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Abstract
In supervised learning, understanding an input’s
proximity to the training data can help a model
decide whether it has sufficient evidence for reach-
ing a reliable prediction. While powerful prob-
abilistic models such as Gaussian Processes nat-
urally have this property, deep neural networks
often lack it. In this paper, we introduce Distance
Aware Bottleneck (DAB), i.e., a new method for
enriching deep neural networks with this prop-
erty. Building on prior information bottleneck
approaches, our method learns a codebook that
stores a compressed representation of all inputs
seen during training. The distance of a new ex-
ample from this codebook can serve as an uncer-
tainty estimate for the example. The resulting
model is simple to train and provides determin-
istic uncertainty estimates by a single forward
pass. Finally, our method achieves better out-of-
distribution (OOD) detection and misclassifica-
tion prediction than prior methods, including ex-
pensive ensemble methods, deep kernel Gaussian
Processes, and approaches based on the standard
information bottleneck.

1. Introduction
Deep learning models that “know what they know” are be-
coming increasingly useful since they can better understand
when to make confident predictions and when to ask for
human help (Kivlichan et al., 2021). Early approaches to
uncertainty estimation built from probabilistic approaches
tailored to deep neural networks (DNNs) (Blundell et al.,
2015; Osawa et al., 2019; Gal & Ghahramani, 2016) or deep
ensembles (Lakshminarayanan et al., 2017; Wilson & Iz-
mailov, 2020). A shared characteristic of these methods
is that they require multiple model samples to produce a
reliable uncertainty estimate. Despite growing research in-
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Figure 1: Distance awareness for principled uncertainty quan-
tification. A distance-aware model can measure the distance be-
tween input examples and the training examples. Our method
learns distances where misclassified datapoints, semantic (near
OOD), and domain (far OOD) deviations can be identified by
larger distances. Our method learns and uses a codebook for rep-
resenting the training dataset. Here, we report distances from a
codebook trained on CIFAR-10.

terest in uncertainty quantification, we still lack reliable and
efficient methods for real-world ML deployment.

A recently emerged class of scalable uncertainty esti-
mation methods, the Deterministic Uncertainty Methods
(DUMs) (Postels et al., 2022; Charpentier et al., 2023),
affords uncertainty estimates with a single forward-pass.
These methods are distance-aware (Liu et al., 2020) since
they can quantify a distance score or measure of a new test
example from previously trained-upon datapoints. Distance
awareness renders DUMs a principled and theoretically mo-
tivated (Liu et al., 2020; 2023) solution to uncertainty quan-
tification. In particular, the distance score can indicate Out-
Of-Distribution (OOD) examples of varying dissimilarity
from the training datapoints or in-distribution areas where
the model fails to generalize (Fig. 1).

Existing DUMs are usually tied to specific regularization
techniques (Miyato et al., 2018; Gulrajani et al., 2017) to
mitigate feature collapse. Although such additional weight
constraints help these methods reach state-of-the-art OOD
detection results, they may undermine their calibration, i.e.,
how well a DNN can predict its incorrectness (Postels et al.,
2022). Moreover, in the absence of similar constraints in
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large, pre-trained models, integration of current DUMs into
industrial applications becomes difficult.

In this work, we seek to improve the quality of uncertainty
estimates using a single-model, deterministic characteriza-
tion. The key contributions of this paper are as follows:

• We formulate uncertainty quantification as the com-
putation of a rate-distortion function to obtain a com-
pressed representation of the training dataset. This
representation is a set of prototypes defined as cen-
troids of the training datapoints with respect to a dis-
tance measure. The expected distance of a datapoint
from the centroids provides model’s uncertainty for the
datapoint (Fig. 1).

• We take a “meta-probabilistic” perspective to the rate-
distortion problem. In particular, the distortion func-
tion operates on distributions of embeddings and corre-
sponds to a statistical distance (Fig. 2). To do so, we
use the Information Bottleneck (IB) framework. The
proposed formulation, the Distance Aware Bottleneck
(DAB), jointly regularizes DNN’s representations and
renders it distance-aware.

• We design and qualitatively verify a practical deep
learning algorithm that is based on successive estimates
of the rate-distortion function to identify the centroids
of the training data (Algorithm 1).

• We show experimentally that our method can detect
both OOD samples and misclassified samples. In par-
ticular, DAB outperforms baselines when used for
OOD tasks and closes the gap between single forward
pass methods and expensive ensembles in terms of
calibration (Tables 2, 4).

• Finally, we show that DAB can be trained and applied
post-hoc to a large, pre-trained feature extractor offer-
ing similar advantages for challenging and large-scale
datasets (Table 5).

2. Related Work
In this section, we provide an overview of existing DUMs
and relate them to the proposed model. Most competitive
DUMs can be taxonomized as Gaussian Process models or
cluster-based approaches.

Gaussian Processes (GPs) are intrinsically distance-aware
models since they are defined by a kernel function that
quantifies similarity to the training datapoints. SNGP (Liu
et al., 2020; 2023) relies on a Laplace approximation of the
GP based on Random Fourier Features (RFF) (Rahimi &
Recht, 2007). DUE (Van Amersfoort et al., 2021) uses the
inducing point GP approximation (Titsias, 2009). In Table 1,
we provide some analogies between Gaussian Processes and
the model proposed in this work. Both SNGP and DUE

Table 1: Analogies between GP and DAB.

Gaussian Process Distance Aware Bottleneck
Compression of the

training dataset Dtrain
Inducing Points Codebook

Feature space Rd parameter space Θ of a family of
distributions P = {p(z;θ) | θ ∈ Θ}

Distance measure Euclidean norm Statistical distance

enforce bi-Lipschitz constraints on the network by spectral
normalization (Miyato et al., 2018) to encourage sensitivity
and smoothness of the extracted features.

In contrast, our work builds on IB methods (Alemi et al.,
2018) to avoid feature collapse. IB methods regularize the
network by encouraging it to learn informative representa-
tions. Therefore, they are simple to implement and train.
However, prior IB methods (Alemi et al., 2018) cannot
sufficiently represent large and complex datasets. In this
paper, we revise and augment prior IBs with a codebook
capable of coding high-dimensional and multi-modal train-
ing distributions. The training is facilitated by a learning
algorithm (Section 5.2) which, along with the gradient up-
dates, matches the training examples with the entries of the
codebook.

More closely related to our work is DUQ (Van Amersfoort
et al., 2020). Similar to our work, DUQ quantifies uncer-
tainty as the distance from centroids responsible for repre-
senting the training data. The distance is computed in terms
of a Radial Basis Function (RBF) kernel. In contrast to our
work, DUQ is trained to minimize a binary cross entropy
loss function. This function assigns datapoints to clusters
in a supervised manner. Therefore, the number of centroids
is hardwired to the number of classes. This restriction ren-
ders the deployment of the model to regression tasks or
classification tasks with a large number of classes difficult.
On the other hand, our model provides a unified notion of
uncertainty for both regression and classification tasks. Esti-
mating regression uncertainty is important in many machine
learning subfields. For example, in deep reinforcement
learning uncertainty over the Q-values can be leveraged for
efficient exploration or risk estimation (Osband et al., 2016;
Lee et al., 2021; Fujimoto et al., 2018; Wu et al., 2021).
Effective DUMs, such as our model, could mend the current
lack of both efficient and reliable uncertainty methods in
unsupervised learning settings.

Under a broad definition, data augmentation methods
(Hendrycks et al., 2020; Pinto et al., 2022b) can also be
considered DUMs. They improve network’s learned repre-
sentations by encouraging the model to be sensitive to or
invariant against image perturbations. Design of such per-
turbations, however, requires domain expertise and/or prior
knowledge. This requirement makes it difficult to extend
existing data augmentation methods to other tasks (such as
regression) or modalities (such as text). Here, we focus on
principled, distance-aware DUMs, and borrowing terminol-

2



A Rate-Distortion View of Uncertainty Quantification

ogy of Postels et al. (2022); Mukhoti et al. (2023), unless
otherwise noted, we use DUMs to refer to distance-aware
DUMs. Finally, we note that deep ensembles are included
as a benchmark in our experiments, as they represent the
current state-of-the-art for uncertainty quantification. How-
ever, while simple in concept and implementation, their
computational and memory cost are prohibitive.

3. Preliminaries
3.1. Information Bottleneck
The Information Bottleneck (IB) (Tishby et al., 2000) pro-
vides an information-theoretic view for balancing the com-
plexity of a stochastic encoder Z for input X 1 and its pre-
dictive capacity for the desired output Y . The IB objective
is:

min
θ

−I(Z, Y ;θ) + β I(Z,X;θ), (1)

where β ≥ 0 is the trade-off factor between the accuracy
term I(Z, Y ;θ) and the complexity term I(Z,X;θ). θ
denotes the parameters of the distributional family of en-
coder p(z | x;θ)2. In words, training by Eq. 1 encour-
ages the model to find a representation Z that is maximally
expressive about output Y while being maximally com-
pressive about input X . Typically, the mutual information
terms in Eq. 1 cannot be computed in closed-form since
they involve intractable marginal distributions (Eq. 23, 24).
The Variational Information Bottleneck (VIB) (Alemi et al.,
2017) considers parametric approximations m(y | z;θ),
q(z;ϕ) to these marginals belonging to a distributional fam-
ily parametrized by θ 3 and ϕ respectively. The VIB objec-
tive (Eq. 26) maximizes a lower bound of I(Z, Y ;θ) and
minimizes an upper bound of I(Z,X;θ) . In this work, we
reconsider the complexity term. The upper bound of this
term is an expected Kullback-Leibler divergence:

I(Z,X;θ) = EX
[
DKL(p(z | x;θ), p(z))]

≤ EX
[
DKL(p(z | x;θ), q(z;ϕ))

]
. (2)

The expectation in Eq. 2 is taken, in practice, with respect
to the empirical distribution of the training dataset Dtrain =
{(xi,yi)}Ni=1:

I(Z,X;θ) ⪅
1

N

N∑
i=1

DKL(p(z | xi;θ), q(z;ϕ)). (3)

1We denote random variables as X,Y, Z and their instances as
x,y,z.

2θ will represent a function implemented by a neural network.
For input x it computes the parameters of the conditional distri-
bution p(· | x;θ) in its output. For example, for a Gaussian with
diagonal covariance: θ(x) = {µ(x), σ(x)}, µ(x) ∈ Rd, σ(x) ∈
Rd

≥0. Optimization with respect to θ will refer to optimization
with respect to the weights of network θ.

3In the rest of the paper, we use θ to denote the joint set of
parameters of encoder and variational decoder.

3.2. Rate Distortion Theory
The rate-distortion theory (Berger, 1971; Berger & Gibson,
1998; Cover, 1999) quantifies the fundamental limit of data
compression, i.e., at least how many bits are needed to quan-
tize data coming from a stochastic source given a desired
fidelity. Formally, consider random variable X ∼ p(x)
with support set4 X . Data coming from source X will be
compressed by mapping them to a random variable X̂ with
support set X̂ . It is common to refer to X̂ as the source code
or quantization of X . In this work, we consider a discrete
source over Dtrain following the empirical distribution. The
formal description is deferred to Section 5.1.

The quality of the reconstructed data is assessed using a
distortion function D : X × X̂ → R+. The rate-distortion
function is the minimum achievable rate (number of bits) of
the quantization scheme for a prescribed level of expected
distortion. In Lagrange formulation, it is the problem:

R ≜ min
p(x̂|x)

I(X; X̂) + αEX,X̂ [D(x, x̂)], (4)

where α ≥ 0 is the optimal Lagrange multiplier that cor-
responds to a distortion constraint EX,X̂ [D(x, x̂)] ≤ d.5

It can be shown that the problem in Eq. 4 is equivalent
to a double minimization problem over p(x̂), p(x̂ | x)
(Lemma 10.8.1 of Cover (1999)). This equivalence en-
ables an alternating minimization algorithm (Csiszár, 1984)
– the Blahut–Arimoto (BA) algorithm (Blahut, 1972; Matz
& Duhamel, 2004) – for solving R. In practice, numeri-
cal computation of the rate-distortion function through the
BA algorithm is often infeasible, primarily due to lack of
knowledge of the optimal support of X̂ . The Rate Distor-
tion Finite Cardinality (RDFC) formulation (Rose, 1994;
Banerjee et al., 2004) simplifies the computation of R by
assuming finite support X̂ that is jointly optimized:

min
X̂ ,p(x̂|x)

I(X, X̂) + αEX,X̂ [D(x, x̂)]

subject to: | X̂ |= k. (5)

The RDFC objective in Eq. 5 can be greedily estimated by
alternating optimization over X̂ , p(x̂), p(x̂ | x) yielding a
solution that is locally optimal (Banerjee et al., 2004).

4. Motivation
The idea behind our approach is visualized in Fig. 2. The
crux of our approach is the observation that the variational
marginal q(z;ϕ) in Eq. 2 and Eq. 3 encapsulates all en-
coders p(z | xi;θ) of datapoints in Dtrain encountered
during training. To see this formally, we introduce a ran-
dom variable PX defined by X ∼ p(x). The value of PX

4Support set of X ∼ p(x) is the set X = {x : p(x) > 0}.
5Formally, α is a function of d: α ≡ α(d). However, we omit

this dependence for notational brevity.
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(a) Dtrain as a set of points in the
Euclidean space Rd.

(b) Dtrain as a set of points in dis-
tribution space P .

(c) Support of Dtrain as a
statistical ball (k = 1).

(d) Distance from the codebook
of encoders (k > 1).

Figure 2: Overview of DAB. Uncertainty quantification in DAB is based on compressing the training dataset Dtrain by learning a codebook
and computing distances from the codebook. The datapoints in Dtrain, originally lying in Rd (2a), are embedded into distribution space P
of a parametric family of distributions through their encoders (2b). Compression of Dtrain amounts to finding the centroids of the encoders
in terms of a statistical distance D (2c). For complex datasets, usually multiple centroids are needed (2d). The uncertainty for a previously
unseen test datapoint is quantified by its expected distance from the codebook: uncertainty(xtest) = E[D(p(z | xtest;θ), qκ(z;ϕ))].

corresponding to x is the encoder’s density p(z | x;θ)
(Fig. 2a, 2b). In other words, a value of PX is itself a
probability distribution. From proposition 1 of Banerjee
et al. (2005), E[PX ] is the unique centroid of encoders
p(z | xi;θ) with respect to any Bregman divergence Df de-
fined by a strictly convex and differentiable function f (Breg-
man, 1967; Brekelmans & Nielsen, 2022) (def. A.1):

E[PX ] =
1

N

N∑
i=1

p(z | xi;θ)

= argmin
q(z)

1

N

N∑
i=1

Df (p(z | xi;θ), q(z)). (6)

We note that the upper bound in Eq. 3 emerges as a special
case of the minimization objective in Eq. 6. This is be-
cause the Kullback-Leibler divergence is a Bregman diver-
gence (Azoury & Warmuth, 2001; Nielsen et al., 2007) with
the negative entropy as the generator function f (Frigyik
et al., 2008; Csiszár, 1995)6. Therefore, q(z;ϕ) in the VIB
can also be viewed as a variational centroid of the training
datapoints’ encoders (Fig. 2c). In this work, we consider
learnable parameters ϕ. Under this view, the role of the reg-
ularization term I(Z,X;θ) when upper bounded by Eq. 2 is
now twofold: i) it both regularizes encoder p(z | x;θ) and
ii) it learns a distributional centroid q(z;ϕ) for encoders
p(z | xi;θ) of training examples xi.

For complex data, it usually does not suffice to represent
{p(z | xi;θ)}Ni=1 by a single distribution q(z;ϕ). There-
fore, we will need to learn a collection (codebook) of k
centroids {qκ(z;ϕ)}kκ=1

7 (Fig. 2d). In Section 5, we for-
malize how such a set of distributions can be learned and
used to effectively quantify distance from Dtrain.

6We consider functional Bregman divergences, i.e., the gener-
alization of Bregman divergence that acts on functions.

7ϕ will represent the joint set of parameters of all centroids qκ.

5. Distance Aware Bottleneck
5.1. Model
In this section, we present the Distance Aware Bottleneck
(DAB): An IB problem with a complexity constraint that
regularizes the network and renders the network distance-
aware given a compressed representation ofDtrain. We keep
an information-geometric interpretation of this representa-
tion. In this case, the features of x and the codes used for
computing distance from Dtrain lie in the parameter space
of a distributional family P8 (Fig. 2b). As we will see in
Section 5.3, the characterization of datapoints at a distri-
butional granularity provides the model with deterministic
uncertainty estimates. Moreover, we argue that an input x
is better characterized by its encoder p(z | x;θ). This is be-
cause standard Euclidean distances might disregard aspects
of data that are essential for characterizing distance from
Dtrain. In Section 6, we empirically confirm our hypothesis.

The mathematical construction of our work was alluded
in Section 4 when we introduced random variable PX .
PX is defined by X and takes as value the distribution
p(z | x;θ), i.e., the encoder, as we sample X ∼ p(x).
In its empirical form over a finite number of N train-
ing datapoints Dtrain, the distribution of PX is a discrete
distribution over distributions: PX is discrete taking val-
ues in the set PX = {p(z | xi;θ)}Ni=1 with probabil-
ity 1/N . We also define a random variable Q. By fix-
ing the number k of distributional centroids, Q takes val-
ues [q1(z;ϕ), q2(z;ϕ), . . . , qk(z;ϕ)] following distribu-
tion π = [π(1), π(2), . . . , π(k)]. We will refer to its support
set Q = {qκ(z;ϕ)}kκ=1 as the codebook. πx is the condi-
tional assignment probabilities of encoder p(z | x;θ) to the

8For example, for the family P = {p(z;θ) | θ ∈ Θ} of d−
dimensional Normal distributions, the parameter space is Θ =
{Rd×Sym+(d;R)} with Sym+(d;R) the set of d×d symmetric,
positive definite matrices.
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centroids such that πx = [πx(1), πx(2), . . . , πx(k)] with:

πx(κ) = p(Q = qκ(z;ϕ) | PX = p(z | x;θ)). (7)

Compression of Dtrain is phrased as a RDFC problem
(Eq. 5) for the source of encoders PX using the source
code Q:

Rk(θ) = min
Q,πx

LRDFC subject to: | Q |= k, where:

(8)

LRDFC ≜

I(PX , Q;θ,ϕ) + αEPX ,Q

[
D(p(z | x;θ), qκ(z;ϕ))

]
.

(9)

At this point, we underline that the source of encoders PX
depends on θ. Since centroids qκ(z;ϕ) are used to quantize
the set of encoders in Dtrain, we will also call them code
distributions. Albeit in this work we investigate only the
behavior of the Kullback-Leibler divergence, the distortion
function D in Eq. 9 can be any statistical distance measure
between two probability distributions.

Optimizing with respect to the support set Q amounts to
optimizing with respect to parameters ϕ of codes qκ(z;ϕ).
Therefore, the problem in Eq. 8 can be written as:

Rk(θ) = min
ϕ,πx

LRDFC, (10)

where LRDFC is defined in Eq. 9. DAB replaces the rate
term I(Z,X;θ) of the IB ( Eq. 1) with the achievable rate
Rk(θ) (Eq. 10). Formally, a DAB of cardinality k is defined
as:

min
θ

−I(Z, Y ;θ) + βRk(θ)⇐⇒ min
θ

min
ϕ,πx

LDAB,

where: LDAB ≜ −I(Z, Y ;θ) + βI(PX , Q;θ,ϕ)+

αβ EPX ,Q

[
D(p(z | x;θ), qκ(z;ϕ))

]
. (11)

Training the network with the loss function LDAB encour-
ages encoders p(z | x;θ) whose samples z are informative
about output y while staying statistically close to codes
qκ(z;ϕ). To get a better insight into Eq. 11, we consider
two edge cases. In the case of a single code, i.e., k = 1,
with D taken as the Kullback-Leibler divergence, Eq. 11 is
equivalent to the empirical form (Eq. 3) of the VIB (Alemi
et al., 2017) (Eq. 26) with regularization coefficient α× β.
For k = N , the optimal codes would correspond to training
datapoints’ encoders: qκ(z;ϕ) = p(z | xκ;θ) yielding
zero compression (and regularization).

We note that DAB’s objective (Eq. 11) uses two separate
terms for accuracy and for controlling the distance of train-
ing datapoints from the codebook. Such formulation en-
ables DAB to choose between pulling correctly classified
datapoints close to the codebook (being less uncertain) or

pushing misclassified datapoints away (more uncertain), ul-
timately leading to better calibration (Section 6.3).

As in the standard VIB (Alemi et al., 2017), I(Z, Y ;θ) can
be estimated by the lower bound EX,Y,Z [logm(y | z;θ)]
that is maximized with respect to variational decoder m(y |
z;θ) (Eq. 26). We emphasize that, in this work, the decoder
does not utilize model’s proposed distance for eventually
improving its predictions. In DAB, this could be achieved
by designing a stochastic decoder that induces variance pro-
portionate to the estimated distance (uncertainty) in its final
prediction. Such a decoder could be viewed as a distance-
aware epinet (Osband et al., 2021) and its design is left as
future work.

5.2. Learning Algorithm
The optimization problem of Eq. 11 can be solved by al-
ternating minimizations (Banerjee et al., 2004). We note
that I(PX , Q;θ,ϕ) in Eq. 11 is tractable since PX , Q are
discrete random variables taking N (size of training dataset)
and k (size of codebook) possible values, respectively. At
each step, a single block of parameters is optimized. The
most recent value is used for the parameters that are not
optimized at the step. The internal minimization step cor-
responds to the computation of a RDFC (Eq. 5). The mini-
mization steps are summarized as follows:

re
pe

at



t. Update decoder m(y | z;θ), encoder
p(z | x;θ) : θ ← θ − ηθ∇θLDAB

t+ 1. Update πx from Eq. 12
t+ 2. Update centroids qκ(z;ϕ) :

ϕ← ϕ− ηϕ∇ϕLDAB

t+ 3. Update π from Eq. 13

Steps t + 1, t + 3 are computationally cheap and can be
performed analytically with a single forward pass:

πx(κ) =
π(κ)

Zx(α)
exp

(
− αD (p(z | x;θ), qκ(z;ϕ))

)
,

(12)

π(κ) =
1

N

N∑
i=1

πxi
(κ), (13)

where Zx(α) is the partition function: Zx(α) =∑k
κ=1 π(κ) exp

(
−αD

(
p(z | x;θ), qκ(z;ϕ)

))
.

πx in Eq. 12 (see also Eq. 10.124 of Cover (1999)) as-
signs higher probability to the centroid statistically closer
in terms of D to the encoder of x. π in Eq. 13 is derived
in Lemma 10.8.1 of Cover (1999) and is the marginal of
πx. Steps t, t+ 2 require back-propagation and correspond
to gradient descent steps. The pseudocode of our method
(Algorithm 1) along with a practical implementation for
mini-batch training is given in Appendix B.
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Figure 3: Uncertainty estimation on noisy regression tasks. We consider the Kullback-Leibler divergence as the distortion function in
the uncertainty score of Eq. 14. A larger distance from the training datapoints (blue dots) is consistently quantified by higher uncertainty
(width of pink area). Moreover, the true values lie well within ±2× the proposed uncertainty score around the predictive mean.

5.3. Uncertainty Quantification in the IB
The solution to the problem of Eq. 11 provides us with codes
qκ(z;ϕ) for encoders in Dtrain (Fig. 2d). Large distance
from these codes signals an unfamiliar input x for which the
network should be less confident when predicting y (Fig. 3).
Formally, we define uncertainty over datapoint x as the
conditional expected distortion (from last term in Eq. 11):

uncertainty (x) = distance (x,Dtrain)

= EQ|PX=p(z|x;θ)
[
D
(
p(z | x;θ), qκ(z;ϕ)

)]
. (14)

The distribution of Q in the expectation of Eq. 14 condi-
tioned on encoder p(z | x;θ) (also defined in Eq. 7) is
given in Eq. 12. The expectation in Eq. 14 is taken over a
finite number of values k. Under certain choices of D and
distribution families, the uncertainty score of Eq. 14 can be
computed deterministically with a single forward pass of
the network without requiring Monte Carlo approximations.
In this work, we consider the Kullback-Leibler divergence
as the distortion function and multivariate Gaussians for the
codes and the encoder.

5.4. Connections with Maximum Likelihood Mixture
Estimation.

Limited work has sought connections between Maximum
Likelihood Mixture Estimation (MLME) and computation
of the rate-distortion function. Banerjee et al. (2004) prove
the equivalence between these two problems for Bregman
distortions and exponential families. In this case and un-
der the assumption of constant variance for all mixture’s
components, learning the support set in RDFC corresponds
to learning the mixture means. For MLME on parametric
distributions, i.e., encoders, a straightforward way to lever-
age this connection is to define the “sample space” of the
MLME as the “parameter space” of encoder’s distribution

family. Similarly, training with a mixture (for the marginal)
VIB (Alemi et al., 2018) entails an MLME problem where
the data points (to be clustered) are latent samples drawn
from encoders. To get better insights, in Appendix C we
anatomize the loss function. As we will see in Table 2,
a full statistical description of encoders (instead of using
a finite–single in the experiment– number of its samples)
along with the proposed alternating minimization algorithm
that guides assignments to centroids during training, helps
DAB capture uncertainty exactly with a single forward pass.
From a theoretical standpoint, deriving rigorous connections
between the two problems would be interesting for future
work.

6. Experiments
6.1. Synthetic Example
Before we compare with other DUMs, we first need to
sanity-check the proposed model and learning algorithm.
Synthetic experiments are handy for this task since they
allow us to test the behavior of the model under different
conditions. In this work, we apply DAB to synthetic regres-
sion tasks. In Fig. 3, we visualize the predictive uncertainty,
i.e., the value of the distortion function in Eq. 14. We ver-
ify that as we move far away from the data, the model’s
confidence and accuracy decline. We consider two cases
of training datasets. Fig. 3a follows the original set-up
of Hernández-Lobato & Adams (2015). Fig. 3b is a harder
variant of the first problem (Foong et al., 2019) and a typical
failure case of many uncertainty-aware methods. Wilson
& Izmailov (2020) show that many methods end up being
overconfident in the area between the clusters of the training
datapoints. We provide details for the dataset generation
and the training setup in Appendix E.1.
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Table 2: OOD performance of baselines trained on the CIFAR-10 dataset. We consider two OOD datasets for distinguishing from
CIFAR-10 with varying levels of difficulty: SVHN (far OOD dataset) and CIFAR-100 (near OOD dataset). In bold are top results (within
standard error). The horizontal line separates ensembles from DUMs. Only methods with the same background color can be directly
compared with each other. The performance of all models is averaged over 10 random seeds. DAB outperforms all baselines in all tasks
with respect to all metrics. DA stands for distance aware. R indicates whether model has been/ can be applied to regression tasks. PR
indicates whether method can be applied to a pre-trained network.

Method DA R PR SVHN CIFAR-100
AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

Deep Ensemble of 5 (Lakshminarayanan et al., 2017) ✗ ✓ – 0.97 ± 0.004 0.984± 0.003 0.916± 0.001 0.902± 0.002
Deterministic (Zagoruyko & Komodakis, 2016) ✗ ✓ – 0.956± 0.004 0.976± 0.004 0.892± 0.002 0.88± 0.002

DDU (Mukhoti et al., 2023) ✓ ✗ ✗ 0.981± 0.002 0.966± 0.003 0.894± 0.001 0.901± 0.001
DUQ (Van Amersfoort et al., 2020) ✓ ✗ ✗ 0.940± 0.003 0.956± 0.006 0.817± 0.012 0.826± 0.006
DUE (Van Amersfoort et al., 2021) ✓ ✓ ✗ 0.958± 0.005 0.968± 0.015 0.871± 0.011 0.865± 0.011

SNGP (Liu et al., 2020; 2023) ✓ ✓ ✗ 0.971± 0.003 0.987± 0.001 0.908± 0.003 0.907± 0.002
vanilla VIB (Alemi et al., 2018) ✓ ✓ ✓ 0.715± 0.081 0.869± 0.039 0.663± 0.045 0.701± 0.034

DAB (ours) ✓ ✓ ✓ 0.986± 0.004 0.994± 0.002 0.922± 0.002 0.915± 0.002

Table 3: Accuracy and model size of OOD baselines. Although we use a narrow bottleneck (8-dimensional latent variables), the
accuracy of our model is not compromised compared to other deterministic uncertainty baselines. This is because 10 distributional codes
can sufficiently represent the training dataset without diminishing the regularization effect and distance awareness of the rate-distortion
constraint. More importantly, DAB can inject uncertainty awareness into the model with a minor model size overhead.

Method Accuracy ↑ # Trainable Parameters ↓
Deep Ensemble of 5 (Lakshminarayanan et al., 2017) 96.6% 182, 395, 970

Deterministic (Zagoruyko & Komodakis, 2016) 96.2% 36,479,194
DDU (Mukhoti et al., 2023) 95.9% 36,479,194

DUQ (Van Amersfoort et al., 2020) 94.9% 40,568,784
DUE (Van Amersfoort et al., 2021) 95.6% 36,480,314

SNGP (Liu et al., 2020; 2023) 95.9% 36,483,024
vanilla VIB (Alemi et al., 2018) 95.9% 36,501,042

DAB (ours) 95.9% 36,501,114

6.2. DAB for Out-of-Distribution Detection
To compare the uncertainty quality of different models, we
evaluate their performance in distinguishing between the test
sets of CIFAR-10 and OOD datasets. We consider two OOD
datasets of increasing difficulty: SVHN (Netzer et al., 2019)
(far OOD/ easy task) and CIFAR-100 (near OOD/ difficult
task). We compare DAB against a deterministic baseline, an
ensemble baseline, a VIB with a mixture marginal trained
with gradient descent, and the most competitive DUMs. All
approaches do not require auxiliary OOD datasets either
to train the models or to tune hyperparameters. In Table 2,
we also outline some high-level properties of these models.
For all methods, we use Wide ResNet 28-10 (Zagoruyko
& Komodakis, 2016) as the base network. DAB and VIB
are inserted right before output’s dense layer. For both, we
use 8-dimensional latent features. For DAB, we consider
k = 10 centroids. For VIB, we consider a mixture with 10
components. We use the Kullback-Leibler divergence as
the distortion function in Eq. 14. For fair comparisons, we
train the IB and the Gaussian Process models with a single
sample. Further training and evaluation configurations are
given in Appendix E.2.

As shown in Table 2, DAB outperforms all baselines in

terms of AUPRC and AUROC (the positive label in the
binary OOD classification corresponds to the OOD images).
We confirm that distances in distribution space are more
informative compared to Euclidean distances. In Table 3,
we report the accuracy and the size of the baselines. We note
here that the accuracy of our model is on par with that of
other DUMs. Importantly, DAB only minimally increases
the single network’s size while rendering it uncertainty-
aware. The additional parameters correspond to centroids’
parameters and DAB’s dense layers implementing the head
of the encoder.

In Figure 1, we visualize distances from the learned code-
book. The in-distribution, test datapoints that are correctly
classified lie within the statistical balls (Fig. 2c) defined
by codebook’s centroids and Dtrain. The in-distribution,
misclassified test datapoints are clearly separated from the
training support but closer to the codebook than the near
OOD. This, as we will see in the next section, qualitatively
justifies DAB’s strong calibration (Tables 4, 5). Lastly, near
OOD datapoints are closer to the codebook than far OOD
datapoints.

To qualitatively inspect the learning algorithm of Section 5.2,
in Fig. 4 we plot the number of test datapoints per class repre-
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Figure 4: Qualitative evaluation of encoders’ codebook. We visualize the number of CIFAR-10 test data points per class assigned to
each centroid during training. We assign a data point to the centroid with the smallest statistical distance from its encoder. Each centroid
progressively attracts data points of the same class. Moreover, all centroids are assigned a non-zero number of test datapoints. Therefore,
the centroids are useful for better explaining both train and previously unseen, test data points.
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sented by each centroid qκ(z;ϕ) in different training phases.
We note that the class counts refer to the true and not the
predicted class. As training proceeds, DAB learns similar
latent features for datapoints that belong to the same class
and pushes them closer to the same centroid. Certain cen-
troids, however, conflate test datapoints of different classes.
For example, a small number of test datapoints of class 3
(cat) are assigned to (are closest to) the centroid whose ma-
jority class is 5 (dog). Assignment to the wrong centroid
presages model’s misprediction for these datapoints. In con-
trast, we observed in an analogous figure using the training
data points that they are completely separated by the cen-
troids (the colormap displays only blue squares). However,
this might not be the case in training datasets containing
corrupted labels (Northcutt et al., 2021).

6.3. DAB for Misclassification Prediction
To further assess the quality of the proposed distance score
(Eq. 14), we evaluate DAB’s performance on misclassifi-
cation prediction (Corbière et al., 2019; Zhu et al., 2022).
Misclassification prediction is formulated as a binary classi-
fication task with the positive label indicating a classifier’s
mistake. We report the Calibration AUROC that was intro-
duced by Kivlichan et al. (2021) and later used by Postels
et al. (2022). As pointed out by Postels et al. (2022), the
ECE (Expected Calibration Error) is not the appropriate
metric for DUMs since their uncertainty scores are not di-
rectly reflected to the probabilistic forecast. Another benefit
of Calibration AUROC compared to ECE is that it cannot be
trivially reduced using post hoc calibration heuristics such
as temperature scaling (Guo et al., 2017). In contrast, Cali-
bration AUROC focuses on the intrinsic ability of the model
to distinguish its correct from incorrect predictions and the
ranking performance of its uncertainty score, i.e., whether
high uncertainty predictions are wrong. In Table 4, we first
evaluate DUMs’ performance in predicting misclassified
CIFAR-10 images. Here, we note that DAB bridges the gap
between baselines and costly ensembles.

To illustrate scalability, we focus on the large-scale Ima-
geNet dataset (Russakovsky et al., 2015) for the rest of this
section. We observe that previous DUMs either exhibit
training instability issues when scaled to larger datasets or
fall behind in calibration (Postels et al., 2022). For this ex-
periment, we use the ResNet-50 architecture. For DAB, we
instantiate the backbone network with the publicly available,
pre-trained weights (excluding the last dense layer of the
classifier). The ResNet-50 features are passed through three
fully connected dense layers that produce DAB’s input. We
consider two cases. First, we further fine-tune ResNet-50
alongside DAB. Next, we consider a setup similar to that
of Alemi et al. (2017) where gradients are not backpropa-
gated to the backbone network. This substantially decreases
the training time and the number of trainable parameters. In
both cases, we train DAB for 70 epochs. DAB uses a code-
book with 1000 entries and 80-dimensional latent features.
The implementation details are deferred to Appendix E.3.

We leverage DAB’s distance awareness and consider a vari-
ant of the learning algorithm presented in Section 5.2. In
particular, we modify the training objective in Eq. 11 to
encourage high uncertainty for the misclassified datapoints
in Dtrain. This is achieved by adding a max-margin loss
term (Eq. 35) in the objective at the gradient updates (Algo-
rithm 1) to push the misclassified datapoints in Dtrain away
from the codebook. The codebook is trained to represent
only the correctly classified training examples.9We notice
that:

penalizing high or small uncertainty (distance from the
codebook) for the training examples according to the classi-
fication outcome improves model’s calibration on the test
examples.

9This variant has no effect for the CIFAR-10 experiments. This
is because all models achieve very high training accuracy very
early, eventually reaching 100%, leaving no misclassified exam-
ples for the repulsive loss term.
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Table 4: Calibration AUROC of DUMs for misclassification prediction on CIFAR-10. We examine how well the model can predict it
will be wrong from its estimated uncertainty. The problem is framed as a binary classification task with the positive label indicating a
mistake. DAB closes the gap between DUMs and ensembles (Postels et al., 2022).

Method Uncertainty Description Calibration AUROC ↑
Deep Ensemble of 5 (Lakshminarayanan et al., 2017) Gibbs softmax entropy 0.951± 0.001

DDU (Mukhoti et al., 2023) Softmax entropy 0.632± 0.009
DUQ (Van Amersfoort et al., 2020) Euclidean distance (l2-norm) from centroid 0.889± 0.013
DUE (Van Amersfoort et al., 2021) Posterior variance 0.856± 0.026

SNGP (Liu et al., 2020; 2023) Dempster-Shafer uncertainty 0.897± 0.006
DAB (ours) Statistical distance (KL) from centroid 0.930± 0.003

Table 5: DAB’s performance on ImageNet-1K. DAB outperforms ensembles at predicting misclassifications. Moreover, it can better
distinguish ImageNet-O from ImageNet images. More importantly, it does so with significantly fewer trainable parameters. The
performance of all models is averaged over 4 random seeds.

Method Uncertainty Description Calibration AUROC ↑ OOD AUROC
ImageNet-O ↑ Accuracy ↑ # Trainable

Parameters
Deep Ensemble of 5 (Lakshminarayanan et al., 2017) Gibbs softmax entropy 0.861± 0.0004 0.642± 0.001 78.4± 0.06% 117, 672, 960

DAB with fine-tuned ResNet-50 (ours) Statistical distance (KL) 0.868± 0.0008 0.743± 0.004 76.1± 0.02% 36, 612, 328
DAB with pre-trained ResNet-50 (ours) Statistical distance (KL) 0.866± 0.0003 0.732± 0.004 74.71± 0.09% 13,077,736

For completeness, we also examine DAB’s performance on
the ImageNet vs ImageNet-O (Hendrycks et al., 2021) OOD
task. For the OOD experiments, we quantize all training
datapoints regardless the classification outcome. We report
only AUROC which is preferred in situations of highly
imbalanced OOD tasks (Pinto et al., 2022a) – ImageNet-O
has only 2, 000 OOD images.

In Table 5, we report performance against ensembles which
is the gold standard in calibration and OOD detection. As
we see, DAB has better calibration and OOD detection than
ensembles in both cases. We remark that applying DAB
without ResNet-50 fine-tuning does not substantially hurt its
calibration or OOD capability. The small performance gap
is attributed to the fact that the largest part of the encoder
is not regularized to stay close to the codebook. Finally,
we see that DAB nearly reaches the initial accuracy of 74.9
achieved by the pre-trained ResNet-50 10 like the standard
VIB (Alemi et al., 2017).

Additional Experiments. Due to space constraints, we
supplement the experiments in Appendix. We ablate DAB’s
hyperparameters in Appendix D.1. Appendix D.2 evalu-
ates DAB on corrupted CIFAR-10. Appendix D.3 provides
further qualitative evaluations of the learned codebook. In
Appendix D.4, we test DAB on OOD regression problems.

7. Limitations & Future Research
The main purpose of this work is to define and analyze
a more comprehensive notion of distance from the train-
ing data manifold under the auspices of information bottle-
neck methods. Although in the experiments we used the
Kullback-Leibler divergence, the proposed framework is
flexible and supports inference with alternative statistical

10https://keras.io/api/applications/

distances (Minka, 2005; Nielsen, 2023). Evaluating the im-
pact of diverse distance metrics on model’s performance is
a compelling avenue for future work.

DAB, like other DUMs, currently falls behind ensembles in
terms of accuracy. As we briefly discussed in Section 5.1, it
remains to be seen whether this can be fixed by redesigning
DAB’s decoder to make use of its distance score. In this
article, DAB was demonstrated primarily on image classi-
fication tasks. Applying DAB in different settings such as
natural language generation (Xiao et al., 2022) is another
important application area. In this work, we did not use
additional OOD datasets during training. DAB’s Outlier
Exposure (OE) (Hendrycks et al., 2019) by repelling OE
datapoints away from the codebook could further improve
OOD capability. Moreover, leveraging the majority vote
among data points within each centroid (Fig. 4) can enhance
the model’s ability to make accurate predictions, even when
faced with labels containing errors (Platanios et al., 2020).
Finally, analyzing DAB in concert with data augmentation
methods for enhancing the codebook for image datasets is
another interesting line of future research. We intend this
paper to offer a fresh perspective on uncertainty estimation
and we believe its empirical findings are an important step
toward future directions mentioned above.

8. Conclusion
We introduced DAB, a distance-aware framework for deep
neural networks (DNNs). We framed distance awareness as
a rate-distortion problem to learn a lossy compression of the
training dataset via a codebook of encoders. Experimental
analysis shows that DNNs equipped with distances from
this codebook outperform expensive baselines at OOD tasks
and are better calibrated.
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A. Preliminaries
A.1. Definitions

Definition A.1 (Bregman Divergence). Let f : S → R be a differentiable, strictly convex function of Legendre type on a
convex set S ⊆ Rd. The Bregman divergence Df : S × S → [0,∞) for any two points x,y ∈ S is defined as (Bregman,
1967):

Df (x,y) = f(x)− f(y)− ⟨x− y,∇f(y)⟩, (15)

where∇f(y) ∈ Rd denotes the gradient vector of f evaluated at y.

Definition A.2 (Dual Bregman Form of Exponential Family). Each probability density function for x ∈ X ⊆ Rd in the
exponential family Fψ = {pψ(·;ϕ) | ϕ ∈ Φ}, where Φ = dom(ψ) ⊆ Rp, has the form:

pψ(x;ϕ) = exp(⟨t(x),ϕ⟩ − ψ(ϕ))h0(x). (16)

t(x) is the natural statistic of the family. ϕ is called the natural parameter and Φ the natural parameter space. ψ(ϕ) is the
log-partition function of the family that normalizes the density function. h0(x) is a non-negative function that does not
depend on ϕ.

If t(x) is minimal, i.e., ∄ non-zero α ∈ Rp such that ⟨α, t(x)⟩ = c (a constant) ∀x ∈ X , and Φ is open, i.e., Φ = int(Φ),
then Fψ is called regular exponential family. In this case, it can be shown (Barndorff-Nielsen, 2014) that Φ is a non-empty
convex set in Rd and that ψ is a convex function. From Theorem 4 by Banerjee et al. (2005), the density of Eq. 16 can be
written as:

pψ(x;ϕ) = exp
(
−Dψ∗

(
t(x), t̂(ϕ)

))
fψ∗(x), (17)

where ψ∗ is the Legendre-conjugate of ψ and Dψ∗ the corresponding Bregman divergence (def. A.1). t̂(ϕ) is the expectation
of the sufficient statistic:

t̂(ϕ) ≜ EX [t(x)]. (18)

By differentiating
∫
pψ(x;ϕ)dx = 1 with respect to ϕ and by making use of Eq. 16 and Eq. 18, it can be proved that:

t̂(ϕ) = ∇ψ(ϕ). (19)

Finally, fψ∗(x) is a non-negative function that does not depend on ϕ:

fψ∗(x) = exp (ψ∗(t(x)))h0(x). (20)

Therefore, when we train by Maximum Likelihood Estimation (MLE) to learn ϕ, this term can be omitted from the objective
function. Eq. 17 is called the Bregman form of the exponential family (Eq. 16) and provides a convenient way to parametrize
the exponential family distribution with its expectation parameter (Eq. 18).

Definition A.3 (Scaled Exponential Family). Given an exponential family Fψ with natural parameter ϕ and log-partition
function ψ(ϕ) (Eq. 16), a scaled exponential family (Jiang et al., 2012) Fαψ with α > 0 has natural parameter ϕ̃ = αϕ and
log-partition function ψ̃(ϕ̃) = αψ(ϕ̃/α) = αψ(ϕ). In case Fψ is a regular exponential family, the Bregman form of the
scaled family is (Jiang et al., 2012):

pψ̃(x; ϕ̃) = exp
(
−αDψ∗

(
t(x), t̂(ϕ)

))
fαψ∗(x), (21)

where ψ∗ is the Legendre-conjugate of ψ. fαψ∗ is defined in Eq. 20 where we scale ψ∗ by α. Finally, the mean t̂(ϕ) of Fαψ
is the same with that of Fψ and is given in Eq. 18, Eq. 19.
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A.2. Variational Information Bottleneck
Alemi et al. (2017) derive efficient variational estimates of the mutual information terms in Eq. 1. The accuracy term is:

I(Z, Y ;θ) =

∫
log

p(y | z;θ)
p(y)

p(y, z;θ)dzdy.11 (22)

The decoder p(y | z;θ) in Eq. 22 is fully defined:

p(y | z;θ) =
∫
p(y|x)p(z|x;θ)p(x)

p(z;θ)
dx. (23)

Generally, Eq. 23 cannot be computed in closed-form. Moreover, it contains the intractable marginal p(z;θ):

p(z;θ) =

∫
p(z | x;θ)p(x)dx. (24)

Similarly, the regularization term is analytically intractable since:

I(Z,X;θ) =

∫
log

p(z | x;θ)
p(z;θ)

p(x, z;θ)dzdx. (25)

Variational estimates in a distributional family m(y | z;θ) 12 and q(z;ϕ) of Eq. 23, Eq. 24 minimize the Kullback-Leibler
divergences DKL(p(y | z;θ),m(y | z;θ)) and DKL(p(z;θ), q(z;ϕ)), respectively. Non-negativity of the Kullback-
Leibler divergence yields a lower bound of Eq. 22 and an upper bound of Eq. 25. Substituting these variational bounds
in Eq. 1 gives us the Variational Information Bottleneck (VIB) minimization loss:

LVIB = EX,Y,Z [− logm(y | z;θ)] + βEX [DKL(p(z | x;θ), q(z;ϕ))]. (26)

B. Learning Algorithm (Section 5.2 continued.)
DAB’s concrete learning algorithm is given in Algorithm 1. Each epoch (outer loop in Algorithm 1) consists of the four
alternating minimization steps presented in Section 5.2.

To render the update of π (Eq. 13) amenable to mini-batch optimization, we maintain i) a non-trainable tensor that holds the
current π ii) a moving average of the mini-batch marginals (Eq. 13). The moving average is updated at step 4 in Algorithm 1
such that at batch t of size B:

π0(κ) = 1/k, πt(κ) = γπt−1(κ) + (1− γ) 1
B

B∑
i=1

πxi
(κ). (27)

0 ≤ γ ≤ 1 is the momentum of the moving average. At the onset of step 4, the moving average is reset to the uniform
distribution. At the end of step 4, π is set to its moving average and is kept fixed throughout the rest of the steps, i.e., all
training datapoints use the same π.

We maintain two optimizers for the gradient updates ∇ϕLDAB and ∇θLDAB. The gradient descent updates in Algorithm 1
are written using constant learning rates ηθ , ηϕ. In practice, we can use any optimizer with adaptive learning rates. To make
sure that the gradients are not propagated through πx (Eq. 12), we apply a tf.stop_gradient operator when LDAB is
computed.

In this work, we use multivariate Gaussian distributions for centroids and encoders. In this case, the centroids’ parameters ϕ
correspond to the means and covariance matrices: ϕ = {µκ,Σκ}kκ=1 and the optimal solution has a closed form (Davis &
Dhillon, 2006). We empirically observed that using the closed-form update for the covariance matrix and gradient descent
for the means facilitates optimization and speeds up convergence. To make use of the closed-form solution for the covariance
matrix, we maintain non-trainable tensors holding current Σκ along with their moving averages. At the beginning of the
training, the centroids’s covariances are initialized to the identity matrix. The moving averages are updated in a way similar
to that of π (Eq. 27). On the onset of step 3 in Algorithm 1, the moving average is reset to the zero matrix and is updated
during the gradient updates ∇ϕLDAB. At the end of step 3, the codebook covariances are set to their moving averages
computed during this step.

11Note that in our problem, p(y), p(x), p(y | x) refer to our training dataset. Therefore, they are independent of θ.
12As in the main paper, we use θ to denote the joint set of parameters of both encoder and variational decoder.
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Algorithm 1: Optimization of Distance Aware Bottleneck
Inputs:

training data: Dtrain = {(xi,yi)}Ni=1

codebook size: k
statistical distance: D
hyper-parameters:

regularization coefficient β ≥ 0 (Eq. 11)
temperature α ≥ 0 (Eq. 12)

Outputs:
optimal parameters of encoder and decoder: θ∗

optimal codebook parameters: ϕ∗

marginal assignment probabilities: π∗
Initialize:

encoder p(z | x;θ)
decoder m(y | z;θ)
codebook {qκ(z;ϕ)}kκ=1

π, πxi
to uniform distribution

while not converged do
step 1:
Update decoder m(y | z;θ), encoder p(z | x;θ): θ ← θ − ηθ∇θLDAB (LDAB in Eq. 11)
step 2:
for i = 1, 2, . . . , N do

for κ = 1, 2, . . . , k do
πxi

(κ) = π(κ)
Zxi

(α) exp (−αD(p(z | x;θ), qκ(z;ϕ))) (Eq. 12)

end
end
step 3:
Update codes qκ(z;ϕ): ϕ← ϕ− ηϕ∇ϕLDAB (LDAB in Eq. 11)
step 4:
for κ = 1, 2, . . . , k do

π(κ) = 1
N

∑N
i=1 πxi

(κ) (Eq. 13)
end

end

C. VIB for Euclidean Clustering of Latent Codes
One way we can use the set of distributions {qκ(z;ϕ)}kκ=1 is to consider a mixture of k distributions for the marginal
q(z;ϕ) and trivially train it by gradient descent (Alemi et al., 2018). To better understand the role of each qκ(z;ϕ) during
optimization, we associate a discrete random variable Ẑ with Z. The value of Ẑ indicates the assignment of Z to a
component qκ(z;ϕ) of the mixture. We rewrite the upper bound of Eq. 2 in terms of Ẑ. The resulting decomposition
of Proposition 1 shows that the regularization term in the VIB (Eq. 28) encloses the objective of a fixed-cardinality rate-
distortion function (Eq. 5) under some assumptions. However, computation of Eq. 28 requires Monte-Carlo samples of Z
to assign an encoder to the mixture components. The regularization terms of VIB and DAB are identical for k = 1. The
rate-distortion formulation of Eq. 28 motivates the DAB objective (Section 5.1). It also serves as a conceptual step towards
the definition of a rate-distortion function acting directly on probability densities.

Proposition 1. Let the variational marginal q(z;ϕ) of Eq. 2 be a mixture of k distributions in Rd that belong to the scaled
regular exponential family (def. A.3) Fαψ with α > 0 and log-partition function ψ. Let t̂κ be the expected value of the
minimal sufficient statistic t(Z) of the family when Z ∼ qκ(z;ϕ). Let Ẑ be a (latent) categorical random variable following
distribution q(ẑ). We assume Ẑ is conditionally independent of X given Z, i.e., P (X,Y, Z) = P (X)P (Z | X)P (Ẑ | Z).

15



A Rate-Distortion View of Uncertainty Quantification

The upper bound of the VIB in Eq. 2 can be decomposed as:

EX
[
DKL(p(z | x;θ), q(z;ϕ))

]
=

−H(Z | X;θ)− EX,Z [log fψ∗(z)] + αEX,Z,Ẑ [Dψ∗(t(z), t̂ẑ(ϕ))] + EX,Z [DKL(q(ẑ | z;ϕ), q(ẑ))], (28)

where Dψ∗ is the Bregman divergence of Fψ , i.e., the Bregman divergence defined by the Legendre-conjugate function ψ∗ of
ψ. fψ∗ is a non-negative function that does not depend on the natural parameter ϕ.

Proof. We expand the upper bound in Eq. 2:

EX
[
DKL(p(z | x;θ), q(z;ϕ))

]
=∫

p(x)p(z | x;θ) log p(z | x;θ)dzdx−
∫
p(x)p(z | x;θ) log q(z;ϕ)dzdx. (29)

The first term of Eq. 29 is the negative conditional differential entropy of the encoder, i.e., −H(Z | X;θ). We will focus on
the second term of Eq. 29. For a fixed z:

log q(z;ϕ) = EẐ|z[log q(z;ϕ)]

= EẐ|z[log q(z;ϕ) + log q(ẑ | z;ϕ)− log q(ẑ | z;ϕ)]
= EẐ|z[log q(z, ẑ;ϕ)− log q(ẑ | z;ϕ)]
= EẐ|z[log q(z | ẑ;ϕ) + log q(ẑ)− log q(ẑ | z;ϕ)]. (30)

We first analyze the first term in Eq. 30. By definition of Ẑ, q(z | ẑ;ϕ) = qẑ(z;ϕ). Let t̂κ(ϕ) be the expected value of
t(Z) when Z is sampled from the κ–th component of the mixture: Z ∼ qκ(z;ϕ). Since qκ(z;ϕ) belongs to the regular
exponential family, its Bregman form (Eq. 17) is:

qκ(z;ϕ) = exp
(
−Dψ∗(t(z), t̂κ(ϕ))

)
fψ∗(z), (31)

where ψ∗ is the conjugate of the log-partition function ψ of the family, Dψ∗ is the Bregman divergence defined by ψ∗, and
fψ∗ given in Eq. 20. In general, we can consider a scaled exponential family with Bregman form (see def. A.3):

qκ(z;ϕ) = exp
(
−αDψ∗(t(z), t̂κ(ϕ))

)
fαψ∗(z), α > 0. (32)

We now look at the last two terms of Eq. 30:

EẐ|z[log q(ẑ)− log q(ẑ | z;ϕ)] = −DKL(q(ẑ | z;ϕ), q(ẑ)). (33)

By taking expectation of Eq. 30 with respect to p(x), p(z | x;θ) and using Eq. 32 and Eq. 33, we can rewrite Eq. 29:

EX
[
DKL(p(z | x;θ), q(z;ϕ))

]
=

−H(Z | X;θ)− EX,Z [log fψ∗(z)] + αEX,Z,Ẑ
[
Dψ∗(t(z), t̂ẑ(ϕ))

]
+ EX,Z

[
DKL(q(ẑ | z;ϕ), q(ẑ))

]
. (34)

When minimizing Eq. 34 with respect to θ, the Bregman term encourages encoder p(z | x;θ) that generates samples z
whose sufficient statistics are close to one of the means t̂κ in terms of D∗

ψ . This term, in turn, encourages:

1 encoders that collapse to a single atom t̂κ: q(κ | z;ϕ)⇝ 1. This is counterbalanced by the KL term of Eq. 34.

2 low-entropy encoders that generate almost deterministic sufficient statistics for its samples: t(z)⇝ t̂κ. The negative
entropy term in Eq. 34 helps avoid such degenerate solutions. A similar observation for the special case of a single Gaussian
q(z;ϕ) (note the KL term in Eq. 34 vanishes and Ẑ can be dropped in the second expectation in this case) following,
however, an entirely algebraic route, is also made by Hoffman et al. (2017). Here, we present an information-theoretic
perspective of this trade-off.
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Keeping everything but ϕ fixed, minimizing Eq. 29 over a finite number of sampled latent codes z is equivalent to MLE
with a mixture distribution. In the case of a Gaussian mixture, this is equivalent to soft K-means clustering in the latent
space in Rd. For distributions for which t(z) = z13, minimizing Eq. 28 with respect to ϕ amounts to computing the Rate
Distortion Finite Cardinality (RDFC) function (Eq. 5) with the Bregman distortion Dψ∗ (Banerjee et al., 2004). The support
Ẑ of Ẑ to be learned has cardinality k and corresponds to the sufficient statistic means Ẑ = {̂tκ}kκ=1

14. In our case, the
log-likelihood of latent codes sampled by the encoder is maximized instead. Moreover, the source (encoder) is not apriori
known but its parameters θ are trainable during optimization. Using the decomposition of Eq. 34, the first two terms can be
ignored since H(Z | X;θ) and log fψ∗(z) do not depend on ϕ.

D. Additional Experiments
D.1. Ablation Studies on CIFAR-10
In Table 6, we compare the OOD performance of DAB models when using other commonly-used OOD metrics. As expected,
the proposed distortion score, that is explicitly minimized for the training datapoints via the loss function in Eq. 11, yields
better OOD detection performance.

Table 6: DAB performance with alternative OOD scores. DKL refers to the Kullback-Leibler distortion of Eq. 14. H refers to
the entropy of the decoder’s classifier: H ≜ EY,Z|x[− logm(y | z;θ)]. Finally, pmax refers to the maximum probability of the
classifier: pmax ≜ argmaxc EZ|x[m(Y = c | z;θ)]. pmax and H are approximated by Monte Carlo with a single sample of Z. The
Kullback-Leibler divergence from the learned centroids is more sensitive to input variations rendering the distortion of Eq. 14 a better
indicator of an OOD input. Moreover, it is Monte Carlo sample-free for Gaussian encoders and centroids.

OOD score SVHN CIFAR-100
AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

DKL 0.986± 0.004 0.994± 0.002 0.922± 0.002 0.915 ± 0.002
H 0.964± 0.009 0.982± 0.005 0.891± 0.003 0.883± 0.003

1− pmax 0.959± 0.009 0.978± 0.006 0.889± 0.003 0.875± 0.003

In the rest of this section, we study the effect of the DAB hyperparameters, also listed in Table 12, on the OOD performance
of our model.

In Table 7, we do an ablation study on the RDFC cardinality k. We see that a larger number of centroids improves the quality
of the uncertainty estimates. However, further increasing the codebook size with k > 10 yields diminishing performance
benefits. Similar to Fig. 4, we sought to justify this model’s behavior via visual inspection of the codebook. We noticed that
when k > 10 some centroids are assigned to only a small number of training datapoints. This observation can serve as a
recipe for choosing the codebook size: albeit a larger codebook will not harm performance, unutilized entries indicate that a
smaller codebook can achieve similar quality for the model’s uncertainty estimates.

Table 7: Ablation study over codebook size k. A single Gaussian code q(z) does not discriminate well CIFAR-10 from the visually
similar datapoints of CIFAR-100. As we increase the number of centroids, DAB progressively becomes better at distinguishing these
datasets. DAB reaches competitive performance with a small number of 10 centroids. The performance remains roughly the same when
using a larger cardinality k > 10.

SVHN CIFAR-100
AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

k = 10 0.986± 0.004 0.994± 0.002 0.922± 0.002 0.915± 0.002
k = 5 0.968± 0.031 0.986± 0.012 0.912± 0.009 0.907± 0.007
k = 1

vanilla VIB (Alemi et al., 2017) 0.906± 0.052 0.958± 0.026 0.746± 0.023 0.764± 0.026

In Table 8, we study the effect of the temperature α (Eq. 12). We verify that α controls the strength of the statistical distance
when comparing a datapoint with the codebook. For small values of α, the model exhibits a uniformity-tolerance for the
datapoints that lie well beyond the support of the training dataset. On the other hand, the distribution πx (Eq. 12) becomes

13For example, for Gaussian N (µ,Σ) with constant and a priori known covariance matrix Σ, t(z) = z, ϕ = µ = t̂.
14We implicitly redefine Ẑ to take values in Ẑ = {̂tκ}kκ=1.
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sharper for larger values of α. A sharper distribution translates to a more informative centroid assignment for datapoint
x. Subsequently, an informative codebook helps the model to successfully mark the areas of the input distribution that is
familiar with.

Table 8: Ablation study over temperature α. With small values of α, the model fails to discriminate inputs successfully, which it
should be less confident about. Large values of α lead to a more concentrated assignment of the training datapoints to the centroids. This,
in turn, provides the model with more effective OOD scores that sufficiently penalize large distances from the codebook.

SVHN CIFAR-100
AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

α = 0.1 0.932± 0.038 0.972± 0.018 0.756± 0.031 0.776± 0.032
α = 0.5 0.958± 0.045 0.982± 0.019 0.878± 0.057 0.879± 0.043
α = 1.0 0.986± 0.004 0.994± 0.002 0.922± 0.002 0.915± 0.002
α = 2.0 0.989± 0.003 0.995± 0.001 0.924± 0.001 0.918± 0.002
α = 10.0 0.982± 0.005 0.991± 0.002 0.923± 0.002 0.916± 0.002

In Table 9, we vary the regularization coefficient β (Eq. 11). We see that the model achieves the best performance within
a range of β. For smaller values of β, the distortion term in Eq. 11 is disregarded. Therefore, the main network is not
restricted to producing encoders that can be well-represented by the codebook. For larger values of β, the training datapoints
get closely attached to the centroids. This results in statistical balls of small radius (Fig. 2c) effectively leaving out novel,
in-distribution datapoints.

Table 9: Ablation study over regularization coefficient β. The model is best performing within a range of values. Large values of β
correspond to small balls around the centroids (Fig. 2c) and vice-versa. The balls should be small enough to exclude OOD inputs but large
enough to include unseen, in-distribution points to which the model can generalize.

SVHN CIFAR-100
AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

β = 0.0001 0.925± 0.429 0.965± 0.02 0.70 ± 0.019 0.697± 0.02
β = 0.0005 0.98 ± 0.009 0.99 ± 0.005 0.917± 0.002 0.91 ± 0.003
β = 0.001 0.986± 0.004 0.994± 0.002 0.922± 0.002 0.915± 0.002
β = 0.005 0.985± 0.004 0.993± 0.002 0.921± 0.002 0.914± 0.002
β = 0.01 0.977± 0.01 0.988± 0.005 0.914± 0.002 0.907± 0.001

In Table 10, we are sweeping the bottleneck dimension. In Table 3, we see that 8-dimensional latent features can capture the
information needed for the CIFAR-10 classification task. Further increasing the bottleneck size leads to irrelevant features
that have no effect. On the other hand, smaller features disregard essential aspects of the input.

Table 10: Ablation study over bottleneck dimension. Larger latent features improve OOD capability until a performance plateau is
reached.

SVHN CIFAR-100
AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

dim(z) = 2 0.748± 0.03 0.797± 0.014 0.678± 0.014 0.59 ± 0.008
dim(z) = 4 0.974± 0.01 0.98 ± 0.004 0.877± 0.012 0.872± 0.008
dim(z) = 8 0.986± 0.004 0.994± 0.002 0.922± 0.002 0.915± 0.002
dim(z) = 10 0.983± 0.005 0.991± 0.003 0.924± 0.002 0.915± 0.001

Finally, the model was not sensitive to typical values, i.e. > 0.9, for the momentum γ.

D.2. DAB for detecting CIFAR-10 with noise corruptions
Table 5 shows the AUROC scores for the DAB of Section 6.2 on test CIFAR-10 versus test CIFAR-10 with common noise
corruptions (Hendrycks & Dietterich, 2019).
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Figure 5: DAB’s AUROC vs corruption intensity for common corruptions to test CIFAR. The shaded area corresponds to +/− one
standard deviation across 10 random seeds.
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D.3. Qualitative Evaluation of DAB on CIFAR-10 (Section 6.2 continued.)
In Fig. 6 and Fig. 7, we also investigate qualitatively the rest of the IB methods examined in Sections 6.2 and D.1 (Tables 2, 7).
Finally, Fig. 8 visualizes DAB’s calibration demonstrating that model’s accuracy negatively correlates with its uncertainty.

Figure 6: Qualitative evaluation with 5 entries. We visualize the number of test data points per class assigned to each centroid at the end
of three (first, middle, last) iterations of our alternating minimization algorithm (Algorithm 1). We notice that semantically similar classes
are assigned to the same code. For example, dogs (class 5) and cats (class 3) are both represented by centroid 3. Similar observations hold
for the pair of cars (class 1)/ trucks (class 9) and airplane (class 0)/ ships (class 8).
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Figure 7: Qualitative evaluation of a 10−component mixture marginal in the VIB trained with gradient descent. We visualize the
number of test data points per class assigned to each component at the end of three (first, middle, last) epochs when the mixture variational
marginal q(z;ϕ) and the rest of the network (encoder and decoder) are jointly trained via gradient descent (Alemi et al., 2018). We notice
that gradient descent conflates features of different classes. This observation can help explain the inferior performance of the IB gradient
descent method on OOD tasks (Table 2). Moreover, it justifies the need for guiding optimization through the alternating minimization
steps of Algorithm 1.
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We verify that misclassification of a test datapoint is signaled by its large distance from the codebook.

D.4. Out-of-Distribution Detection on UCI Regression Tasks
Currently, the bulk of uncertainty-aware methods is designed for and applied to image classification in supervised learning
settings. However, as shown by Jaeger et al. (2023), a wide range of tasks and datasets should be considered when evaluating
OOD methods. Moreover, there is an ongoing importance to effective uncertainty estimation for regression tasks, especially
in unsupervised learning scenarios. For example, in deep reinforcement learning, uncertainty quantification for the estimated
Q-values can be leveraged for efficient exploration (Lee et al., 2021). As already pointed out, DAB provides a unified notion
of uncertainty for both regression and classification tasks.

In Table 11, we test the OOD capability of our model when trained on the normalized UCI, Energy Efficiency
dataset (Markelle Kelly, 1998). As in the image classification tasks, the positive label corresponds to the OOD inputs.
The results were averaged across 10 runs. We contrast our model with ensemble methods. We see that DAB consistently
demonstrates OOD capability and outperforms 4-member ensembles on all OOD tasks (of varying difficulty). In Section E.4,
we provide the experimental details. Here, we comment that all centroids were assigned a roughly equal number of
datapoints indicating the need for codebook sizes larger than one (recall that DAB with a unit-size codebook corresponds to
the standard VIB (Alemi et al., 2017)).
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Figure 8: Calibration plot of DAB on CIFAR-10 test data. We qualitatively assess the proposed uncertainty score in terms of calibration.
We train 10 models with different random seeds. For each model, we find the 20 quantiles of the estimated uncertainty on test data. We
compute the accuracy for the datapoints whose uncertainty falls between two successive quantiles. We report the mean uncertainty and
accuracy along with one standard deviation error bars across the runs. We see that the accuracy is higher in the quantile buckets of lower
uncertainty.
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Table 11: DAB’s OOD performance on the UCI energy efficiency dataset. DAB can consistently and competitively solve a diversity of
OOD regression tasks.

OOD Dataset Model OOD Scores
AUROC ↑ AUPRC ↑

kin8nm DAB 0.982± 0.008 0.998± 0.001
Ensemble of 2 0.916± 0.025 0.992± 0.003
Ensemble of 4 0.977± 0.008 0.998± 0.001

concrete strength DAB 0.978± 0.011 0.988± 0.006
Ensemble of 2 0.898± 0.043 0.941± 0.028
Ensemble of 4 0.967± 0.02 0.979± 0.013

protein structure DAB 0.989± 0.017 1.0 ± 0.001
Ensemble of 2 0.875± 0.059 0.998± 0.001
Ensemble of 4 0.971± 0.018 0.999± 0.001

boston housing DAB 0.988± 0.008 0.988± 0.007
Ensemble of 2 0.888± 0.043 0.887± 0.047
Ensemble of 4 0.969± 0.028 0.967± 0.03

E. Implementation details
E.1. Implementation details for the synthetic regression tasks (Section 6.1)
For the example of Fig. 3a, we generate 20 training data points from the uniform distribution U [−4, 4]. The test data are
evenly taken in [−5, 5]. The targets are y = x3 + ϵ, where ϵ ∼ N (0, 9). We use a single centroid to represent the whole
dataset. We verify that the model’s confidence and accuracy decline as we move far away from the data. In Fig. 3b, we
stress test our model under a harder variant of the first problem. In this case, we create two clusters of training data points
sampled from U [−5,−2] and U [2, 5]. We use two codes.

We use a network with 3 dense layers. We apply DAB to the last one. The intermediate layers have 100 hidden units
and ELU non-linearity. We perform 1500 training iterations. We use a single encoder sample during training. The
optimizer of both the main network and the centroids are set to tf.keras.optimizers.Adam with initial learn-
ing rates ηθ = 0.001 and ηϕ = 0.01 respectively. The rest of the hyperparameters are set to the default values of
tf.keras.keras.layers.Dense. Regarding the parametrization and initialization of encoders and centroids, we
follow the setup described in Section E.2.
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In Table 12, we provide the hyperparameters related to DAB. Note that the dataset for these tasks consists of only 20
datapoints. Therefore, we can use the whole dataset at each gradient update step. In this case, there is no need to maintain
moving averages for the update of the assignment probabilities and covariance matrices.

Table 12: A summary of DAB hyperparameters for the synthetic regression tasks.

Hyperparameter Description Value

β Regularization coefficient (Eq. 11) 1.0
α Temperature (Eq. 12) 5.0

dim(z) Dimension of latent features 8

k Number of centroids
1 for Fig. 3a
2 for Fig. 3b

γ Momentum of moving averages (Eq. 27) 0.0

E.2. Implementation details for the CIFAR-10 experiments (Tables 2, 4, 3, Sections D.3, D.1)
All models are trained on four 32GB V100 GPUs. The per-core batch size is 64. For fair comparisons, we train all models for
200 epochs. This number may deviate from the suggested setup of some baselines such as RegMixup (Pinto et al., 2022b)
or DDU (Mukhoti et al., 2023) which are originally trained for 350 epochs. For the IB and GP methods, we backpropagate
through a single sample.

DAB is interleaved between the Wide ResNet 28-10 features (right after the flattened average pooling layer) and the last dense
layer of the classifier. In this experiment, we use a full-covariance multivariate Gaussian for the encoder and the centroids.
The encoder’s network first learns a matrix S as S = U

√
Λ. U is a unitary matrix. Λ is a positive definite, diagonal matrix.

U and Λ are computed from the SVD decomposition of a symmetric matrix. To enforce positive definiteness of Λ with
small initial values, we transform its entries by softplus(λ− 5.0). A similar transformation was used by Alemi et al.
(2017). Finally, the covariance matrix is given by: Σ = SST .

We train the means of the centroids using tf.keras.optimizers.Adam(learning_rate=1e-1). Only for the
case k = 1 in Table 7, we used tf.keras.optimizers.Adam(learning_rate=1e-3).The centroid means are
initialized with tf.random_normal_initializer(mean=0.0,stddev=0.1). For the hyperparameters that
are not related to the DAB, we preserve the default values used in:
https://github.com/google/uncertainty-baselines/blob/main/baselines/cifar/deterministic.

py.

Table 13: A summary of DAB hyperparameters for the CIFAR-10 classification tasks.

Hyperparameter Description Value

β Regularization coefficient (Eq. 11) 0.001
α Temperature (Eq. 12) 1.0

dim(z) Dimension of latent features 8
k Number of centroids 10
γ Momentum of moving averages (Eq. 27) 0.99

E.3. Implementation details for the ImageNet-1K experiments (Table 5)
All models are trained on four 48GB RTX A6000 GPUs. The per-core batch size is 256. We initialize the network with the
weights of a pre-trained ResNet-50 network15. We train DAB only for 70 epochs.

The ResNet-50 features (without including the fully-connected layer at the top of the network) are first passed through
three fully connected layers, each with 2048 units and ReLU activation. We add a residual connection between the first
and last dense layer before DAB’s input. In this experiment and due to the higher dimension of the latent features, we
use diagonal multivariate Gaussians for the encoder and the centroids. The encoder’s scale matrix is given by S =

15tf.keras.applications.resnet50.ResNet50

22

https://github.com/google/uncertainty-baselines/blob/main/baselines/cifar/deterministic.py
https://github.com/google/uncertainty-baselines/blob/main/baselines/cifar/deterministic.py


A Rate-Distortion View of Uncertainty Quantification

diag(softplus(o− 5.0)), where o are the encoder’s outputs corresponding to the covariance. The covariance matrix is
given by: Σ = SST . Finally, we use Eq. 9 of Davis & Dhillon (2006) to update the codebook’s covariance matrices where
only the diagonal entries are computed.

To improve model’s calibration, we add a max margin-loss term in the objective function of Eq. 11 for the misclassified
datapoints:

ℓ(x) = max(0,Ulb − uncertainty(x)). (35)

uncertainty(x) is defined in Eq. 14. This term encourages higher model’s uncertainty for the mispredicted training
datapoints. In the experiment, we set the uncertainty lower bound as Ulb = 100. Moreover, only the correctly classified
training examples are quantized by the codebook (Eq. 8). For the OOD experiments, we quantize all training datapoints
regardless the classification outcome. Therefore, the loss term in Eq. 35 is omitted.

Table 14 provides DAB’s hyperparameters when we backpropagate to ResNet-50. Table 15 provides DAB’s
hyperparameters when the ResNet-50 weights are frozen during training. In the first case, the main network
is trained using tf.keras.optimizers.SGD(learning_rate=1e-1). In the second case, encoder’s
dense layers and the decoder are trained using tf.keras.optimizers.SGD(learning_rate=5e-2).
We train centroids’ means using tf.keras.optimizers.Adam. The centroid means are initialized with
tf.random_normal_initializer(mean=0.0,stddev=0.1). For the rest of the hyperparameters, we preserve
the default values used in:
https://github.com/google/uncertainty-baselines/blob/main/baselines/imagenet/

deterministic.py.

Table 14: Hyperparameters for DAB with ResNet-50 fine-tuning for the ImageNet-1K classification tasks (Table 5).

Hyperparameter Description Value

ηϕ Codebook’s learning rate 0.4 for OOD
0.1 for Calibration

β Regularization coefficient (Eq. 11) 0.005 for OOD
0.01 for Calibration

α Temperature (Eq. 12) 2.0
dim(z) Dimension of latent features 80
k Number of centroids 1000
γ Momentum of moving averages (Eq. 27) 0.99

Table 15: Hyperparameters for DAB without ResNet-50 fine-tuning for the ImageNet-1K classification tasks (Table 5).

Hyperparameter Description Value

ηϕ Codebook’s learning rate 0.4 for OOD
0.1 for Calibration

β Regularization coefficient (Eq. 11) 0.0025 for OOD
0.02 for Calibration

α Temperature (Eq. 12) 2.0
dim(z) Dimension of latent features 80
k Number of centroids 1000
γ Momentum of moving averages (Eq. 27) 0.99

E.4. Implementation details for the UCI regression experiments (Section D.4)
The optimizer of the codebook was set to tf.keras.optimizers.Adam(learning_rate=1e-1). The architec-
ture consists of an MLP network with one hidden layer of dimension 50 and ReLU nonlinearity. The exact backbone
architecture along with the hyperparameters that are not related to the DAB were kept the same and can be found here:
https://github.com/google/uncertainty-baselines/tree/main/baselines/uci.
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As for the rest of experiments, we applied DAB between the penultimate and output layer of the architecture. Regarding the
parametrization and initialization of encoders and centroids, we follow the setup described in Section E.2. Table 16 reports
the DAB hyperparameters used for this task.

Table 16: A summary of DAB hyperparameters for the UCI regression tasks.

Hyperparameter Description Value

β Regularization coefficient (Eq. 11) 0.001
α Temperature (Eq. 12) 1.0

dim(z) Dimension of latent features 4
k Number of centroids 2
γ Momentum of moving averages (Eq. 27) 0.99
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