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Abstract
High-resolution land surface temperature data
with fine spatiotemporal granularity is essential
for real-world applications. While satellites pro-
vide observations at 100 m every 16 days and
coarser resolution hourly, these observations are
incomplete due to cloud cover and long revisit
times. Earth system models provide continuous
hourly temperature data but at much coarser spa-
tial resolution (0.1◦ to 0.25◦). In this study, we
present an end-to-end, physics-guided deep learn-
ing approach for temperature data reconstruction.
The approach is a convolutional neural network
that incorporates the annual temperature cycle and
includes a linear term to amplify the coarse Earth
system model temperatures using fine-scale satel-
lite observations. We evaluate the approach using
data from GOES-16 (2 km, hourly) and Landsat
(100 m, every 16 days), demonstrating effective
temperature reconstruction across selected areas.
This simple yet effective approach, enabled by
physics-guided deep learning, presents a promis-
ing direction for reconstructing temperature data
under all weather conditions globally.

1. Introduction
Surface temperature is a critical physical property of the
Earth’s system and an important climate indicator (Hansen
et al., 2010). Over land, land surface temperature (LST) can
be heterogeneous due to complex surface characteristics,
with urbanization further exacerbating these differences (Li
et al., 2019). Earth system models are developed through
synthesizing satellite and meteorological station observa-
tions, using physics-based energy balance modeling to sim-
ulate surface dynamics (Giorgi & Avissar, 1997). Currently,
the best global simulations achieve a spatial resolution of
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0.1◦ to 0.25◦, or approximately 10 km to 25 km—much
coarser than commonly used satellite data such as Landsat
(100 m) and GOES-16 (2 km) (Irons et al., 2012).

High-resolution temperature data are important for many
real-world applications (Liu et al., 2023; Li et al., 2023).
However, the lack of high spatiotemporal resolution tem-
perature data currently limits many applications, including
disease modeling and city planning (Wang et al., 2019;
Wimberly et al., 2021). For example, during extreme cli-
mate events, understanding neighborhood-level disparities
requires timely temperature data. Yet Landsat—the most
reliable satellite offering sub-kilometer resolution—only
captures data every 16 days. Although geostationary satel-
lites can provide hourly observations at 2 km resolution,
cloud cover remains a major limitation, undermining the
validity of these observations (Zhang & Du, 2022).

Integrating coarse-resolution temperature data from Earth
system models with high-resolution, cloud-contaminated
satellite observations presents a promising pathway toward
achieving temperature data with high spatiotemporal resolu-
tion (Zhang et al., 2021; Wu et al., 2021; Liu et al., 2025).
Several approaches have been proposed. For example, the
reanalysis and thermal merging (RTM) method integrates
reanalysis simulations and MODIS observations through the
annual temperature cycle to capture the average trend, and
employs random forests to model daily fluctuations (Zhang
et al., 2021). Similarly, a more recent study proposed in-
tegrating the annual temperature cycle with Gaussian pro-
cesses to account for daily variation (Liu et al., 2025). These
methods can be categorized as two-stage models, which sep-
arately capture the annual trend (often through the annual
temperature cycle) and daily fluctuations. However, they
are typically hand-crafted and require a significant num-
ber of manually selected auxiliary variables to represent
the Earth’s surface. End-to-end training has not yet been
achieved in temperature reconstruction tasks.

1.1. Deep learning for temperature data reconstruction

The usage of deep learning models presents an opportunity
for a unified, end-to-end framework to reconstruct seamless
surface temperature data (Rasp et al., 2018; Wegmann &
Jaume-Santero, 2023). However, adapting deep learning
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approaches for temperature reconstruction is challenging.
A typical machine learning task requires pairs of training
samples {x, y}, where the algorithm learns a function f
such that

y ∼ f(x) , (1)

where x is the features and y is the target. Typically in Earth
observation, x is multispectral imagery, and y is the corre-
sponding label. For temperature data reconstruction, two
factors limit its direct adaptation. First, temperature recon-
struction involves time-series data that varies over time at
a given location, yet the features x are often only available
monthly or even annually (Li et al., 2023). Second, remote
sensing features x can only be collected when clouds are
not present, whereas the primary interest often lies in re-
constructing temperature under cloudy conditions. Another
potential framework is superresolution, where x is coarse-
resolution data and y the high-resolution data (Lloyd et al.,
2021). However, integrating temporal dynamics remains
difficult, and training still requires cloud-free pairs.

In this paper, we propose a different strategy: instead of
directly predicting temperature, we predict the parameters
of the annual temperature cycle to enable full temperature
reconstruction. We introduce an additional linear module
capture daily fluctuations and use convolutional layers on
features representing Earth surface properties to capture spa-
tiotemporal dependencies. The proposed approach allows
for unified, end-to-end training.

2. Methodology
2.1. Overview: Physics-Guided Deep Learning With

Time Consideration

In the classical machine learning paradigm, given training
samples {x, y}, the goal is to learn a model M such that

y ∼ M(x). (2)

Typically, x is a set of features representing the Earth sur-
face, which in vision tasks often correspond to images. This
paradigm treats each sample independently, ignoring any
temporal ordering. However, in temperature reconstruc-
tion tasks, time is a critical factor that must be explicitly
incorporated:

y(t) ∼ M(x, t). (3)

A naive approach is to include time t as an additional input
feature alongside x. Yet, this does not exploit the intrin-
sic temporal structure of the data, and due to the flexibility
of neural networks, it risks producing unrealistic predic-
tions that deviate from physical reality. To address this, we
introduce the Annual Temperature Cycle (ATC) as a phys-
ical constraint within the network architecture. The ATC
component explicitly models the overall seasonal trend, cap-
turing significant time-series characteristics. To account for

daily fluctuation, we introduce one additional linear term ap-
plied to the coarse-resolution temperature data from ERA5.
Finally, the convolutional layers focus on learning the re-
maining spatiotemporal variations only. Specifically, the
proposed model comprises three additive components, all
embedded within a convolutional neural network:

y(t) ∼ MATC(t | ϕATC)+Mρ(t | ϕρ)+Mconv(XF | ϕconv),
(4)

where t is time, XF is features representing the Earth sur-
face, and ϕ = {ϕATC, ϕρ, ϕconv} denotes the learnable
parameters of each component.

2.2. Problem Setup: Temperature Reconstruction

Let X ∈ RH×W×CT denote the input temperature tensor,
where H and W are the height and width of the tensor, CT

is the number of time steps in the series, and some entries
may be missing (NaN). We define a binary mask M ∈
{0, 1}H×W×CT indicating observed and missing values:

M(i, j, t) =

{
1, if X(i, j, t) is observed,
0, if X(i, j, t) is missing (NaN).

We build a model gϕ for temperature reconstruction, which
is to map X to its estimate X̂, composed of three additive
modules:

X̂ = gϕ(X) = MATC(X | ϕATC)

+Mρ(X | ϕρ)

+Mconv(XF | ϕconv), (5)

where:

• MATC : RH×W×CT → RH×W×CT is a pixel-wise
overall temperature trend over time, and we use the an-
nual temperature cycle for modeling, with parameters
ϕATC. Each pixel (i, j) has its own learned parameters,

• Mρ : RH×W×CT → RH×W×CT is a pixel-wise mod-
ule to capture daily fluctuation. We use a linear term on
the coarse-resolution Earth system model land surface
temperature data, parameterized by ϕρ,

• Mconv : RH×W×CF → RH×W×CT is a global spa-
tiotemporal module implemented via convolutional lay-
ers ϕconv, which replaces the spatial filtering process
in commonly used two-stage approaches and is the key
to end-to-end training in temperature reconstruction.

2.3. Specific Model Components

Annual Temperature Cycle The ATC module models
the overall temporal temperature trend at each pixel (i, j)
using a cosine function:

mATC(i, j, t | ϕATC) = ai,j + bi,j cos

(
2πt

T
+ φi,j

)
,
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where ai,j,c, bi,j,c, and φi,j,c are learned parameters corre-
sponding to the annual mean temperature, amplitude, and
phase shift respectively, and T is the period (e.g., 365 days).

Linear Module ρ to Capture Daily Fluctuation This
module models the daily fluctuation that can be reflected
from the coarse-resolution Earth system model temperature
data Tc(i, j, t):

mρ(i, j, t | ϕρ) = wi,j ·Tc(i, j, t),

where wi,j is pixel-wise learnable weights. We can obtain
the coarse-resolution temperature data resampled to the tar-
get resolution Tc(i, j, t) via

Tc(i, j, t) = Resample
(
T̃c(t)

)
at pixel (i, j),

where T̃c is the Earth system model temperature at its na-
tive resolution and Resample(·) denotes an interpolation
operator mapping coarse grid data to the fine grid indexed
by (i, j, t).

Convolutional Layers The Mconv module functions as a
global spatiotemporal filtering, capturing complex spatial
patterns and nonlinearities that complement the ATC and
coarse-resolution temperature data from Earth system model.
The input of this module is an additional tensor XF ∈
RH×W×CF , representing Earth surface features such as
spectral reflectance or deep representations. XF differs
in channel size CF from the temperature input X and is
exclusively used as input to the convolutional module. A
series of convolutional operations parameterized by ϕconv

on XF to produce spatially refined corrections that enhance
the temperature reconstruction, so that the final prediction is
consistent with the high-resolution cloudless observations.
This separation allows the model to leverage rich Earth
surface information without interfering with the temporal
modules, improving overall accuracy and reliability.

Specifically, in the experiments, we designed the convolu-
tional layers with four residual blocks, each consisting of
two 3×3 convolutional layers and two batch normalization
layers, each followed by a ReLU activation. We first upscale
the input features representing Earth’s surface (five spectral
bands in the experiments) to 16 channels, then progressively
to 64, 128, and finally to 365 or 366 channels.

2.4. Loss Function

To handle missing data, the reconstruction loss is computed
only over observed values, using the mask M:

Lrec(ϕ) =
1∑

i,j,t M(i, j, t)

∥∥∥M⊙
(
X̂−X

)∥∥∥
1
,

where ⊙ denotes element-wise multiplication and ∥ · ∥1 is
the element-wise L1 norm (sum of absolute values).

3. Results and Analysis
3.1. Datasets

GOES-16 Geostationary Satellite Data GOES-16, the
first satellite in NOAA’s GOES-R series, was launched in
November 2016 and enabled 2 km resolution temperature
monitoring every 5 minutes for the first time (Beale et al.,
2019). The resulting land surface temperature (LST) data
are produced hourly, with an accuracy of approximately
2.5 K when surface emissivity is known and proper at-
mospheric correction is applied, and around 5 K other-
wise (Schmit et al., 2018). This study uses all GOES-16
data from 2022 over a 700×550 pixel region centered on
New York City, spanning from Québec City to North Car-
olina and west to Detroit. We use five GOES-16 spectral
bands centered at 0.47, 0.64, 0.86, 1.61, and 2.24 µm as
input features.

Landsat Data We select a region centering Altadena in
Los Angeles from February 2024 to January 2025, cov-
ering the recent Eaton Fire that has destroyed more than
9,000 structures. The Landsat surface temperature data is
derived using a single channel algorithm, with 60% of the
observations within 2 K accuracy (Laraby & Schott, 2018).
We used the annual mean spectral reflectance from the first
seven spectral bands to represent the Earth surface.

3.2. Experimental Setup

We conducted the experiments on PyTorch. On the GOES-
16 data, we used the Adam optimizer with a learning rate of
0.1 to training the network for 200 epochs. For the Landsat
data, we first train the ATC parameters for 300 epochs, then
we freeze the ATC parameters and train the convolutional
layers for 200 epochs, using the Adam optimizer with a
learning rate of 0.1. For both datasets, we reserved 20% of
the valid observed data for testing.

3.3. Results on GOES-16 Data

Figure 1 presents the reconstruction results for seven se-
lected days, covering a wide range of temperature values
across all four seasons, and compares three methods: the
ATC model alone, a naı̈ve CNN, and the proposed physics-
guided CNN. Among these, the physics-guided CNN con-
sistently demonstrates the best visual performance. For
instance, in Figure 1e, comparison with the near-complete
ground truth reveals that the ATC model tends to overesti-
mate temperatures in the northern region, while the naı̈ve
CNN produces overly smoothed patterns—primarily due
to its heavy reliance on spatiotemporal dependencies—and
fails to capture the temperature distribution over the Great
Lakes. In contrast, the physics-guided CNN generates re-
constructions that most closely align with the ground truth.
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Figure 1. Reconstruction results on GOES-16 geostationary satellite data

Table 1. Result comparison on the geostationary satellite dataset.
Training Data Test Data

MAE (K) RMSE (K) MAE (K) RMSE (K)

ATC 3.63 4.91 3.75 5.02
Naı̈ve CNN 3.67 15.85 3.68 15.91

Physics-Guided CNN 1.77 2.64 1.80 2.67

Table 2. Result comparison on the Landsat dataset.
Training Data Test Data

MAE (K) RMSE (K) MAE (K) RMSE (K)

ATC 7.78 13.61 8.55 14.18
Naı̈ve CNN 2.65 14.45 2.64 14.36

Physics-Guided CNN 2.06 6.40 2.13 6.42

On days without valid observations (e.g., Figure 1f), the
naı̈ve CNN fails entirely to reconstruct the temperature field,
as this becomes an extrapolation task—a scenario in which
conventional deep learning models that rely heavily on statis-
tical patterns often fall short. In contrast, physics-informed
approaches, including both the ATC model and the physics-
guided CNN, successfully produce plausible reconstructions.
In other cases, the physics-guided CNN consistently out-
performs the ATC model, visually and through quantitative
evaluation metrics (Table 1), owing to its ability to capture
spatiotemporal variations more effectively through convolu-
tional layers.

3.4. Results on Landsat Data

The results on the Landsat dataset are presented in Table 2.
The ATC model shows the weakest performance, likely due

Figure 2. Reconstruction results on Landsat data

to the dataset’s sparse coverage and pronounced spatiotem-
poral heterogeneity. In contrast, the physics-guided CNN
consistently achieves the best results, demonstrating strong
predictive capability even under challenging conditions.

4. Conclusion
In this study, we presented a physics-guided, end-to-end
deep learning framework that unifies surface temperature
reconstruction into a single vision-based model, achieving
accuracy of 2–3 K, comparable to satellite observations
across two datasets of varying resolution. Central to our
approach is the use of Earth surface property representations.
In this work, we used annual mean spectral reflectance.
Recent advances in deep representation learning and Earth
foundation models are showing promise for capturing more
accurate surface characteristics (Marsocci et al., 2024; Zhu
et al., 2024). Incorporating such deep features can further
enhance the model’s ability to capture fine-scale temperature
daily fluctuations and spatiotemporal dynamics, and will be
a valuable direction for future research.
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