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Figure 1: 1024 x 1024 image samples from TLCM, distilled from SDXL-base-1.0
based on LoRA (Hu et al.). From top to bottom, 2, 3, 4 and 8 sampling steps are adopted, respec-
tively. Apart from satisfactory visual quality, TLCM can also yield improved metrics compared to
strong baselines.

ABSTRACT

Distilling latent diffusion models (LDMs) into ones that are fast to sample from
is attracting growing research interest. However, the majority of existing methods
face two critical challenges: (i) They need to perform long-time learning with a
huge volume of real data. (if) They routinely lead to quality degradation for gener-
ation, especially in text-image alignment. This paper proposes the novel Training-
efficient Latent Consistency Model (TLCM) to overcome these challenges. Our
method first accelerates LDMs via data-free multistep latent consistency distilla-
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tion (MLCD), then data-free latent consistency distillation is proposed to guaran-
tee the inter-segment consistency in MLCD at a low cost. Furthermore, we intro-
duce bags of techniques e.g., distribution matching, adversarial learning, and pref-
erence learning, to enhance TLCM’s performance at few-step inference without
any real data, TLCM demonstrates a high level of flexibility by enabaling adjust-
ment of sampling steps within the range of 2 to 8 while still producing competitive
outputs compared to full-step approaches. As the name suggests, TLCM excels in
training efficiency in terms of both computational resources and data utilization.
Notably, TLCM operates without reliance on a training dataset but instead em-
ploys synthetic data for the teacher itself during distillation. With just 70 training
hours on an A100 GPU, a 3-step TLCM distilled from SDXL achieves an impres-
sive CLIP Score of 33.68 and an Aesthetic Score of 5.97 on the MSCOCO-2017
5K benchmark, surpassing various accelerated models and even outperforming the
teacher model in human preference metrics. We also demonstrate the versatility
of TLCM s in applications including image style transfer, controllable generation,
and Chinese-to-image generation.

1 INTRODUCTION

Diffusion models (DMs) have made great advancements in the field of generative modeling, becom-
ing the go-to approach for image, video, and audio generation (Ho et al., 2020; Kong et al.; Saharia
et al.,[2022). Latent diffusion models (LDMs) further enhance DMs by operating in the latent im-
age space, pushing the limit of high-resolution image and video synthesis (Ma et al.| 2024} Peebles
& Xiel, 20235 Podell et al.; Rombach et al., [2022). Despite the high-quality and realistic samples,
LDMs suffer from frustratingly slow inference—generating a single sample requires tens to hundreds
of evaluations of the model, giving rise to a high cost and bad user experience.

There is growing interest in distilling large-scale LDMs into more efficient ones. Concretely, pro-
gressive distillation (Lin et al.| [2024; Meng et al., 2023} Salimans & Ho| |2023)) reduces the sampling
steps by half in each turn but finally hinges on a set of models for various sampling steps. InstaFlow
Liu et al., UFO-Gen Xu et al.|(2024b), DMD (Yin et al.,|2024b)), and ADD [Sauer et al.|(2023) target
one-step generation, yet losing or weakening the ability to benefit from more (e.g., > 4) sampling
steps. Latent consistency models (LCMs) [Luo et al.| (2023) apply consistency distillation (Song
et al.l |2023) on LDMs’ reverse-time ordinary differential equation (ODE) trajectories to conjoin
one- and multi-step generation, but the image quality degrades substantially, especially in 2-4 steps.
HyperSD (Ren et al.| [2024) applies consistency trajectory distillation (Kim et al.,|2023) in segments
of the ODE trajectory, yet suffers from a substantial performance drop in text-image alignment. Be-
sides, all these methods rely on a huge volume of high-quality data and long training time, hindering
their applicability to downstream scenarios with rare compute and data.

Before presenting our proposal, it’s essential to note that one-step generation may not always be the
optimal choice in practical applications—empirically, sampling with 2-4 steps introduces less than
40% additional computational time compared to one step but can notably enhance the upper limit of
sampling quality. Moreover, some practical applications typically have a low tolerance for quality
degradation and hence can accept a moderate number of sampling steps. Thereby, this paper aims
to develop a unified model with 2-8 sampling steps that can deliver competitive quality comparable
to full-step counterparts. We propose Training-efficient Latent Consistency Models (TLCMs) to
achieve this at the expense of minimal computation and training data. Technically, we introduce
data-free multistep latent consistency distillation (MLCD) for fast training at a low cost. After
MLCD, we propose a data-free latent consistency distillation (LCD) term for global consistency. To
enhance LCD, we enforce the consistency of TLCM at sparse predefined timesteps instead of the
entire timestep range, which reduces the learning difficulty of LCD and accelerate convergence. A
multistep solver is further explored to unleash the potential of teacher in LCD. Besides, we train a
latent LPIPS model to constrain the perceptual consistency of the distilled model in latent space. To
optimize TLCM’s performance at few-step inference, we explore preference learning, distribution
matching, and adversarial learning techniques for regularization in data-free manner.

We have performed comprehensive empirical studies to evaluate TLCMs. We first assess the image
quality on the MSCOCO-2017 5K benchmark. We observe the TLCM distilled from SDXL (Podell
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et al)) gets an Aesthetic Score (AS) (Schuhmann) of 5.97, and a CLIP Score (CS) (Hessel et al.,
2021)) of 33.68 with only 3 steps, substantially surpassing 4-step LCM, 8-step SDXL-Lightning (Lin
et al., 2024)), and 8-step HyperSD, comparable to 25-step DDIM. Additionally, TLCM is obtained
by only 70 A100 training hours without any real data, significantly reducing training costs. We
also demonstrate the versatility of TLCMs in applications including image stylization, controllable
generation, and Chinese-to-image generation.

‘We summarize our contributions as follows:

* We propose TLCMs to accelerate LDMs to generate high-quality outputs within 2—8 steps,
at the expense of minimal training compute and data.

* We establish a data-free multistep latent consistency distillation and improved latent consis-
tency distillation pipeline for fast LDM acceleration. Besides, bags of data-free techniques
are incorporated to boost rare-step quality.

* TLCM achieves a state-of-the-art CS (33.68) and AS (5.97) in 3 steps, surpassing compet-
ing baselines, such as 4-step LCM, 8-step SDXL-Lightning, and 8-step HyperSD.

» TLCMSs’ versatility extends to scenarios such as image stylization, controllable generation,
and Chinese-to-image generation, paving the path for extensive practical applications.

2 RELATED WORKS

Diffusion models. (DMs) (Ho et al., 2020; |Sohl-Dickstein et al.,|2015;|Song & Ermon, |2019;2020;
Song et al, |b) progressively add Gaussian noise to perturb the data, then are trained to denoise
noise-corrupted data. In the inference stage, DMs sample from a Gaussian distribution and per-
form sequential denoising steps to reconstruct the data. As a type of generative model, they have
demonstrated impressive capabilities in generating realistic and high-quality outputs in text-to-image
generation (Podell et al.; [Rombach et al., 2022} |Saharia et al., 2022)), video generation (Peebles &
Xiel 2023). To enhance the condition awareness in conditional DMs, the classifier-free guidance
(CFG) (Ho & Salimans| 2021)) technique is proposed to trade off diversity and fidelity.

Diffusion acceleration. The primary challenges that hinder the practical adoption of DMs is the
slow inference involving tens to hundreds of evaluations of the model.

Early works like Progressive Distillation (PD) (Salimans & Ho} [2023) and Classifier-aware Dis-
tillation (CAD) (Meng et al.l 2023) explore the approaches of progressive knowledge distillation
to compress sampling steps but lead to blurry samples within four sampling steps. Consistency
models (CMs) (Song et al., [2023), consistency trajectory models (CTMs) (Kim et all 2023)) and
Diff-Instruct (Luo et al.,[2024) distill a pre-trained DM into a single-step generator, but they do not
verify the effectiveness on large-scale text-to-image generation.

Recently, the distillation of large-scale text-to-image DMs has gained significant attention.
LCM (Luo et all [2023) extends CM to text-to-image generation with few-step inference but
synthesizes blurry images in four steps. InstaFlow (Liu et al.), UFOGen (Xu et al., 2024b)),
BOOT (Gu et al., [2023), SwiftBrush (Nguyen & Tran, [2024), DMD (Yin et al., 2024a)), and Dif-
fusion2GAN |Kang et al.| (2024) propose one-step sampling for text-to-image generation but are
unable to extend their sampler to multiple steps for better image quality.

More recently, SDXL-Turbo (Sauer et al.| 2023), SDXL-Lighting (Lin et al.| 2024), and Hy-
perSD (Ren et al., [2024) are proposed to further enhance the image quality with few-step sam-
pling but their training depends on huge high-quality text-image pairs and expensive online training.
Our method not only enables the generation of high-quality samples using a 2 8 steps sampler but
also enhances model performance with more inference cost. Furthermore, our training strategy is
resource-efficient and does not require any images.

Human preference for text-to-image model. ImageReward (IR) (Xu et al.| 2024a)) and Aesthetic
Score (Schuhmann) are proposed to evaluate the human preference of text-to-image model. Multi-
dimensional Preference Score (MPS) (Zhang et al.| 2024) improves metrics by learning diverse
preferences. To optimize TLCM towards human preference, we incorporate effective reward learn-
ing into TLCM to directly guide model tuning.
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3 PRELIMINARY

3.1 DIFFUSION MODELS

Diffusion models (DMs) (Ho et al.,2020; Sohl-Dickstein et al.,|2015; [Song et al., b) are specified by
a predefined forward process that progressively distorts the clean data x( into a pure Gaussian noise
with a Gaussian transition kernel. It is shown that such a process can be described by the following
stochastic differential equation (SDE) (Karras et al., 2022 [Song et al. |b):

dry = f(z,t)zedt + g(t)dwy, (1)

where ¢ € [0, T'], wy is the standard Brownian motion, and f(z, t) and g(¢) are the drift and diffusion
coefficients respectively. Let p;(x;) denote the corresponding marginal distribution of z;.

It has been proven that this forward SDE possesses the identical marginal distribution as the follow-
ing probability flow (PF) ordinary differential equation (ODE) (Song et al.| |b):

1
duy = | f(@, t)or = 50° (1) Vi logpy(w) | dt. )

As long as we can learn a neural model eg(z,t) for estimating the ground-truth score
V. log pi(xt), we can then draw samples that roughly follow the same distribution as the clean
data by solving the diffusion ODE. In practice, the learning of €y (x;, t) usually boils down to score
matching (Song et al., |b).

The ODE formulation is appreciated due to its potential for accelerating sampling and has sparked
a range of works on specialized solvers for diffusion ODE (Lu et al.||2022azb}; [Song et al.| |a)). Let ¥
denote an ODE solver, e.g., the deterministic diffusion implicit model (DDIM) solver (Song et al.,
a). The sampling iterates by:

xtn,1 = \D(ee(xt"atn)7tn7tn71>7 (3)

where {t,,}]_ denotes a set of pre-defined discretization timesteps and ¢ty = T', ¢y = 0.

3.2 CONSISTENCY MODELS

Consistency model (CM) (Song & Dhariwal; Song et al.l 2023) aims at generating images from
Gaussian noise within one sampling step. Its core idea is to learn a model fy(x;,t) that directly
maps any point z; on the trajectory of the diffusion ODE to its endpoint. To achieve this, CMs first
parameterizes fg(x¢,t) as:

fG(xty t) = Cskip(t)xt + Cout(t)FO(xty t)a (4)

where Cgpip(t), Cout(t) is pre-defined to guarantee the boundary condition fy(xo,0) = z¢, and
Fy(x¢,t) is the neural network (NN) to train.

CM can be learned from a pre-trained DM ¢y, via consistency distillation (CD) by minimizing (Song
et al.l [2023):

Lop = d(fo(xt,,,tm), fo- (1, 1)), )

where t,, ~ U[0,T], xr,, ~ Dt (xr,), tn ~ U0, Em), Tr, = V(g (Tt tm), tmstn), d(.,.) 1s
some distance function, and 6~ is the exponential moving average (EMA) of 6. Typically, z, is
obtained by single-step solver (SS) W.

Multistep consistency models (MCMs) (Heek et al.| 2024) generalize CMs by splitting the entire
range [0, 7] into multiple segments and performing consistency distillation individually within each
segment. Formally, MCMs first define a set of milestones {5, M (M denotes the number of
segments), and minimize the following multistep consistency distillation (MCD) loss:

EMCD = d(DDIM(l‘tm ) f9 ('Ttm ) tm)? tm, t:tep)a DDIM(xtnv fG* (xtn ’ tn)7 tn, titep))7 (6)

where s is uniformly sampled from {0,...,M}, t, ~ U[t:tcwtj;;], t, = t,m, — 1, and

DDIM(z,,, fo(Zt,,,tm); tm;tsep) means one-step DDIM transformation from state z, at

timestep ¢, to timestep t5;,,, based on the estimated clean image fg(zt,,,tm) (Song et al., k).
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Figure 2: The overview for training TLCM. Data-free multistep latent consistency distillation is first
used to accelerate LDM, obtaining initial TLCM (The left part of the overview). Then, data-free la-
tent consistency distillation is proposed to enforce global consistency of TLCM. MPS optimization,
DM, and adversarial learning are exploited to promote TLCM’s performance in data-free manner
(The right part of the overview). Note that we omit Latent LPIPS model for brevity.

4 METHODOLOGY

Our target is to accelerate LDM into few-step model, with performance competitive to long-iteration
teacher. The learning procedure should be executed with cheap cost in data-free manner. In this
section, we propose a novel and unified Training-efficient Latent Consistency Model (TLCM) with
2-8 step’s inference. We begin by introducing data-free multistep latent consistency distillation.
Subsequently, we discuss data-free latent consistency distillation to enforce global consistency of
TLCM. Lastly, we explore various techniques to promote TLCM’s performance in data-free manner.
The overview of our training pipeline is presented in Figure[2]

4.1 DATA-FREE MULTISTEP LATENT CONSISTENCY DISTILLATION

We consider distilling representative pre-trained LDMs, e.g., SDXL (Podell et al)). Previous
LCM [Luo et al.| (2023) has distilled SDXL into few-step model, but it results in the big perfor-
mance drop, since it is hard to learn the mapping between an arbitrary state of the entire ODE
trajectory to the endpoint. Drawing inspiration from MCM, we split the entire range [0, T'] into M
segments, and then only enforce consistency at each separate segment. To speed up convergence,
we change the skipping step (skip) =1 in MCM into 20. The EMA module is removed to save mem-
ory consumption. Let z; denote the states at timestep ¢ in the latent space. We abuse €g, (2¢, ¢, t)
and fy(z¢, ¢, t) to denote the pre-trained LDM and target model respectively, where ¢ refers to the
generation condition. We formulate the multistep latent consistency distillation (MLCD) loss as:

Lnjca = ||g€ (Ztm’ tm, titep? C) - IlOgI'ad(gg(Zt" s lns titepa C) ||§a (7N

m)

where go(2¢,,,, tm, tiep: ¢©) = DDIM (24, fo(2t,,, € tm), tm, t5iep ) Tepresents initial TLCM. Given
CFG (Ho & Salimans| [2021)) is critical for high-quality text-to-image generation, we integrate it to
MLCD by:

macaw7tm)7tm7tn)a (8)

where ég, (2t, ¢, w, t) := €, (2¢,0,t) + w(eq, (21, ¢, t) — €g, (21, 0, t)) with w as the guidance scale.

2, = V(€g, (2t

However, this training procedure depends on huge high-quality data, which limits its applicability in
the scenarios where such data is inaccessible. To deal with this problem, we propose to draw samples
from the teacher model as training data. Specifically, instead of obtaining z,, via adding noise to zg
as in MCM and HyperSD, we initialize z7 as pure Gaussian noise € and perform denoising with off-
the-shelf ODE solvers based on the teacher model €y, to obtain z;, . Intuitively, with this strategy, we
leverage and distill only the denoising ODE trajectory of the teacher without concerning the forward
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one. The latent state z;_  can be acquired from e by a single denoising step, but we empirically
observe that this naive strategy is unable to accelerate LDM with desirable performance, due to
poor quality of 2, . Theoretically, z;, contains less noise for smaller ¢,,. Therefore, we design
a multistep denoising strategy (MDS) to predict z;,_, which executes more sampling iterations for
smaller ¢,,, to get cleaner z; . At this stage, DDIM solver is used to estimate ODE trajectory and
generate samples from pure Gaussian noise. We present the details in Algorithm[I]in Appendix[A.3]

4.2 IMPROVED DATA-FREE LATENT CONSISTENCY DISTILLATION

After a round of distillation on M segments, TLCM can naturally produce high-quality samples
through M -step sampling. However, it is empirically observed that the performance decreases when
using fewer steps, which is probably because of the larger discretization error caused by long sam-
pling step sizes. To alleviate this, we advocate explicitly teaching TLCM to capture the mapping
between the states that cross segments. Upon this goal, we propose data-free latent consistency
distillation to promote the model to be consistent across the predefined timesteps.

We do not compile TLCM to keep consistency across the entire timestep range [0, T'] since it is hard
to learn the mapping that transforms any point along trajectory into real data. Instead, we improve
raw LCD through only keeping consistency at the predefined M timesteps, which makes LCD much
easier to learn the mapping. Naturally, the skipping step skip is changed to T'/M. The big skip
offers an additional advantage which further accelerates model convergence. Benefiting from the
pre-trained TLCM, we can fast yield clean data Z, via few-step (g-step) sampler, such as 4 steps,
eliminating the requirement of real data. The latent state Z;,, is obtained by adding noise to Zp in
the forward diffusion process, where ¢,,, € {tsmp}sﬂil. We formulate this procedure as

2, = FD(TLCM(e,T,c),tm), €€ N(0,I), )

m

where F'D and T LC'M denote forward diffusion and multistep iterations by TLCM. Then, an ODE
solver is used to estimate latent state 2;, from 2; . Raw LCD adopts one-step solver to predict
Z:, . We argue that it restricts the capability of the teacher due to discretization error, especially
for big skip. As a result, we explore multistep solver (MS) to unleash the potential of the teacher.
Concretely, the time interval 7'/M is uniformly divided into p parts, and then p-step DDIM with
CFG is used to calculate 2, . The improved data-free LCD loss in stage 2 is:

Litcaz = || (fo(t,.+ ¢, tm)) — nograd(fo(3e,, ¢, )13 (10)

We present the details in Algorithm [2]in appendix [A.3] Surprisingly, our improved data-free LCD
only costs 2K-iteration training to achieve convergence.

4.3 INCORPORATING BAG OF TECHNIQUES INTO TLCM IN DATA-FREE MANNER

Latent LPIPS. Typical LCD directly adopts mean square error loss (L,,,s¢) to enforce consistency in
the latent space, but it can not capture perceptual features. LPIPS (Zhang et al.,[2018]) can extract the
features matching human perceptual responses. Meanwhile, it has been widely used as an effective
regression loss across many image translation tasks. Thereby, we aim to integrate LPIPS into our
distillation pipeline to enhance TLCM’s performance. However, LPIPS is built in the pixel space,
and hence we have to reconstruct latent codes to pixel space to use LPIPS. To reduce training time,
we train a latent LPIPS (L-LPIPS) model, which computes perceptual features in latent space. Latent
LPIPS model adopts VGG network by changing the input to 4 channels and removing the 3 max-
pooling layers, as the latent space in LDM is already 8x downsampled. The model is trained from
scratch on BAPPS dataset (Zhang et al.| 2018)). Base on L-LPIPS, the outputs of the model gy
and fy are first fed into L-LPIPS model, whose outputs are used to calculate consistency loss via

Equation (7)) or Equation (I0).

MPS optimization. Since TLCMs transform the points on the trajectory to clean samples &g, we
can naturally directly maximize the feedback of the scorer on the sample s(Zg,c). Considering
multi-dimensional preference score (Zhang et al.l 2024) can measure diverse human preferences,
we leverage it to improve TLCM towards human preference. Formally, we optimize the following
MPS loss (Lyps):

Linps = max(sg — s(Zo, Cpos), 0) + max(s(&o, Cneg), 0), 11
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where cp,, represents the text condition corresponding to the images while ¢, denotes the irrele-
vant texts. L,,,s maximizes s(Zo, cpos) With margin so and simultaneously minimizes s(Zo, Cpeg)
with margin 0. The gradients are directly back-propagated from the scorer to model parameters 6
for optimization. We do not use ImageReward or AS to optimize TLCM, because we find IR tends
to cause overexposure and AS results in oversaturation for generated images.

Distribution matching. Distribution matching (Yin et al.|[20244a) is proposed to transform LDM to
one-step model. We effectively integrate it into our distillation method to enhance the performance
of TLCM. To remove the need of real data, we exploit Equation 9] to get noisy latent Z;. Data-free
DM loss in Lggam is applied to optimize TLCM at sparse-step inference as

Edfdm = _Et,e,ét [Sreal (FD(fe(étv t» C)7 t/)) - sfake(FD(fG (2157 t7 0)7 t/))VHfH (6)]7 (12)

where s,.cq; and s 41 denote the pre-trained score model and fake score model, both initialized by
SDXL. The model sS4 is finetuned on synthetic data Zy through noise prediction loss Lg;¢f in
DM (Yin et al., [2024a).

Adversarial learning. For high-resolution text-to-image generation, considering the high data di-
mensionality and complex data distribution, simply using MSE loss fails to capture data discrepancy
precisely, thus providing imperfect consistency constraints. We propose to use GAN loss to enforce
the distribution consistency. Unlike previous methods needing real data to execute adversarial learn-
ing, we exploit Equation[9]to obtain ;. The student model fy denoises Z; by one step, obtaining Zo.
Through discriminator D, the GAN loss L, is formulated as

Lgan = log(D(FD(%0,t")) — log(D(FD(Z,t))). (13)

5 EXPERIMENTS

5.1 MAIN RESULTS

We quantitatively compare our method with both the DDIM (Song et al., [a) baseline and accel-
eration approaches including LCM (Luo et al.| 2023), SDXL-Turbo (Sauer et al., 2023)), SDXL-
Lightning (Lin et al., |2024), HyperSD (Ren et al.l 2024), CS (Hessel et al.| [2021) with ViT-g/14
backbone, AS (Schuhmann)), IR (Xu et al.| [2024a)), Fréchet Inception Distance (FID) are exploited
as objective metrics. The evaluation is performed on MSCOCO-2017 5K validation dataset (Lin
et al.l 2014). All methods perform zero-shot validation except for HyperSD since it utilizes the
MSCOCO-2017 dataset for training. Only SDXL-Turbo produces 512-pixel images while the oth-
ers generate 1024-pixel images. We only report FID for reference and do not analyze it since FID
on COCO is not reliable to evaluate text-to-image models (Sauer et al., 2023; Ren et al.| [2024)).

9

The metrics of various methods are listed in Table [[l We use “-” to represent metric when it is
missing in the corresponding paper. We can observe that our TLCM only costs 70 A 100 training
hours, even without any data. Compared to other methods, TLCM significantly reduces training
resources, which is very valuable for most laboratories and the scenarios when real data are inac-
cessible. our 3-step TLCM presents superior CS, AS, IR than 4-8 step’s LCM (Luo et al., [2023)),
SDXL-Lightning (Lin et al., [2024). These results indicate our TLCM’s synthetic images are much
better aligned with texts and the human preference than LCM, SDXL-Lightning. Excitingly, our 3-
step TLCM outperforms 25-step teacher in terms of AS and IR, and achieves comparable CS value,
demonstrating TLCM almost reserves all the information in teacher and even introduces new human
preference knowledge via the proposed distillation method. Our 3-step TLCM shows much higher
CS than 4-8 step’s HyperSD, indicating HyperSD loses much information in the distillation proce-
dure, because it fails to sufficiently ensure consistency constraint. We notice IR value of HyperSD is
higher than our TLCM. This is because IR model has been used to optimize HyperSD. Moreover, we
can see the performance of SDXL-Turbo drop with respect to CS and IR when increasing sampling
steps. This is because it is designed for specific steps. Instead, our TLCM can improve at least one
metric with additional steps. This is valuable since image quality is the primary consideration when
affordable computation resource is determined in real applications.

We present the visual comparisons in Figure 3] Under the same conditions, we observe that the
images generated by TLCM have better image quality and maintain higher semantic consistency on
more challenging prompts, which also leads to greater human preference.
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SDXL-Turbo SDXL-Lightning HyperSD TLCM (Ours)

A BOY ON HIS PHONE OUTSIDE NEAR A RED CHAIR.

Figure 3: Visual comparison between our TLCM and the state-of-the-art methods. Zoom in for more
details.
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Table 1: Zero-shot performance comparison on MSCOCO-2017 5K validation datasets with the
state-of-the-art methods. All models adopts SDXL architecture. Time: inference time (second) on
A100. TH: Training hours using A100. TI: Training images.

Method Step Time FID CS AS IR TH TI
DDIM 25 329 2329 3397 587 082 O 0
LCM 4 071 27.09 3253 585 051 - -
SDXL-Turbo 4 038 2852 3335 564 083 - -
SDXL-Turbo 8 0.61 29.64 3281 578 0.82 - -
SDXL-Lightning 4 071 2790 3290 563 072 - >12M
SDXL-Lightning 8 099 27.04 3274 595 071 - >12M
HyperSD 4 0.71 3445 3264 552 1.15 600 >12M
HyperSD 8 099 3594 3241 583 1.14 600 >12M
TLCM 2 058 2750 33.18 590 097 70 O
TLCM 3 0.65 29.12 33.68 597 100 70 O
TLCM 4 071 3033 3352 6.06 101 70 O
TLCM 5 078 3090 33.69 6.04 101 70 O
TLCM 6 0.85 3098 3371 6.07 101 70 O
TLCM 8 099 3240 3353 608 102 70 O

Table 2: Ablation study of TLCM with respect to latent LPIPS, data-free LCD with single denoising
step (Licq—s), data-free MLCD with single denoising iteration (L,,,;cq—s), data-free MLCD with
MDS (Lnicd—m), data-free LCD in stage 2 (L;.q2), improved data-free LCD in stage 2 (L;jcq2),
data-free DM (Lg¢am ), multi-dimensional human preference (Ly,np), adversarial (Lgqy). All the
models adopt 4-step sampler and SDXL backbone.

L-LPIPS Elcd—s ['mlcd—s ﬁmlcd—m, ['lch cv’,lch ['m,h,p ['dfdm Egan CS FID AS IR
v 31.61 32.90 5.89 041
v 31.76 27.01 5.98 0.58

v 31.99 27.61 592 0.61

32.31 30.99 6.01 0.69

v 32.74 32.05 6.00 0.72
33.06 25.44 5.96 0.77

v 33.16 28.40 6.01 0.90
v v 33.32 30.58 6.03 0.97
v v v 33.52 30.33 6.06 1.01

N N NN
AN N NN
SN

5.2 ABLATION STUDY

To analyze the key components of our method, we make a thorough ablation study to verify the
effectiveness of the proposed TLCM. Table [2|depicts the performance of TLCM’s variants.

Data-free multistep latent consistency distillation. As shown in Table only using L;.q—s which
computes z;, by single step for LCD achieves CS score of 31.61, AS of 5.89, indicating our data-
free method is able to accelerate LDM with good quality. Changing £;.4_s to single-step denoising
MLCD L,,icq—s, all metrics are improved. This result verifies that MLCD has a stronger capability
to accelerate LDM than LCD. This is because it is hard for data-free LCD to enforce consistency
across the entire timestep range while data-free MLCD alleviates this by performing LCD within
predefined multiple segments.

Denoising strategy. We can observe from Table 2| that £,,;.q—. substantially enhances the perfor-
mance of L,,;.q—s , verifying that the proposed multistep denoising strategy is critical to perform
data-free MLCD. The probable reason is our multistep MDS yield better initial latent codes, where
the latent codes have better quality with smaller timesteps.
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Table 3: Performance comparison of the teacher’s sampling steps for data-free consistency distilla-
tion in stage 2.

Sep CS  FID AS IR Step CS  FID AS IR
I 3278 2619 505 066 2 3297 2573 595 0.71
3 33.06 2544 596 077 4 3310 2518 597 0.78

Latent LPIPS. As outlined in Table[ZL Lmicd—s using L-LPIPS introduces gains on all metrics. This
result denotes it is more powerful to enforce consistency in latent LPIPS space than raw latent space
as latent LPIPS can make perceptual consistency.

Data-free latent consistency distillation in stage 2. In @ L0402 represents using mulltistep solver
in LCD to enforce consistency across the entire timestep range. We can see L;.q4o significantly
improves CS values of TLCM trained in stage 1. This is because L;.42 achieves inter-segment
consistency of TLCM. The performance is further enhanced by substituting £;.4o With L;cq2. The
reason lies in that it is easier to make consistency along the sparse predefined timesteps than the
entire timestep range.

MHP optimization. Tableshows that adding £,,,, to the losses in line 7 introduces gains in terms
of CS and IR. This result indicates that our MHP optimization method is capable of improving the
text-image alignment and human preference of TLCM.

Data-free DM. We can see in Tableusing our data-free DM loss Lfqm leads to the performance
improvements on all metrics. This result demonstrates that our DM in data-free way is compatible
to the proposed distillation method, boosting TLCM’s performance.

Discriminator. We also observe in Table |2 I that discriminator loss £, improves CS, AS, and IR,
because discriminator facilitate consistency in probability distribution space, which is critical for
low-step regime.

Teacher’s inference steps of data-free latent consistency distillation in stage 2. In Table [3} we
study the effect concerning teacher’s sampling steps of data-free LCD in stage 2. The results shows
as sampling step increases from 1 to 4, the performance is consistently improved. Therefore, it
is crucial to perform multi-step denoising to estimate Z; . The reason is that multi-step solvers is
capable of reducing discretization error for big skipping step.

6 CONCLUSION

In this paper, we propose Training-efficient Latent Consistency Model (TLCM), a novel approach for
accelerating text-to-image latent diffusion models using only 70 A100 hours, without requiring any
text-image paired data. TLCM can generate high-quality, delightful images with only 2-8 sampling
steps and achieve better image quality than baseline methods while being compatible with image
style transfer, controllable generation, and Chinese-to-image generation.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We use the prompts from LAION-Aesthetics- 6+ subset of LAION-5B [Schuhmann et al.| (2022) to
train our model. We train the model with 12000 iterations for data-free MLCD and 2000 iterations
for data-free LCD. After LCD, MPS optimization runs 500 iterations with batch size of 8. Then,
DM and adversarial learning are used to improve TLCM with 1000 iterations with batch size of
4. The whole procedure uses Adamw optimizer and 4 A100. Only MLCD adopts learning rate of
le-4 and the other stages use learning rate of le-5. The discriminator adopts learning rate of le-
4 and AdamW optimizer. The initial segment number M is 8 and sg for MPS is 16. We set the
guidance scale w in CFG as 8.0, the denoising steps p = 3 for teacher to compute 2;,,, and ¢ = 4 for
TLCM to compute 2. As for model configuration, we use SDXL[Podell et al.| as teacher to estimate
trajectory while student model fy is also initialized by SDXL. The discriminator is also initialized
by SDXL. We train a unified Lora instead of UNet in all the distillation stages for convenient transfer
to downstream applications.

Ink and wash Pixar Van Gogh’s
style paintings
A 2

! .\,

Source Japanese comics

Figure 4: TLCM with image style transfer. The styles are presented at the top, and we apply image
style transfer on the source image with our TLCM. Two-step sampling can produce highly stylized
images with excellent results.

A.2 APPLICATION
A.2.1 ACCELERATION OF IMAGE STYLE TRANSFER

Our TLCM LoRA is compatible with the pipeline of image style transfer [2024). We
present some examples in Figure [ with only 2-step sampling.

14



Under review as a conference paper at ICLR 2025

lac do A beautiful dog -
in the winter in the autumn in the garden

Canny edge

Source

A brown bird
in the forest under the stars in the room

A black bird

A gray bird

Source Depth map
Figure 5: TLCM with ControlNet. Our TLCM can be incorporated into ControlNet pipeline and
produce satisfactory results with 2 steps sampling.

A.2.2 ACCELERATION OF CONTROLLABLE GENERATION

Our TLCM LoRA is compatible with Controlnet, enabling accelerated controllable generation. We
utilize canny and depth ControlNet based on SDXL-base, together with TLCM LoRA in Figure [5
The results are sampled in 2 steps. We observe our model achieves superior image quality and
demonstrates compatibility with other models, e.g. ControlNet, while also providing enhanced ac-
celeration capabilities.

- = 4 /.
WAHAL WH, PN R AR R R RS, HRI RAAET, i 451 5
Lavender field wnE g TRz S AR Future world,
Sunset, outdoor A pirate ship trapped Miyazaki-esque, Unreal Engine
setting, café in a cosmic vortex summer, pond,forest
nebula

ARZIES St fh HOBA Jest, AR, AR

# VLK S
P FETL T MR IK Red-braised Lion's Head VIO I Beijing, hutong,
A lone boat, the fisherman Jiangnan water town A few plum blossoms autumn
in straw hat and raincoat Small bridges and in the corner of the wall
fishing alone in the cold flowing streams Blooming alone
river under the snow defying the cold

Figure 6: TLCM for Chinese-to-image generation. With 3 steps sampling, our TLCM model can
produce images that align with Chinese semantic meaning. The first line presents images in general
Chinese contexts, while the second line showcases images in specific Chinese cultural settings.
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A.2.3 ACCELERATION OF CHINESE-TO-IMAGE GENERATION

Our TLCM can accelerate the generation speed of Chinese-to-image diffusion model (Ma et al.,
2023). We present some examples in Figure[6]

A.3 ALGORITHMS

Algorithm 1: Data-free multistep latent consistency distillation

Input: Gaussian noise €, timestep ¢,,, segment index s, teacher model g, , student model gy,
text condition ¢, segment number M
Initialize z with €, calculate denoising steps L = M — s, time interval AT = (T — t,,,)/L
fori in {0,1,---,L—1}do
Calculate t =T — i *x AT, t, =t — AT
Calculate z; , = W(ég, (2¢,c,w,t),t,tmr)
end
Calculate z;,, using Equation (8)
Perform MLCD using Equation

Algorithm 2: Data-free latent consistency distillation in stage 2

Input: Gaussian noise ¢, timestep t,,, teacher model eg,, student model fy, text condition c,
segment number M, denoising step of teacher p, denoising step g of student, diffusion
coefficient sequence oy, timestep milestones {t5,,, 1%,

Initialize 27 with € and timestep ¢ with T’

fori in {0,1,---,q—1}do

ét Y 1- O(tfg(it,t,C)

Calculate 2 =

VOt
Calculate t =T — T/q x (i + 1), Calculate 2, = \/az20 + V1 — aye
end
Randomly sample ¢, from {t,,,, M || detach 2, and calculate 2;, by forward diffusion

étm = (677 7:’0 “+ / 1-— oy, €
fori in {0,1,---,p—1}do
Calculate t; = t,, — (T/M)/p x i and tg = t,, — (T/M)/p x (i +1)
Calculate 2;, using Equation (8)) based on current state 2,
end
Perform LCD using Equation (10)
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