

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VARIANCE-DEPENDENT REGRET LOWER BOUNDS FOR CONTEXTUAL BANDITS

Anonymous authors

Paper under double-blind review

ABSTRACT

Variance-dependent regret bounds for linear contextual bandits, which improve upon the classical $\tilde{O}(d\sqrt{K})$ regret bound to $\tilde{O}(d\sqrt{\sum_{k=1}^K \sigma_k^2})$, where d is the context dimension, K is the number of rounds, and σ_k^2 is the noise variance in round k , has been widely studied in recent years. However, most existing works focus on the regret upper bounds instead of lower bounds. To our knowledge, the only lower bound is from Jia et al. (2024), which proved that for any eluder dimension d_{elu} and total variance budget Λ , there exists an instance with $\sum_{k=1}^K \sigma_k^2 \leq \Lambda$ for which any algorithm incurs a variance-dependent lower bound of $\Omega(\sqrt{d_{\text{elu}}\Lambda})$. However, this lower bound has a \sqrt{d} gap with existing upper bounds. Moreover, it only considers a fixed total variance budget Λ and does not apply to a general variance sequence $\{\sigma_1^2, \dots, \sigma_K^2\}$. In this paper, to overcome the limitations of Jia et al. (2024), we consider the general variance sequence under two settings. For a prefixed sequence, where the entire variance sequence is revealed to the learner at the beginning of the learning process, we establish a variance-dependent lower bound of $\Omega(d\sqrt{\sum_{k=1}^K \sigma_k^2 / \log K})$ for linear contextual bandits. For an adaptive sequence, where an adversary can generate the variance σ_k^2 in each round k based on historical observations, we show that when the adversary must generate σ_k^2 before observing the decision set \mathcal{D}_k , a similar lower bound of $\Omega(d\sqrt{\sum_{k=1}^K \sigma_k^2 / \log^6(dK)})$ holds. In both settings, our results match the upper bounds of the SAVE algorithm (Zhao et al., 2023) up to logarithmic factors. Furthermore, if the adversary can generate the variance σ_k after observing the decision set \mathcal{D}_k , we construct a counter-example showing that it is impossible to construct a variance-dependent lower bound if the adversary properly selects variances in collaboration with the learner. Our lower bound proofs use a novel peeling technique that groups rounds by variance magnitude. For each group, we construct separate instances and assign the learner distinct decision sets. We believe this proof technique may be of independent interest.

1 INTRODUCTION

We consider the linear contextual bandit problem, where each arm is represented by a feature vector and the expected reward is a linear function of this feature vector with an unknown parameter vector. Numerous studies have developed algorithms achieving optimal regret bounds for linear bandits (Chu et al., 2011; Abbasi-Yadkori et al., 2011). However, while these works establish minimax-optimal regret bounds in the worst-case, they do not exploit additional problem-dependent structures. Our work focuses on incorporating reward variance information into the analysis, building upon a line of research studying variance-dependent regret bounds for linear bandits (Zhou et al., 2021; Zhang et al., 2021; Zhou & Gu, 2022; Zhao et al., 2022; Kim et al., 2022; Zhao et al., 2023) and general function approximation (Jia et al., 2024), which includes linear bandits as a special case. Notably, Zhao et al. (2023) established a near-optimal regret guarantee without requiring prior knowledge of the variances:

Theorem 1.1 (Theorem 2.3, Zhao et al. 2023). For any linear contextual bandit problem, the regret of the SAVE algorithm in the first K rounds is upper bounded by:

$$\text{Regret}(K) \leq \tilde{O}\left(d\sqrt{\sum_{k=1}^K \sigma_k^2} + d\right),$$

054 where d is the dimension and σ_k^2 is the noise variance of the selected action in round k .
 055

056 However, most of these works have focused on developing algorithms with regret upper bound
 057 guarantees, while variance-dependent lower bounds remain understudied. The only exception is
 058 Jia et al. (2024), which focuses on general function classes with finite eluder dimension d_{elu} and
 059 provides the following variance-dependent lower bound:
 060

061 **Theorem 1.2** (Theorem 5.1, Jia et al. 2024). For any dimension $d \geq 2$, action space size A , number
 062 of rounds $K \geq 2$, and total variance budget $\Lambda \in [0, K]$, there exists a contextual bandit problem with
 063 eluder dimension $d_{\text{elu}} = d$, action space size A , and an adversarial sequence of variances satisfying
 $\sum_{k=1}^K \sigma_k^2 \leq \Lambda$ such that for any algorithm, the regret is lower bounded by:
 064

$$\text{Regret}(K) \geq \Omega(\min(\sqrt{d\Lambda} + d, \sqrt{AK})).$$

065 When restricted to the linear bandit case, where $d \geq \sqrt{A}$, the above lower bound reduces to $\sqrt{d\Lambda}$,
 066 which has a gap of \sqrt{d} factor compared with the upper bound in Zhao et al. (2023). Moreover, Jia
 067 et al. (2024) only considers instances with a fixed budget Λ and relies on carefully designed vari-
 068 ance sequences $\{\sigma_1^2, \sigma_2^2, \dots, \sigma_K^2\}$, failing to provide lower bounds for general variance sequences.
 069 Therefore, an open question arises:
 070

071 *Can we prove variance-dependent regret lower bounds for general variance sequences?*

072 1.1 OUR CONTRIBUTIONS

073 In this paper, we answer this question affirmatively by constructing hard-to-learn instances in sev-
 074 eral different settings. For any prefixed sequence $\{\sigma_1^2, \dots, \sigma_K^2\}$, we achieve a $\tilde{\Omega}(d\sqrt{\sum_{k=1}^K \sigma_k^2})$
 075 variance-dependent expected lower bound, which matches the upper bound in Zhao et al. (2023)
 076 up to logarithmic factors and demonstrates its optimality. For general adaptive variance sequences
 077 where a weak adversary (potentially collaborating with the learner) can generate variance σ_k^2 in each
 078 round k based on historical observations, our instance provides a high-probability lower bound of
 079 $\tilde{\Omega}(d\sqrt{\sum_{k=1}^K \sigma_k^2})$, which also matches the upper bound in Zhao et al. (2023) up to logarithmic fac-
 080 tors. To the best of our knowledge, this is the first high-probability lower bound for linear contextual
 081 bandit.
 082

083 Our construction and analysis rely on the following new techniques:

- 084 • A peeling technique for prefixed variance sequences that divides rounds into groups based on
 085 variance magnitude. Through orthogonal decision set construction, each group only interacts with
 086 its corresponding parameters, allowing us to establish separate lower bounds for different variance
 087 scales and combine them effectively.
- 088 • A multi-instance framework that handles unknown group sizes in the adaptive setting. For each
 089 variance group, we maintain multiple instances designed for different possible intervals of round
 090 numbers and assign the learner to these instances in a cyclic manner, ensuring uniform visits
 091 across instances and guaranteeing the visiting times of one instance matches its designed interval.
- 092 • A high-probability lower bound that handles adaptive group sizes through a union bound. We
 093 first convert expected regret bounds to constant-probability bounds through careful variance
 094 control and auxiliary algorithms, then boost these to high-probability bounds by creating multiple
 095 independent instances.

096 Furthermore, we also study the setting with a strong adversary that can generate the variance σ_k
 097 after observing the decision set \mathcal{D}_k . Under this scenario, we proposed a counter algorithm that can
 098 collaborate with the adversary by properly selecting variance, achieving an $O(d)$ regret even the
 099 total variance $\sum_{k=1}^K \sigma_k^2 = \Omega(K)$. This implies that it is impossible to derive a variance-dependent
 100 lower bound for general variance sequence with strong adversary. As a direct extension of this result,
 101 we also show that it is impossible to derive a variance-dependent lower bound for stochastic linear
 102 bandits, where the decision set is fixed even for a general prefixed variance sequence.

103 **Notation** We use lower case letters to denote scalars, and use lower and upper case bold face letters
 104 to denote vectors and matrices respectively. We denote by $[n]$ the set $\{1, \dots, n\}$. For a vector
 105 $\mathbf{x} \in \mathbb{R}^d$ and a positive semi-definite matrix $\Sigma \in \mathbb{R}^{d \times d}$, we denote by $\|\mathbf{x}\|_2$ the vector's ℓ_2 norm
 106 and by $\|\mathbf{x}\|_{\Sigma} = \sqrt{\mathbf{x}^{\top} \Sigma \mathbf{x}}$ the Mahalanobis norm. For two positive sequences $\{a_n\}$ and $\{b_n\}$ with
 107 $n = 1, 2, \dots$, we write $a_n = O(b_n)$ if there exists an absolute constant $C > 0$ such that $a_n \leq Cb_n$
 holds for all $n \geq 1$ and write $a_n = \Omega(b_n)$ if there exists an absolute constant $C > 0$ such that

108 $a_n \geq Cb_n$ holds for all $n \geq 1$. We use $\tilde{O}(\cdot)$ to further hide the polylogarithmic factors. We use $\mathbb{1}\{\cdot\}$
 109 to denote the indicator function.
 110

112 2 RELATED WORK

114 **Heteroscedastic Linear Bandits.** For linear bandit problems, the worst-case regret has been widely
 115 studied (Auer, 2002; Dani et al., 2008; Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al.,
 116 2011; Li et al., 2019), achieving $\tilde{O}(\sqrt{K})$ bounds in the first K rounds. Recently, a series of works
 117 has considered heteroscedastic variants where noise distributions vary across rounds. Kirschner &
 118 Krause (2018) first formally proposed a linear bandit model with heteroscedastic noise, assuming
 119 σ_k -sub-Gaussian noise in round $k \in [K]$. Subsequently, (Zhou et al., 2021; Zhang et al., 2021;
 120 Kim et al., 2022; Zhou & Gu, 2022; Dai et al.; Zhao et al., 2023; Jia et al., 2024) relaxed this to
 121 variance-based constraints where round k has variance σ_k^2 . Among these works, Zhou et al. (2021)
 122 and Zhou & Gu (2022) obtained near-optimal regret guarantees of $\tilde{O}(d\sqrt{\sum_{k=1}^K \sigma_k^2})$, but required
 123 knowledge of σ_k after observing the reward in round k . In contrast, Zhang et al. (2021); Kim et al.
 124 (2022) handled unknown variances with computationally inefficient algorithms, achieving a weaker
 125 $\tilde{O}(\text{poly}(d)\sqrt{\sum_{k=1}^K \sigma_k^2})$ bound. Recently, Zhao et al. (2023) improved upon these results with an
 126 efficient algorithm (SAVE) achieving the near-optimal $\tilde{O}(d\sqrt{\sum_{k=1}^K \sigma_k^2})$ bound without requiring
 127 variance knowledge. Beyond standard linear bandits, two directions have been explored. Dai et al.
 128 studied heteroscedastic sparse linear bandits, providing a framework to convert standard algorithms
 129 to the sparse setting. In a different direction, Jia et al. (2024) extended the analysis to contextual
 130 bandits with general function classes having finite eluder dimension, which includes linear bandits
 131 as a special case, and achieved a variance-dependent regret upper bounds.
 132

133 **Lower Bounds for Linear Contextual Bandits.** For linear contextual bandit problems, several
 134 works (Dani et al., 2008; Chu et al., 2011; Li et al., 2019) have established theoretical lower bounds
 135 to illustrate the fundamental difficulty in learning process. For linear bandits with finite action sets,
 136 Chu et al. (2011) established an $\tilde{\Omega}(\sqrt{dK})$ lower bound, matching the upper bound up to logarithmic
 137 factors in the action set size and number of rounds K . For general stochastic linear bandits, Dani
 138 et al. (2008) constructed an instance with $2^{\Omega(d)}$ actions and obtained an $\Omega(d\sqrt{K})$ lower bound.
 139 Later, Li et al. (2019) focused on linear contextual bandits, where the decision set can vary across
 140 rounds, and provided an $\Omega(d\sqrt{K \log K})$ lower bound. However, all these works only focus on
 141 worst-case regret bounds and do not consider the heteroscedastic variance information. The only
 142 exception is Jia et al. (2024), which provided an $\Omega(\sqrt{d\Lambda})$ variance-dependent lower bound for a
 143 fixed total variance budget Λ . Nevertheless, this work cannot handle general variance sequences and
 144 leaves open the question of variance-dependent lower bounds in the general setting.

145 **Variance-dependent Bounds for Multi-armed Bandits.** Auer et al. (2002) studied a multi-armed
 146 bandit problem in which the rewards are normally distributed with unknown mean and variance,
 147 and proposed the UCB1-NORMAL algorithm, which achieves a variance-dependent regret bound
 148 of $\tilde{O}(\sum_{i=1, \Delta_i \neq 0}^n \frac{\sigma_i^2}{\Delta_i} + \Delta_i) \log K$. Here σ_i^2 is the variance of the reward for the i -th arm, Δ_i is the
 149 suboptimality gap between i -th arm and the best arm, n is the number of arms, and K is the number
 150 of rounds. Audibert et al. (2009) considered a multi-armed bandit (MAB) problem with bounded
 151 reward (by $b > 0$) and unknown mean and variance. They proposed the UCB-V algorithm that
 152 achieves a variance-dependent regret bound of $\tilde{O}(\sum_{i=1, \Delta_i \neq 0}^n \frac{\sigma_i^2}{\Delta_i} + b) \log K$. They also established
 153 a matching lower bound. Variance-dependent regret bounds have also been established for best-arm
 154 identification problem (Audibert & Bubeck, 2010) in multi-armed stochastic bandits. For example,
 155 Lu et al. (2021) studied the best-arm identification problem in stochastic multi-armed bandits, and
 156 proved a variance dependent lower bound of $\tilde{\Omega}(\sum_{i=1, \Delta_i \neq 0}^n \frac{\sigma_i^2}{\Delta_i^2} + \frac{1}{\Delta_i})$. They also proposed an
 157 algorithm that achieves a nearly matching upper bound. Lalitha et al. (2023) studied fixed-budget
 158 best-arm identification with heterogeneous reward variances. It is worth noting that these variance-
 159 dependent regret results for MAB rely on the assumption that the arms are fixed. Consequently,
 160 the sub-optimality gap Δ_i and the variance σ_i^2 are assumed to remain constant across all rounds.
 161 In sharp contrast, our focus is on the linear contextual bandits, where the decision set \mathcal{D}_k changes
 162 adaptively. This change depends on the history of actions and rewards, meaning the set of available
 163 arms (and even the size of the action set) is not fixed.

162 3 PRELIMINARIES

164 In this work, we consider the heteroscedastic linear contextual bandit (Zhou et al., 2021; Zhang
 165 et al., 2021), where the noise variance varies across rounds. Let K be the total number of rounds. In
 166 each round $k \in [K]$, the interaction between the learner and the environment proceeds as follows:

- 167 1. The environment generates an arbitrary decision set $\mathcal{D}_k \subseteq \mathbb{R}^d$, where each element repre-
 168 sents a feasible action that can be selected by the learner;
- 169 2. The learner observes \mathcal{D}_k and selects $\mathbf{x}_k \in \mathcal{D}_k$;
- 170 3. The environment generates the stochastic noise ϵ_k and reveals the stochastic reward $r_k =$
 171 $\langle \boldsymbol{\mu}, \mathbf{x}_k \rangle + \epsilon_k$ to the learner, where $\boldsymbol{\mu} \in \mathbb{R}^d$ is the unknown weight vector for the underlying
 172 linear reward function.

173 Without loss of generality, we assume the random noise ϵ_k in each round k satisfies:

$$175 \mathbb{P}(|\epsilon_k| \leq R) = 1, \quad \mathbb{E}[\epsilon_k | \mathbf{x}_{1:k}, \epsilon_{1:k-1}] = 0, \quad \mathbb{E}[\epsilon_k^2 | \mathbf{x}_{1:k}, \epsilon_{1:k-1}] = \sigma_k^2 \leq 1, \forall k \in [K] \quad (3.1)$$

176 For any algorithm Alg and linear bandit instance \mathcal{M} , the cumulative regret is defined as follows:

$$178 \text{Regret}_{\text{Alg}}(K, \mathcal{M}) = \sum_{k \in [K]} \langle \mathbf{x}_k^*, \boldsymbol{\mu} \rangle - \langle \mathbf{x}_k, \boldsymbol{\mu} \rangle, \quad \text{where } \mathbf{x}_k^* = \arg \max_{\mathbf{x} \in \mathcal{D}_k} \langle \mathbf{x}, \boldsymbol{\mu} \rangle. \quad (3.2)$$

181 For simplicity, we may omit the subscripts Alg and/or \mathcal{M} when there is no ambiguity. Additionally,
 182 with a slight abuse of notation, we may use σ_k to represent the variance σ_k^2 (which is originally
 183 the standard deviation) when there is no ambiguity. In this work, we focus on providing variance-
 184 dependent lower bounds for the regret based on the variances sequence $\{\sigma_1, \dots, \sigma_K\}$. We consider
 185 two settings for the variance sequence $\{\sigma_1, \dots, \sigma_K\}$:

- 186 • **Prefixed Sequence:** The variance sequence is revealed to the learner at the beginning of
 187 the learning process.
- 188 • **Adaptive Sequence:** An adversary (potentially collaborating with the learner) can generate
 189 the variance σ_k in each round k based on historical observations, with the learner receiving
 190 each variance at the beginning of the corresponding round. This setting can be further
 191 divided into two categories based on the power of the adversary:
 - 192 – **Weak Adversary:** The adversary must generate the variance σ_k before observing the
 193 decision set \mathcal{D}_k .
 - 194 – **Strong Adversary:** The adversary can generate the variance σ_k after observing the
 195 decision set \mathcal{D}_k .

196 **Remark 3.1.** Unlike the typical adversarial setting focused on maximizing regret for a specific
 197 algorithm, our work uses the idea of an “adversary” to represent the environment’s inherent ability to
 198 select the variance sequence. This “adversary” might even strategically choose variance levels (σ_k)
 199 based on the **past decision sets \mathcal{D}_k observed so far**, potentially leading to variance levels that could
 200 temporarily improve the learner’s performance or make the learning process appear easier. This
 201 seeming “cooperation,” however, is ultimately aimed at exploring the fundamental lower bounds on
 202 regret that must hold for any learner in any environment. The key is that the variance is chosen
 203 **without direct knowledge of the true underlying patterns $\boldsymbol{\mu}$** . When this “adversary” (our “strong
 204 adversary”) can adjust the variance based on the learner’s actions (\mathcal{D}_k), this strategic “cooperation,”
 205 informed by past observations but blind to $\boldsymbol{\mu}$, becomes more effective in probing the true limits of
 206 learnability and challenging our lower bound results.

207 4 VARIANCE-DEPENDENT LOWER BOUND WITH PREFIXED VARIANCE 208 SEQUENCE

210 In this section, we consider the setting where the variance sequence $\{\sigma_1, \dots, \sigma_K\}$ is prefixed and
 211 fully revealed to the learner at the beginning of the learning process.

212 4.1 MAIN RESULTS

213 We establish the following theorem for the variance-dependent lower bound.

214 **Theorem 4.1.** Let $d > 1$ and consider any prefixed sequence of variances $\{\sigma_1, \dots, \sigma_K\}$ satisfying
 215 $\sum_{k=1}^K \sigma_k^2 \geq 1 + 384d^2$. For any algorithm Alg , there exists a hard linear contextual bandit instance

such that each action $a \in \mathcal{D}_k$ in round k has variance bounded by σ_k . For this instance, the expected regret of algorithm Alg over K rounds is lower bounded by:

$$\mathbb{E}[\text{Regret}(K)] \geq \Omega\left(d\sqrt{\sum_{k=1}^K \sigma_k^2}/(\log K)\right).$$

Remark 4.2. For a prefixed sequence $\{\sigma_1, \dots, \sigma_K\}$, Theorem 4.1 shows that any algorithm incurs a regret lower bounded of $\tilde{\Omega}(d\sqrt{\sum_{k=1}^K \sigma_k^2})$, which matches the upper bound in Zhao et al. (2023) up to logarithmic factors. Compared to the lower bound in Jia et al. (2024), Theorem 4.1 focuses on the linear contextual bandit setting and achieves a \sqrt{d} improvement over the standard linear bandit setting. It is also worth noting that the lower bound in Jia et al. (2024) only considers instances with a fixed total variance $\sum_{k=1}^K \sigma_k^2$, constructed by using constant variance in the early rounds and zero variance in later rounds. In comparison, Theorem 4.1 applies to any fixed variance sequence and is more flexible.

In Theorem 4.1, we require that the total variance is no less than $\Omega(d^2)$, which reduces to $K \geq \Omega(d^2)$ when all variances $\sigma_k = 1$. A similar requirement exists in standard linear bandits, since a trivial lower bound of $\Omega(K)$ always holds for any algorithm, and the lower bound of $\Omega(d\sqrt{K})$ can only be achieved when $K \geq \Omega(d^2)$. Furthermore, for general sequences of variances with total variance smaller than $O(d^2)$, a large number of rounds K alone is not sufficient to establish the desired lower bound. The presence of early rounds with zero variance would increase the total number of rounds without affecting the fundamental complexity of the problem. This observation suggests that requiring total variance no less than $\Omega(d^2)$ (or other equivalent conditions) may be necessary for establishing the lower bound.

4.2 PROOF OVERVIEW OF THEOREM 4.1

In this subsection, we prove the variance-dependent lower bound in Theorem 4.1. We first start with a fixed variance threshold σ , and construct a class of hard-to-learn instances where actions are chosen from a hypercube action set $\mathcal{A} = \{-1, 1\}^d$, and for any action $\mathbf{a} \in \mathcal{A}$, the reward follows a scaled Bernoulli distribution $\sigma \cdot B(1/3 + \langle \boldsymbol{\mu}, \mathbf{a} \rangle)$, where $\Delta = 1/\sqrt{96K}$ and $\boldsymbol{\mu} \in \{-\Delta, \Delta\}^d$. In this setting, the variance for each action is upper bounded by σ^2 , and these instances can be represented as a linear bandit problem with feature $(\sigma, \sigma \cdot \mathbf{a})$ and weight vector $\boldsymbol{\mu}' = (1/3, \boldsymbol{\mu})$. Based on these hard-to-learn instances, we have the following variance-dependent lower bound for the regret:

Lemma 4.3. For a fixed variance threshold σ and any bandit algorithm Alg, if the weight vector $\boldsymbol{\mu} \in \{-\Delta, \Delta\}^d$ is uniformly random selected from $\{-\Delta, \Delta\}^d$, the variance in each round is bounded by σ^2 , and the expected regret over $K \geq 1.5 \cdot d^2$ rounds is lower bounded by:

$$\mathbb{E}_{\boldsymbol{\mu}}[\text{Regret}(K)] \geq d\sqrt{K\sigma^2}/8\sqrt{6}.$$

Remark 4.4. Lemma 4.3 establishes a variance-dependent lower bound for the regret with a fixed variance threshold σ . When all variances are equal ($\sigma_1 = \dots = \sigma_K = \sigma$), this bound matches the upper bound in Zhao et al. (2023) up to logarithmic factors. In addition, under this fixed-variance setting, this lemma provides a tighter logarithmic dependency on the number of rounds K compared to Theorem 4.1, though it does not extend to dynamic variances.

Now, for any prefixed variance sequence $\{\sigma_1, \dots, \sigma_K\}$, we divide the rounds into $L = \lceil \log_2 K \rceil + 1$ different groups based on the range of their variance as follows:

$$\begin{aligned} \mathcal{K}_0 &= \{k : \sigma_k \leq 1/K\}, \\ \mathcal{K}_i &= \{k : 2^{i-1}/K < \sigma_k \leq 2^i/K\}, \quad \text{for } i = 1, \dots, L-1. \end{aligned}$$

For each group \mathcal{K}_i with $i \in [L-1]$, we construct a bandit instance \mathcal{M}_i with weight vector $\boldsymbol{\mu}_i$ following Lemma 4.3, where:

- the variance threshold is set to be $\sigma(i) = 2^{i-1}/K$;
- the number of rounds is $K_i = |\mathcal{K}_i|$;
- the dimension is $d_i = d/L$.

For group \mathcal{K}_0 , we construct a different type of instance \mathcal{M}_0 : a d/L -armed bandit, where one randomly chosen arm gives constant reward 1 while all other arms give reward 0. Note that this instance

270 in \mathcal{M}_0 can be equivalently represented as a $d_0 = d/L$ -dimensional linear bandit where actions are
 271 one-hot vectors \mathbf{e}_i .

272 The basic idea for the lower regret bound is to assign different orthogonal sub-instances based on the
 273 range of the variance σ_k at the beginning of each round. This method ensures that each orthogonal
 274 instance will be learned with comparable variance, which makes it easier to derive a tighter lower
 275 regret bound. Finally, since the orthogonal instances cannot provide mutual information, the total
 276 regret can be decomposed into the summation of the regret accumulated in each sub-instance.

277 Based on these sub-instances, we create a combined linear bandit instance with dimension
 278 $d_0 + d_1 + \dots + d_{L-1} = d$ with weight vector $\boldsymbol{\mu} = (\boldsymbol{\mu}_0, \dots, \boldsymbol{\mu}_{L-1})$: At the beginning of
 279 each round k , if round k belongs to group \mathcal{K}_i , then the learner receives the decision set $\mathcal{D}_k =$
 280 $\{(\mathbf{0}_{d_0}, \dots, \mathbf{0}_{d_{i-1}}, \mathbf{x}, \mathbf{0}_{d_{i+1}}, \dots, \mathbf{0}_{d_{L-1}}) : \mathbf{x} \in \mathcal{A}_i\}$, where $\mathbf{0}_{d_j}$ corresponds to a zero vector with di-
 281 mension d_j and \mathcal{A}_i is the action set in the bandit instance \mathcal{M}_i . Under this construction, for any round
 282 $k \in \mathcal{K}_i$, the reward in the combined instance coincides with that of sub-instance \mathcal{M}_i . Specifically,
 283 after the learner selects action \mathbf{x} , they receive a reward drawn from a scaled Bernoulli distribution
 284 with variance upper bounded by $\sigma^2(i) = (2^{i-1}/K)^2$ for $i \neq 0$, and variance 0 for $i = 0$. Note
 285 that in all groups, the variance is bounded by σ_k^2 . With this construction in hand, we now proceed to
 286 prove the lower bound in Theorem 4.1.

287 **Remark 4.5** (Linear Contextual Bandits vs. Stochastic Linear Bandits). In the proof of The-
 288 orems 4.1, we heavily rely on assigning different decision sets to rounds in the contextual bandit
 289 environment. This approach, however, does not extend to stochastic linear bandit problems, where
 290 all rounds share the same decision set. To see this limitation, consider any prefixed variance se-
 291 quence with $\sigma_1 = \dots = \sigma_d = 0$. In this case, the learner can select canonical basis of the decision
 292 set in the first d rounds. Since these rounds have zero variance, the learner learns the exact rewards
 293 for all actions in the decision set and incurs no regret in subsequent rounds, regardless of the val-
 294 ues of $\sigma_{d+1}, \dots, \sigma_K$. Consequently, it is impossible to establish an variance-aware lower bound of
 295 $\tilde{\Omega}(d\sqrt{\sum_{k=1}^K \sigma_k^2})$ for stochastic linear bandits.

296 *Proof of Theorem 4.1.* Due to the orthogonal construction of decision sets across different groups
 297 \mathcal{K}_i , actions in group \mathcal{K}_i provide no information about the weight vector $\boldsymbol{\mu}_j$ for $j \neq i$. Consequently,
 298 the total regret can be decomposed into the sum of regrets from each sub-instance. For each sub-
 299 instance \mathcal{M}_i with $i \neq 0$, the regret is lower bounded by:

$$\begin{aligned} 300 \mathbb{E}_{\boldsymbol{\mu}_i} \left[\sum_{k \in \mathcal{K}_i} \max_{\mathbf{x} \in \mathcal{D}_k} \langle \boldsymbol{\mu}_i, \mathbf{x} \rangle - \langle \boldsymbol{\mu}_i, \mathbf{x}_k \rangle \right] &\geq \mathbb{1}(K_i \geq 1.5d_i^2) \cdot \frac{d_i \sqrt{K_i \sigma^2(i)}}{8\sqrt{6}} \\ 301 &\geq \frac{d_i \sqrt{K_i \sigma^2(i)}}{8\sqrt{6}} - \frac{d_i \sqrt{1.5d_i^2 \cdot \sigma^2(i)}}{8\sqrt{6}} \\ 302 &\geq \frac{d_i \sqrt{\sum_{k \in \mathcal{K}_i} \sigma_k^2}}{16\sqrt{6}} - \frac{d_i^2 \cdot \sigma(i)}{16}, \end{aligned} \quad (4.1)$$

303 where the first inequality follows from Lemma 4.3, the second inequality holds due to $\mathbb{1}(x \geq y)\sqrt{x} \geq \sqrt{x} - \sqrt{y}$, and the last inequality follows from the definition of group \mathcal{K}_i .

304 Taking a summation of (4.1) over all groups, the total regret can be lower bounded as follows:

$$\begin{aligned} 305 \mathbb{E}_{\boldsymbol{\mu}}[\text{Regret}(K)] &= \sum_{i=0}^{L-1} \mathbb{E}_{\boldsymbol{\mu}_i} \left[\sum_{k \in \mathcal{K}_i} \max_{\mathbf{x} \in \mathcal{D}_k} \langle \boldsymbol{\mu}_i, \mathbf{x} \rangle - \langle \boldsymbol{\mu}_i, \mathbf{x}_k \rangle \right] \\ 306 &\geq \sum_{i=1}^{L-1} \frac{d_i \sqrt{\sum_{k \in \mathcal{K}_i} \sigma_k^2}}{16\sqrt{6}} - \frac{d_i^2 \cdot \sigma(i)}{16} \\ 307 &\geq \sum_{i=1}^{L-1} \frac{d \sqrt{\sum_{k \in \mathcal{K}_i} \sigma_k^2}}{16\sqrt{6}L} - \frac{d^2}{4L^2} \\ 308 &\geq \frac{d \sqrt{\sum_{i=1}^{L-1} \sum_{k \in \mathcal{K}_i} \sigma_k^2}}{16\sqrt{6}L} - \frac{d^2}{4L^2}, \end{aligned} \quad (4.2)$$

324 where the first inequality follows from (4.1), the second inequality follows from the definition of
 325 variance threshold $\sigma(i)$ and dimension $d_i = d/L$, and the last inequality holds due to $\sum_i \sqrt{x_i} \geq$
 326 $\sqrt{\sum_i x_i}$. In addition, for the group \mathcal{K}_0 , we have
 327

$$328 \sum_{k \in \mathcal{K}_0} \sigma_k^2 \leq \sum_{k \in \mathcal{K}_0} 1/K \leq 1, \quad (4.3)$$

330 where the first inequality follows from the definition of group \mathcal{K}_0 and the second inequality follows
 331 from $|\mathcal{K}_0| \leq K$. Therefore, we have

$$\begin{aligned} 332 \mathbb{E}_{\mu}[\text{Regret}(K)] &\geq \frac{d \sqrt{\sum_{i=1}^{L-1} \sum_{k \in \mathcal{K}_i} \sigma_k^2}}{16\sqrt{6L}} - \frac{d^2}{4L^2} \\ 333 &\geq \frac{d \sqrt{\sum_{k=1}^K \sigma_k^2 - 1}}{16\sqrt{6L}} - \frac{d^2}{4L^2} \\ 334 &\geq \frac{d \sqrt{\sum_{k=1}^K \sigma_k^2 - 1}}{32\sqrt{6L}}, \end{aligned}$$

341 where the first inequality follows from (4.2), the second inequality follows from (4.3), and the last
 342 inequality follows from the fact that $\sum_{k=1}^K \sigma_k^2 \geq 1 + 384d^2$. This completes the proof. \square
 343

344 5 VARIANCE-DEPENDENT LOWER BOUNDS WITH ADAPTIVE VARIANCE 345 SEQUENCE

346 In the previous section, we focused on the setting where the variance sequence is prefixed and
 347 revealed to the learner at the beginning of the learning process. In this section, we extend our
 348 analysis to the setting where the variance sequence can be adaptive based on historical observations,
 349 with the learner receiving the adaptive variance at the beginning of each round.

350 5.1 MAIN RESULTS

351 5.1.1 WEAK ADVERSARY

353 We first describe the learning process and the mechanism of variance adaptation. In detail, the
 354 adaptive variance process proceeds as follows:

- 355 1. At the beginning of each round k , a (weak) adversary selects the variance level σ_k based on
 356 the historical observations, including actions $\{a_1, \dots, a_{k-1}\}$, rewards $\{r_1, \dots, r_{k-1}\}$, and
 357 decision sets $\{\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_{k-1}\}$. The adversary has access to all historical information
 358 but not to the underlying reward model parameters;
- 359 2. Given the selected variance level σ_k , we construct and assign a decision set \mathcal{D}_k to the
 360 learner, where the variance of the reward for each action $a \in \mathcal{D}_k$ is bounded by σ_k^2 ;
- 361 3. The learner observes the decision set \mathcal{D}_k and variance level σ_k , then determines an action
 362 a_k from \mathcal{D}_k based on its historical observations and current information. After selecting
 363 the action, the learner receives a reward r_k with variance bounded by σ_k^2 .

364 **Remark 5.1.** It is worth noting that our concept of adversary differs from the weak/strong adversary
 365 in Jia et al. (2024). Specifically, Jia et al. (2024) considers an adversary that attempts to hinder the
 366 learner's learning by allocating a fixed total variance budget $\sum_{k=1}^K \sigma_k^2 \leq \Lambda$ across rounds to max-
 367 imize regret. In contrast, our work considers an adversary that attempts to break the lower bounds
 368 themselves by collaborating with the learner. To prevent such exploitation, we must restrict the ad-
 369 versary from knowing the weight vector of the underlying reward model. Without this restriction,
 370 the adversary could encode each entry μ_i of the weight vector μ through the corresponding variance
 371 $\sigma_i = \mu_i$, allowing the learner to learn the weight vector after d rounds.

372 Under this setting, we establish the following theorem for the variance-dependent lower bound.

373 **Theorem 5.2** (Weak Adversary). For any dimension $d > 1$, any adaptive sequence of variances
 374 $\{\sigma_1, \dots, \sigma_K\}$ and any algorithm Alg , there exists a hard instance such that each action $a \in \mathcal{D}_k$ in
 375 round k has variance bounded by σ_k^2 . For this instance, if $\sum_{k=1}^K \sigma_k^2 \geq \Omega(d^2)$, then with probability
 376 at least $1 - 1/K$, the regret of Alg over K rounds is lower bounded by:

$$377 \text{Regret}(K) \geq \Omega\left(d \sqrt{\sum_{k=1}^K \sigma_k^2} / \log^6(dK)\right).$$

378
 379 **Remark 5.3.** Theorem 5.2 provides a high-probability lower bound of $\tilde{\Omega}(d\sqrt{\sum_{k=1}^K \sigma_k^2})$, which
 380 matches the upper bound in Zhao et al. (2023) up to logarithmic factors, albeit with looser logarithmic
 381 dependencies than Theorem 4.1 due to the adaptive nature of the variance sequence. Unlike
 382 the expected lower bound in Theorem 4.1, for adaptive variance sequences, the cumulative variance
 383 $\sum_{k=1}^K \sigma_k^2$ depends on the random process and observations. This dependence makes it challenging
 384 to establish an expected variance-dependent regret bound - a fundamental difficulty that does not
 385 arise for standard $d\sqrt{K}$ -type lower bounds in linear contextual bandits (Dani et al., 2008; Chu et al.,
 386 2011; Lattimore & Szepesvári, 2018). To the best of our knowledge, our result provides the first
 387 high-probability lower bound for linear contextual bandits. **In addition, our technique of converting**
 388 **an expected lower bound to a high-probability one is of independent interest and can potentially be**
 389 **used to derive high-probability lower bounds for a wider class of problems.**

390 **5.1.2 STRONG ADVERSARY**

391 In Theorem 5.2, we require that for each round $k \in [K]$, all actions $\mathbf{x} \in \mathcal{D}_k$ share the same adaptive
 392 variance σ_k . This is more restrictive than the setting in Zhao et al. (2023), where the variance can
 393 differ across actions $\mathbf{x} \in \mathcal{D}_k$. However, extending our lower bound to action-dependent variances
 394 is fundamentally incompatible with our adaptive instance construction. The key difficulty is that,
 395 in our lower-bound construction, the decision set \mathcal{D}_k is generated before the adversary chooses the
 396 variance σ_k , which prevents assigning specific variances to individual actions $\mathbf{x} \in \mathcal{D}_k$. Moreover,
 397 we now consider a strong adversary that can choose σ_k after observing the decision set \mathcal{D}_k . The
 398 interaction between the learner and this strong adversary proceeds as follows:

399 1. At the beginning of each round k , we construct and assign a decision set \mathcal{D}_k based on
 400 historical observations, including actions $\{a_1, \dots, a_{k-1}\}$ and rewards $\{r_1, \dots, r_{k-1}\}$;
 401 2. Given the decision set \mathcal{D}_k in round k , the strong adversary selects the variance level σ_k for
 402 round k . The adversary has access to all historical information but not to the underlying
 403 reward model parameters;
 404 3. The learner observes the decision set \mathcal{D}_k and variance level σ_k , then determines an action
 405 a_k from \mathcal{D}_k based on its historical observations and current information. After selecting
 406 the action, the learner receives a reward r_k with variance bounded by σ_k^2 .

407 The following theorem shows that under this setting, the adversary could cooperate with the learner
 408 to break the lower bound.

409 **Theorem 5.4 (Strong Adversary).** For any linear contextual bandit problem and number of rounds
 410 $K \geq 2d$, if we first provide the decision set \mathcal{D}_k and then allow an adversary to choose the variance
 411 σ_k based on the decision set \mathcal{D}_k , there exists one such type of adversary such that, there exists an
 412 algorithm whose regret in the first K rounds is upper bounded by $\text{Regret}(K) \leq d$, where the total
 413 variance $\sum_{k=1}^K \sigma_k^2 \geq K/2$.

414 **Remark 5.5.** Theorem 5.4 highlights why Theorem 5.2 requires a weak adversary that set the variance
 415 sequence before seeing the learner's choices. If the adversary could see the decision set first, it
 416 could potentially choose variances that would invalidate our lower bound. This finding underscores
 417 that our construction is precise and pinpoints the exact condition under which the derived lower
 418 bound holds.

419 **Remark 5.6.** It is worth noting that Jia et al. (2024) also considered the case where the adversary
 420 assigns variances to actions after observing the decision set and action choice, and provided
 421 a variance-dependent lower bound. However, their analysis focuses on an adversary that allocates
 422 variance across rounds to maximize the regret. In contrast, our work considers an adversary that
 423 attempts to break these bounds, making it more challenging to establish lower bounds for general
 424 variance sequences. It is also worth noting that if the adversary's goal is to increase regret, choosing
 425 a prefixed sequence is a viable strategy. This case is already covered by our Theorem 4.1 for prefixed
 426 sequences, which provides a tighter lower bound than Theorem 5.2.

427 Theorem 5.4 suggests that it is impossible to derive a variance-dependent lower bound if the ad-
 428 versary can determine the variance σ_k after observing the decision set \mathcal{D}_k , which further precludes
 429 establishing a lower bound when the adversary has the ability to assign action-dependent variances
 430 for each action $\mathbf{x} \in \mathcal{D}_k$ after observing the decision set \mathcal{D}_k . This result naturally extends to stochastic
 431 linear bandit problems, where the decision set \mathcal{D} remains fixed across all rounds. In this case,
 since the adversary knows the decision set $\mathcal{D}_k = \mathcal{D}$ in advance, Theorem 5.4 directly implies:

432 **Corollary 5.7.** For any stochastic linear bandit problem with fixed decision set \mathcal{D} and number of
 433 rounds $K \geq 2d$, there exists a prefixed sequence $\{\sigma_1, \dots, \sigma_K\}$ such that there exists an algorithm
 434 whose regret in the first K rounds is upper bounded by: $\text{Regret}_{\text{Alg}}(K) \leq d$, where the total variance
 435 $\sum_{k=1}^K \sigma_k^2 \geq K/2$.
 436

437 5.2 PROOF SKETCH OF THEOREM 5.2

438 In this section, we provide the proof sketch of Theorem 5.2. Overall, the proof follows a similar
 439 structure as Theorem 4.1, where we divide the rounds into several groups based on their variance
 440 magnitude and create hard instances for each group. The key idea is to calculate individual regret
 441 bounds for each group and combine them for the final lower bound. However, there exist several
 442 challenges when dealing with adaptive variance sequences that require careful handling.
 443

444 **Varying Size of Groups \mathcal{K}_i** As discussed in Section 4.2, for each group \mathcal{K}_i , we create individual
 445 instance \mathcal{M}_i with fixed variance threshold $\sigma(i) = 2^{i-1}/K$ and establish a lower bound of
 $\tilde{\Omega}(d_i \sqrt{\sigma^2(i)|\mathcal{K}_i|})$ on the expected regret. However, the construction of such instances relies on
 446 prior knowledge of the number of rounds $|\mathcal{K}_i|$, which can be calculated at the beginning for a pre-
 447 fixed variance sequence $\{\sigma_1, \dots, \sigma_K\}$. In contrast, for general adaptive variance sequences, the
 448 number of rounds $|\mathcal{K}_i|$ is not known a priori and can even be a random variable, which creates a
 449 barrier in constructing these instances.

450 To address the unknown number of rounds $|\mathcal{K}_i|$, instead of constructing a single instance \mathcal{M}_i for
 451 each group, we create L instances $\mathcal{M}_{i,j}$, where $L = \lceil \log_2 K \rceil + 1$. Each instance $\mathcal{M}_{i,j}$ is designed
 452 for a specific range of round numbers, specifically $\mathcal{M}_{i,j}$ for $2^{j-1} \leq |\mathcal{K}_i| < 2^j$.

453 For each round k in group \mathcal{K}_i , the learner receives a decision set \mathcal{D}_i from one of the instances in
 454 $\{\mathcal{M}_{i,1}, \dots, \mathcal{M}_{i,L}\}$ in a cyclic manner. Through this sequential assignment, the number of visits to
 455 each instance $\mathcal{M}_{i,j}$ is $|\mathcal{K}_i|/L$. Consequently, we expect that the instance $\mathcal{M}_{i,j}$ corresponding to the
 456 true range $2^{j-1} \leq |\mathcal{K}_i| < 2^j$ provides a lower bound of $\tilde{\Omega}(d_i \sqrt{\sigma^2(i)|\mathcal{K}_i|}) = \tilde{\Omega}(d_i \sqrt{\sigma^2(i) \cdot 2^j})$,
 457 which leads to the final lower bound of $\tilde{\Omega}(d \sqrt{\sum_{k=1}^K \sigma_k^2})$.
 458

459 **Converting Expected Lower Bound to High-Probability Lower Bound.** Another challenge is
 460 establishing the lower bound for the triggered instance $\mathcal{M}_{i,j}$ corresponding to the true range $2^{j-1} \leq$
 461 $|\mathcal{K}_i| < 2^j$. Traditional analysis of lower bounds in linear contextual bandits has focused on the
 462 expected regret. However, when dealing with adaptive variance sequences, this approach becomes
 463 insufficient as the adversary can dynamically adjust the variance sequence to break these bounds.
 464

465 For instance, an adversary might continuously set $\sigma_k = 1$ until the lower bound of $\tilde{\Omega}(d \sqrt{\sum_{i=1}^k \sigma_i^2})$
 466 is violated at some round k , then switch to $\sigma_k = 0$ for all future rounds, causing the total variance
 467 sum $\sum_{k=1}^K \sigma_k^2$ to remain unchanged. In our construction, this means all rounds could fall into group
 468 \mathcal{K}_L , allowing the adversary to adaptively change the number of rounds between different intervals
 $2^{j-1} \leq |\mathcal{K}_L| < 2^j$. Since the failure of the lower bound in any single instance $\mathcal{M}_{L,j}$ leads to failure
 469 of the whole construction, an expected lower bound on regret cannot guarantee robust performance
 470 against adaptive sequences. This necessitates a stronger high-probability lower bound that holds
 471 uniformly for all instances.

472 Unfortunately, an expectation of $\tilde{\Omega}(d_i \sqrt{\sigma^2(i)2^j})$ in instance $\mathcal{M}_{i,j}$ only implies a low-probability
 473 regret ($\text{Regret} \geq \tilde{\Omega}(d_i \sqrt{\sigma^2(i)2^j}) \geq d_i \cdot 2^{-j/2}$), since the cumulative regret in \mathcal{K}_i can be up to $\sigma(i) \cdot$
 $|\mathcal{K}_i|$ in our instance. To solve this problem, we introduce an auxiliary algorithm that automatically
 474 detects the cumulative regret and switches to the standard OFUL algorithm (Abbasi-Yadkori et al.,
 475 2011) if the cumulative regret is larger than $\Omega(d_i \sqrt{\sigma^2(i)2^j})$.¹ For this auxiliary algorithm, we can
 476 guarantee that the upper bound is at most $\tilde{\Omega}(d_i \sqrt{\sigma^2(i)2^j})$ while maintaining the same probability of
 477 high regret as the original algorithm. Therefore, an expectation of $\tilde{\Omega}(d_i \sqrt{\sigma^2(i)2^j})$ in instance $\mathcal{M}_{i,j}$
 478 implies a constant-probability regret $\mathbb{P}(\text{Regret} \geq \tilde{\Omega}(d_i \sqrt{\sigma^2(i)2^j})) = \Omega(1)$.
 479 After constructing an instance with constant-probability lower bound, we boost this probability by
 480 creating $\Omega(\log^2(dK))$ independent instances. When the learner encounters instance $\mathcal{M}_{i,j}$, it is
 481

482 ¹In general settings, detecting cumulative regret is impossible as the learner lacks prior knowledge of the
 483 optimal reward and variance. However, in our lower bound construction, all instances are randomly selected
 484 from instance classes sharing the same optimal reward and variance, which are known to the learner. This
 485 knowledge enables the construction of the auxiliary algorithm.

486 assigned to one of these instances in a cyclic manner. Through this construction, with probability at
 487 least $1 - 1/\text{poly}(K)$, the final regret is lower bounded by $\text{Regret} \geq \tilde{\Omega}(d_i \sqrt{\sigma^2(i) 2^j})$.
 488

489 **Remark 5.8.** Unlike previous lower bounds for linear bandit problems which focus on expected
 490 regret, to the best of our knowledge, our result provides the first high-probability lower bound for
 491 linear contextual bandits. It is worth noting that our construction requires separate decision sets
 492 across different rounds in the random assignment process. For stochastic linear bandits with a fixed
 493 decision set, we can only derive a constant-probability lower bound. Moreover, for a fixed decision
 494 set in stochastic linear bandit problem with covering number $\log \mathcal{N} \leq \tilde{O}(d)$, an algorithm can
 495 randomly select one action from the covering set and perform this action in all rounds. In this case,
 496 there exists a probability of $1/\mathcal{N} = 1/\exp(d)$ to achieve zero regret, which precludes the possibility
 497 of establishing high-probability lower bounds for large round numbers K . More details about the
 498 high-probability lower bound can be found in Section 5.2.

499 6 CONCLUSION AND FUTURE WORK

500 In this paper, we study variance-dependent lower bounds for linear contextual bandits in different
 501 settings. For both prefixed and adaptive variance sequences with weak adversary, we establish tight
 502 lower bounds matching the upper bounds in Zhao et al. (2023) up to logarithmic factors. We further
 503 demonstrate a fundamental limitation: when a strong adversary can select variances after observing
 504 decision sets, it becomes impossible to establish meaningful variance-dependent lower bounds.
 505 However, our work has focused exclusively on linear bandit settings, while Jia et al. (2024) has
 506 established variance-dependent lower bounds for general function approximation with a fixed total
 507 variance budget Λ . Therefore, we leave for future work the generalization of our analysis of general
 508 variance sequence to contextual bandits with general function approximation.

509 REFERENCES

510 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
 511 bandits. In *Advances in Neural Information Processing Systems*, pp. 2312–2320, 2011.

512 Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits. In
 513 *COLT-23th Conference on learning theory-2010*, pp. 13–p, 2010.

514 Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Exploration-exploitation tradeoff using
 515 variance estimates in multi-armed bandits. *Theoretical Computer Science*, 410(19):1876–1902,
 516 2009.

517 Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine
 518 Learning Research*, 3(Nov):397–422, 2002.

519 Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
 520 problem. *Machine learning*, 47(2):235–256, 2002.

521 Nicolo Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games*. Cambridge university
 522 press, 2006.

523 Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff func-
 524 tions. In *Proceedings of the Fourteenth International Conference on Artificial Intelligence and
 525 Statistics*, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

526 Yan Dai, Ruosong Wang, and Simon Shaolei Du. Variance-aware sparse linear bandits. In *The
 527 Eleventh International Conference on Learning Representations*.

528 Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit
 529 feedback. In *21st Annual Conference on Learning Theory*, number 101, pp. 355–366, 2008.

530 Zeyu Jia, Jian Qian, Alexander Rakhlin, and Chen-Yu Wei. How does variance shape the regret
 531 in contextual bandits? *Advances in Neural Information Processing Systems*, 37:83730–83785,
 532 2024.

533 Yeoneung Kim, Insoon Yang, and Kwang-Sung Jun. Improved regret analysis for variance-adaptive
 534 linear bandits and horizon-free linear mixture mdps. *Advances in Neural Information Processing
 535 Systems*, 35:1060–1072, 2022.

540 Johannes Kirschner and Andreas Krause. Information directed sampling and bandits with het-
 541 eroscedastic noise. In *Conference On Learning Theory*, pp. 358–384. PMLR, 2018.
 542

543 Anusha Lalitha Lalitha, Kousha Kalantari, Yifei Ma, Anoop Deoras, and Branislav Kveton. Fixed-
 544 budget best-arm identification with heterogeneous reward variances. In *Uncertainty in Artificial*
 545 *Intelligence*, pp. 1164–1173. PMLR, 2023.

546 Tor Lattimore and Csaba Szepesvári. Bandit algorithms. *preprint*, pp. 28, 2018.
 547

548 Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
 549 personalized news article recommendation. In *Proceedings of the 19th international conference*
 550 *on World wide web*, pp. 661–670, 2010.

551 Yingkai Li, Yining Wang, and Yuan Zhou. Nearly minimax-optimal regret for linearly parameterized
 552 bandits. In *Conference on Learning Theory*, pp. 2173–2174. PMLR, 2019.

553

554 Pinyan Lu, Chao Tao, and Xiaojin Zhang. Variance-dependent best arm identification. In *Uncer-
 555 tainty in Artificial Intelligence*, pp. 1120–1129. PMLR, 2021.

556

557 Zihan Zhang, Jiaqi Yang, Xiangyang Ji, and Simon S Du. Improved variance-aware confidence sets
 558 for linear bandits and linear mixture mdp. *Advances in Neural Information Processing Systems*,
 34:4342–4355, 2021.

559

560 Heyang Zhao, Dongruo Zhou, Jiafan He, and Quanquan Gu. Bandit learning with general function
 561 classes: Heteroscedastic noise and variance-dependent regret bounds. *CoRR*, 2022.

562

563 Heyang Zhao, Jiafan He, Dongruo Zhou, Tong Zhang, and Quanquan Gu. Variance-dependent regret
 564 bounds for linear bandits and reinforcement learning: Adaptivity and computational efficiency. In
 565 *The Thirty Sixth Annual Conference on Learning Theory*, pp. 4977–5020. PMLR, 2023.

566

567 Dongruo Zhou and Quanquan Gu. Computationally efficient horizon-free reinforcement learning
 568 for linear mixture mdps. *Advances in neural information processing systems*, 35:36337–36349,
 2022.

569

570 Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learn-
 571 ing for linear mixture markov decision processes. In *Conference on Learning Theory*, pp. 4532–
 4576. PMLR, 2021.

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **LLM USAGE**595
596 We used an LLM solely for grammatical and stylistic polishing of the manuscript. No research ideas
597 or results were generated by the LLM. All technical content was written and verified by the authors.598 **A EXPERIMENTS**599
600 In this section, we conduct experiments to show the difficulty of our construction of hard-to-learn
601 instances.602 **A.1 EXPERIMENTAL SETUP**603 In this experiment, we follow the construction of hard-to-learn instances presented in the proof of
604 Theorem 4.1, which breaks down the problem into several sub-instances.605 **Model Parameters.** We consider a contextual linear bandit with total dimension $D = 10$, which
606 we break down into two orthogonal sub-instances, \mathcal{M}_1 and \mathcal{M}_2 , each with dimension $d_1 = d_2 = 5$.
607 The environment is defined by the set of true parameter vectors $\mu = (\mu_1, \mu_2)$, where two fixed
608 vectors, μ_1 and μ_2 , each have non-zero entries drawn i.i.d. from $\mathcal{U}(0, 1)$ in only 5 dimensions.609 **Variance Sequence** We consider a prefixed variance sequence over $K = 4000$ rounds. The variance
610 sequence is piecewise, defined by an abrupt shift at $K_{\text{SWITCH}} = 2000$:611
612
613

- **Low Variance** ($\sigma_1 = 0.1$): Used in the first 2000 rounds ($k \leq 2000$).
- **High Variance** ($\sigma_2 = 1.0$): Used in the subsequent 2000 rounds ($2000 < k \leq 4000$).

614 **Scenario Assignment** To illustrate the necessity of adaptively allocating different instances to the
615 learner based on the variance level, we consider two scenarios for assigning the sub-instances (\mathcal{M}_1
616 or \mathcal{M}_2) to the learner:617
618

1. **Piecewise Assignment (Hard-to-Learn):** The first 2000 rounds are assigned the in-
619 stance \mathcal{M}_1 , and the second 2000 rounds are assigned the instance \mathcal{M}_2 . (Switch occurs
at T_{SWITCH}).
2. **Alternating Assignment (Rapidly Switching):** The odd rounds are assigned the instance
620 \mathcal{M}_1 , and the even rounds are assigned the instance \mathcal{M}_2 . (Switch occurs at each round).

621 **Decision Set** In each round k , the decision set \mathcal{D}_k contains $N_{\text{arms}} = 32$ contexts. The base context
622 entries are drawn i.i.d. from $\mathcal{U}(0, 1)$. This context set is masked such that contexts interact only
623 with μ_1 when \mathcal{M}_1 is assigned, and only with μ_2 when \mathcal{M}_2 is assigned. Crucially, this orthogonal
624 masking ensures that information gathered from one sub-instance cannot be transferred or used to
625 estimate the parameter vector of the other sub-instance.626 **Noise and Reward** For each round k , after the learner chooses an action $\mathbf{a} \in \mathcal{D}_k$, it receives a
627 reward $r_k(\mathbf{a}) = \mathbf{a}^\top \mu^* + \epsilon_k$, where the noise ϵ_k is drawn from the Gaussian distribution $\mathcal{N}(0, \sigma_i^2)$,
628 with σ_i determined by the prefixed variance sequence (i.e., $\sigma_i = 0.1$ for $k \leq 2000$ and $\sigma_i = 1.0$ for
629 $k > 2000$).630 **A.2 RESULTS AND DISCUSSION**

631 In the experiment, we evaluate the performance of two key algorithms:

632
633

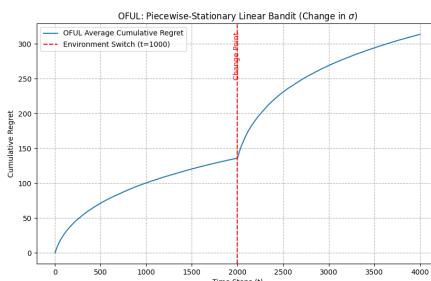
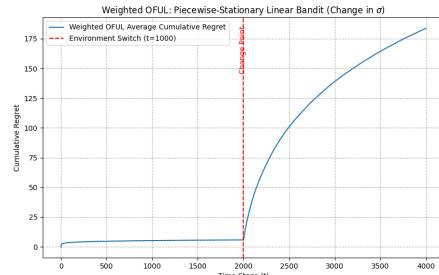
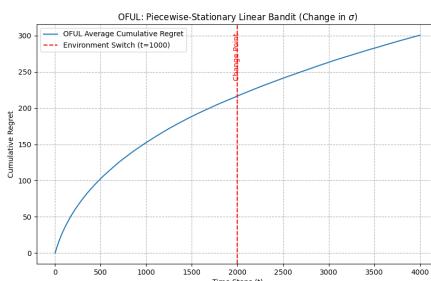
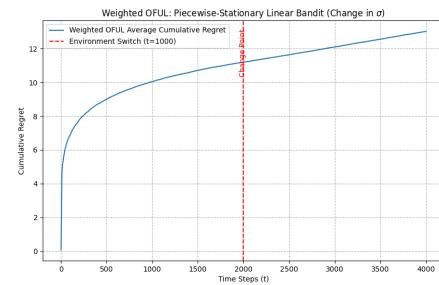
- **OFUL** Abbasi-Yadkori et al. (2011): This provides a near-optimal **variance-independent**
634 regret guarantee for the standard linear contextual bandit problem.
- **Weighted OFUL** Zhou et al. (2021): This provides a near-optimal **variance-dependent**
635 regret guarantee for the linear contextual bandit problem, assuming the variance for each
636 round is known to the learner.

637 We repeat each baseline algorithm for 100 times and plot their cumulative regrets with respect to the
638 number of rounds in Figures 1 to 4.639 **A.2.1 ANALYSIS OF OFUL**640 As shown in Figure 1 and 2 (standard OFUL), the algorithm does not utilize the information re-
641 garding the variance level and constructs a similar confidence set size for the low-variance period
642 and the later high-variance period, which leads to comparable regret in both periods. Also, for the
643 alternating assignment (Figure 3), even though each sub-instance \mathcal{M}_i alternates between low and
644 high variance, OFUL fails to gain an advantage from the low-variance rounds and has a comparable
645 total regret across all 4000 rounds.

648 A.2.2 ANALYSIS OF WEIGHTED OFUL
649

650 The results for the Weighted OFUL algorithm (Figures 3 and 4), which utilizes a variance-
651 based mechanism, show a totally different observation. For the Piecewise Assignment (Figure 3),
652 Weighted OFUL utilizes the low variance in the first 2000 rounds and achieves a much lower regret
653 in that initial period. However, since the information gathered is only for instance \mathcal{M}_1 and cannot
654 transfer to the orthogonal instance \mathcal{M}_2 , Weighted OFUL achieves a much higher regret in the last
655 2000 rounds due to the high variance.

656 In comparison, for the Alternating Assignment (Figure 4), each instance (\mathcal{M}_1 and \mathcal{M}_2) effectively
657 goes through 1000 rounds with low variance and then 1000 rounds with high variance. Under this
658 situation, Weighted OFUL can construct a tighter confidence set for both instances in the first 2000
659 rounds, which leads to a much smaller total regret over 4000 rounds. This result illustrates that the
660 early stage with low variance can significantly speed up the learning process in the exploration stage
661 and lead to a low total regret. The ability to adaptively assign the decision set based on the variance
662 level (as we used in constructing the lower bound) can avoid the early exploration stage having much
663 smaller variance than the later exploitation stage, thus successfully circumventing the limitation.

664 Figure 1: OFUL with Piecewise Assignment
665666 Figure 2: Weighted OFUL with Piecewise Assignment
667668 Figure 3: OFUL with Alternating Assignment
669670 Figure 4: Weighted OFUL with Alternating Assignment
671672 B PROOF OF THEOREM 5.2
673

674 In this section, we prove the variance-dependent lower bound for adaptive variance sequences es-
675 tablished in Theorem 5.2. We begin with the instance construction from Lemma 4.3 and establish
676 the following constant-probability lower bound for the regret:

677 **Lemma B.1.** For a fixed variance threshold σ , number of rounds $K \geq 1.5d^2$, and any bandit
678 algorithm Alg, for the instance constructed in Lemma 4.3, with probability at least $\Omega(1/\log(dK))$,
679 the regret is lower bounded by

$$680 \text{Regret}(K) \geq \frac{d\sqrt{K\sigma^2}}{16\sqrt{6}}.$$

681 Based on the constant-probability lower bound, we boost this probability by creating $L =$
682 $\Omega(\log^2(dK))$ independent instances with dimension $d' = d/L$ and number of rounds $K' = K/L$,
683 where each instance follows the structure in Lemma 4.3 with i.i.d. sampled weight vectors. Un-
684 der this construction, the total dimension of all instances is d , which can be represented as a d -

dimensional linear contextual bandit through orthogonal embedding, similar to our previous construction: for instance i , we augment its actions by padding zeros in dimensions reserved for other instances, ensuring actions from different instances only interact with their corresponding parameters. Here, we consider the case where the learner visits the instances in a cyclic manner and establish the following high-probability regret lower bound for the constructed instance:

Lemma B.2. For a fixed variance threshold σ , number of rounds $K \geq 1.5d^2$, and any bandit algorithm Alg , with probability at least $\Omega(1/\log(dK))$, the regret is lower bounded by

$$\text{Regret}(K) \geq \Omega(d\sqrt{K\sigma^2}/\log^3(dK)).$$

With the help of this high-probability lower regret bound from Lemma B.2, we begin the proof of Theorem 5.2. Following a similar framework to the fixed-variance case, we first divide the rounds into groups based on their variance magnitude. Specifically, for any variance sequence $\{\sigma_1, \dots, \sigma_K\}$, we partition the rounds into $L = \lceil \log_2 K \rceil + 1$ groups as follows:

$$\begin{aligned} \mathcal{K}_0 &= \{k : \sigma_k \leq 1/K\}, \\ \mathcal{K}_i &= \{k : 2^{i-1}/K < \sigma_k \leq 2^i/K\}, \quad \text{for } i = 1, \dots, L-1. \end{aligned}$$

To address the unknown number of rounds $K_i = |\mathcal{K}_i|$, instead of constructing a single instance \mathcal{M}_i for each group, we create L instances $\mathcal{M}_{i,j}$, where $L = \lceil \log_2 K \rceil + 1$. Each instance $\mathcal{M}_{i,j}$ is constructed according to Lemma B.2 with dimension $d' = d/L^2$, variance $\sigma(i) = 2^{i-1}/K$ and number of rounds $K' = 2^{j-1}$. For each round k in group \mathcal{K}_i , the learner receives a decision set \mathcal{D}_i from one of the instances in $\{\mathcal{M}_{i,1}, \dots, \mathcal{M}_{i,L}\}$ in a cyclic manner.

Proof of Theorem 5.2. According to Lemma B.2, for each instance $\mathcal{M}_{i,j}$, with probability at least $1 - 1/K^3$, the regret in the first 2^{j-1} visits is lower bounded by

$$\text{Regret}(2^{j-1}, \mathcal{M}_{i,j}) \geq \mathbb{I}(2^{j-1} \geq 1.5d'^2) \cdot \Omega(d' \sqrt{2^{j-1}\sigma^2(i)}/\log^3(d'K')), \quad (\text{B.1})$$

where the indicator reflects the requirement that $K' = 2^{j-1} \geq 1.5d'^2$. For simplicity, we define \mathcal{E} as the event that (B.1) holds for all instances $\mathcal{M}_{i,j}$. By union bound, we have $\mathbb{P}(\mathcal{E}) \geq 1 - 1/K$.

Conditioned on event \mathcal{E} , for an adaptive sequence and each corresponding group \mathcal{K}_i , due to the cyclic visiting pattern, each instance $\mathcal{M}_{i,j}$ is visited $|\mathcal{K}_i|/L$ times. There exists an instance $\mathcal{M}_{i,j}$ with matching interval for the round number, i.e., $2^{j-1} \leq |\mathcal{K}_i|/L \leq 2^j$. Therefore, we have

$$\begin{aligned} &\sum_{k \in \mathcal{K}_i} \max_{\mathbf{x} \in \mathcal{D}_k} \langle \boldsymbol{\mu}_i, \mathbf{x} \rangle - \langle \boldsymbol{\mu}_i, \mathbf{x}_k \rangle \\ &\geq \text{Regret}(2^{j-1}, \mathcal{M}_{i,j}) \\ &\geq \mathbb{I}(2^{j-1} \geq 1.5d'^2) \cdot \Omega(d' \sqrt{2^{j-1}\sigma^2(i)}/\log^3(d'K')) \\ &\geq \mathbb{I}(K_i \geq 3d'^2L) \cdot \Omega(d' \sqrt{K_i \sigma^2(i)}/\log^4(dK)) \\ &\geq \Omega(d' \sqrt{K_i \sigma^2(i)}/\log^3(dK) - d' \sqrt{3d'^2L \sigma^2(i)}/\log^4(dK)) \\ &\geq \Omega\left(d' \sqrt{\sum_{k \in \mathcal{K}_i} \sigma_k^2}/\log^4(dK) - \sqrt{3Ld'^2 \cdot \sigma(i)}/\log^4(dK)\right), \end{aligned} \quad (\text{B.2})$$

where the first inequality follows from $2^{j-1} \leq |\mathcal{K}_i|/L \leq 2^j$, the second inequality holds by the definition of event \mathcal{E} , the third inequality follows from $2^{j-1} \leq |\mathcal{K}_i|/L \leq 2^j$, the fourth inequality holds due to $\mathbb{I}(x \geq y)\sqrt{x} \geq \sqrt{x} - \sqrt{y}$, and the last inequality follows from the definition of group \mathcal{K}_i .

Taking a summation of (B.2) over all groups, the total regret can be lower bounded as follows:

$$\begin{aligned} &\text{Regret}(K) \\ &= \sum_{i=0}^{L-1} \sum_{k \in \mathcal{K}_i} \max_{\mathbf{x} \in \mathcal{D}_k} \langle \boldsymbol{\mu}_i, \mathbf{x} \rangle - \langle \boldsymbol{\mu}_i, \mathbf{x}_k \rangle \\ &\geq \sum_{i=1}^{L-1} \Omega\left(d' \sqrt{\sum_{k \in \mathcal{K}_i} \sigma_k^2}/\log^4(dK) - \sqrt{3Ld'^2 \cdot \sigma(i)}/\log^4(dK)\right) \end{aligned}$$

$$\begin{aligned}
&\geq \Omega\left(\sum_{i=1}^{L-1} d/L^2 \cdot \sqrt{\sum_{k \in \mathcal{K}_i} \sigma_k^2} / \log^4(dK) - 2\sqrt{3L}d^2/(L^4 \log^4(dK))\right) \\
&\geq \Omega\left(d/L^2 \cdot \sqrt{\sum_{i=1}^{L-1} \sum_{k \in \mathcal{K}_i} \sigma_k^2} / \log^4(dK) - 2\sqrt{3L}d^2/(L^4 \log^4(dK))\right), \tag{B.3}
\end{aligned}$$

where the first inequality follows from (B.2), the second inequality follows from the definition of variance threshold $\sigma(i)$ and dimension $d' = d/L^2$, and the last inequality holds due to $\sum_i \sqrt{x_i} \geq \sqrt{\sum_i x_i}$. In addition, for the group \mathcal{K}_0 , we have

$$\sum_{k \in \mathcal{K}_0} \sigma_k^2 \leq \sum_{k \in \mathcal{K}_0} 1/K \leq 1, \tag{B.4}$$

where the first inequality follows from the definition of group \mathcal{K}_0 and the second inequality follows from $|\mathcal{K}_0| \leq K$. Therefore, we have

$$\begin{aligned}
&\text{Regret}(K) \\
&\geq \Omega\left(d/L^2 \cdot \sqrt{\sum_{i=1}^{L-1} \sum_{k \in \mathcal{K}_i} \sigma_k^2} / \log^4(dK) - 2\sqrt{3L}d^2/(L^4 \log^4(dK))\right) \\
&\geq \Omega\left(d/L^2 \cdot \sqrt{\sum_{i=1}^{L-1} \sum_{k \in \mathcal{K}_i} \sigma_k^2} - 1/\log^4(dK) - 2\sqrt{3L}d^2/(L^4 \log^4(dK))\right) \\
&\geq \Omega\left(d \cdot \sqrt{\sum_{i=1}^{L-1} \sum_{k \in \mathcal{K}_i} \sigma_k^2} / \log^6(dK)\right),
\end{aligned}$$

where the first inequality follows from (B.3), the second inequality follows from (B.4), and the last inequality follows from the fact that $\sum_{k=1}^K \sigma_k^2 \geq \Omega(d^2)$. Thus, we complete the proof of Theorem 5.2. \square

C PROOF OF THEOREM 5.4

In this subsection, we provide the proof of Theorem 5.4. We begin by describing a simple algorithm:

1. The learner maintains an explored action set \mathcal{A} , which is initialized as empty.
2. For each decision set \mathcal{D}_k in round k , if there exists an action \mathbf{x}_k not in the spanning space of the explored action set \mathcal{A} , the learner:
 - Selects an action \mathbf{x}_k and receives reward r_k ;
 - Updates the explored set: $\mathcal{A} = \mathcal{A} \cup \{(\mathbf{x}_k, r_k)\}$.
3. Otherwise, when all actions lie in the spanning space of \mathcal{A} , the learner:
 - Estimates the reward for each action through linear combinations of $(\mathbf{x}, r) \in \mathcal{A}$;
 - Selects the action with maximum estimated reward.

It is worth noting that this algorithm assumes the received rewards r_k have no noise to provide accurate estimates in step 3. While this assumption does not hold in general, when an adversary can choose the variance σ_k based on the decision set \mathcal{D}_k , they can cooperate with the learner by setting:

- $\sigma_k = 0$ when step 2 is triggered (exploration);
- $\sigma_k = 1$ when step 3 is triggered (exploitation).

For a d -dimensional linear bandit problem, the explored action set satisfies $|\mathcal{A}| \leq d$. This implies the learner performs at most d exploration steps with zero variance, while all remaining steps have variance one. Under this construction, the regret in the first K rounds is upper bounded by:

$$\text{Regret}_{\text{Alg}}(K) \leq d,$$

where the total variance $\sum_{k=1}^K \sigma_k^2 = K - d \geq K/2$ (since $K \geq 2d$). Thus, through this cooperation between the adversary and learner, the $\tilde{\Omega}(d\sqrt{\sum_{k=1}^K \sigma_k^2})$ lower bound is broken, completing the proof of Theorem 5.4.

810 **D PROOF OF KEY LEMMAS**811 **D.1 PROOF OF LEMMA 4.3**

813 In this subsection, we provide the proof of Lemma 4.3. When the variance threshold $\sigma = 1$, our
 814 construction reduces to the standard lower bound instances for linear contextual bandits (Zhou et al.,
 815 2021). Specifically, when the number of rounds K satisfying $K \geq 1.5 \cdot d^2$, Zhou et al. (2021)
 816 provided the following variance-independent lower bound for these hard instances:

817 **Lemma D.1** (Lemma C.8, Zhou et al. 2021). For any bandit algorithm Alg , if the weight vector
 818 $\mu \in \{-\Delta, \Delta\}^d$ is drawn uniformly at random from $\{-\Delta, \Delta\}^d$, then the expected regret over K
 819 rounds is lower bounded by:

$$820 \quad \mathbb{E}_\mu[\text{Regret}(K)] \geq \frac{d\sqrt{K}}{8\sqrt{6}}.$$

823 With the help of Lemma D.1, we start the proof of Lemma 4.3.

825 *Proof of Lemma 4.3.* For any algorithm Alg for linear contextual bandit with fixed variance thresh-
 826 old σ , we construct an auxiliary algorithm Alg1 to solve the standard linear contextual bandit prob-
 827 lem:

- 828 • At the beginning of each round $k \in K$, Alg1 observes the decision set \mathcal{D}_k and sends it to
 829 Alg ;
- 830 • Alg selects action $a_k \in \mathcal{D}_k$ based on the historical observations and delivers it to Alg1 ;
- 831 • Alg1 performs the action a_k , receives the reward r_k and sends the normalized reward $\sigma \cdot r_k$
 832 to Alg .

834 Now, we consider the performance of auxiliary algorithm Alg1 for the standard linear contextual
 835 bandit problem. It is worth noticing that the reward/noise in bandit instances for algorithm Alg1 and
 836 algorithm Alg only differ by a scalar factor σ , therefore for each instance, we have

$$837 \quad \mathbb{E}[\text{Regret}_{\text{Alg}}(K)] = \sigma \cdot \mathbb{E}[\text{Regret}_{\text{Alg1}}(K)]. \quad (\text{D.1})$$

839 If we randomly select a weight parameter vector $\mu \in \{-\Delta, \Delta\}^d$, then according to Lemma D.1, the
 840 regret for Alg is lower bounded by

$$841 \quad \mathbb{E}_\mu[\text{Regret}_{\text{Alg}}(K)] = \sigma \cdot \mathbb{E}_\mu[\text{Regret}_{\text{Alg1}}(K)] \geq \sigma \cdot \frac{d\sqrt{K}}{8\sqrt{6}} = \frac{d\sqrt{K}\sigma^2}{8\sqrt{6}},$$

844 where the equation holds due to (D.1) and the inequality holds due to Lemma D.1. Thus, we com-
 845 plete the proof of Lemma 4.3. \square

846 **D.2 PROOF OF LEMMA B.1**

848 In this subsection, we provide the proof of Lemma B.1. We begin by recalling the OFUL algorithm
 849 in Abbasi-Yadkori et al. (2011) and its corresponding upper bound for the regret:

850 **Lemma D.2** (Theorem 3 in Abbasi-Yadkori et al. 2011). For any linear contextual bandit problem,
 851 with probability at least $1 - \delta$, the regret for OFUL algorithm in the first K rounds is upper bounded
 852 by $\text{Regret}(K) \leq \tilde{O}(d\sqrt{K \log(dK/\delta)})$.

853 It is worth noting that the reward/noise in the instance construction from Lemma 4.3 only differs by
 854 a scalar factor σ from the standard bandit. Therefore, as discussed in Section D.1, the regret in these
 855 two cases also only differs by a scalar factor σ . This leads to the following corollary:

856 **Corollary D.3.** For the instance construction from Lemma 4.3, there exists a constant C such that
 857 with probability at least $1 - \delta$, the regret for OFUL algorithm in the first K rounds is upper bounded
 858 by $\text{Regret}(K) \leq Cd\sqrt{K\sigma^2 \log(dK/\delta)}$.

859 With the help of Corollary D.3, we can begin the proof of Lemma B.1.

861 *Proof of Lemma B.1.* For any algorithm Alg , we construct an auxiliary algorithm Alg1 as follows:

- 863 • At the beginning of each round $k \in [K]$, Alg1 observes the decision set \mathcal{D}_k and sends it to
 864 Alg ;

864 • Alg selects action $a_k \in \mathcal{D}_k$ based on the historical observations and delivers it to Alg1;
 865 • Alg1 performs the action a_k and receives the reward r_k ;
 866 • Alg1 calculates the pseudo regret as:

868
$$\text{Regret}'(k) = \sum_{i=1}^k \frac{1}{3} + \frac{d}{\sqrt{96K}} - r_k.$$

872 If the pseudo regret is larger than $d\sqrt{K\sigma^2}/(8\sqrt{6}) + \sigma\sqrt{2K\log(2K/\delta)}$, Alg1 removes all
 873 previous information and performs the OFUL algorithm in all future rounds.

874 Based on the construction of the instances, whatever the weight vector μ is, the optimal action
 875 is to select an action in the same direction as the weight vector, obtaining an expected reward of
 876 $1/3 + d/\sqrt{96K}$. Under this scenario, with probability at least $1 - \delta$, for any round $k \in [K]$, the
 877 difference between pseudo regret $\text{Regret}'(k)$ and true regret $\text{Regret}(k)$ can be upper bounded by
 878

879
$$|\text{Regret}(k) - \text{Regret}'(k)| = \left| \sum_{i=1}^k \epsilon_i \right| \leq \sigma\sqrt{2K\log(2K/\delta)}, \quad (\text{D.2})$$

880 where the inequality holds due to Lemma E.1 with the fact that the noise satisfies
 881 $\mathbb{E}[\epsilon_k | a_{1:k}, r_{1:k-1}] = 0$ and $|\epsilon_k| \leq \sigma$. Thus, according to the criterion of auxiliary algorithm
 882 Alg1, with probability at least $1 - \delta$, the regret of Alg1 before transitioning to OFUL is up to
 883 $d\sqrt{K\sigma^2}/(8\sqrt{6}) + 2\sigma\sqrt{2K\log(2K/\delta)}$. On the other hand, for the stage after transitioning to
 884 OFUL, Corollary D.3 suggests that with probability at least $1 - \delta$, the regret is no more than
 885 $Cd\sqrt{K\sigma^2\log(dK/\delta)}$. Therefore, with a selection of $\delta = 1/K$, we have
 886

887
$$\mathbb{P}[\text{Regret}_{\text{Alg}_1}(K) \geq Cd\sqrt{K\sigma^2\log(dK^2)} + d\sqrt{K\sigma^2}/(8\sqrt{6}) + 2\sigma\sqrt{2K\log(2K^2)}] \leq 2/K. \quad (\text{D.3})$$

888 For simplicity, let $R = Cd\sqrt{K\sigma^2\log(dK^2)} + d\sqrt{K\sigma^2}/(8\sqrt{6}) + 2\sigma\sqrt{2K\log(2K^2)}$ and we have

889
$$\begin{aligned} & \mathbb{E}_{\mu}[\text{Regret}_{\text{Alg}_1}(K)] \\ & \leq \mathbb{P}[\text{Regret}_{\text{Alg}_1}(K) \geq R] \cdot K\sigma + \mathbb{P}[\text{Regret}_{\text{Alg}_1}(K) \geq d\sqrt{K\sigma^2}/(16\sqrt{6})] \cdot R \\ & \quad + \mathbb{P}[\text{Regret}_{\text{Alg}_1}(K) \geq 0] \cdot d\sqrt{K\sigma^2}/(16\sqrt{6}) \\ & \leq 2\sigma + \mathbb{P}[\text{Regret}_{\text{Alg}_1}(K) \geq d\sqrt{K\sigma^2}/(16\sqrt{6})] \cdot \tilde{O}(d\sqrt{K\sigma^2\log(dK)}) + d\sqrt{K\sigma^2}/(16\sqrt{6}), \end{aligned}$$

890 where the first inequality holds due to $\mathbb{E}[X] \leq \mathbb{P}(X \geq x_1) \cdot R + \mathbb{P}(X \geq x_2) \cdot x_1 + \mathbb{P}(X \geq 0) \cdot x_2$
 891 for $0 \leq X \leq R$ and $x_1 > x_2 > 0$, and the second inequality holds due to (D.3). Combining this
 892 result with the lower bound of expected regret in Lemma 4.1, we have
 893

894
$$\begin{aligned} d\sqrt{K\sigma^2}/(8\sqrt{6}) & \geq 2\sigma + \mathbb{P}[\text{Regret}_{\text{Alg}_1}(K) \geq d\sqrt{K\sigma^2}/(16\sqrt{6})] \cdot \tilde{O}(d\sqrt{K\sigma^2\log(dK)}) \\ & \quad + d\sqrt{K\sigma^2}/(16\sqrt{6}), \end{aligned}$$

895 which implies that

896
$$\mathbb{P}[\text{Regret}_{\text{Alg}_1}(K) \geq d\sqrt{K\sigma^2}/(16\sqrt{6})] \geq \Omega(1/\log(dK)). \quad (\text{D.4})$$

897 In addition, according to the criterion of auxiliary algorithm Alg1 with (D.2), with probability at
 898 least $1 - \delta = 1 - 1/K$, Alg1 will not switch to the OFUL algorithm until the cumulative regret is
 899 larger than $d\sqrt{K\sigma^2}/(8\sqrt{6})$, which implies that

900
$$\begin{aligned} \mathbb{P}[\text{Regret}_{\text{Alg}}(K) \geq d\sqrt{K\sigma^2}/(16\sqrt{6})] & \geq \mathbb{P}[\text{Regret}_{\text{Alg}_1}(K) \geq d\sqrt{K\sigma^2}/(16\sqrt{6})] - 1/K \\ & = \Omega(1/\log(dK)). \end{aligned}$$

901 Thus, we complete the proof of Lemma B.1. \square

918 D.3 PROOF OF LEMMA B.2
919

920 In this subsection, we provide the proof of Lemma B.2.

921 *Proof of Lemma B.2.* Since the learner visits the instances in a cyclic manner, over all K rounds,
922 each instance \mathcal{M}_i ($i = 1, 2, \dots, L$) is visited $K' = K/L$ times. As actions from different instances
923 only interact with their corresponding parameters, according to Lemma B.1, for each instance \mathcal{M}_i ,
924 with probability at least $\Omega(1/\log(dK))$, the regret is lower bounded by

925
$$\text{Regret}(K', \mathcal{M}_i) \geq \frac{d' \sqrt{K' \sigma^2}}{16\sqrt{6}} = \frac{d \sqrt{K \sigma^2}}{16\sqrt{6} \cdot L^{1.5}}.$$

926
927

928 Note that the weight vectors for each instance are independently sampled, hence the probability that
929 at least one instance has regret no less than $d\sqrt{K\sigma^2}/16\sqrt{6} \cdot L^{1.5}$ is at least
930

931
$$1 - \left(1 - \Omega(1/\log(dK))\right)^L \geq 1 - 1/K^3.$$

932

933 Under this condition, the total regret can be lower bounded as:
934

935
$$\text{Regret}(K) = \sum_{i=1}^L \text{Regret}(K', \mathcal{M}_i) \geq \frac{d \sqrt{K \sigma^2}}{16\sqrt{6} \cdot L^{0.5}}. \quad (\text{D.5})$$

936
937

938 Thus, we obtain a high-probability lower bound and complete the proof of Lemma B.2. \square
939

940 E AUXILIARY LEMMAS

941 **Lemma E.1** (Azuma–Hoeffding inequality, Cesa-Bianchi & Lugosi 2006). Let $\{\eta_k\}_{k=1}^K$ be a mar-
942 tingale difference sequence with respect to a filtration $\{\mathcal{G}_k\}$ satisfying $|\eta_k| \leq R$ for some constant
943 R , η_k is \mathcal{G}_{k+1} -measurable, $\mathbb{E}[\eta_k | \mathcal{G}_k] = 0$. Then for any $0 < \delta < 1$, with high probability at least
944 $1 - \delta$, we have

945
$$\sum_{k=1}^K \eta_k \leq R \sqrt{2K \log(1/\delta)}.$$

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971