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Figure 1: 1024 × 1024 image samples from TLCM, distilled from SDXL-base-1.0 (Podell et al.)
based on LoRA (Hu et al.). From top to bottom, 2, 3, 4 and 8 sampling steps are adopted, respec-
tively. Apart from satisfactory visual quality, TLCM can also yield improved metrics compared to
strong baselines.

ABSTRACT

Distilling latent diffusion models (LDMs) into ones that are fast to sample from
is attracting growing research interest. However, the majority of existing methods
face two critical challenges: (i) They need to perform long-time learning with a
huge volume of real data. (ii) They routinely lead to quality degradation for gener-
ation, especially in text-image alignment. This paper proposes the novel Training-
efficient Latent Consistency Model (TLCM) to overcome these challenges. Our
method first accelerates LDMs via data-free multistep latent consistency distilla-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tion (MLCD), then data-free latent consistency distillation is proposed to guaran-
tee the inter-segment consistency in MLCD at a low cost. Furthermore, we intro-
duce bags of techniques e.g., distribution matching, adversarial learning, and pref-
erence learning, to enhance TLCM’s performance at few-step inference without
any real data, TLCM demonstrates a high level of flexibility by enabaling adjust-
ment of sampling steps within the range of 2 to 8 while still producing competitive
outputs compared to full-step approaches. As the name suggests, TLCM excels in
training efficiency in terms of both computational resources and data utilization.
Notably, TLCM operates without reliance on a training dataset but instead em-
ploys synthetic data for the teacher itself during distillation. With just 70 training
hours on an A100 GPU, a 3-step TLCM distilled from SDXL achieves an impres-
sive CLIP Score of 33.68 and an Aesthetic Score of 5.97 on the MSCOCO-2017
5K benchmark, surpassing various accelerated models and even outperforming the
teacher model in human preference metrics. We also demonstrate the versatility
of TLCMs in applications including image style transfer, controllable generation,
and Chinese-to-image generation.

1 INTRODUCTION

Diffusion models (DMs) have made great advancements in the field of generative modeling, becom-
ing the go-to approach for image, video, and audio generation (Ho et al., 2020; Kong et al.; Saharia
et al., 2022). Latent diffusion models (LDMs) further enhance DMs by operating in the latent im-
age space, pushing the limit of high-resolution image and video synthesis (Ma et al., 2024; Peebles
& Xie, 2023; Podell et al.; Rombach et al., 2022). Despite the high-quality and realistic samples,
LDMs suffer from frustratingly slow inference–generating a single sample requires tens to hundreds
of evaluations of the model, giving rise to a high cost and bad user experience.

There is growing interest in distilling large-scale LDMs into more efficient ones. Concretely, pro-
gressive distillation (Lin et al., 2024; Meng et al., 2023; Salimans & Ho, 2023) reduces the sampling
steps by half in each turn but finally hinges on a set of models for various sampling steps. InstaFlow
Liu et al., UFO-Gen Xu et al. (2024b), DMD (Yin et al., 2024b), and ADD Sauer et al. (2023) target
one-step generation, yet losing or weakening the ability to benefit from more (e.g., > 4) sampling
steps. Latent consistency models (LCMs) Luo et al. (2023) apply consistency distillation (Song
et al., 2023) on LDMs’ reverse-time ordinary differential equation (ODE) trajectories to conjoin
one- and multi-step generation, but the image quality degrades substantially, especially in 2-4 steps.
HyperSD (Ren et al., 2024) applies consistency trajectory distillation (Kim et al., 2023) in segments
of the ODE trajectory, yet suffers from a substantial performance drop in text-image alignment. Be-
sides, all these methods rely on a huge volume of high-quality data and long training time, hindering
their applicability to downstream scenarios with rare compute and data.

Before presenting our proposal, it’s essential to note that one-step generation may not always be the
optimal choice in practical applications—empirically, sampling with 2-4 steps introduces less than
40% additional computational time compared to one step but can notably enhance the upper limit of
sampling quality. Moreover, some practical applications typically have a low tolerance for quality
degradation and hence can accept a moderate number of sampling steps. Thereby, this paper aims
to develop a unified model with 2-8 sampling steps that can deliver competitive quality comparable
to full-step counterparts. We propose Training-efficient Latent Consistency Models (TLCMs) to
achieve this at the expense of minimal computation and training data. Technically, we introduce
data-free multistep latent consistency distillation (MLCD) for fast training at a low cost. After
MLCD, we propose a data-free latent consistency distillation (LCD) term for global consistency. To
enhance LCD, we enforce the consistency of TLCM at sparse predefined timesteps instead of the
entire timestep range, which reduces the learning difficulty of LCD and accelerate convergence. A
multistep solver is further explored to unleash the potential of teacher in LCD. Besides, we train a
latent LPIPS model to constrain the perceptual consistency of the distilled model in latent space. To
optimize TLCM’s performance at few-step inference, we explore preference learning, distribution
matching, and adversarial learning techniques for regularization in data-free manner.

We have performed comprehensive empirical studies to evaluate TLCMs. We first assess the image
quality on the MSCOCO-2017 5K benchmark. We observe the TLCM distilled from SDXL (Podell
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et al.) gets an Aesthetic Score (AS) (Schuhmann) of 5.97, and a CLIP Score (CS) (Hessel et al.,
2021) of 33.68 with only 3 steps, substantially surpassing 4-step LCM, 8-step SDXL-Lightning (Lin
et al., 2024), and 8-step HyperSD, comparable to 25-step DDIM. Additionally, TLCM is obtained
by only 70 A100 training hours without any real data, significantly reducing training costs. We
also demonstrate the versatility of TLCMs in applications including image stylization, controllable
generation, and Chinese-to-image generation.

We summarize our contributions as follows:

• We propose TLCMs to accelerate LDMs to generate high-quality outputs within 2−8 steps,
at the expense of minimal training compute and data.

• We establish a data-free multistep latent consistency distillation and improved latent consis-
tency distillation pipeline for fast LDM acceleration. Besides, bags of data-free techniques
are incorporated to boost rare-step quality.

• TLCM achieves a state-of-the-art CS (33.68) and AS (5.97) in 3 steps, surpassing compet-
ing baselines, such as 4-step LCM, 8-step SDXL-Lightning, and 8-step HyperSD.

• TLCMs’ versatility extends to scenarios such as image stylization, controllable generation,
and Chinese-to-image generation, paving the path for extensive practical applications.

2 RELATED WORKS

Diffusion models. (DMs) (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019; 2020;
Song et al., b) progressively add Gaussian noise to perturb the data, then are trained to denoise
noise-corrupted data. In the inference stage, DMs sample from a Gaussian distribution and per-
form sequential denoising steps to reconstruct the data. As a type of generative model, they have
demonstrated impressive capabilities in generating realistic and high-quality outputs in text-to-image
generation (Podell et al.; Rombach et al., 2022; Saharia et al., 2022), video generation (Peebles &
Xie, 2023). To enhance the condition awareness in conditional DMs, the classifier-free guidance
(CFG) (Ho & Salimans, 2021) technique is proposed to trade off diversity and fidelity.

Diffusion acceleration. The primary challenges that hinder the practical adoption of DMs is the
slow inference involving tens to hundreds of evaluations of the model.

Early works like Progressive Distillation (PD) (Salimans & Ho, 2023) and Classifier-aware Dis-
tillation (CAD) (Meng et al., 2023) explore the approaches of progressive knowledge distillation
to compress sampling steps but lead to blurry samples within four sampling steps. Consistency
models (CMs) (Song et al., 2023), consistency trajectory models (CTMs) (Kim et al., 2023) and
Diff-Instruct (Luo et al., 2024) distill a pre-trained DM into a single-step generator, but they do not
verify the effectiveness on large-scale text-to-image generation.

Recently, the distillation of large-scale text-to-image DMs has gained significant attention.
LCM (Luo et al., 2023) extends CM to text-to-image generation with few-step inference but
synthesizes blurry images in four steps. InstaFlow (Liu et al.), UFOGen (Xu et al., 2024b),
BOOT (Gu et al., 2023), SwiftBrush (Nguyen & Tran, 2024), DMD (Yin et al., 2024a), and Dif-
fusion2GAN Kang et al. (2024) propose one-step sampling for text-to-image generation but are
unable to extend their sampler to multiple steps for better image quality.

More recently, SDXL-Turbo (Sauer et al., 2023), SDXL-Lighting (Lin et al., 2024), and Hy-
perSD (Ren et al., 2024) are proposed to further enhance the image quality with few-step sam-
pling but their training depends on huge high-quality text-image pairs and expensive online training.
Our method not only enables the generation of high-quality samples using a 2 8 steps sampler but
also enhances model performance with more inference cost. Furthermore, our training strategy is
resource-efficient and does not require any images.

Human preference for text-to-image model. ImageReward (IR) (Xu et al., 2024a) and Aesthetic
Score (Schuhmann) are proposed to evaluate the human preference of text-to-image model. Multi-
dimensional Preference Score (MPS) (Zhang et al., 2024) improves metrics by learning diverse
preferences. To optimize TLCM towards human preference, we incorporate effective reward learn-
ing into TLCM to directly guide model tuning.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PRELIMINARY

3.1 DIFFUSION MODELS

Diffusion models (DMs) (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., b) are specified by
a predefined forward process that progressively distorts the clean data x0 into a pure Gaussian noise
with a Gaussian transition kernel. It is shown that such a process can be described by the following
stochastic differential equation (SDE) (Karras et al., 2022; Song et al., b):

dxt = f(x, t)xtdt+ g(t)dwt, (1)

where t ∈ [0, T ], wt is the standard Brownian motion, and f(x, t) and g(t) are the drift and diffusion
coefficients respectively. Let pt(xt) denote the corresponding marginal distribution of xt.

It has been proven that this forward SDE possesses the identical marginal distribution as the follow-
ing probability flow (PF) ordinary differential equation (ODE) (Song et al., b):

dxt =

[
f(x, t)xt −

1

2
g2(t)∇xt log pt(xt)

]
dt. (2)

As long as we can learn a neural model ϵθ(xt, t) for estimating the ground-truth score
∇xt log pt(xt), we can then draw samples that roughly follow the same distribution as the clean
data by solving the diffusion ODE. In practice, the learning of ϵθ(xt, t) usually boils down to score
matching (Song et al., b).

The ODE formulation is appreciated due to its potential for accelerating sampling and has sparked
a range of works on specialized solvers for diffusion ODE (Lu et al., 2022a;b; Song et al., a). Let Ψ
denote an ODE solver, e.g., the deterministic diffusion implicit model (DDIM) solver (Song et al.,
a). The sampling iterates by:

xtn−1
= Ψ(ϵθ(xtn , tn), tn, tn−1), (3)

where {tn}Nn=0 denotes a set of pre-defined discretization timesteps and tN = T, t0 = 0.

3.2 CONSISTENCY MODELS

Consistency model (CM) (Song & Dhariwal; Song et al., 2023) aims at generating images from
Gaussian noise within one sampling step. Its core idea is to learn a model fθ(xt, t) that directly
maps any point xt on the trajectory of the diffusion ODE to its endpoint. To achieve this, CMs first
parameterizes fθ(xt, t) as:

fθ(xt, t) = cskip(t)xt + cout(t)Fθ(xt, t), (4)

where cskip(t), cout(t) is pre-defined to guarantee the boundary condition fθ(x0, 0) = x0, and
Fθ(xt, t) is the neural network (NN) to train.

CM can be learned from a pre-trained DM ϵθ0 via consistency distillation (CD) by minimizing (Song
et al., 2023):

LCD = d
(
fθ(xtm , tm), fθ−(xtn , tn)

)
, (5)

where tm ∼ U [0, T ], xtm ∼ ptm(xtm), tn ∼ U [0, tm), xtn = Ψ(ϵθ0(xtm , tm), tm, tn), d(., .) is
some distance function, and θ− is the exponential moving average (EMA) of θ. Typically, xtn is
obtained by single-step solver (SS) Ψ.

Multistep consistency models (MCMs) (Heek et al., 2024) generalize CMs by splitting the entire
range [0, T ] into multiple segments and performing consistency distillation individually within each
segment. Formally, MCMs first define a set of milestones {tsstep}Ms=0 (M denotes the number of
segments), and minimize the following multistep consistency distillation (MCD) loss:

LMCD = d
(
DDIM(xtm , fθ(xtm , tm), tm, tsstep),DDIM(xtn , fθ−(xtn , tn), tn, t

s
step)

)
, (6)

where s is uniformly sampled from {0, . . . ,M}, tm ∼ U [tsstep, ts+1
step], tn = tm − 1, and

DDIM(xtm , fθ(xtm , tm), tm, tsstep) means one-step DDIM transformation from state xtm at
timestep tm to timestep tsstep based on the estimated clean image fθ(xtm , tm) (Song et al., a).
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Figure 2: The overview for training TLCM. Data-free multistep latent consistency distillation is first
used to accelerate LDM, obtaining initial TLCM (The left part of the overview). Then, data-free la-
tent consistency distillation is proposed to enforce global consistency of TLCM. MPS optimization,
DM, and adversarial learning are exploited to promote TLCM’s performance in data-free manner
(The right part of the overview). Note that we omit Latent LPIPS model for brevity.

4 METHODOLOGY

Our target is to accelerate LDM into few-step model, with performance competitive to long-iteration
teacher. The learning procedure should be executed with cheap cost in data-free manner. In this
section, we propose a novel and unified Training-efficient Latent Consistency Model (TLCM) with
2-8 step’s inference. We begin by introducing data-free multistep latent consistency distillation.
Subsequently, we discuss data-free latent consistency distillation to enforce global consistency of
TLCM. Lastly, we explore various techniques to promote TLCM’s performance in data-free manner.
The overview of our training pipeline is presented in Figure 2.

4.1 DATA-FREE MULTISTEP LATENT CONSISTENCY DISTILLATION

We consider distilling representative pre-trained LDMs, e.g., SDXL (Podell et al.). Previous
LCM Luo et al. (2023) has distilled SDXL into few-step model, but it results in the big perfor-
mance drop, since it is hard to learn the mapping between an arbitrary state of the entire ODE
trajectory to the endpoint. Drawing inspiration from MCM, we split the entire range [0, T ] into M
segments, and then only enforce consistency at each separate segment. To speed up convergence,
we change the skipping step (skip) =1 in MCM into 20. The EMA module is removed to save mem-
ory consumption. Let zt denote the states at timestep t in the latent space. We abuse ϵθ0(zt, c, t)
and fθ(zt, c, t) to denote the pre-trained LDM and target model respectively, where c refers to the
generation condition. We formulate the multistep latent consistency distillation (MLCD) loss as:

Lmlcd = ∥gθ(ztm , tm, tsstep, c)− nograd(gθ(ztn , tn, t
s
step, c)∥22, (7)

where gθ(ztm , tm, tsstep, c) = DDIM
(
ztm , fθ(ztm , c, tm), tm, tsstep

)
represents initial TLCM. Given

CFG (Ho & Salimans, 2021) is critical for high-quality text-to-image generation, we integrate it to
MLCD by:

ztn = Ψ(ϵ̂θ0(ztm , c, w, tm), tm, tn), (8)
where ϵ̂θ0(zt, c, w, t) := ϵθ0(zt, ∅, t) + w(ϵθ0(zt, c, t)− ϵθ0(zt, ∅, t)) with w as the guidance scale.

However, this training procedure depends on huge high-quality data, which limits its applicability in
the scenarios where such data is inaccessible. To deal with this problem, we propose to draw samples
from the teacher model as training data. Specifically, instead of obtaining ztm via adding noise to z0
as in MCM and HyperSD, we initialize zT as pure Gaussian noise ϵ and perform denoising with off-
the-shelf ODE solvers based on the teacher model ϵθ0 to obtain ztm . Intuitively, with this strategy, we
leverage and distill only the denoising ODE trajectory of the teacher without concerning the forward
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one. The latent state ztm can be acquired from ϵ by a single denoising step, but we empirically
observe that this naive strategy is unable to accelerate LDM with desirable performance, due to
poor quality of ztm . Theoretically, ztm contains less noise for smaller tm. Therefore, we design
a multistep denoising strategy (MDS) to predict ztm , which executes more sampling iterations for
smaller tm to get cleaner ztm . At this stage, DDIM solver is used to estimate ODE trajectory and
generate samples from pure Gaussian noise. We present the details in Algorithm 1 in Appendix A.3.

4.2 IMPROVED DATA-FREE LATENT CONSISTENCY DISTILLATION

After a round of distillation on M segments, TLCM can naturally produce high-quality samples
through M -step sampling. However, it is empirically observed that the performance decreases when
using fewer steps, which is probably because of the larger discretization error caused by long sam-
pling step sizes. To alleviate this, we advocate explicitly teaching TLCM to capture the mapping
between the states that cross segments. Upon this goal, we propose data-free latent consistency
distillation to promote the model to be consistent across the predefined timesteps.

We do not compile TLCM to keep consistency across the entire timestep range [0, T ] since it is hard
to learn the mapping that transforms any point along trajectory into real data. Instead, we improve
raw LCD through only keeping consistency at the predefined M timesteps, which makes LCD much
easier to learn the mapping. Naturally, the skipping step skip is changed to T/M . The big skip
offers an additional advantage which further accelerates model convergence. Benefiting from the
pre-trained TLCM, we can fast yield clean data ẑ0 via few-step (q-step) sampler, such as 4 steps,
eliminating the requirement of real data. The latent state ẑtm is obtained by adding noise to ẑ0 in
the forward diffusion process, where tm ∈ {tsstep}Ms=1. We formulate this procedure as

ẑtm = FD(TLCM(ϵ, T, c), tm), ϵ ∈ N (0, I), (9)

where FD and TLCM denote forward diffusion and multistep iterations by TLCM. Then, an ODE
solver is used to estimate latent state ẑtn from ẑtm . Raw LCD adopts one-step solver to predict
ẑtn . We argue that it restricts the capability of the teacher due to discretization error, especially
for big skip. As a result, we explore multistep solver (MS) to unleash the potential of the teacher.
Concretely, the time interval T/M is uniformly divided into p parts, and then p-step DDIM with
CFG is used to calculate ẑtn . The improved data-free LCD loss in stage 2 is:

Lilcd2 = ∥
(
fθ(ẑtm , c, tm))− nograd

(
fθ(ẑtn , c, tn))

)
∥22. (10)

We present the details in Algorithm 2 in appendix A.3. Surprisingly, our improved data-free LCD
only costs 2K-iteration training to achieve convergence.

4.3 INCORPORATING BAG OF TECHNIQUES INTO TLCM IN DATA-FREE MANNER

Latent LPIPS. Typical LCD directly adopts mean square error loss (Lmse) to enforce consistency in
the latent space, but it can not capture perceptual features. LPIPS (Zhang et al., 2018) can extract the
features matching human perceptual responses. Meanwhile, it has been widely used as an effective
regression loss across many image translation tasks. Thereby, we aim to integrate LPIPS into our
distillation pipeline to enhance TLCM’s performance. However, LPIPS is built in the pixel space,
and hence we have to reconstruct latent codes to pixel space to use LPIPS. To reduce training time,
we train a latent LPIPS (L-LPIPS) model, which computes perceptual features in latent space. Latent
LPIPS model adopts VGG network by changing the input to 4 channels and removing the 3 max-
pooling layers, as the latent space in LDM is already 8× downsampled. The model is trained from
scratch on BAPPS dataset (Zhang et al., 2018). Base on L-LPIPS, the outputs of the model gθ
and fθ are first fed into L-LPIPS model, whose outputs are used to calculate consistency loss via
Equation (7) or Equation (10).

MPS optimization. Since TLCMs transform the points on the trajectory to clean samples x̂0, we
can naturally directly maximize the feedback of the scorer on the sample s(x̂0, c). Considering
multi-dimensional preference score (Zhang et al., 2024) can measure diverse human preferences,
we leverage it to improve TLCM towards human preference. Formally, we optimize the following
MPS loss (Lmps):

Lmps = max(s0 − s(x̂0, cpos), 0) + max(s(x̂0, cneg), 0), (11)
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where cpos represents the text condition corresponding to the images while cpos denotes the irrele-
vant texts. Lmps maximizes s(x̂0, cpos) with margin s0 and simultaneously minimizes s(x̂0, cneg)
with margin 0. The gradients are directly back-propagated from the scorer to model parameters θ
for optimization. We do not use ImageReward or AS to optimize TLCM, because we find IR tends
to cause overexposure and AS results in oversaturation for generated images.

Distribution matching. Distribution matching (Yin et al., 2024a) is proposed to transform LDM to
one-step model. We effectively integrate it into our distillation method to enhance the performance
of TLCM. To remove the need of real data, we exploit Equation 9 to get noisy latent ẑt. Data-free
DM loss in Ldfdm is applied to optimize TLCM at sparse-step inference as

Ldfdm = −Et,ϵ,ẑt [sreal(FD(fθ(ẑt, t, c), t
′))− sfake(FD(fθ(ẑt, t, c), t

′))∇θfθ(ϵ)], (12)

where sreal and sfake denote the pre-trained score model and fake score model, both initialized by
SDXL. The model sfake is finetuned on synthetic data ẑ0 through noise prediction loss Ldiff in
DM (Yin et al., 2024a).

Adversarial learning. For high-resolution text-to-image generation, considering the high data di-
mensionality and complex data distribution, simply using MSE loss fails to capture data discrepancy
precisely, thus providing imperfect consistency constraints. We propose to use GAN loss to enforce
the distribution consistency. Unlike previous methods needing real data to execute adversarial learn-
ing, we exploit Equation 9 to obtain ẑt. The student model fθ denoises ẑt by one step, obtaining z̃0.
Through discriminator D, the GAN loss Lgan is formulated as

Lgan = log(D(FD(ẑ0, t
′))− log(D(FD(z̃0, t

′))). (13)

5 EXPERIMENTS

5.1 MAIN RESULTS

We quantitatively compare our method with both the DDIM (Song et al., a) baseline and accel-
eration approaches including LCM (Luo et al., 2023), SDXL-Turbo (Sauer et al., 2023), SDXL-
Lightning (Lin et al., 2024), HyperSD (Ren et al., 2024), CS (Hessel et al., 2021) with ViT-g/14
backbone, AS (Schuhmann), IR (Xu et al., 2024a), Fréchet Inception Distance (FID) are exploited
as objective metrics. The evaluation is performed on MSCOCO-2017 5K validation dataset (Lin
et al., 2014). All methods perform zero-shot validation except for HyperSD since it utilizes the
MSCOCO-2017 dataset for training. Only SDXL-Turbo produces 512-pixel images while the oth-
ers generate 1024-pixel images. We only report FID for reference and do not analyze it since FID
on COCO is not reliable to evaluate text-to-image models (Sauer et al., 2023; Ren et al., 2024).

The metrics of various methods are listed in Table 1. We use “-” to represent metric when it is
missing in the corresponding paper. We can observe that our TLCM only costs 70 A 100 training
hours, even without any data. Compared to other methods, TLCM significantly reduces training
resources, which is very valuable for most laboratories and the scenarios when real data are inac-
cessible. our 3-step TLCM presents superior CS, AS, IR than 4-8 step’s LCM (Luo et al., 2023),
SDXL-Lightning (Lin et al., 2024). These results indicate our TLCM’s synthetic images are much
better aligned with texts and the human preference than LCM, SDXL-Lightning. Excitingly, our 3-
step TLCM outperforms 25-step teacher in terms of AS and IR, and achieves comparable CS value,
demonstrating TLCM almost reserves all the information in teacher and even introduces new human
preference knowledge via the proposed distillation method. Our 3-step TLCM shows much higher
CS than 4-8 step’s HyperSD, indicating HyperSD loses much information in the distillation proce-
dure, because it fails to sufficiently ensure consistency constraint. We notice IR value of HyperSD is
higher than our TLCM. This is because IR model has been used to optimize HyperSD. Moreover, we
can see the performance of SDXL-Turbo drop with respect to CS and IR when increasing sampling
steps. This is because it is designed for specific steps. Instead, our TLCM can improve at least one
metric with additional steps. This is valuable since image quality is the primary consideration when
affordable computation resource is determined in real applications.

We present the visual comparisons in Figure 3. Under the same conditions, we observe that the
images generated by TLCM have better image quality and maintain higher semantic consistency on
more challenging prompts, which also leads to greater human preference.
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DDIM
NFE=25

LCM
NFE=4

SDXL-Turbo
NFE=4

SDXL-Lightning
NFE=4

HyperSD
NFE=4

TLCM (Ours)
NFE=4

a high-resolution image or illustration of a diverse group of people facing me

A bat landing on a baseball bat

A coffee mug with an ankh symbol on it

A baseball player standing on the field in uniform.

A black and white cat sitting on top of a chair.

A boy is eating donut holes while sitting at a dinner table

A BOY ON HIS PHONE OUTSIDE NEAR A RED CHAIR.

Figure 3: Visual comparison between our TLCM and the state-of-the-art methods. Zoom in for more
details.
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Table 1: Zero-shot performance comparison on MSCOCO-2017 5K validation datasets with the
state-of-the-art methods. All models adopts SDXL architecture. Time: inference time (second) on
A100. TH: Training hours using A100. TI: Training images.

Method Step Time FID CS AS IR TH TI
DDIM 25 3.29 23.29 33.97 5.87 0.82 0 0
LCM 4 0.71 27.09 32.53 5.85 0.51 - -
SDXL-Turbo 4 0.38 28.52 33.35 5.64 0.83 - -
SDXL-Turbo 8 0.61 29.64 32.81 5.78 0.82 - -
SDXL-Lightning 4 0.71 27.90 32.90 5.63 0.72 - >12M
SDXL-Lightning 8 0.99 27.04 32.74 5.95 0.71 - >12M
HyperSD 4 0.71 34.45 32.64 5.52 1.15 600 >12M
HyperSD 8 0.99 35.94 32.41 5.83 1.14 600 >12M
TLCM 2 0.58 27.50 33.18 5.90 0.97 70 0
TLCM 3 0.65 29.12 33.68 5.97 1.00 70 0
TLCM 4 0.71 30.33 33.52 6.06 1.01 70 0
TLCM 5 0.78 30.90 33.69 6.04 1.01 70 0
TLCM 6 0.85 30.98 33.71 6.07 1.01 70 0
TLCM 8 0.99 32.40 33.53 6.08 1.02 70 0

Table 2: Ablation study of TLCM with respect to latent LPIPS, data-free LCD with single denoising
step (Llcd−s), data-free MLCD with single denoising iteration (Lmlcd−s), data-free MLCD with
MDS (Lmlcd−m), data-free LCD in stage 2 (Llcd2), improved data-free LCD in stage 2 (Lilcd2),
data-free DM (Ldfdm), multi-dimensional human preference (Lmhp), adversarial (Lgan). All the
models adopt 4-step sampler and SDXL backbone.

L-LPIPS Llcd−s Lmlcd−s Lmlcd−m Llcd2 Lilcd2 Lmhp Ldfdm Lgan CS FID AS IR
✓ 31.61 32.90 5.89 0.41

✓ 31.76 27.01 5.98 0.58
✓ ✓ 31.99 27.61 5.92 0.61
✓ ✓ 32.31 30.99 6.01 0.69
✓ ✓ ✓ 32.74 32.05 6.00 0.72
✓ ✓ ✓ 33.06 25.44 5.96 0.77
✓ ✓ ✓ ✓ 33.16 28.40 6.01 0.90
✓ ✓ ✓ ✓ ✓ 33.32 30.58 6.03 0.97
✓ ✓ ✓ ✓ ✓ ✓ 33.52 30.33 6.06 1.01

5.2 ABLATION STUDY

To analyze the key components of our method, we make a thorough ablation study to verify the
effectiveness of the proposed TLCM. Table 2 depicts the performance of TLCM’s variants.

Data-free multistep latent consistency distillation. As shown in Table 2, only using Llcd−s which
computes ztm by single step for LCD achieves CS score of 31.61, AS of 5.89, indicating our data-
free method is able to accelerate LDM with good quality. Changing Llcd−s to single-step denoising
MLCD Lmlcd−s, all metrics are improved. This result verifies that MLCD has a stronger capability
to accelerate LDM than LCD. This is because it is hard for data-free LCD to enforce consistency
across the entire timestep range while data-free MLCD alleviates this by performing LCD within
predefined multiple segments.

Denoising strategy. We can observe from Table 2 that Lmlcd−m substantially enhances the perfor-
mance of Lmlcd−s , verifying that the proposed multistep denoising strategy is critical to perform
data-free MLCD. The probable reason is our multistep MDS yield better initial latent codes, where
the latent codes have better quality with smaller timesteps.
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Table 3: Performance comparison of the teacher’s sampling steps for data-free consistency distilla-
tion in stage 2.

Step CS FID AS IR Step CS FID AS IR
1 32.78 26.19 5.95 0.66 2 32.97 25.73 5.95 0.71
3 33.06 25.44 5.96 0.77 4 33.10 25.18 5.97 0.78

Latent LPIPS. As outlined in Table 2, Lmlcd−s using L-LPIPS introduces gains on all metrics. This
result denotes it is more powerful to enforce consistency in latent LPIPS space than raw latent space
as latent LPIPS can make perceptual consistency.

Data-free latent consistency distillation in stage 2. In 2, Llcd2 represents using mulltistep solver
in LCD to enforce consistency across the entire timestep range. We can see Llcd2 significantly
improves CS values of TLCM trained in stage 1. This is because Llcd2 achieves inter-segment
consistency of TLCM. The performance is further enhanced by substituting Llcd2 with Lilcd2. The
reason lies in that it is easier to make consistency along the sparse predefined timesteps than the
entire timestep range.

MHP optimization. Table 2 shows that adding Lmhp to the losses in line 7 introduces gains in terms
of CS and IR. This result indicates that our MHP optimization method is capable of improving the
text-image alignment and human preference of TLCM.

Data-free DM. We can see in Table 2 using our data-free DM loss Ldfdm leads to the performance
improvements on all metrics. This result demonstrates that our DM in data-free way is compatible
to the proposed distillation method, boosting TLCM’s performance.

Discriminator. We also observe in Table 2 that discriminator loss Lgan improves CS, AS, and IR,
because discriminator facilitate consistency in probability distribution space, which is critical for
low-step regime.

Teacher’s inference steps of data-free latent consistency distillation in stage 2. In Table 3, we
study the effect concerning teacher’s sampling steps of data-free LCD in stage 2. The results shows
as sampling step increases from 1 to 4, the performance is consistently improved. Therefore, it
is crucial to perform multi-step denoising to estimate ẑtn . The reason is that multi-step solvers is
capable of reducing discretization error for big skipping step.

6 CONCLUSION

In this paper, we propose Training-efficient Latent Consistency Model (TLCM), a novel approach for
accelerating text-to-image latent diffusion models using only 70 A100 hours, without requiring any
text-image paired data. TLCM can generate high-quality, delightful images with only 2-8 sampling
steps and achieve better image quality than baseline methods while being compatible with image
style transfer, controllable generation, and Chinese-to-image generation.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We use the prompts from LAION-Aesthetics- 6+ subset of LAION-5B Schuhmann et al. (2022) to
train our model. We train the model with 12000 iterations for data-free MLCD and 2000 iterations
for data-free LCD. After LCD, MPS optimization runs 500 iterations with batch size of 8. Then,
DM and adversarial learning are used to improve TLCM with 1000 iterations with batch size of
4. The whole procedure uses Adamw optimizer and 4 A100. Only MLCD adopts learning rate of
1e-4 and the other stages use learning rate of 1e-5. The discriminator adopts learning rate of 1e-
4 and AdamW optimizer. The initial segment number M is 8 and s0 for MPS is 16. We set the
guidance scale w in CFG as 8.0, the denoising steps p = 3 for teacher to compute ẑtn , and q = 4 for
TLCM to compute ẑ0. As for model configuration, we use SDXL Podell et al. as teacher to estimate
trajectory while student model fθ is also initialized by SDXL. The discriminator is also initialized
by SDXL. We train a unified Lora instead of UNet in all the distillation stages for convenient transfer
to downstream applications.

Source Japanese comics Ink and wash
style

Pixar
dreamworks

Van Gogh’s
paintings

Figure 4: TLCM with image style transfer. The styles are presented at the top, and we apply image
style transfer on the source image with our TLCM. Two-step sampling can produce highly stylized
images with excellent results.

A.2 APPLICATION

A.2.1 ACCELERATION OF IMAGE STYLE TRANSFER

Our TLCM LoRA is compatible with the pipeline of image style transfer (Mou et al., 2024). We
present some examples in Figure 4 with only 2-step sampling.
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Source Canny edge A dog
in the winter

A black dog
in the autumn

A beautiful dog
in the garden

Source Depth map A black bird
in the forest

A brown bird
under the stars

A gray bird
in the room

Figure 5: TLCM with ControlNet. Our TLCM can be incorporated into ControlNet pipeline and
produce satisfactory results with 2 steps sampling.

A.2.2 ACCELERATION OF CONTROLLABLE GENERATION

Our TLCM LoRA is compatible with Controlnet, enabling accelerated controllable generation. We
utilize canny and depth ControlNet based on SDXL-base, together with TLCM LoRA in Figure 5.
The results are sampled in 2 steps. We observe our model achieves superior image quality and
demonstrates compatibility with other models, e.g. ControlNet, while also providing enhanced ac-
celeration capabilities.

薰衣草花海
Lavender field

落日，户外场景
咖啡店

Sunset, outdoor 

setting, café

海盗船被困在
宇宙漩涡星云中

A pirate ship trapped 

in a cosmic vortex 

nebula

宫崎骏风格，夏天池
塘，森林

Miyazaki-esque, 

summer, pond,forest

未来世界,虚幻引擎
Future world, 

Unreal Engine

孤舟蓑笠翁
独钓寒江雪

A lone boat, the fisherman 

in straw hat and raincoat

fishing alone in the cold 

river under the snow

江南水乡
小桥流水

Jiangnan water town

Small bridges and 

flowing streams

红烧狮子头
Red-braised Lion's Head

墙角数枝梅
凌寒独自开

A few plum blossoms 

in the corner of the wall

Blooming alone 

defying the cold

北京，胡同，秋天
Beijing, hutong, 

autumn

Figure 6: TLCM for Chinese-to-image generation. With 3 steps sampling, our TLCM model can
produce images that align with Chinese semantic meaning. The first line presents images in general
Chinese contexts, while the second line showcases images in specific Chinese cultural settings.
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A.2.3 ACCELERATION OF CHINESE-TO-IMAGE GENERATION

Our TLCM can accelerate the generation speed of Chinese-to-image diffusion model (Ma et al.,
2023). We present some examples in Figure 6.

A.3 ALGORITHMS

Algorithm 1: Data-free multistep latent consistency distillation
Input: Gaussian noise ϵ, timestep tm, segment index s, teacher model ϵθ0 , student model gθ,

text condition c, segment number M
Initialize zT with ϵ, calculate denoising steps L = M − s, time interval △T = (T − tm)/L
for i in {0, 1, · · · , L− 1} do

Calculate t = T − i ∗ △T, tm′ = t−△T
Calculate ztm′ = Ψ(ϵ̂θ0(zt, c, w, t), t, tm′)

end
Calculate ztn using Equation (8)
Perform MLCD using Equation (7)

Algorithm 2: Data-free latent consistency distillation in stage 2
Input: Gaussian noise ϵ, timestep tm, teacher model ϵθ0 , student model fθ, text condition c,
segment number M , denoising step of teacher p, denoising step q of student, diffusion
coefficient sequence α1:T , timestep milestones {tsstep}Ms=0

Initialize ẑT with ϵ and timestep t with T
for i in {0, 1, · · · , q − 1} do

Calculate ẑ0 =
ẑt −

√
1− αtfθ(ẑt, t, c)√

αt

Calculate t = T − T/q × (i+ 1), Calculate ẑt =
√
αtẑ0 +

√
1− αtϵ

end
Randomly sample tm from {tsstep}Ms=1, detach ẑ0 and calculate ẑtm by forward diffusion
ẑtm =

√
αtm ẑ0 +

√
1− αtmϵ

for i in {0, 1, · · · , p− 1} do
Calculate t1 = tm − (T/M)/p× i and t2 = tm − (T/M)/p× (i+ 1)
Calculate ẑt2 using Equation (8) based on current state ẑt1

end
Perform LCD using Equation (10)
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