
Unraveling the Complexities of Offensive Language: A Detailed Analytical
Framework for Understanding Offensive Communication Dynamics

Anonymous ACL submission

Abstract

Offensive online content can marginalize and001
cause harm to groups and individuals. To pre-002
vent harm while ensuring speech rights, fair003
and accurate detection is required. However,004
current models and data struggle to distinguish005
offensive language from acceptable non-toxic006
linguistic variations related to culture or sub-007
jective interpretation. This study presents a008
comprehensive toxicity assessment with two009
annotated datasets focusing on nuances of hu-010
man interpretation with objective evaluation.011
The significant improvement in inter-annotator012
agreement suggests uncontrollable subjectivity013
and research biases can arise without structured014
guidelines. Additionally, we explore the effec-015
tiveness of in-context learning with few-shot016
examples to improve toxicity detection from017
large language models (LLMs), GPTs specifi-018
cally, finding that explicit assessment criteria019
significantly improve agreement between au-020
tomated and human evaluations of offensive021
content. The feasibility of criteria-based auto-022
annotations is evidenced by the better perfor-023
mance of smaller models fine-tuned on 10 times024
less auto-annotated data with multi-language025
variations. The findings demonstrate notable ef-026
ficiency in combining contextual understanding027
of LLMs with criterion-guided learning.028

Content Warning: This article only analyzes029
offensive language for academic purposes. Dis-030
cretion advised.031

1 Introduction032

In the digital age, the anonymity of the Internet and033

the lack of direct interaction have led to increased034

offensive and hateful speech (D. Citron and He-035

len L. Norton, 2011; Mondal et al., 2017). This036

variation in perception and regulation of offensive037

speech across different regions, from free speech038

protection in the US to legal restrictions in Europe039

(Kocoń et al., 2021), highlights the subjectivity040

involved and the need for effective detection and041

analysis methods.042

Figure 1: Research Framework

Current datasets typically employ multifaceted 043

methodologies for content categorization, taking 044

into account not just the presence of offensive 045

language but also its context, target, and the in- 046

tent behind it (Zampieri et al., 2019; Basile et al., 047

2019; Mollas et al., 2020). Dataset annotations 048

commonly highlight the significance of context 049

in interpreting offensive content. The concept 050

of hate speech often overlaps with offensive lan- 051

guage in the construction of corpora and in offen- 052

sive language detection tasks. Prominent datasets 053

such as Hate Speech and Offensive Language 054

(Davidson et al., 2017), ETHOS (Mollas et al., 055

2020), HatEval at SemEval-2019 Task 5 (Basile 056

et al., 2019), and HateXplain (Mathew et al., 057

2021) focus either on hate speech or offensive 058

language, or on the interplay between the two. 059

These datasets adopt varied approaches in handling 060

the relationship between offensive language and 061

hate speech. For instance, datasets like HateX- 062

plain, Hate Speech and Offensive Language, and 063

two datasets at SemEval—HatEval and Identifi- 064

cation Dataset (OLID) at SemEval-2020 Task 12 065

(Zampieri et al., 2019)—treat offensive language 066

and hate speech as distinct entities. In contrast, 067
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other research integrates the two under the broader068

term ’abusive language’, suggesting commonali-069

ties between hate speech and offensive language070

(Calabrese et al., 2021). The varied usage of ter-071

minology in the field has led to some degree of072

academic ambiguity (Fortuna et al., 2020).073

In this work, we focus on the critical distinc-074

tion between objective aspects, where consensus is075

achievable, and subjective elements, which are of-076

ten the subject of debate, in assessing offensiveness077

and toxicity. We challenge the polarized views that078

either consider toxicity as entirely subjective or en-079

tirely uniform. Our approach argues against relying080

solely on ambiguous definitions or exhaustive lists081

for evaluations. By implementing concrete criteria,082

we address vulnerabilities in the annotation process,083

such as personal biases and preferences, enhanc-084

ing the accuracy and reliability of the assessments.085

The methodology and results of our approach are086

depicted in Figure 1.087

We make the following contributions:088

1. We contributed two datasets, one annotated089

with predefined criteria and the other without,090

to illustrate the impact of these criteria on091

annotation.092

2. We ensured that our criteria are transparent093

and replicable, facilitating their application by094

humans and Large Language Models (LLMs).095

3. The results demonstrate the improvement in096

the agreement and consistency of GPT anno-097

tations guided by our criteria.098

4. By processing data with GPTs prompted by099

the proposed criteria, we have successfully100

fine-tuned smaller models with significantly101

smaller and diverse annotated datasets to pro-102

duce better concordance.103

2 Related Works104

2.1 Lexical Bias105

Despite the influence of individual preferences106

and the potential for over-judgment, lexical bias107

is a common learning bias shown in many current108

datasets. This issue of non-offensive yet aggres-109

sive language mislabeled as offensive is also called110

unintended bias (Dixon et al., 2018) or, more specif-111

ically, lexical bias (Garg et al., 2023) or linguistic112

bias (Fan et al., 2019). For instance, (1) and (2)113

are identified as offensive based on the emotional114

emphasis FUCK in (1), racial terms nigga and slang 115

bitch in (2): 116

(1) And apparently I’m committed to go- 117

ing to a new level since I used the key. 118

Well FUCK. Curiosity killed the Cat(hy) 119

(Barbieri et al., 2020) 120

(2) I ain’t never seen a bitch so ob- 121

sessed with they nigga&#128514;" I’m 122

obsessed with mine &#128529 (David- 123

son et al., 2017) 124

However, it is unnecessary that the appearance of 125

these terms inherently conveys offensiveness or an 126

intent to harm. Emotional emphasis sounds ag- 127

gression, but there is no intention to offend others. 128

Racial expressions in the African American Lan- 129

guage (AAL) also pose challenges to simplistic 130

judgments that rely solely on the presence of ag- 131

gressive language (Deas et al., 2023). The lexical 132

form of racial terms, such as n-words, is not intrin- 133

sically derogatory. Whether these terms are slurs 134

depends on their perlocutionary effect, which con- 135

siders the context and circumstances of their usage 136

and reception (Allan, 2015; Rahman, 2012). nigga 137

is employed in a romantic context (Garcia et al., 138

2003; Smitherman; Rahman, 2012), and bitch is 139

not used in a gender-offensive manner. 140

2.2 Analysis and evaluation 141

Analyzing and annotating subjective content in- 142

volves several inherent challenges, primarily due 143

to the variability and complexity of human percep- 144

tion and expression (Reidsma and op den Akker, 145

2008; Hayat et al., 2022). A significant issue in this 146

process is the potential inadequacy of individual 147

annotations, which may result in an unrepresenta- 148

tive sample of viewpoints (Burmania et al., 2015; 149

Leonardelli et al., 2021; Chen and Joo, 2021). Ad- 150

ditionally, contextual misinterpretation poses a ma- 151

jor problem – a lack of or misrepresentation of con- 152

text can lead to inaccurate labeling. The influence 153

of the social environment on annotators’ decisions 154

cannot be understated, often affecting their judg- 155

ments subtly (Joseph et al., 2017; Haliburton et al., 156

2023). 157

The task of detecting offensiveness is particu- 158

larly challenging, requiring a balance between sub- 159

jective interpretation and the need to avoid overt 160

subjectivity. Given the range of valid interpreta- 161

tions, the human annotation should also represent 162

this feature. However, most offensive datasets are 163
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constructed based on one single subjective anno-164

tation, neglecting other potential interpretations165

(de Gibert et al., 2018; Basile et al., 2019; Zampieri166

et al., 2019). Highly unified annotations will ne-167

glect the language variations as well as embedded168

understanding divergence. Highlighting the com-169

plexities and challenges in annotating subjective170

content, we consider the agreement as an additional171

evaluation approach that does not assume the com-172

parison item is the sole standard rather than solely173

depending on accuracy measures. Annotations but174

rather treats it as one possible reference point.175

3 Annotation Methodology176

The methodology for evaluating linguistic offen-177

siveness consists of two sections: defining the core178

concepts and proposing criteria corresponding to179

the definitions. Regarding the overall annotating180

process, we adopt the tweet-centric annotation ap-181

proach, focusing solely on individual tweets and182

contextual thread information. While more practi-183

cal, enabling streamlined annotator workflows and184

clear evaluation units, it limits human annotators to185

evaluating tweet content without considering pre-186

ceding/subsequent conversational exchanges that187

provide context. However, this study does not em-188

ploy a majority ruling to determine singular “cor-189

rect” annotations per tweet, which risks overlook-190

ing nuance. Instead, an inter-annotator agreement191

is considered when evaluating annotation reliability.192

This allows more nuanced and reliable assessment,193

recognizing language’s complexity and the value194

of diverse perspectives.195

3.1 Defining Offensive Language196

Some previous studies have also equated toxic197

speech with hate speech when examining differ-198

ent facets of this language use (Koratana and Hu,199

2019; Moon et al., 2020). Toxic language repre-200

sents another term associated with an offensive lan-201

guage capable of inflicting harm through various202

mechanisms (Buell, 1998). However, as it lacks203

an intrinsic association with emotions of anger per204

se, herein, we treat it as a semantically broader,205

more neutral substitute nomenclature for offensive206

language. Hate speech, on the other hand, is more207

informal, angrier, and often explicitly attacks the208

target (Elsherief et al., 2018), which could only209

be one kind of toxic language but is not equiva-210

lent to toxic language. Treating toxicity and hatred211

separately avoids potential confusion arising from212

treating them as interchangeable concepts while 213

maintaining conceptual alignment with the larger 214

literature on technology-mediated linguistic aggres- 215

sion and harm. 216

Offensiveness and Toxicity emphasize dif- 217

ferent aspects of language used to harm people 218

(Kocoń et al., 2021), but these two terms do not 219

distinguish from each other as offensive language 220

and hate speech do. Offensiveness or Toxicity 221

in language can be characterized by its capacity to 222

evoke negative or adverse reactions, distinguish- 223

ing it from the mere use of swear words (Legroski, 224

2018). This concept is intrinsically tied to notions 225

of linguistic politeness and social decorum (Ar- 226

chard, 2014), where the primary concern is the 227

intention to denigrate or demean, rather than the ac- 228

tual harm inflicted (Archard, 2008). In essence, of- 229

fensiveness often hinges on the speaker’s intention 230

to belittle or insult, and this intentionality is a cru- 231

cial aspect in understanding and identifying offen- 232

sive content. However, the term "aggressiveness" 233

in sociological and psychological studies also has 234

positive connotations (Hawley and Vaughn, 2003). 235

Aggressiveness is a vital component of dominating 236

behavior (Kacelnik and Norris, 1998), but dominat- 237

ing behaviors are not equivalent to behaviors that 238

affect others negatively, which differs from toxic 239

behaviors. When it co-occurs with outward lan- 240

guage intention, the language can trigger antisocial 241

or harmful outcomes and, therefore, is offensive 242

and toxic (Stokes and Cox, 1970). Aggressiveness 243

or Aggression alone does not constitute toxicity. 244

Aggressive language components may contribute 245

to offensive speech, but only when coupled with 246

explicit intents to cause harm or distress to a tar- 247

get. Identifying the language used explicitly toward 248

others will prevent annotating bias while retaining 249

some space for different interpretations. In short, 250

offensive language requires both aggressive ele- 251

ments as well as clear directional intent toward a 252

target. 253

3.2 Criteria for Toxicity 254

Adapted from definition, two indicators are as- 255

sessed by both human annotators and included in 256

auto-annotation: 257

Direction of Intent (DI) indicates whether 258

the language is directed internally (denoted 0) or 259

externally (denoted 1). Since a tweet may contain 260

multiple sentences with shifting targets, the anno- 261

tated focus or intent could vary. Therefore, keeping 262
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Level Item Category Example
Lexical Aggressive NP/DPa Aggressive Item Steretyped NP/DP (nigga, chingchong,

etc), bitch, shit, dumbass, etc
Lexical Aggressive VPb Aggressive Item fuck, hate, etc
Lexical Aggressive AdjPc Aggressive Item retarded, psycho, stupid, etc
Lexical Aggressive AdvPd Aggression Catalyzer fucking, etc
Syntactic Strong Expression Aggression Catalyzer should, must, definitely, etc
Syntactic Rhetorical Question Aggression Catalyzer Doesn’t everyone feel the same? etc
Syntactic Imperative Aggression Catalyzer Shut the door, etc

Discourse Ironic Expression Aggression Catalyzer Clear as mud, etc

Discourse False Construct Aggressive Item or Those are people who only believe in
Aggression Catalyzer flat earth, etc

Discourse Controversial Content Aggressive Item Inappropriate Content (adult, religious,
etc), jeering at others’ mistakes
or misfortunes, etc

a NP stands for noun phrase, and DP for determiner phrase.
b VP stands for verb phrase.
c AdjP stands for adjective phrase.
d AdvP stands for adverbial phrase.

Table 1: Relative Aggression Computing Reference

such disagreement in annotations is necessary.263

Aggression (AG) is annotated by categorizing264

negative, rude, or hostile attitudes as mild (0.1-1265

point) or intense (>1) based on a reference table 1266

of weighted linguistic characteristics such as slurs267

or vulgarities. The first thing to notice is that the268

classification of different types of aggression is not269

absolute or fixed. What constitutes a specific cate-270

gory of aggression could shift over time as cultural271

norms and language usage evolve. Additionally, it272

can sometimes be difficult to precisely categorize273

certain expressions of aggression due to variations274

in language, influences from popular culture, and275

other contextual factors. The following criteria276

only try to grasp a more objective overview of ag-277

gression, which does not rule out all subjectivity.278

In calculating the relative aggression score for each279

piece, we count each unique linguistic item only280

once. Putting values on categories assesses the281

functional diversity of different language compo-282

nents, providing a more precise evaluation of the283

aggression level. The cumulative aggression scores284

are computed from various distinct aggressive lexi-285

cal items, syntactic structures, and discourse strate-286

gies. However, in certain instances, merely adding287

more terms from a single category can decrease288

the perceived aggression. This is because exces-289

sive repetition of similar aggressive language might290

come across as impotent rage, reducing the overall291

impact of the aggression expressed. The specific292

target(s) of each aggressive expression are also ex-293

tracted as full noun phrases. The reference table 294

provides a framework for categorizing and quanti- 295

fying linguistic aggression across multiple levels of 296

language. Four main levels are identified: lexical, 297

syntactic, and discourse. Within each level, lin- 298

guistic items are classified as aggressive items (AI) 299

that independently convey aggression (1 point), or 300

aggression catalyzers (ACs) which intensify aggres- 301

sion but are not inherently aggressive (0.5 points). 302

AIs include slurs, vulgarities, and controversial 303

content. ACs include emphatic language, rhetori- 304

cal questions, imperatives, and ironic expressions. 305

To compute an overall aggression score, AIs are 306

weighted 1 point, and ACs 0.5 points. However, 307

the false construct is a special case. A false con- 308

struct is a systematic error or preexisting belief that 309

leads to flawed evaluations or unfair treatment of 310

individuals or groups. If it is paired with ACs, it 311

becomes AIs worth 0.5 points, as they form an ag- 312

gression base. This multi-layered approach allows 313

for a nuanced analysis of how various linguistic 314

devices work together to convey varying degrees 315

of aggression. The table provides a few examples 316

for each category. 317

3.3 Auto-annotation 318

Leveraging in-context learning is a promising ap- 319

proach to mitigate various learning biases while 320

ensuring low-cost and highly generalizable pro- 321

cessing. In-context learning is a paradigm where a 322

language model learns a downstream task by being 323
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Comparison CK AC1 Agreement (Agr.) %
Without Criteria
1T & 2T 0.5172 0.5094 76.50
With Criteria
1AG_C & 2AG_C 0.8422 0.8419 90.75
1DI_C & 2DI_C 0.5913 0.5908 91.50
1T_C & 2T_C 0.7487 0.7486 92.50

Table 2: Inter-Annotator Agreement for Annotations With and Without Guidelines

Comparison CK AC1 Agr. %
1T & Davidson et al., 2017 -0.0475 -0.2552 51.25
2T & Davidson et al., 2017 -0.0566 -0.1742 62.25
1T_C & Davidson et al., 2017 -0.0884 -0.1237 75.00
2T_C & Davidson et al., 2017 -0.0405 -0.0698 77.00

Table 3: Inter-annotator Reliability Evaluation on annotations with and without criteria and original annotation.

conditioned on restricted prompts, thereby enhanc-324

ing flexibility (Hao et al., 2022). This learning325

method involves the model improving at a specific326

task after being provided with a selection of rele-327

vant examples or demonstrations (Lampinen et al.,328

2022; Margatina et al., 2023; Coda-Forno et al.,329

2023). The model uses the context from a single330

prompt or interaction to discern the expectations for331

that particular instance (Han et al., 2023). Similarly,332

few-shot learning enables large language models333

(LLMs) to rapidly adapt to tasks for which they334

were not explicitly trained (Gao et al., 2020; Perez335

et al., 2021; Mahabadi et al., 2022). By analyzing a336

limited set of examples, the model can deduce the337

desired output format and content for new tasks,338

contrasting with traditional machine learning meth-339

ods that typically require extensive training data340

(Wertheimer and Hariharan, 2019).341

This study utilizes GPT-3.5 and GPT-4, known342

for their proficiency and accessibility in in-context343

and few-shot learning. GPT-3.5’s extensive archi-344

tecture allows it to grasp and generate contextu-345

ally relevant responses with limited input (Yang346

et al., 2021). GPT-4 further enhances this capa-347

bility due to its even more extensive training and348

sophisticated design (OpenAI, 2023). We accessed349

both models via APIs to use small amounts of350

task-specific data to adapt to this task. Unlabeled351

data were processed with carefully constructed352

prompts to generate annotations consistent with353

pre-established formats. These prompts were de-354

signed for two components: direction of intent and355

level of aggression. The direction of intent prompt356

used general descriptive instructions, while the ag- 357

gression level prompt combined descriptive instruc- 358

tions with few-shot examples sourced from ’AI’ 359

and ’AC’ categories to demonstrate specific sce- 360

narios. Given the subjective nature of aggression, 361

including some examples in the latter prompt was 362

crucial for ensuring some uniformity in annotations. 363

Additionally, the challenge of neurotoxic degenera- 364

tion is tackled by employing a method similar to In- 365

struction Augmentation (INST) Prabhumoye et al., 366

2023. We divided the aggression level prompt into 367

two sections: one for language use assessment and 368

another for aggression scoring. This division ad- 369

heres to INST principles, enhancing the clarity and 370

precision of instructional prompts, thereby improv- 371

ing the performance and dependability of language 372

models in complex tasks. 373

4 Statistics Analysis on 400 Pieces 374

4.1 Inter-annotator Reliability and 375

Agreement 376

For manual annotation and statistic analysis, the 377

dataset was randomly extracted from the Offensive 378

and Hate speech dataset (Davidson et al., 2017), 379

comprising 400 tweets. It is characterized by dense 380

occurrences of various categories of offensive lan- 381

guage and includes instances of non-standard En- 382

glish, providing a comprehensive sample for analy- 383

sis. Two separate annotation processes were con- 384

ducted with and without predefined criteria. Two 385

annotators with distinct backgrounds - one a mar- 386

keting graduate student without linguistics training, 387

the other a linguistics graduate student - were se- 388
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GPT4 CK AC1 Agr. % GPT3.5 CK AC1 Agr. %
Without Criteria
1T 0.2030 0.0685 62.75 1T 0.3149 0.2532 67.50
2T 0.2819 0.2190 73.75 2T 0.3534 0.3331 74.50
With Criteria
1DI_C 0.3376 0.3361 87.00 1DI_C 0.1999 0.1799 87.75
2DI_C 0.5647 0.5646 92.25 2DI_C 0.2820 0.2704 90.25
1AG_C 0.3460 0.3016 62.5 1AG_C 0.2813 0.2605 59.25
2AG_C 0.3849 0.3565 66.5 2AG_C 0.2700 0.2588 60.0
1T_C 0.5299 0.5282 87.00 1T_C 0.4013 0.3887 85.5
2T_C 0.6103 0.6094 89.50 2T_C 0.4015 0.3910 86.0

Table 4: Agreement percentages between GPT predictions and human annotations.

lected to illustrate how academic foundations can389

influence judgments. The marketing student had no390

formal linguistics knowledge, while the linguistics391

student possessed a comprehensive understanding392

of language. Both were asked to evaluate offen-393

siveness, assuming an intuitive understanding of394

offensive language. In contrast, the annotators with395

criteria were linguistics graduate students trained396

on established guidelines. They first annotated in-397

tention direction and aggression level, then rated398

offensiveness based on those indicators. Annota-399

tion without criteria took under 5 hours; with crite-400

ria, over 10. The increased duration resulted from401

precisely evaluating relevant language per outlined402

criteria and calculating aggression scores, necessi-403

tating more detailed analysis.404

Annotation distribution is displayed in Appendix405

B, and confusion matrices for annotator agreements406

are depicted in Appendix A. For a comprehensive407

evaluation of annotator consistency, we calculated408

Cohen’s Kappa (CK) (McHugh, 2012) and Gwet’s409

AC1 (AC1)(Cicchetti, 1976), as detailed in Table 2.410

Initially, we assessed the inter-annotator reliability411

for both our annotations without criteria and those412

from Davidson et al., 2017, displayed in Table 3.413

Gwet’s AC1 can help avoid the paradoxical behav-414

ior and biased estimates associated with Cohen’s415

Kappa, especially in situations of high agreement416

and prevalence (Zec et al., 2017).417

According to Table 21, it is evident that incorpo-418

rating specific criteria in the annotation process sig-419

11T - Toxicity, no guidelines, marketing student; 2T - Tox-
icity, no guidelines, linguistics student; 1AG_C - Aggres-
sion, with guidelines, Annotator 1; 2AG_C - Aggression, with
guidelines, Annotator 2; 1DI_C - Intent direction, with guide-
lines, Annotator 1; 2DI_C - Intent direction, with guidelines,
Annotator 2; 1T_C - Toxicity, with guidelines, Annotator 1;
2T_C - Toxicity, with guidelines, Annotator 2

nificantly enhances the consistency and agreement 420

between raters. This conclusion is supported by 421

the observed values in Cohen’s Kappa and Gwet’s 422

AC1 metrics and the Agreement Percentages. Co- 423

hen’s Kappa and Gwet’s AC1 values that adjust for 424

chance agreement indicate a moderate agreement 425

without criteria. However, these values markedly 426

increased when criteria were applied as the first and 427

last pairs approached near-perfect agreement levels, 428

underscoring the critical role of well-defined crite- 429

ria in enhancing the reliability and validity of qual- 430

itative assessments. Unlike our annotations, the 431

comparison with the original annotations presents 432

contrasting results in Table 3. Cohen’s Kappa and 433

Gwet’s AC1 values are negative across all com- 434

parisons, suggesting a level of disagreement more 435

pronounced than random chance. This starkly con- 436

trasts the earlier findings where criteria application 437

resulted in near-perfect agreement levels in cer- 438

tain pairs. Although the Agreement Percentages 439

showed some level of surface agreement, they do 440

not align with the deeper discordance indicated by 441

the antagonistic Cohen’s Kappa and Gwet’s AC1 442

values. This discrepancy underscores the complex- 443

ities in achieving inter-rater reliability and empha- 444

sizes the need for a thorough review of annotation 445

guidelines and processes to understand and rectify 446

the underlying causes of such significant misalign- 447

ments. 448

4.2 Agreement between Human Annotations 449

and GPT Annotations 450

As Cohen’s Kappa and Gwet’s AC1 were originally 451

created to assess inter-rater reliability between hu- 452

man annotators, directly applying them to evaluate 453

agreement between machine and human annota- 454

tions may not be entirely apt (Popović and Belz, 455
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Model (Fine-Tuning Data) DI (Acc.) AG (Acc.) T (Acc.)
RoBERTa-base (Davidson et al., 2017) - - 0.937
DeBERTa-base (Davidson et al., 2017) - - 0.943
RoBERTa-base (G3P) 0.908 0.749 0.920
DeBERTa-base (G3P) 0.918 0.723 0.922
RoBERTa-base (G4P) 0.944 0.821 0.890
DeBERTa-base (G4P) 0.938 0.856 0.863

Table 5: Accuracy Metrices for BERT models Fine-tuned on Davidson et al., 2017 baseline and GPT-annotated
Datasets

Model (Fine-Tuning Data) 1T 2T
RoBERTa-base (Davidson et al., 2017) 54.00 66.50
DeBERTa-base (Davidson et al., 2017) 50.70 62.75

1DI_C 2DI_C 1AG_C 2AG_C 1T_C 2T_C
RoBERTa-base (Davidson et al., 2017) - - - - 81.25 82.25
DeBERTa-base (Davidson et al., 2017) - - - - 78.00 79.00
RoBERTa-base (G3P) 87.50 90.25 61.00 62.50 84.50 86.00
DeBERTa-base (G3P) 89.50 86.25 57.50 60.25 83.25 85.25
RoBERTa-base (G4P) 89.25 91.00 51.75 56.75 85.50 86.50
DeBERTa-base (G4P) 89.75 90.50 52.50 57.25 85.75 86.25

Table 6: Agreement (%) Performance of BERT models fine-tuned on Davidson et al., 2017 baseline and GPT-
annotated data

2021). While primarily intended for only human456

judgment scenarios, we include evaluations using457

these metrics when comparing GPT model predic-458

tions and human labels since dedicated methods for459

assessing machine-human agreement have yet to460

be established. We analyzed concordance between461

human annotations and those generated by Genera-462

tive Pre-trained Transformer models, namely GPT-463

4 (OpenAI, 2023) and GPT-3.5 (OpenAI, 2022),464

across two annotation categories.465

The trinary evaluations in Table 4 demonstrate466

reasonable consistency and agreement between hu-467

man annotations and those from GPT-3.5 and GPT-468

4. Without criteria, GPT-3.5 agreement was slightly469

higher than GPT-4. Refining the prompts enabled470

more effective synergy between automated anal-471

ysis and human oversight. Using specific crite-472

ria significantly improved alignment with human473

judgment for both models. Under criteria-based474

scenarios, GPT-4 annotations showed comparable475

agreement and consistent inter-rater reliability. The476

inter-annotator reliability statistics show that GPT477

annotations have even higher agreement and consis-478

tency than the original human annotations. Overall,479

establishing criteria enhanced model concurrence480

with human annotators, with GPT-4 consistently481

demonstrating higher agreement and suggesting ap-482

titude for criteria-based analysis. The notable im- 483

provement in agreement when using explicit crite- 484

ria motivates fine-tuning smaller models with these 485

guided GPT annotations. Our next exploration will 486

assess whether annotations from prompted GPTs 487

enhance performance beyond unrefined prompts. 488

We will use GPTs with meticulous prompts to au- 489

tomatically annotate text, then train and evaluate 490

other models on these datasets. By comparing 491

agreement for models with and without criteria- 492

based fine-tuning, we can evaluate this approach’s 493

efficacy. 494

5 Experiment on Fine-tuning Small 495

Models 496

Two baselines were fine-tuned on RoBERTa-base 497

(Liu et al., 2019) and DeBERTa-base (He et al., 498

2021) with 2,4384 pieces tweets from Hate Speech 499

and Offensive Language dataset (Davidson et al., 500

2017), excluding 400 pieces used in manual an- 501

notation. Experiment data consists of 295 Reddit 502

posts in AAL, 341 tweets from OLID (Zampieri 503

et al., 2019), 311 tweets from the offensive and hate 504

speech dataset (Davidson et al., 2017), and 1000 505

tweets from Hateval (Basile et al., 2019), 1942 506

pieces in total for GPT auto-annoations. Data sam- 507
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ples are randomly selected. This approach miti-508

gates biases from linguistic patterns in any dataset.509

Including diverse social media (e.g., Reddit, Twit-510

ter) facilitates robust exposure to vernacular lan-511

guage and dialects, which also increases the chal-512

lenge of matching human annotations on the 400-513

piece compared to baselines fine-tuned on the same514

dataset, excluding the 400 pieces. RoBERTa-base515

and DeBERTA-base were fine-tuned using a batch516

size of 8 for training and 16 for evaluation with the517

default learning rate. Models were trained for 3518

epochs with 10% of data reserved for testing.519

5.1 Result Analysis and Discussion520

As shown in Table 5, when fine-tuned on differ-521

ent datasets, DeBERTa-base slightly outperforms522

RoBERTa-base on the Hate speech and Offen-523

sive language dataset, but RoBERTa-base achieves524

higher accuracies in specific categories like Lan-525

guage Intent and Aggression when trained on GPT-526

annotated datasets (G3P2 and G4P3).527

Table 6 shows that fine-tuned models align well528

with human annotations in identifying language in-529

tent but struggle with aggression categorization.530

When fine-tuned on a baseline dataset, BERT531

models moderately agree with human toxicity an-532

notations (78-79%), similar to the 76.5% agree-533

ment rate without criteria. Notably, criteria-based534

auto-annotations improve model performance, with535

higher agreement rates (85.75%, 86.50%) using the536

G4P dataset. DeBERTa-base consistently outper-537

forms RoBERTa-base, indicating better complex538

language understanding. This analysis emphasizes539

the importance of high-quality annotations and the540

benefits of GPT-based annotations for language541

model training. Despite improvements, fine-tuned542

BERT models still lag behind human annotators543

(92.50%) and GPT-4 (85.75%, 86.50%) in agree-544

ment rates, possibly due to small dataset sizes. The545

performance of models fine-tuned with G3P and546

G4P are similar. In comparison with baselines,547

these results indicate that GPT-annotated training548

data better aligns models with human judgment and549

shows stability across language variances and gen-550

res. Further research into context-specific tuning551

and criteria design is needed for detailed analysis552

and improved data annotation.553

2Annotated data by GPT-3.5 with prompt
3Annotated data by GPT-4 with prompt

6 Conclusion 554

This work provides insights to advance the under- 555

standing of offensive language detection and anal- 556

ysis. Initially, we emphasize the importance of 557

defining explicit criteria for constructing datasets 558

on toxicity and offensiveness. This methodology 559

effectively manages subjectivity, thereby reducing 560

the risks of over-generalization and personal bias in 561

dataset compilation. Secondly, our findings reveal 562

the enhanced efficacy of large language models, 563

specifically GPT-3.5 and GPT-4, when employing 564

in-context learning supplemented with few-shot ex- 565

amples. We observed a substantial improvement 566

in the agreement rates between GPT-generated as- 567

sessments and human evaluations when explicit 568

criteria were utilized. This underscores the sig- 569

nificance of criterion-based instruction in enhanc- 570

ing model accuracy. Finally, we investigated the 571

potential benefits of fine-tuning smaller models, 572

RoBERTa-base and DeBERTa-base, with datasets 573

auto-annotated by GPTs under explicit criteria. 574

This strategy resulted in higher agreement rates 575

compared to models trained on datasets without 576

such criteria, demonstrating the effectiveness of 577

integrating advanced LLMs with criterion-guided 578

auto-annotation. These findings hold substantial 579

importance for improving toxic content moderation 580

systems, thereby contributing towards fostering a 581

more responsible and respectful digital communi- 582

cation environment. 583

Limitations 584

We identified some limitations that are important 585

for guiding future research. The scope of human 586

annotation within our dataset could be expanded. 587

First of all, we conduct human annotation on a 588

dense toxic corpus; if the corpus switches to a 589

more controversial one, the agreement would to 590

expected to be lower. So, the human agreement in 591

this research is only a reference, not a solid upper 592

bound. Although we relied on a significant amount 593

of human input, the complexities and nuances of 594

offensive language suggest that a broader and more 595

diverse set of human annotations could enhance the 596

model’s understanding and accuracy. Another limi- 597

tation lies in the size of our auto-annotated dataset, 598

which comprises less than 2,000 entries. While this 599

dataset has been critical for training and evaluat- 600

ing our models, its relatively limited size may not 601

fully capture the extensive range of linguistic varia- 602

tions in offensive language. Expanding the dataset 603

8



could offer a more comprehensive perspective, po-604

tentially leading to more accurate and generalizable605

outcomes. Additionally, there is room for improve-606

ment in the performance of smaller models on the607

auto-annotated dataset, even though it surpasses608

that of GPT-4 with criteria. Exploring different609

configurations, experimenting with various model610

architectures, and further tuning could enhance per-611

formance.612
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A Appendix842

Figure 2: Confusion Matrix on Direction Intent Annota-
tion

B Appendix843

Figure 3: Confusion Matrix on Aggression Annotation

Figure 4: Confusion Matrix on Toxicity Annotation
with Criteria

Figure 5: Confusion Matrix on Toxicity Annotation
without Criteria
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Figure 6: Distribution of Toxicity Annotation without
Criteria

Figure 7: Distribution of Direction of Language Intent
Annotation with Criteria

Figure 8: Distribution of Aggressive Level Annotation
with Criteria

Figure 9: Distribution of Toxicity Annotation with Cri-
teria

12


