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ABSTRACT

Sparse Autoencoders (SAEs) have emerged as a popular solution for extracting in-
terpretable features from language model activations, enabling mechanistic under-
standing by decomposing polysemantic neurons into sparsely activated dictionary
components. However, existing SAE designs suffer from deterministic, activa-
tions that starve gradients to “dead” components, and produce uncalibrated coef-
ficients that provide no meaningful notion of uncertainty. To address these limita-
tions, we introduce Probabilistic TopK SAEs, a novel approach that augments the
TopK autoencoder with probabilistic gating through the binary Concrete distribu-
tion. This stochastic sampling helps mitigate gradient starvation to dead neurons
while producing coefficient magnitudes that are more correlated with the confi-
dence of feature presence. Empirical experiments with GPT-2 and Qwen3 shows
that our method achieves consistent Pareto improvements over the baselines in
high sparsity settings (small number of activated features) while maintaining a
larger set of alive dictionary features. Further, we show that the coefficients mag-
nitude from our approach exhibit stronger correlation between activation strength
and interpretability scores, resulting in more faithful explanations for the neurons.

1 INTRODUCTION

Mechanistic interpretability in NLP aims to understand how language models transform inputs into
outputs through their learned representations and circuits (Olah et al., 2020; Bereska & Gavves,
2024). One fundamental challenge is due to Superposition (Elhage et al., 2022), namely the fact
that language models learn to represent more features than the number of neurons by encoding
each feature as a linear combination of neurons, allowing models to compress a large amount of
information into a limited parameter space. This compression leads to polysemantic neurons, where
individual neurons can respond to multiple different features depending on the context, making
direct interpretation of neuron activations extremely challenging.

Sparse Autoencoders (SAEs) (Bricken et al., 2023; Cunningham et al., 2024; Rajamanoharan et al.,
2024a; Gao et al., 2025) have recently emerged as a promising approach to this problem. They learn
sparse decompositions of model activations using an overcomplete dictionary of features–where
the number of dictionary elements greatly exceeds the input dimension–such that each disentan-
gled feature aligns with a single concept (Shu et al., 2025). This allows SAEs to extract a larger
set of monosemantic neurons that can be isolated for interpretation through sparsity enforcement.
For example, the L1 penalty can be applied in conjunction with the ReLU activation which pushes
small coefficients toward zero (Cunningham et al., 2024; Rajamanoharan et al., 2024a), while the
TopK activation selects only the K largest pre-activation values and sets all others to zero, guaran-
teeing exactly K active features per input and allows linear scaling to very large models (Gao et al.,
2025). The development of SAEs has enabled significant advancements in mechanistic interpretabil-
ity, allowing the identification of interpretable features across multiple scales and layers of language
models (Templeton et al., 2024; Lieberum et al., 2024) with successful downstream applications in
circuit discovery (Marks et al., 2025) and model steering Bayat et al. (2025).

Arguably, one drawback of the previously proposed sparsity-enforcing methods is that they often
produce deterministic, uncalibrated activations, which are brittle to early “winner-take-all” dy-
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namics. The main culprit seems to be that existing sparsity constraints excessively starve gradients
of non-selected units (e.g., ReLU, TopK), with features that start slightly less aligned with the data
being further suppressed and never recovering. Additionally, while coefficient magnitudes are used
to determine feature usage, these values do not provide any meaningful notion of uncertainty.
This is due to the fact that efficient sizes are scale-dependent and can be arbitrarily rescaled through
encoder–decoder weight trade-offs. For example, if a decoder column is multiplied by a constant α,
the corresponding encoder row can be divided by α with no change to the reconstruction error. As a
consequence, the magnitude offer no information that reflects the confidence in feature selection.

To address these two key limitations, in this paper, we propose Probabilistic TopK SAE, which
augments the standard TopK autoencoders (Makhzani & Frey, 2014) with Binary Concrete gates
(Maddison et al., 2017; Louizos et al., 2018). The stochasticity during training helps reduce the
invariance to rescaling by introducing an probability distribution over each dictionary component.
Moreover, stochastic gating also mitigates the “winner-take-all” collapse by reducing the preva-
lence of dead units. By annealing the temperature of the Binary Concrete distribution, the model
smoothly transitions from exploratory, probabilistic feature usage early in training to sharper, near-
deterministic selection at convergence. This yields a larger and more balanced set of alive features
while preserving strong reconstruction performance, yielding Pareto improvement in the sparsity-
reconstruction frontier.

To demonstrate the effectiveness of our method, we evaluate Probabilistic TopK SAE on the residual
stream activations of GPT-2 (Radford et al., 2019) and Qwen3-0.6B (Yang et al., 2025). Across
both models, we find our proposal to be a Pareto improvement over the baselines through better
reconstruction fidelity at each sparsity level, while providing producing activation magnitudes that
are more correlated with the presence of the underlying features. To justify our design, we perform
detailed ablation studies over individual model components to understand where the performance
gain come from, while performing an exploratory analysis of different temperature values.

In short, our contributions can be summarized in threefold:

1. We introduce the Probabilistic TopK SAE, a modification to the TopK SAE architecture
that integrates input-dependent Binary Concrete gates prior to the Top-K mask to enable
stochastic feature selection during training (Section 3).

2. We show that Probabilistic SAEs Pareto improve the sparsity and reconstruction fidelity
trade-off over the baselines, especially in high sparsity levels (Section 4.2).

3. We demonstrate improved calibration between activation magnitudes and feature presence
by evaluating how well features grouped by magnitude bins align with automatic inter-
pretability scores (Section 4.3).

2 PRELIMINARIES

In this section, we summarize the key concepts and notations necessary to understand existing Sparse
Autoencoders (SAE) architectures and evaluation methods. We follow notation broadly similar to
Bricken et al. (2023) and Rajamanoharan et al. (2024a).

Motivated by the Superposition Hypothesis (Elhage et al., 2022), SAEs were proposed to sparsely
decompose the model’s internal activations x ∈ Rn as a linear combination of feature directions:

x̂ = x0 +

M∑
i=1

fi(x)di. (1)

From Equation 1, the encoder f(x) ∈ RM , where M ≫ n, is a sparse vector of coefficients that
encodes the feature presence in the input activation x. The reconstructed activation x̂ can then be
expressed as a linear combination of decoder dictionary of feature directions di ∈ Rn.

2.1 RELU SAE

Earlier works (Bricken et al., 2023; Cunningham et al., 2024) used the ReLU activation to ensure
that only nonnegative values pass through. The ReLU operation ensures non-negativity and the
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L1 penalty on coefficients c encourages sparsity by shrinking small activations toward zero (Equa-
tion 2).

f(x) = ReLU(Wencx− bdec),

x̂ = Wdecf(x) + bdec,
(2)

The SAE learns to accurately reconstruct the activations by minimizing the Mean Squared Error
(MSE) between the input x and output x̂, where the trade-off between reconstruction accuracy and
sparsity can be adjusted through hyperparameter λsparsity, which controls the strength of the sparsity
prior (Equation 3).

L = ∥x− x̂∥22 + λsparsity∥a∥1, (3)

2.2 TOPK SAES

More recently, TopK SAEs (Gao et al., 2025) have emerged as an alternative approach that directly
controls sparsity using the TopK activation function (Makhzani & Frey, 2014). Rather than relying
on soft thresholding via ReLU and L1 regularization, TopK SAEs deterministically select the K
largest pre-activation values for each example (Equation 5).

a = f(x) = TopK(Wencx+ benc), (4)
x̂ = Wdeca+ bdec. (5)

The training objective is simply the reconstruction loss L = ∥x − x̂∥22. Due to the precise control
over the sparsity level along with the elimination of tuning an L1 coefficient λ, the TopK SAE has
been successfully scaled up to large LLMs with millions of dictionary features while outperforming
ReLU autoencoders on the sparsity-reconstruction frontier (Gao et al., 2025). Despite these benefits,
TopK SAEs still suffer from fundamental limitations that stem from their deterministic selection
mechanism, where gradient starvation prevents dead features from recovering, resulting in a “rich-
get-richer” dynamic where early winners monopolize gradient updates.

2.3 EVALUATION

Due to the absence of ground truth labels, most studies focus on the intrinsic quality of SAEs based
on the intended behaviors (Shu et al., 2025). A natural evaluation assess the reconstruction accuracy
and sparsity rate trade-off on a Pareto curve, as these properties are explicitly enforced in the training
loss. In particular, reconstruction accuracy can be measured through the Mean Squared Error (MSE)
between the input and reconstructed activated, or Explained Variance (Karvonen et al., 2025), which
measures how much variance in the original data is retained after the SAE reconstruction. On the
other hand, sparsity rate can be measured through the L0 rate by counting the number of nonzero
activations per input. Additionally, another metric to consider is the number of alive dictionary
features. Since SAEs with high fraction of dead features represent unused model capacity which
can otherwise be used to identify rare but important concepts.

Since the primary goal for SAEs is to enhance interpretability by disentangling LLM activations into
meaningful features, the interpretability of SAEs features directly measures their quality through
applicability. This can be effectively achieved through automatic interpretability scores, where a
LLM is used to generate explanations for SAE features based on input snippets that activates the
corresponding neurons. The quality of the explanations is then measured by whether it captures the
behavior of the neuron on other text snippets. For example, Bills et al. (2023) used GPT-4 to predict
the activations of the neuron in a given context given the generated explanation. The interpretation
is then scored by how much the simulated activations correlate with the true activations. In our
experiments, we adapt the Detection score from a recently proposed evaluation pipeline Paulo et al.
(2025), which demonstrated a higher correlation with human judgment in explanation quality.

3 PROPOSAL

Our proposal augments the TopK SAE, which has been successfully scaled up to LLMs with millions
of dictionary features through a controlled budget, by placing Binary Concrete gates prior to the
TopK operation. The overview of our approach is presented in Figure 1.
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Figure 1: Overview of our proposed Probabilistic TopK SAE architecture. LN denotes the Layer
Normalize layer. The samples z from the Binary Concrete gates are combined with the scaled pre-
action magnitudes as scores for the TopK selector.

3.1 PROBABILISTIC GATING

The binary concrete distribution Maddison et al. (2017) is a continuous relaxation of the
Bernoulli random variable. It enables stochastic gating during training by adding Gumbel noise
u ∼ Uniform(0, 1) to the log-odds parameter logα, and passing the result through the sigmoid
function σ.

p(α) = σ

(
logα+ log u− log(1− u)

β

)
(6)

In Equation 6, β is the temperature parameter to control the softness of the approximation. This
mechanism allows for the stochastic exploration of binary decisions while remaining amenable to
gradient-based optimization. Originally proposed for learning sparse neural networks via discrete
parameter selection (Louizos et al., 2018), we adapt the binary concrete distribution for learning
input-dependent probabilistic gates to perform context-specific feature selection in sparse dictionary
learning.

3.2 PROBABILISTIC TOPK SAE

Our proposed model extends the standard TopK Sparse Autoencoder (SAE) by introducing proba-
bilistic gating through the binary concrete distribution. Given an input activation vector x ∈ Rn, the
encoder first computes the pre-activation vectors a ∈ RM by first centering the input with decoder
bias bdec. We then apply layer normalization to the pre-activations to stabilize the subsequent gating
process by preventing large-magnitude activations from dominating the Binary Concrete sampling
(Equation 7).

a = Wenc(x− bdec),

z = σ

(
LayerNorm(a) + log u− log(1− u)

β

)
.

(7)

To reduce the influence of random noise from the stochastic gating, we then compute a combined
score s that incorporates both the probabilistic gate samples z and the absolute magnitudes from
deterministic pre-activations a. Here, we use a hyperparameter λmag to control the influence from
the deterministic magnitude. In practice, we set λmag to a extremely small value. The combined
score s is then used to compute a binary mask m through the TopK operation. Finally, this masked
activation is passed through the decoder to produce the final reconstructed activation x̂ ∈ Rn

(Equation 8). During inference, we compute the sigmoid function without Gumbel noise such that
z = σ

(
LayerNorm(a)/β

)
.

s = z + λmag|a|

x̂ = Wdec(m⊙ a) + bdec, where mi =

{
1 if si ∈ TopK(s)
0 otherwise

(8)

The training objective is the standard mean squared error (MSE) between input and reconstructed
activations LMSE = ∥x− x̂∥22. Our formulation mitigates the “winner-take-all” collapse by enabling
the model to stochastically explore more feature during training, while enforcing sparsity constraint
through TopK gating. The overview of our proposal in presented in Figure 1.
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Figure 2: Reconstruction vs. sparsity Pareto curve for layer 8 of GPT-2 small. Probabilistic TopK
has a better reconstruction-sparsity trade-off than other activation functions.

3.3 ANNEALING SCHEDULE

To balance exploration and stability in feature selection, we anneal the temperature parameter β of
the binary concrete distribution over the course of training t ∈ [0, T ]. Initially, a higher β encourages
the gates to remain stochastic and exploratory, allowing the model to sample a diverse set of features
and avoid premature convergence. As training progresses, β is exponentially decayed, making the
gates increasingly sharp and binary: βt = β0 · (βT /β0)

t/T . This gradual transition ensures stable
feature selection at convergence.

4 EXPERIMENTS

4.1 SETTINGS AND BASELINES

Following prior studies (Gao et al., 2025), we perform experiments by applying SAEs on the residual
streams of GPT-2 (Radford et al., 2019) and Qwen3-0.6B (Yang et al., 2025). We train SAEs on
OpenWebText (Gokaslan & Cohen, 2019) and FineWeb (Penedo et al., 2024) datasets for GPT-2
and Qwen, respectively. All experiments are trained with a context length of 1024. We subtract
the mean over the hidden dimension and normalize to all inputs to unit norm, prior to passing to
the autoencoder. During training, we gradually anneal the temperature β from 5.0 to 1e−4 using a
exponential decay after the initial warm-up steps. Detailed hyperparameter settings are described in
Appendix A.

For comparison, we include three baselines SAE: the standard ReLU SAE described in subsec-
tion 2.1 (Bricken et al., 2023; Cunningham et al., 2024), TopK SAE (Gao et al., 2025) (subsec-
tion 2.2), and Gated SAE (Rajamanoharan et al., 2024a) that separates the computation of magni-
tude and activation detection using separate affine transformations. Following Gao et al. (2025), we
apply SAEs on a layer near the end of the network, which should contain more meaningful features
without being specialized for next-token predictions. Specifically, we use layer 8 for GPT-2, and
layer 26 for Qwen3.

4.2 PARETO PERFORMANCE

From Figure 2 and Figure 3, we see that our proposed Probabilistic TopK SAE achieves a Pareto
improvements over the TopK SAE baselines across all K. This is more pronounced in the high
sparsity (i.e., K = 4, 8) settings, where our model significantly outperforms the baselines in recon-
struction accuracy. A key benefit of our design is the use of an initially high temperature parameter
(β), which encourages the model to explore a broader range of dictionary components during early
training. This exploratory phase prevents premature commitment to suboptimal feature subsets and
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allows the autoencoder to discover a more diverse set of candidate features. As training progresses,
β is gradually annealed, shifting the model from exploration to exploitation and enabling it to con-
verge on sparse, high-quality representations that preserve reconstruction fidelity even at very low
K. However, we do see a diminished benefit at lower sparsity level (i.e., K = 32, 64), where explo-
ration becomes less important for the model as we allow more selections through the TopK selector,
this is especially pronounced at K = 64 (Figure 3), where it is outperformed by Gated SAE in
reconstruction accuracy.

Figure 3: Reconstruction vs sparsity Pareto curve for layer 26 of Qwen3-0.6B. Probabilistic TopK
has a better reconstruction-sparsity trade off than Top-K and ReLU, and is comparable to Gated SAE
at lower sparsity levels.

We examine the additional benefits of keeping dictionary components alive during training through
Figure 4, which highlights the ability of our model to maintain a high number of alive dictionary
components during training. If a large number of features switch off during early training, the
model’s effective capacity is reduced, meaning it has fewer basis functions to represent the data
(Bloom, 2024). This can lead to an incomplete representation of the input space and higher recon-
struction errors for patterns that lack a dedicated feature. Therefore, maintaining high dictionary
utilization (i.e., keeping most features “alive”) is crucial for good reconstruction performance: a
larger pool of active features enables broader exploration and helps maintain accuracy under the
K-sparsity constraint.

Figure 4: Number of alive dictionary components during training for TopK and Probabilistic TopK
SAEs for layer 8 of GPT-2 (K = 8, 16, 32). An identification trend is found on layer 26 of the
Qwen3 model (K = 16, 32, 64) in Figure 8 of Appendix B.
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4.3 AUTOMATIC INTERPRETABILITY

To evaluate the interpretability of dictionary components and measure the correlation between ac-
tivation magnitude and interpretability, we perform automatic interpretability using the detection
method provided by Paulo et al. (2025), where we stratify neuron activations into percentile buckets
and measuring interpretability scores within each stratum. Specifically, we select runs with simi-
lar sparsity rate (i.e., L0) and divide each neuron’s activation distribution into 5 percentile buckets.
We then generate separate explanations from examples in each activation bucket before scoring the
explanation from each bucket.

Figure 5: Mean interpretability scores are plotted against activation percentile buckets for four SAE
variants trained on GPT-2 small (layer 8). Error bars indicate 95% confidence intervals computed
from 150 randomly sampled neurons. We compare methods by choosing runs with similar L0 by
including Probabilistic TopK (K = 8, 16), baseline TopK (K = 8, 16), ReLU (λsparsity = 30, 20,
and Gated SAE (λsparsity = 0.09, 0.06). Detailed interpretability scores is presented in Appendix C.

In Figure 5, we present the calibration curves showing interpretability scores as a function of activa-
tion percentile, where we find that our Probabilistic TopK achieves highest correlation (r = 0.540
for K = 8, and r = 5.559 for K = 16) as well as the highest interpretability score for neurons in
the top 20%. The strong calibration of our proposed methods suggests that the probabilistic gating
strengthens the relationship between a neuron’s activation strength and its confidence to possess the
underlying feature. This property allows the better sampling of activations for explanations as well
as implications to improved downstream performance such as circuit discovery and model steering.

5 ANALYSIS

5.1 ABLATION STUDY

To justify our design choices, we conduct comprehensive ablation studies across different sparsity
levels (K = 8, 16, 32) on GPT-2. We compare our proposed model (Section 3) with the following
variants:

• Top-K: Described in Section 2.2, standard Top-K SAE without probabilistic gating.

• w/o Magnitude: Removes the magnitude from scoring, this is equivalent to setting λmag =
0, such that s = z (Equation 8). This variant eliminates the contribution from deterministic
pre-activation values.

• w/o LayerNorm: Removes layer normalization layer prior to the binary concrete operation
(Equation 7).

• Sigmoid Gate: Replaces Binary Concrete with sigmoid gates (Equation 7), this variant
eliminates the probabilistic attributes from learning.
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Figure 6: Ablation studies on Layer 8 of GPT-2 (K = 8, 16, 32) for the 3 variants include our full
model and the TopK SAE baseline without any additional augmentations.

From the results in Figure 6, we see that scoring without magnitude contributions (w/o Magnitude)
performs significantly worse than all other variants. While solely using z allow many features to
be sampled occasionally, it does not allow the exploitation of small differences in feature alignment
with the input, leading to noisy selection and weaker reconstruction quality. Even for very small
λ = 1e−4, this term biases selection enough to select features that are well-aligned with the cur-
rent input, leading to better reconstruction fidelity. We also find that replacing the Binary Concrete
with standard sigmoid (Sigmoid Gate) degrades reconstruction performance in high-sparsity settings
(K = 8, 16). When K is small, the TopK operator is highly selective where small differences deter-
mine which features survive. Since the function lacks stochasticity, it tends to favor a small set of
dictionary components, which leads to a suboptimal reconstruction without the exploratory behavior
of the Binary Concrete. Lastly, it’s worth mentioning that removing layer normalization layer (w/o
LayerNorm) does not show significant performance drop, indicating that additional efficiency can
be gained by removing the extra parameters associated with the affine transformation.

5.2 TEMPERATURE VALUES

Finally, we experiment with different temperatures values to assess its impact on the reconstruction
fidelity by running (β ∈ {0.5, 1.0, 5.0, 10.0}) in GPT-2. From the results illustrated in Figure 7,
we find that reconstruction quality is highly sensitive to the temperature parameter, particularly at
low sparsity levels. At K = 8, increasing β from 0.5 to 5.0 reduces MSE by approximately 27%
(from 5.83 to 4.25 on layer 10). However, the benefits plateau beyond β = 5.0, with minimal
improvements observed at β = 10.0. The temperature effect diminishes as sparsity increases. At
K = 32, the performance gap between β = 0.5 and β = 5.0 narrows significantly, suggesting
that higher sparsity naturally provides more gradient paths, reducing the importance of exploration
through stochastic gating. In high sparsity settings, temperature acts as a regularizer that prevents
premature feature specialization.

6 RELATED WORK

SAEs for Language Model Interpretability Situated within the field of mechanistic interpretabil-
ity, Sparse Autoencoders (SAEs) encourage localized, sparse activations, yielding interpretable la-
tent features. They have been proposed as a means to explain model behavior across the full training
distribution and have been recently applied to language models (Sharkey et al., 2022; Bricken et al.,
2023; Cunningham et al., 2024). Following the standard architecture with ReLU activation (Bricken
et al., 2023), more recent work has proposed numerous improvements to the original design: refin-
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Figure 7: Pareto curve for different temperatures values (β = 0.5, 1, 5, 10) on Layer 8 of GPT-2
(K = 8, 16, 32).

ing architecture (e.g., Gated SAE, Switch SAE, Top-K gating (Rajamanoharan et al., 2024a; Mudide
et al., 2024; Gao et al., 2025)), activation functions (e.g., JumpReLU (Rajamanoharan et al., 2024b)),
and training objectives (e.g., ℓ1 penalties, P-anneal SAE, Feature-Aligned SAEs (Cunningham et al.,
2024; Karvonen et al., 2024; Marks et al., 2024)), improving stability, sparsity–reconstruction trade-
offs, and faithfulness. Surveys synthesize these trends and discuss evaluation protocols for disentan-
glement and concept alignment (Shu et al., 2025). Building on this successful line of research, we
extend the Top-K SAE (Gao et al., 2025) with probabilistic gating via the binary Concrete distribu-
tion to encourage exploratory yet sparse feature selection.

Stochastic Gating and Relaxed Discreteness Introducing stochasticity into selection mecha-
nisms can mitigate premature collapse of feature usage. The binary Concrete distribution (Maddison
et al., 2017) and related Gumbel-Softmax relaxations enable gradient-based learning with approx-
imately discrete gates. These relaxations have been used broadly for promoting sparsity, feature
selection, and structured pruning (Louizos et al., 2018). Large sparse models similarly combine
randomized gating with hard Top-K selection to choose a small subset per input (e.g., noisy Top-
K in Mixture-of-Experts and Switch Transformers) (Shazeer et al., 2017; Fedus et al., 2022). Our
novel setting adapts this principle to dictionary learning with SAEs: placing binary-Concrete gates
before a Top-K operator encourages exploration of alternative feature subsets early in training, while
temperature annealing sharpens the gates toward discrete selections at convergence, thus improving
coverage and stability relative to purely deterministic Top-K SAEs.

7 CONCLUSION

In this work, we introduced the Probabilistic Top-K SAE, an extension of Top-K autoencoders that
inserts binary-Concrete (relaxed Bernoulli) gating ahead of the Top-K operator. This stochastic gate
encourages input-dependent exploration early in training and, with temperature annealing, sharp-
ens toward discrete selections at convergence. Empirically, the resulting models achieve a stronger
Pareto frontier on the sparsity–reconstruction trade-off than deterministic Top-K baselines, reflect-
ing both higher dictionary utilization and greater stability. For future work, we hope to perform
additional downstream experiments (e.g., circuit discovery, model steering) to demonstrate the ef-
fectiveness of our Probabilistic TopK SAE, as well as improving the existing architecture to achieve
better performance at higher K.
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A HYPERPARAMETER DETAILS

Using the TransformerLens library (Nanda & Bloom, 2022), we train Probabilistic SAEs on the
residual activation directly after the layer norm for both GPT-2 and Qwen3-0.6B models. For all
SAEs on both models we use the Adam optimizer (Kingma & Ba, 2015) with a learning rate (lr) of
1e−3, β1 = 0.9 and β2 = 0.99. During training, we clip the grad norm above 10.0, and use a cosine
lr scheduler with exponential decay after the initial warm-up steps. We initialize the decoder weights
orthogonally and initialize encoder weights as the transpose of decoder weights. For all runs, we set
the number of dictionary components to be 16 times the hidden state dimensions. During evaluation,
we use a context window of 64 and iterate over 50M tokens. In Table 1, we list all hyperparameters
necessary to reproduce Figure 2 and Figure 3. Training for GPT-2 runs on a single A6000 GPU
with 48GB of VRAM, while for Qwen, it is done on a single H100 GPU with 80GB of VRAM. All
trainings can be completed within 12 hours.

B QWEN ALIVE DICTIONARY COMPONENTS

Figure 8 shows an identical trend for Qwen3, where a better dictionary utilization can also be
achieved with higher K.

C AUTOMATIC INTERPRETABILITY SCORES
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Hyperparameter GPT-2 Qwen3-0.6

Dataset OpenWebText FineWeb
N samples 500,000 500,000
Total tokens trained 307M 215M
Learning rate 5e-4 5e-4
Learning rate warmup 20,000 20,000
Learning rate decay cosine cosine
Batch size 8 8
LLM context length 1024 1024
Layer 8 26
Sparsity coeff (ReLU SAE) [5, 8, 10, 15, 20, 40] [10, 20, 40]
Sparsity coeff (Gated SAE) [0.05, 0.06, 0.09, 0.1] [0.06, 0.08, 0.09, 0.1]
K (TopK and Probabilistic TopK) [4, 8, 16, 24, 32] [8, 16, 32, 64]
Temperature (exponential decay) [5.0, 1e-4] [5.0, 1e-4]

Table 1: SAE training hyperparameters for GPT-2 and Qwen3-0.6.

Figure 8: Number of alive dictionary components during training for TopK and Probabilistic TopK
SAEs for layer 26 of Qwen3 (K = 16, 32, 64).

Table 2: Interpretability Scores by Activation Percentile and Correlation
Method 0-20% 20-40% 40-60% 60-80% 80-100% Correlation

Set 1: K = 8, λ = 30/0.09
ReLU 0.534 0.590 0.653 0.662 0.756 0.394
Gated 0.497 0.503 0.565 0.621 0.690 0.280
TopK 0.493 0.549 0.595 0.674 0.744 0.445
Probabilistic TopK 0.476 0.591 0.666 0.743 0.818 0.540

Set 2: K = 16, λ = 20/0.06
ReLU 0.549 0.593 0.593 0.668 0.747 0.336
Gated 0.480 0.511 0.556 0.619 0.727 0.423
TopK 0.507 0.560 0.578 0.673 0.743 0.357
Probabilistic TopK 0.427 0.497 0.548 0.660 0.773 0.559
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