any adaptive sequence of variances
{σ1, . . . , σK} and any algorithm Alg, there exists a hard instance such that each action a ∈ Dk in
round k has variance bounded by σ2

k. For this instance, if
∑K

k=1 σ
2
k ≥ Ω(d2), then with probability

at least 1− 1/K, the regret of Alg over K rounds is lower bounded by:

Regret(K) ≥ Ω
(
d

√∑K
k=1 σ

2
k/ log

6(dK)
)
.
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Remark 5.3. Theorem 5.2 provides a high-probability lower bound of Ω̃
(
d
√∑K

k=1 σ
2
k

)
, which

matches the upper bound in Zhao et al. (2023) up to logarithmic factors, albeit with looser logarith-
mic dependencies than Theorem 4.1 due to the adaptive nature of the variance sequence. Unlike
the expected lower bound in Theorem 4.1, for adaptive variance sequences, the cumulative variance∑K

k=1 σ
2
k depends on the random process and observations. This dependence makes it challenging

to establish an expected variance-dependent regret bound - a fundamental difficulty that does not
arise for standard d

√
K-type lower bounds in linear contextual bandits (Dani et al., 2008; Chu et al.,

2011; Lattimore & Szepesvári, 2018). To the best of our knowledge, our result provides the first
high-probability lower bound for linear contextual bandits. In addition, our technique of converting
an expected lower bound to a high-probability one is of independent interest and can potentially be
used to derive high-probability lower bounds for a wider class of problems.

5.1.2 STRONG ADVERSARY

In Theorem 5.2, we require that for each round k ∈ [K], all actions x ∈ Dk share the same adaptive
variance σk. This is more restrictive than the setting in Zhao et al. (2023), where the variance can
differ across actions x ∈ Dk. However, extending our lower bound to action-dependent variances
is fundamentally incompatible with our adaptive instance construction. The key difficulty is that,
in our lower-bound construction, the decision set Dk is generated before the adversary chooses the
variance σk, which prevents assigning specific variances to individual actions x ∈ Dk. Moreover,
we now consider a strong adversary that can choose σk after observing the decision set Dk. The
interaction between the learner and this strong adversary proceeds as follows:

1. At the beginning of each round k, we construct and assign a decision set Dk based on
historical observations, including actions {a1, . . . , ak−1} and rewards {r1, . . . , rk−1};

2. Given the decision set Dk in round k, the strong adversary selects the variance level σk for
round k. The adversary has access to all historical information but not to the underlying
reward model parameters;

3. The learner observes the decision set Dk and variance level σk, then determines an action
ak from Dk based on its historical observations and current information. After selecting
the action, the learner receives a reward rk with variance bounded by σ2

k.

The following theorem shows that under this setting, the adversary could cooperate with the learner
to break the lower bound.
Theorem 5.4 (Strong Adversary). For any linear contextual bandit problem and number of rounds
K ≥ 2d, if we first provide the decision set Dk and then allow an adversary to choose the variance
σk based on the decision set Dk, there exists one such type of adversary such that, there exists an
algorithm whose regret in the first K rounds is upper bounded by Regret(K) ≤ d, where the total
variance

∑K
k=1 σ

2
k ≥ K/2.

Remark 5.5. Theorem 5.4 highlights why Theorem 5.2 requires a weak adversary that set the vari-
ance sequence before seeing the learner’s choices. If the adversary could see the decision set first, it
could potentially choose variances that would invalidate our lower bound. This finding underscores
that our construction is precise and pinpoints the exact condition under which the derived lower
bound holds.
Remark 5.6. It is worth noting that Jia et al. (2024) also considered the case where the adver-
sary assigns variances to actions after observing the decision set and action choice, and provided
a variance-dependent lower bound. However, their analysis focuses on an adversary that allocates
variance across rounds to maximize the regret. In contrast, our work considers an adversary that
attempts to break these bounds, making it more challenging to establish lower bounds for general
variance sequences. It is also worth noting that if the adversary’s goal is to increase regret, choosing
a prefixed sequence is a viable strategy. This case is already covered by our Theorem 4.1 for prefixed
sequences, which provides a tighter lower bound than Theorem 5.2.

Theorem 5.4 suggests that it is impossible to derive a variance-dependent lower bound if the ad-
versary can determine the variance σk after observing the decision set Dk, which further precludes
establishing a lower bound when the adversary has the ability to assign action-dependent variances
for each action x ∈ Dk after observing the decision set Dk. This result naturally extends to stochas-
tic linear bandit problems, where the decision set D remains fixed across all rounds. In this case,
since the adversary knows the decision set Dk = D in advance, Theorem 5.4 directly implies:

8
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Corollary 5.7. For any stochastic linear bandit problem with fixed decision set D and number of
rounds K ≥ 2d, there exists a prefixed sequence {σ1, . . . , σK} such that there exists an algorithm
whose regret in the first K rounds is upper bounded by: RegretAlg(K) ≤ d, where the total variance∑K

k=1 σ
2
k ≥ K/2.

5.2 PROOF SKETCH OF THEOREM 5.2

In this section, we provide the proof sketch of Theorem 5.2. Overall, the proof follows a similar
structure as Theorem 4.1, where we divide the rounds into several groups based on their variance
magnitude and create hard instances for each group. The key idea is to calculate individual regret
bounds for each group and combine them for the final lower bound. However, there exist several
challenges when dealing with adaptive variance sequences that require careful handling.

Varying Size of Groups Ki As discussed in Section 4.2, for each group Ki, we create individ-
ual instance Mi with fixed variance threshold σ(i) = 2i−1/K and establish a lower bound of
Ω̃(di

√
σ2(i)|Ki|) on the expected regret. However, the construction of such instances relies on

prior knowledge of the number of rounds |Ki|, which can be calculated at the beginning for a pre-
fixed variance sequence {σ1, . . . , σK}. In contrast, for general adaptive variance sequences, the
number of rounds |Ki| is not known a priori and can even be a random variable, which creates a
barrier in constructing these instances.
To address the unknown number of rounds |Ki|, instead of constructing a single instance Mi for
each group, we create L instances Mi,j , where L = ⌈log2 K⌉+ 1. Each instance Mi,j is designed
for a specific range of round numbers, specifically Mi,j for 2j−1 ≤ |Ki| < 2j .
For each round k in group Ki, the learner receives a decision set Di from one of the instances in
{Mi,1, . . . ,Mi,L} in a cyclic manner. Through this sequential assignment, the number of visits to
each instance Mi,j is |Ki|/L. Consequently, we expect that the instance Mi,j corresponding to the
true range 2j−1 ≤ |Ki| < 2j provides a lower bound of Ω̃(di

√
σ2(i)|Ki|) = Ω̃(di

√
σ2(i) · 2j),

which leads to the final lower bound of Ω̃(d
√∑K

k=1 σ
2
k).

Converting Expected Lower Bound to High-Probability Lower Bound. Another challenge is
establishing the lower bound for the triggered instance Mi,j corresponding to the true range 2j−1 ≤
|Ki| < 2j . Traditional analysis of lower bounds in linear contextual bandits has focused on the
expected regret. However, when dealing with adaptive variance sequences, this approach becomes
insufficient as the adversary can dynamically adjust the variance sequence to break these bounds.

For instance, an adversary might continuously set σk = 1 until the lower bound of Ω̃(d
√∑k

i=1 σ
2
i )

is violated at some round k, then switch to σk = 0 for all future rounds, causing the total variance
sum

∑K
k=1 σ

2
k to remain unchanged. In our construction, this means all rounds could fall into group

KL, allowing the adversary to adaptively change the number of rounds between different intervals
2j−1 ≤ |KL| < 2j . Since the failure of the lower bound in any single instance ML,j leads to failure
of the whole construction, an expected lower bound on regret cannot guarantee robust performance
against adaptive sequences. This necessitates a stronger high-probability lower bound that holds
uniformly for all instances.
Unfortunately, an expectation of Ω̃(di

√
σ2(i)2j) in instance Mi,j only implies a low-probability

regret
(
Regret ≥ Ω̃(di

√
σ2(i)2j)

)
≥ di ·2−j/2, since the cumulative regret in Ki can be up to σ(i)·

|Ki| in our instance. To solve this problem, we introduce an auxiliary algorithm that automatically
detects the cumulative regret and switches to the standard OFUL algorithm (Abbasi-Yadkori et al.,
2011) if the cumulative regret is larger than Ω(di

√
σ2(i)2j).1 For this auxiliary algorithm, we can

guarantee that the upper bound is at most Ω̃(di
√

σ2(i)2j) while maintaining the same probability of
high regret as the original algorithm. Therefore, an expectation of Ω̃(di

√
σ2(i)2j) in instance Mi,j

implies a constant-probability regret P
(
Regret ≥ Ω̃(di

√
σ2(i)2j)

)
= Ω(1).

After constructing an instance with constant-probability lower bound, we boost this probability by
creating Ω

(
log2(dK)

)
independent instances. When the learner encounters instance Mi,j , it is

1In general settings, detecting cumulative regret is impossible as the learner lacks prior knowledge of the
optimal reward and variance. However, in our lower bound construction, all instances are randomly selected
from instance classes sharing the same optimal reward and variance, which are known to the learner. This
knowledge enables the construction of the auxiliary algorithm.
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assigned to one of these instances in a cyclic manner. Through this construction, with probability at
least 1− 1/poly(K), the final regret is lower bounded by Regret ≥ Ω̃(di

√
σ2(i)2j).

Remark 5.8. Unlike previous lower bounds for linear bandit problems which focus on expected
regret, to the best of our knowledge, our result provides the first high-probability lower bound for
linear contextual bandits. It is worth noting that our construction requires separate decision sets
across different rounds in the random assignment process. For stochastic linear bandits with a fixed
decision set, we can only derive a constant-probability lower bound. Moreover, for a fixed decision
set in stochastic linear bandit problem with covering number logN ≤ Õ(d), an algorithm can
randomly select one action from the covering set and perform this action in all rounds. In this case,
there exists a probability of 1/N = 1/ exp(d) to achieve zero regret, which precludes the possibility
of establishing high-probability lower bounds for large round numbers K. More details about the
high-probability lower bound can be found in Section 5.2.

6 CONCLUSION AND FUTURE WORK

In this paper, we study variance-dependent lower bounds for linear contextual bandits in different
settings. For both prefixed and adaptive variance sequences with weak adversary, we establish tight
lower bounds matching the upper bounds in Zhao et al. (2023) up to logarithmic factors. We further
demonstrate a fundamental limitation: when a strong adversary can select variances after observ-
ing decision sets, it becomes impossible to establish meaningful variance-dependent lower bounds.
However, our work has focused exclusively on linear bandit settings, while Jia et al. (2024) has
established variance-dependent lower bounds for general function approximation with a fixed total
variance budget Λ. Therefore, we leave for future work the generalization of our analysis of general
variance sequence to contextual bandits with general function approximation.

REFERENCES
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LLM USAGE

We used an LLM solely for grammatical and stylistic polishing of the manuscript. No research ideas
or results were generated by the LLM. All technical content was written and verified by the authors.

A EXPERIMENTS

In this section, we conduct experiments to show the difficulty of our construction of hard-to-learn
instances.

A.1 EXPERIMENTAL SETUP

In this experiment, we follow the construction of hard-to-learn instances presented in the proof of
Theorem 4.1, which breaks down the problem into several sub-instances.
Model Parameters. We consider a contextual linear bandit with total dimension D = 10, which
we break down into two orthogonal sub-instances, M1 and M2, each with dimension d1 = d2 = 5.
The environment is defined by the set of true parameter vectors µ = (µ1,µ2), where two fixed
vectors, µ1 and µ2, each have non-zero entries drawn i.i.d. from U(0, 1) in only 5 dimensions.
Variance Sequence We consider a prefixed variance sequence over K = 4000 rounds. The variance
sequence is piecewise, defined by an abrupt shift at KSWITCH = 2000:

• Low Variance (σ1 = 0.1): Used in the first 2000 rounds (k ≤ 2000).

• High Variance (σ2 = 1.0): Used in the subsequent 2000 rounds (2000 < k ≤ 4000).

Scenario Assignment To illustrate the necessity of adaptively allocating different instances to the
learner based on the variance level, we consider two scenarios for assigning the sub-instances (M1

or M2) to the learner:

1. Piecewise Assignment (Hard-to-Learn): The first 2000 rounds are assigned the in-
stance M1, and the second 2000 rounds are assigned the instance M2. (Switch occurs
at TSWITCH).

2. Alternating Assignment (Rapidly Switching): The odd rounds are assigned the instance
M1, and the even rounds are assigned the instance M2. (Switch occurs at each round).

Decision Set In each round k, the decision set Dk contains Narms = 32 contexts. The base context
entries are drawn i.i.d. from U(0, 1). This context set is masked such that contexts interact only
with µ1 when M1 is assigned, and only with µ2 when M2 is assigned. Crucially, this orthogonal
masking ensures that information gathered from one sub-instance cannot be transferred or used to
estimate the parameter vector of the other sub-instance.
Noise and Reward For each round k, after the learner chooses an action a ∈ Dk, it receives a
reward rk(a) = a⊤µ∗ + ϵk, where the noise ϵk is drawn from the Gaussian distribution N (0, σ2

i ),
with σi determined by the prefixed variance sequence (i.e., σi = 0.1 for k ≤ 2000 and σi = 1.0 for
k > 2000).

A.2 RESULTS AND DISCUSSION

In the experiment, we evaluate the performance of two key algorithms:

• OFUL Abbasi-Yadkori et al. (2011): This provides a near-optimal variance-independent
regret guarantee for the standard linear contextual bandit problem.

• Weighted OFUL Zhou et al. (2021): This provides a near-optimal variance-dependent
regret guarantee for the linear contextual bandit problem, assuming the variance for each
round is known to the learner.

We repeat each baseline algorithm for 100 times and plot their cumulative regrets with respect to the
number of rounds in Figures 1 to 4.

A.2.1 ANALYSIS OF OFUL

As shown in Figure 1 and 2 (standard OFUL), the algorithm does not utilize the information re-
garding the variance level and constructs a similar confidence set size for the low-variance period
and the later high-variance period, which leads to comparable regret in both periods. Also, for the
alternating assignment (Figure 3), even though each sub-instance Mi alternates between low and
high variance, OFUL fails to gain an advantage from the low-variance rounds and has a comparable
total regret across all 4000 rounds.
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A.2.2 ANALYSIS OF WEIGHTED OFUL

The results for the Weighted OFUL algorithm (Figures 3 and 4), which utilizes a variance-
based mechanism, show a totally different observation. For the Piecewise Assignment (Figure 3),
Weighted OFUL utilizes the low variance in the first 2000 rounds and achieves a much lower regret
in that initial period. However, since the information gathered is only for instance M1 and cannot
transfer to the orthogonal instance M2, Weighted OFUL achieves a much higher regret in the last
2000 rounds due to the high variance.
In comparison, for the Alternating Assignment (Figure 4), each instance (M1 and M2) effectively
goes through 1000 rounds with low variance and then 1000 rounds with high variance. Under this
situation, Weighted OFUL can construct a tighter confidence set for both instances in the first 2000
rounds, which leads to a much smaller total regret over 4000 rounds. This result illustrates that the
early stage with low variance can significantly speed up the learning process in the exploration stage
and lead to a low total regret. The ability to adaptively assign the decision set based on the variance
level (as we used in constructing the lower bound) can avoid the early exploration stage having much
smaller variance than the later exploitation stage, thus successfully circumventing the limitation.

Figure 1: OFUL with Piecewise Assignment Figure 2: Weighted OFUL with Piecewise As-
signment

Figure 3: OFUL with Alternating Assignment Figure 4: Weighted OFUL with Alternating As-
signment

B PROOF OF THEOREM 5.2
In this section, we prove the variance-dependent lower bound for adaptive variance sequences es-
tablished in Theorem 5.2. We begin with the instance construction from Lemma 4.3 and establish
the following constant-probability lower bound for the regret:

Lemma B.1. For a fixed variance threshold σ, number of rounds K ≥ 1.5d2, and any bandit
algorithm Alg, for the instance constructed in Lemma 4.3, with probability at least Ω

(
1/ log(dK)

)
,

the regret is lower bounded by

Regret(K) ≥ d
√
Kσ2

16
√
6

.

Based on the constant-probability lower bound, we boost this probability by creating L =
Ω
(
log2(dK)

)
independent instances with dimension d′ = d/L and number of rounds K ′ = K/L,

where each instance follows the structure in Lemma 4.3 with i.i.d. sampled weight vectors. Un-
der this construction, the total dimension of all instances is d, which can be represented as a d-
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dimensional linear contextual bandit through orthogonal embedding, similar to our previous con-
struction: for instance i, we augment its actions by padding zeros in dimensions reserved for other
instances, ensuring actions from different instances only interact with their corresponding param-
eters. Here, we consider the case where the learner visits the instances in a cyclic manner and
establish the following high-probability regret lower bound for the constructed instance:
Lemma B.2. For a fixed variance threshold σ, number of rounds K ≥ 1.5d2, and any bandit
algorithm Alg, with probability at least Ω

(
1/ log(dK)

)
, the regret is lower bounded by

Regret(K) ≥ Ω
(
d
√
Kσ2/ log3(dK)

)
.

With the help of this high-probability lower regret bound from Lemma B.2, we begin the proof
of Theorem 5.2. Following a similar framework to the fixed-variance case, we first divide the
rounds into groups based on their variance magnitude. Specifically, for any variance sequence
{σ1, . . . , σK}, we partition the rounds into L = ⌈log2 K⌉+ 1 groups as follows:

K0 = {k : σk ≤ 1/K},
Ki = {k : 2i−1/K < σk ≤ 2i/K}, for i = 1, . . . , L− 1.

To address the unknown number of rounds Ki = |Ki|, instead of constructing a single instance
Mi for each group, we create L instances Mi,j , where L = ⌈log2 K⌉ + 1. Each instance Mi,j

is constructed according to Lemma B.2 with dimension d′ = d/L2, variance σ(i) = 2i−1/K and
number of rounds K ′ = 2j−1. For each round k in group Ki, the learner receives a decision set Di

from one of the instances in {Mi,1, . . . ,Mi,L} in a cyclic manner.

Proof of Theorem 5.2. According to Lemma B.2, for each instance Mi,j , with probability at least
1− 1/K3, the regret in the first 2j−1 visits is lower bounded by

Regret(2j−1,Mi,j) ≥ I(2j−1 ≥ 1.5d′2) · Ω
(
d′
√
2j−1σ2(i)/ log3(d′K ′)

)
, (B.1)

where the indicator reflects the requirement that K ′ = 2j−1 ≥ 1.5d′2. For simplicity, we define E
as the event that (B.1) holds for all instances Mi,j . By union bound, we have P(E) ≥ 1− 1/K.
Conditioned on event E , for an adaptive sequence and each corresponding group Ki, due to the
cyclic visiting pattern, each instance Mi,j is visited |Ki|/L times. There exists an instance Mi,j

with matching interval for the round number, i.e., 2j−1 ≤ |Ki|/L ≤ 2j . Therefore, we have∑
k∈Ki

max
x∈Dk

⟨µi,x⟩ − ⟨µi,xk⟩

≥ Regret(2j−1,Mi,j)

≥ I(2j−1 ≥ 1.5d′2) · Ω
(
d
√

2j−1σ2(i)/ log3(d′K ′)
)

≥ I(Ki ≥ 3d′2L) · Ω
(
d
√
Kiσ2(i)/ log4(dK)

)
≥ Ω

(
d′
√
Kiσ2(i)/ log3(dK)− d′

√
3d′2Lσ2(i)/ log4(dK)

)
≥ Ω

(
d′
√∑

k∈Ki

σ2
k/ log

4(dK)−
√
3Ld′2 · σ(i)/ log4(dK)

)
, (B.2)

where the first inequality follows from 2j−1 ≤ |Ki|/L ≤ 2j , the second inequality holds by the
definition of event E , the third inequality follows from 2j−1 ≤ |Ki|/L ≤ 2j , the fourth inequality
holds due to I(x ≥ y)

√
x ≥

√
x −√

y, and the last inequality follows from the definition of group
Ki.
Taking a summation of (B.2) over all groups, the total regret can be lower bounded as follows:

Regret(K)

=

L−1∑
i=0

∑
k∈Ki

max
x∈Dk

⟨µi,x⟩ − ⟨µi,xk⟩

≥
L−1∑
i=1

Ω

(
d′
√∑

k∈Ki

σ2
k/ log

4(dK)−
√
3Ld′2 · σ(i)/ log4(dK)

)
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≥ Ω

( L−1∑
i=1

d/L2 ·
√∑

k∈Ki

σ2
k/ log

4(dK)− 2
√
3Ld2/(L4 log4(dK))

)

≥ Ω

(
d/L2 ·

√√√√L−1∑
i=1

∑
k∈Ki

σ2
k/ log

4(dK)− 2
√
3Ld2/(L4 log4(dK))

)
, (B.3)

where the first inequality follows from (B.2), the second inequality follows from the definition of
variance threshold σ(i) and dimension d′ = d/L2, and the last inequality holds due to

∑
i

√
xi ≥√∑

i xi. In addition, for the group K0, we have∑
k∈K0

σ2
k ≤

∑
k∈K0

1/K ≤ 1, (B.4)

where the first inequality follows from the definition of group K0 and the second inequality follows
from |K0| ≤ K. Therefore, we have

Regret(K)

≥ Ω

(
d/L2 ·

√√√√L−1∑
i=1

∑
k∈Ki

σ2
k/ log

4(dK)− 2
√
3Ld2/(L4 log4(dK))

)

≥ Ω

(
d/L2 ·

√√√√L−1∑
i=1

∑
k∈Ki

σ2
k − 1/ log4(dK)− 2

√
3Ld2/(L4 log4(dK))

)

≥ Ω

(
d ·

√√√√L−1∑
i=1

∑
k∈Ki

σ2
k/ log

6(dK)

)
,

where the first inequality follows from (B.3), the second inequality follows from (B.4), and the last
inequality follows from the fact that

∑K
k=1 σ

2
k ≥ Ω(d2). Thus, we complete the proof of Theorem

5.2.

C PROOF OF THEOREM 5.4
In this subsection, we provide the proof of Theorem 5.4. We begin by describing a simple algorithm:

1. The learner maintains an explored action set A, which is initialized as empty.
2. For each decision set Dk in round k, if there exists an action xk not in the spanning space

of the explored action set A, the learner:
• Selects an action xk and receives reward rk;
• Updates the explored set: A = A ∪ {(xk, rk)}.

3. Otherwise, when all actions lie in the spanning space of A, the learner:
• Estimates the reward for each action through linear combinations of (x, r) ∈ A;
• Selects the action with maximum estimated reward.

It is worth noting that this algorithm assumes the received rewards rk have no noise to provide
accurate estimates in step 3. While this assumption does not hold in general, when an adversary can
choose the variance σk based on the decision set Dk, they can cooperate with the learner by setting:

• σk = 0 when step 2 is triggered (exploration);
• σk = 1 when step 3 is triggered (exploitation).

For a d-dimensional linear bandit problem, the explored action set satisfies |A| ≤ d. This implies
the learner performs at most d exploration steps with zero variance, while all remaining steps have
variance one. Under this construction, the regret in the first K rounds is upper bounded by:

RegretAlg(K) ≤ d,

where the total variance
∑K

k=1 σ
2
k = K−d ≥ K/2 (since K ≥ 2d). Thus, through this cooperation

between the adversary and learner, the Ω̃(d
√∑K

k=1 σ
2
k) lower bound is broken, completing the

proof of Theorem 5.4.
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D PROOF OF KEY LEMMAS

D.1 PROOF OF LEMMA 4.3

In this subsection, we provide the proof of Lemma 4.3. When the variance threshold σ = 1, our
construction reduces to the standard lower bound instances for linear contextual bandits (Zhou et al.,
2021). Specifically, when the number of rounds K satisfying K ≥ 1.5 · d2, Zhou et al. (2021)
provided the following variance-independent lower bound for these hard instances:

Lemma D.1 (Lemma C.8, Zhou et al. 2021). For any bandit algorithm Alg, if the weight vector
µ ∈ {−∆,∆}d is drawn uniformly at random from {−∆,∆}d, then the expected regret over K
rounds is lower bounded by:

Eµ[Regret(K)] ≥ d
√
K

8
√
6
.

With the help of Lemma D.1, we start the proof of Lemma 4.3.

Proof of Lemma 4.3. For any algorithm Alg for linear contextual bandit with fixed variance thresh-
old σ, we construct an auxiliary algorithm Alg1 to solve the standard linear contextual bandit prob-
lem:

• At the beginning of each round k ∈ K, Alg1 observes the decision set Dk and sends it to
Alg;

• Alg selects action ak ∈ Dk based on the historical observations and delivers it to Alg1;
• Alg1 performs the action ak, receives the reward rk and sends the normalized reward σ · rk

to Alg.

Now, we consider the performance of auxiliary algorithm Alg1 for the standard linear contextual
bandit problem. It is worth noticing that the reward/noise in bandit instances for algorithm Alg1 and
algorithm Alg only differ by a scalar factor σ, therefore for each instance, we have

E[RegretAlg(K)] = σ · E[RegretAlg1(K)]. (D.1)

If we randomly select a weight parameter vector µ ∈ {−∆,∆}d, then according to Lemma D.1, the
regret for Alg is lower bounded by

Eµ[RegretAlg(K)] = σ · Eµ[RegretAlg1(K)] ≥ σ · d
√
K

8
√
6

=
d
√
Kσ2

8
√
6

,

where the equation holds due to (D.1) and the inequality holds due to Lemma D.1. Thus, we com-
plete the proof of Lemma 4.3.

D.2 PROOF OF LEMMA B.1

In this subsection, we provide the proof of Lemma B.1. We begin by recalling the OFUL algorithm
in Abbasi-Yadkori et al. (2011) and its corresponding upper bound for the regret:

Lemma D.2 (Theorem 3 in Abbasi-Yadkori et al. 2011). For any linear contextual bandit problem,
with probability at least 1− δ, the regret for OFUL algorithm in the first K rounds is upper bounded
by Regret(K) ≤ Õ

(
d
√
K log(dK/δ)

)
.

It is worth noting that the reward/noise in the instance construction from Lemma 4.3 only differs by
a scalar factor σ from the standard bandit. Therefore, as discussed in Section D.1, the regret in these
two cases also only differs by a scalar factor σ. This leads to the following corollary:

Corollary D.3. For the instance construction from Lemma 4.3, there exists a constant C such that
with probability at least 1− δ, the regret for OFUL algorithm in the first K rounds is upper bounded
by Regret(K) ≤ Cd

√
Kσ2 log(dK/δ).

With the help of Corollary D.3, we can begin the proof of Lemma B.1.

Proof of Lemma B.1. For any algorithm Alg, we construct an auxiliary algorithm Alg1 as follows:

• At the beginning of each round k ∈ [K], Alg1 observes the decision set Dk and sends it to
Alg;
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• Alg selects action ak ∈ Dk based on the historical observations and delivers it to Alg1;
• Alg1 performs the action ak and receives the reward rk;
• Alg1 calculates the pseudo regret as:

Regret′(k) =

k∑
i=1

1

3
+

d√
96K

− rk.

If the pseudo regret is larger than d
√
Kσ2/(8

√
6) + σ

√
2K log(2K/δ), Alg1 removes all

previous information and performs the OFUL algorithm in all future rounds.

Based on the construction of the instances, whatever the weight vector µ is, the optimal action
is to select an action in the same direction as the weight vector, obtaining an expected reward of
1/3 + d/

√
96K. Under this scenario, with probability at least 1 − δ, for any round k ∈ [K], the

difference between pseudo regret Regret′(k) and true regret Regret(k) can be upper bounded by

∣∣Regret(k)− Regret′(k)
∣∣ = ∣∣ k∑

i=1

ϵi
∣∣ ≤ σ

√
2K log(2K/δ), (D.2)

where the inequality holds due to Lemma E.1 with the fact that the noise satisfies
E[ϵk|a1:k, r1:k−1] = 0 and |ϵk| ≤ σ. Thus, according to the criterion of auxiliary algorithm
Alg1, with probability at least 1 − δ, the regret of Alg1 before transitioning to OFUL is up to
d
√
Kσ2/(8

√
6) + 2σ

√
2K log(2K/δ). On the other hand, for the stage after transitioning to

OFUL, Corollary D.3 suggests that with probability at least 1 − δ, the regret is no more than
Cd

√
Kσ2 log(dK/δ). Therefore, with a selection of δ = 1/K, we have

P
[
RegretAlg1

(K) ≥ Cd
√
Kσ2 log(dK2) + d

√
Kσ2/(8

√
6) + 2σ

√
2K log(2K2)

]
≤ 2/K.

(D.3)

For simplicity, let R = Cd
√

Kσ2 log(dK2) + d
√
Kσ2/(8

√
6) + 2σ

√
2K log(2K2) and we have

Eµ[RegretAlg1
(K)]

≤ P
[
RegretAlg1

(K) ≥ R
]
·Kσ + P

[
RegretAlg1

(K) ≥ d
√
Kσ2/(16

√
6)
]
·R

+ P
[
RegretAlg1

(K) ≥ 0
]
· d

√
Kσ2/(16

√
6)

≤ 2σ + P
[
RegretAlg1

(K) ≥ d
√
Kσ2/(16

√
6)
]
· Õ(d

√
Kσ2 log(dK)) + d

√
Kσ2/(16

√
6),

where the first inequality holds due to E[X] ≤ P(X ≥ x1) ·R+ P(X ≥ x2) · x1 + P(X ≥ 0) · x2

for 0 ≤ X ≤ R and x1 > x2 > 0, and the second inequality holds due to (D.3). Combining this
result with the lower bound of expected regret in Lemma 4.1, we have

d
√
Kσ2/(8

√
6) ≥ 2σ + P

[
RegretAlg1

(K) ≥ d
√
Kσ2/(16

√
6)
]
· Õ(d

√
Kσ2 log(dK))

+ d
√
Kσ2/(16

√
6),

which implies that

P
[
RegretAlg1

(K) ≥ d
√
Kσ2/(16

√
6)
]
≥ Ω(1/ log(dK)). (D.4)

In addition, according to the criterion of auxiliary algorithm Alg1 with (D.2), with probability at
least 1 − δ = 1 − 1/K, Alg1 will not switch to the OFUL algorithm until the cumulative regret is
larger than d

√
Kσ2/(8

√
6), which implies that

P
[
RegretAlg(K) ≥ d

√
Kσ2/(16

√
6)
]
≥ P

[
RegretAlg1

(K) ≥ d
√
Kσ2/(16

√
6)
]
− 1/K

= Ω(1/ log(dK)).

Thus, we complete the proof of Lemma B.1.
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D.3 PROOF OF LEMMA B.2

In this subsection, we provide the proof of Lemma B.2.

Proof of Lemma B.2. Since the learner visits the instances in a cyclic manner, over all K rounds,
each instance Mi (i = 1, 2, . . . , L) is visited K ′ = K/L times. As actions from different instances
only interact with their corresponding parameters, according to Lemma B.1, for each instance Mi,
with probability at least Ω

(
1/ log(dK)

)
, the regret is lower bounded by

Regret(K ′,Mi) ≥
d′
√
K ′σ2

16
√
6

=
d
√
Kσ2

16
√
6 · L1.5

.

Note that the weight vectors for each instance are independently sampled, hence the probability that
at least one instance has regret no less than d

√
Kσ2/16

√
6 · L1.5 is at least

1−
(
1− Ω

(
1/ log(dK)

))L

≥ 1− 1/K3.

Under this condition, the total regret can be lower bounded as:

Regret(K) =

L∑
i=1

Regret(K ′,Mi) ≥
d
√
Kσ2

16
√
6 · L0.5

. (D.5)

Thus, we obtain a high-probability lower bound and complete the proof of Lemma B.2.

E AUXILIARY LEMMAS

Lemma E.1 (Azuma–Hoeffding inequality, Cesa-Bianchi & Lugosi 2006). Let {ηk}Kk=1 be a mar-
tingale difference sequence with respect to a filtration {Gk} satisfying |ηk| ≤ R for some constant
R, ηk is Gk+1-measurable, E

[
ηk|Gk

]
= 0. Then for any 0 < δ < 1, with high probability at least

1− δ, we have

K∑
k=1

ηk ≤ R
√

2K log(1/δ).
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