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ABSTRACT

Due to common architecture designs, symmetries exist extensively in contempo-
rary neural networks. In this work, we unveil the importance of the loss function
symmetries in affecting, if not deciding, the learning behavior of machine learn-
ing models. We prove that every mirror symmetry of the loss function leads to
a structured constraint, which becomes satisfied when either the weight decay
or gradient noise is large. As direct corollaries, we show that rescaling symme-
try leads to sparsity, rotation symmetry leads to low rankness, and permutation
symmetry leads to homogeneous ensembling. Then, we show that the theoretical
framework can explain the loss of plasticity and various collapse phenomena in
neural networks and suggest how symmetries can be used to design algorithms to
enforce hard constraints in a differentiable way.

1 INTRODUCTION

Modern neural networks are so large that they contain an astronomical number of neurons and con-
nections layered in a highly structured manner. This design of modern architectures and loss func-
tions means that there are a lot of redundant parameters in the model and that the loss functions are
often invariant to hidden, nonlinear, and nonperturbative transformations of the model parameters.
We call these invariant transformations the “symmetries” of the loss function. Common examples
of symmetries in the loss function include the permutation symmetry (Simsek et al., 2021; Entezari
et al., 2021; Hou et al., 2019), rescaling symmetry (Dinh et al., 2017; Saxe et al., 2013; Neyshabur
et al., 2014; Tibshirani, 2021), scale symmetry (Ioffe & Szegedy, 2015) and rotation symmetry
(Ziyin et al., 2023b). In physics, symmetries are regarded as fundamental organizing principles
of nature, and systems with symmetries exhibit rich and hierarchical behaviors (Anderson, 1972).
However, a unifying theory is lacking to understand the role of symmetries in affecting the learning
of neural networks and previous works often study specific symmetries case-by-case. Also, a pre-
dominant approach to analyzing symmetry often looks at symmetry with a negative light because
symmetry is found to lead to saddle points, which slows down training (Li et al., 2019; Xiong et al.,
2023). In this work, we take a neutral stance and show that the common types of symmetries can be
understood in a unified framework through the lens of mirror symmetries, where every symmetry is
proved to lead to a special structure and constraint of optimization.

Since we will also discuss stochastic aspects of learning, we study a generic twice-differentiable
non-negative per-sample loss function:

ℓγ = ℓ0(θ, x) + γ∣∣θ∣∣2, (1)

where x is a minibatch or a single data point of arbitrary dimension and sampled from a training
set. θ is the model parameter, and γ is the weight decay. ℓ0 assumes the definition of the model
architecture and is the data-dependent part of the loss. Training with stochastic gradient descent
(SGD), we sample a set of x and compute the gradient of the averaged per-sample loss over the set.
The per-sample loss averaged over the training set is the empirical risk: Lγ(θ) ∶= Ex[ℓγ]. Training
with gradient descent (GD), we compute the gradient with respect to Lγ . All the results we derive
for ℓγ directly carry over to Lγ .

This work is organized as follows. We first study the effect of three specific types of symmetry one
often encounters in deep learning: (1) rescaling symmetry, (2) rotation symmetry, and (3) permu-
tation symmetry. See Figure 1 for an illustration. We then identify a general class of symmetry,
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Figure 1: When loss function symmetries are present, the model converges to structurally constrained solutions
at a high weight decay or gradient noise. Left: A vanilla linear regression trained with SGD does not converge
to sparse solutions for any learning rate. When we introduce redundant rescaling symmetry to every parameter,
sparser solutions are favored at higher learning rates (λ). Mid: Vanilla 200 dimensional matrix factorization
trained with SGD prefers lower-rank solutions when the gradient noise is strong due to the rotation symmetry.
The inset shows that the model always stays full-rank if we remove the rotation symmetry by introducing
residual connections. Right: Correlation of the pre-activation value of neurons in the penultimate layer of
ResNet18. After training, the neurons are grouped into homogeneous blocks when weight decay is present.
The inset shows that such block structures are rare when there is no weight decay. Also, the patterns are similar
for post-activation values, which further supports the claim that the block structures are due to the symmetry,
not because of linearity. See Section 4.7 and A for the experimental details and more results.

the mirror reflection symmetry, that treats all three types of symmetry in a coherent framework and
proves a general theorem showing that every mirror symmetry leads to a structured constraint, and
when weight decay is used (or when the gradient noise is large) SGD training tends to converge to
these constrained symmetric solutions. Here, a constraint refers to some function of the parameters
being zero: f(θ) = 0. Section 4 discusses the related works in detail and the connections of our
results to them. All the proofs are given in Appendix B.

2 CONSEQUENCES OF COMMON SYMMETRIES

While all the theorems in this section can be proved as corollaries of the general theorem 4, we give
independent proofs of them to bring some concreteness to the general theorem.

2.1 RESCALING SYMMETRY LEADS TO SPARSITY

The simplest type of symmetry in deep learning is the rescaling symmetry. Consider a loss function
ℓ0 for which the following equality holds for any x, arbitrary vectors u, w and ρ ∈ R/{0}:

ℓ0(u,w,x) = ℓ0(ρu, ρ−1w,x). (2)
For the rescaling symmetry and for all the problems we discuss below, it is also possible for ℓ0 to
contain other parameters v that are irrelevant to the symmetry: ℓ0 = ℓ0(u,w, v). Since having such
v or not does not change our result, we only show v explicitly when necessary. Also, because the
symmetries we consider in this work hold for any x, we also omit writing x unless necessary.

The following theorem states that this symmetry leads to sparsity in the parameters.
Theorem 1. Let ℓ0(u,w) have the rescaling symmetry in Eq. (2). Then, for any x,

1. if u = 0 and w = 0, then ∇uℓγ = 0 and ∇wℓγ = 0;
2. for any fixed u, w, there exists γ0 such that for all γ > γ0, ℓγ(0,0) < ℓγ(u,w).

Two parts of the theorem statement convey different insights. Part 1 shows that the learning dynam-
ics are constrained – namely, GD or SGD will not leave the condition (u,w) = (0,0) once entered.
Part 2 shows that such constrained solutions can be locally favored for a large regularization. Addi-
tionally, symmetry has strong implications on the structures of the Hessian of the loss function and
global properties of the loss landscapes; we delay its presentation and discussion after Theorem 4.

This symmetry usually manifests itself when part of the parameters is linearly connected. Previous
works have used this property to either understand the inductive bias of neural networks or design
efficient training algorithms. When the model is a fully connected ReLU network, Neyshabur et al.
(2014) showed that having L2 is equivalent to L1 constraints of weights. Ziyin & Wang (2023)
designed an algorithm to compress neural networks by transforming a parameter vector v to u⊙w,
where ⊙ is the Hadamard product.
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2.2 ROTATION SYMMETRY LEADS TO LOW-RANKNESS

A more involved but common type of symmetry is the rotation symmetry, which also appears in a
few slightly different forms in deep learning. This type of symmetry appears in matrix factorization
problems, where it is a main cause of the emergence of saddle points (Li et al., 2019). It also
appears in Bayesian deep learning (Tipping & Bishop, 1999; Kingma & Welling, 2013; Lucas et al.,
2019; Wang & Ziyin, 2022), self-supervised learning (Chen et al., 2020; Ziyin et al., 2023b), and
transformers in the form of key-query matrices (Vaswani et al., 2017; Dong et al., 2021).

Now, we show that rotation symmetry in the landscape leads to low rankness. We use the word
“rotation” in a broad sense, including all orthogonal transformations. There are two types of rotation
symmetry common in deep learning. In the first kind, we have for any W ,

ℓ0(W ) = ℓ0(ΩW ) (3)

for any orthogonal matrix Ω such that ΩΩT = I and W is a set of weights viewed as a matrix or
vector whose left dimension matches the right dimension of Ω.
Theorem 2. Let ℓ0 satisfy the rotation symmetry in Eq. (3). Then, for any index i, vector n and x,

1. if nTW = 0, then nT∇W ℓγ = 0;
2. for any fixed W , there exists γ0 such that for all γ > γ0, ℓγ(W/i) < ℓγ(W );1

Part 1 of the statement deserves a closer look. nTW = 0 implies that W is low-rank and n is a left
eigenvector of W . That the gradient vanishes in this direction means that once the weight matrix
becomes low-rank, it will always be low-rank for the rest of the training.

A more common symmetry is a “double” rotation symmetry, where ℓ0 depends on two matrices U
and W and satisfies ℓ0(U,W ) = ℓ0(UR,RTW ), for any orthogonal matrix R and any U and W .
Namely, the loss function is invariant if we simultaneously rotate two different matrices with the
same rotation. In this case, one can show something similar: nTW = 0 and Un = 0 for some fixed
direction n is the favored solution.

2.3 PERMUTATION SYMMETRY LEADS TO HOMOGENEITY

The most common type of symmetry in deep learning is permutation symmetry. It shows up in
virtually all architectures in deep learning. A primary and well-studied example is that in a fully
connected network, the training objective is invariant to any pairwise exchange of two neurons in
the same hidden layer. We refer to this case as the “special permutation symmetry” because it
is a special case of the permutation symmetry we study here. Many recent works are devoted to
understanding the special permutation symmetry (Simsek et al., 2021; Entezari et al., 2021; Hou
et al., 2019).

Here, we study a more general and abstract type of permutation symmetry. The loss function has a
permutation symmetry between parameter subsets θa and θa if, for any θa and θb,2

ℓ0(θa, θb) = ℓ0(θb, θa). (4)

When there are multiple pairs that satisfy this symmetry, one can combine this pairwise symmetry
to generate arbitrary permutations. In this perspective, permutation symmetries appear far more
common than is recognized. For example, another example is that a convolutional neural network is
invariant to a pairwise exchange of two filters, which is rarely studied. A scalar rescaling symmetry
can also be regarded as a special case of permutation symmetry.

Here, we show that the permutation symmetry tends to make the neurons become identical copies
of each other (namely, encouraging θa to be as close to θb as possible).
Theorem 3. Let ℓ0 satisfy the permutation symmetry in Eq. (4). Then, for any x,

1. if θa − θb = 0, then ∇θaℓγ = ∇θbℓγ;
2. for any θa ≠ θb, there exists γ0 such that for all γ > γ0, ℓγ((θa + θb)/2, (θa + θb)/2) <

ℓγ(θb, θa);
1The notation W/i denotes the matrix obtained by setting the i-th singular value of W to be zero.
2A common example is a hidden layer of a network; let wa and ua be the input and output weights of neuron

a, and wb, ub be the input and output weights of neuron b. We can thus let θa ∶= (wa, ua) and θb ∶= (wb, ub).
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This theorem implies that a permutation symmetry can be seen as a generalized form of ensembling
smaller submodels.3 This identification of the stationary subspace agrees with the result in Simsek
et al. (2021). Special cases of this result have been proved previously. For a fully connected network,
Fukumizu & Amari (2000) showed that the solutions of subnetworks are also solutions of the larger
network, and Chen et al. (2023) demonstrated that these subnetwork solutions of fully connected
networks can be attractive when the learning rate is large. Our result is more general because it
does not restrict to the special permutation symmetry induced by fully connected networks. A novel
application is that the networks have block-wise neurons and activation patterns whenever weight
decay is present. See Figure 1.

3 EVERY MIRROR SYMMETRY LEADS TO A STRUCTURED CONSTRAINT

A remarkable aspect of Theorems 1, 2 and 3 is that their proofs only require the symmetry, and
no details of the architecture or loss function need to be specified. This means that these results
are more general than the previous literature, which often specializes in a given architecture (such
as a fully connected network) that happens to have a type of symmetry. The observation that only
knowing the symmetry alone can help us deduce so much about the behavior of these systems hints
at some underlying universal principle.

Let us first define a general type of symmetry called mirror reflection symmetry.
Definition 1. A per-sample loss function ℓ0(w) is said to have the simple mirror (reflection) sym-
metry with respect to a unit vector n if, for all w, ℓ0(w) = ℓ0((I − 2nnT )w).

Note that the vector (I − 2nnT )w is the reflection of w with respect to the plane orthogonal to n.
Also, the L2 regularization term itself satisfies this symmetry for any n because reflection is norm-
preserving. An important quantity is the average of the two reflected solutions: w̄ = (I − nnT )w,
where w̄ is the fixed point of this transformation and can be called a “symmetric solution.” This
mirror symmetry can be generalized to the case where the loss function is invariant only when
multiple mirror reflections are made.
Definition 2. Let O consist of columns of orthonormal vectors: OTO = I , and R = I − 2OOT . A
loss function ℓ0(w) is said to have the O-mirror symmetry if, for all w, ℓ0(w) = ℓ0(Rw).

By construction, OOT and I −OOT are projection matrices, and I −2OOT is an orthogonal matrix.
There are a few equivalent ways to see this symmetry. First of all, it is equivalent to requiring
the loss function to be invariant only after multiple simple mirror symmetry transformations. Let
m be a unit vector orthogonal to n. Reflections to both m and n give (I − 2mmT )(I − 2nnT ) =
I−2(nnT+mmT ). The matrix nnT+mmT is a projection matrix and, thus, an instantiation of OOT .
Secondly, because the composition of orthogonal unit vectors spans the space of projection matrices,
OOT is nothing but a generic projection matrix P . Thus, this symmetry can be equivalently defined
with respect to P such that ℓ0(w) = ℓ0((I − 2P )w). If we let O or P be rank-1, the symmetry
reduces to the simple mirror symmetry in Definition 1.

We also make a reasonable smoothness assumption, which is only needed for part 4 of the theorem.4

Assumption 1. The smallest eigenvalue of the Hessian of ℓ0 is lower-bounded by a (possibly nega-
tive) constant λmin.

With these definitions, we are ready to prove the following theorem.
Theorem 4. Let ℓ0(w) satisfy the O-mirror symmetry. Then,

1. for any γ, if OTw = 0, then OT∇wℓγ = 0;
2. if OTw = 0, a subset of the eigenvector of ∇2

wℓ0(w) spans ker(OT ), and the rest spans
im(OOT );

3. if OTw ≠ 0, there exists γ0 such that for all γ > γ0, ℓγ((I −OOT )w) < ℓγ(w);
3One might suspect the origin is always favored when a mirror symmetry exists: this is not true. Let us

consider a simple reparametrized linear regression problem: Lγ(w1,w2) = [(w1 +w2)x − y]2 + γ(w2
1 +w2

2).
A permutation symmetry exists between w1 and w2. The condition θa − θb = 0 is satisfied for all solutions of
the loss whenever γ > 0. Meanwhile, for a finite γ, no solution satisfies θa = θb = 0.

4Alternatively, we can assume that the parameters are constrained in a bounded space.
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4. there exists γ1 such that for all γ > γ1, all minima of ℓγ satisfy OTw = 0.

Parts 1 and 2 are statements regarding the local gradient geometry, regardless of the weight decay.
Parts 3 and 4 are local and global statements regarding the role of weight decay. It is instructive
to show how Theorems 1, 2 and 3 are corollaries of Theorem 4. The simplest application is to the
rescaling symmetry. When the rescaling symmetry exists between two scalars u and w, there are two
planes of mirror symmetry: n1 = (1,1) and n2 = (1,−1). Here, n1 symmetry implies that u = −w
is a symmetry solution, and n2 symmetry implies that u = w is a symmetry solution. Applying
Theorem 4 to these two mirrors implies that u = 0 and w = 0 is a symmetry solution and obeys
Theorem 1. When u ∈ Rd1 and w ∈ Rd2 are vectors of arbitrary dimensions and have the rescaling
symmetry, one can identity the implied mirror symmetry as O = I , and so I − 2P = −I: the loss
function is symmetric to a simultaneous flip of all the signs of u and w. Applying Theorem 4 to this
mirror again allows us to derive Theorem 1.

For permutation symmetry in ℓ0(θ1, θ2) with θi ∈ Rd, we can identify the projection as

P = 1

2
[ Id −Id
−Id Id

] . (5)

Let θ = (θ1, θ2) denote a vector combination of both sets of the parameters. The permutation
symmetry thus implies the mirror symmetry: ℓ0(θ) = ℓ0((I − 2P )θ). The symmetry solution is
θ1 = θ2, and applying the master theorem to this mirror allows us to obtain Theorem 3.

For rotation symmetry, we note that for any projection matrix Π, the matrix I − 2Π is an orthogonal
matrix because (I − 2Π)(I − 2Π)T = (I − 2Π)2 = I . Therefore, the rotation symmetry already
implies that for any Π and W , ℓ0((I − 2Π)W ) = ℓ0(W ). To apply the theorem, we need to view
W as a vector, and the corresponding reflection matrix is diag(I − 2Π, ..., I − 2Π), a block-wise
repetition of the matrix I − 2Π, where each block corresponds to a column of W . By construction,
P is also a projection matrix. Since this holds for an arbitrary Π, one can choose Π to be the plane
that matches the desired plane in Theorem 2, which can be then proved by invoking Theorem 4.
Therefore, all three main types of symmetry we study are consequences of the general theorem.

4 APPLICATIONS

4.1 ABSORBING STATES AND STATIONARY CONDITIONS

To discuss the implication of symmetries, we introduce the concept of a “stationary condition.”
Definition 3. For an arbitrary function f , f(θ) = 0 is a stationary condition of L(θ) if f(θt) = 0
implies f(θt+1) = 0, where θt is the t-th step parameter under (stochastic) gradient descent.

A stationary condition can be seen as a special case of an absorbing state, which is a major theme in
the study of Markov processes and is associated with complex phase-transition-like behaviors (Nor-
ris, 1998; Dickman & Vidigal, 2002; Hinrichsen, 2000). Part 1 of Theorem 4 implies the following.
Corollary 1. Every O-mirror symmetry implies a linear stationary condition: OT θ = 0.

Alternatively, a stationary condition can be seen as a generalization of a stationary point because
every stationary point in the landscape implies the existence of a stationary condition – but not vice
versa. For example, some functions of the parameters might reach stationarity before the whole
model reaches stationarity. The existence of such conditions implies that there are special subspaces
in the landscape such that the dynamics of gradient descent within these subspaces will not leave it.
See Appendix Figure 4 for an illustration of the stationary conditions.

4.2 STRUCTURE OF THE HESSIAN

Part 2 of Theorem 4 hasd important implications for the local geometry of the loss and the dynamics
of SGD. Let H denote the Hessian of the loss L or that of the per-sample loss ℓ. Part 2 states that
H close to symmetry solutions are partitioned by the symmetry condition I − 2P to two subspaces:
one part aligns with the images of P , and the other part must be orthogonal to it. Namely, one
can transform the Hessian into a two-block form, H⊥ and H∥, with O.5 Note that the parameters

5Let Õ be any orthogonal matrix whose basis includes all the eigenvectors of O. Then, OTHO will be a
two-block matrix.
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Figure 2: When symmetries exist, the stationary conditions correspond to highly structured Hessians. Left:
the symmetry mirror O partitions H into two blocks: one block parallel to surfaces in OOT , and the other or-
thogonal to it. When an extra symmetry exists, these two blocks can be decomposed into additional subblocks.
Mid-Right: the loss function around a symmetric solution has a universal geometry. Here, s is the component
of the parameters along a direction of the O-symmetry. The competition between the signal in the dataset and
the regularization strength determines the local landscape.

might also contain other symmetries, so H∥ and H⊥ may also consist of multiple sub-blocks. This
implies that close to the symmetric solutions, the Hessian of the loss will take a highly structured
form simultaneously for all data points or batches. See Figure 2.

That the Hessian of neural networks after training takes a similar structure is supported by empirical
works. For example, the illustrative Hessian in Figure 2 is similar to that computed in (Sagun et al.,
2016). That the actual Hessians after training are well approximated by smaller blocks is supported
by (Wu et al., 2020). Blockwise Hessian matrices can also be related to the existence of gaps in the
Hessian spectrum, which is widely observed (Sagun et al., 2017; Ghorbani et al., 2019; Wu et al.,
2020; Papyan, 2018).

It is instructive to consider the special case where O = nT is rank-1. Part 2 implies that n must be
an eigenvector of the Hessian whenever the model is at a symmetry solution. For illustration, we
consider a two-layer linear network with scalar input and outputs. The loss function can always be
written as ℓ(w,u) = 1

2
(x∑d

i uiwi − y)
2
. For each index i, uiwi contains the rescaling symmetry and

are thus subject to two symmetries with mirrors (1,1) and (1,−1). Therefore, the theory predicts
that when u ≈ w ≈ 0, the Hessian consists of d 2 × 2 symmetric matrices with (1,1) and (1,−1)
being the eigenvectors. This can be compared with a direct computation. When w = u = 0, the
nonvanishing terms of the Hessian are ∂2

∂wi∂ui
ℓ = −xy:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −xy
−xy 0

...
0 −xy
−xy 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

This means that the eigenvectors are indeed (1,1) and (1,−1) with eigenvalues xy and −xy, agree-
ing with the theory. It is remarkable that we can identify all the eigenvectors by only examining the
symmetry in the model.

4.3 DYNAMICS OF STOCHASTIC GRADIENT DESCENT

The symmetry in the loss has a lot of consequences for the dynamics of training with SGD in light of
the recent progress in analyzing SGD. Let O denote the mirror and P = OOT the projection matrix.
If OOTw = sn where n is a unit vector, and s is a small quantity, the model is perturbatively away
from the symmetry solution. In this case, one can expand the loss function to leading orders in s:

ℓ(x,w) = ℓ(x,w0) +
1

2
wTPH(x)Pw + o(s3), (7)

where we have defined the sample Hessian restricted to the projected subspace: H(x) ∶=
P∇2

wℓ(x,w0)P , which is a matrix of random variables. Note that all the odd-order terms in s
vanish due to the symmetry in flipping the sign of s. In fact, one can view the training loss ℓγ or Lγ

as a function of s, which we denote as L̃(s), and this analysis implies that the loss landscape close
to s = 0 takes a rather universal geometry. See Figure 2.

This allows us to characterize the dynamics of SGD in the symmetry directions:
Pwt+1 = Pwt − λHPwt, (8)
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where λ is the learning rate. Previously, this type of critical point is shown to exist at interpolation
minima of wide networks (Wu et al., 2018). Our result implies that this type of solution is far more
common than previously understood and exists whenever symmetries are present.

Let us first consider GD. The largest negative eigenvalue of Ex[H], ξ∗, thus gives the speed at which
SGD escapes the stationary condition: Pwt ∝ exp(−ξ∗t). When weight decay is present, all the
eigenvalues of H will be positively shifted by γ, and, therefore, if and only if ξ∗ +γ > 0, GD will be
attracted to these symmetric solutions. In this sense, ξ∗ gives a critical weight decay value at which
a symmetry-induced constraint is favored.

For SGD, the dynamics is qualitatively different. Naively, when using SGD, the model will escape
the stationary condition faster due to the noise. However, this is the opposite of the truth. The
existence of the SGD noise due to minibatch sampling makes these stationary conditions more at-
tractive. The stability of the type of dynamics in Eq. (8) can be analyzed by studying the condition
for convergence in probability of the solution Pw = 0 (Ziyin et al., 2023a). One can show that Pw
converges to 0 in probability if and only if the Lyapunov exponent of the process Λ is negative,
which is possible even if this critical point is a strict saddle. When does a subspace of Pw converge
(or collapse) to zero? One can derive a satisfactory approximate learning rate by making the commu-
tation approximation, which assumes that H(x) commutes with H(x′) for all x, x′ in the training
set.6 In this case, each subspace of H(x) has its own Lyapunov exponent and can be analytically
computed. Let ξ(x) denote the eigenvalue of H(x) in this subspace. Then, this subspace collapses
when Λ = Ex[log ∣1−λ(ξ(x)+ γ)∣] < 0, which is negative for a large learning rate (see Appendix B
for a formal treatment). The meaning of this condition becomes clear by expanding to the second
order in λ to obtain:

λ > −2E[ξ + γ]
E[(ξ + γ)2]

. (9)

The numerator is the eigenvalue of the empirical loss, and the denominator can be identified as the
minibatch noise effect (Wu et al., 2018), which becomes larger if the batch size is small or if the
dataset is noisy. Therefore, this phenomenon happens due to the competition between the signal
and noise in the gradient. This example shows that at a large learning rate, the stationary conditions
are favored solutions of SGD, even if they are not favored by GD. From a Markovian perspective,
this critical learning rate is when the Markov process becomes an absorbing Markov chain.7 Also,
convergence to these symmetry-induced saddles is not a unique feature of SGD but happens for
Adam-type dynamics as well (Ziyin et al., 2021; 2023a).

Two novel applications of this analysis are to learning a sparse model and a low-rank model. See
Figure 1. We first apply it to a linear regression with rescaling symmetry. It is known that when
both weight decay and rescaling symmetries are present, the solutions are sparse and identical to
lasso (Ziyin & Wang, 2023). Our result shows that even without weight decay, the solutions are
sparse at a large learning rate. Then, we consider a matrix factorization problem. Classical results
show that the solutions are low-rank when weight decay is present (Srebro et al., 2004). Our result
shows that even if there is no weight decay, SGD at a large learning rate or gradient noise converges
to these low-rank saddles. The fact that these constrained structures disappear completely when the
symmetry is removed supports our claim that symmetry is the cause of them.

A strong piece of evidence for the relevance of the theory to real neural networks is that after train-
ing, the Hessian of the loss function is observed to contain many small negative eigenvalues, which
hints at the convergence to saddle points (Sagun et al., 2016; 2017; Ghorbani et al., 2019; Alain et al.,
2019). Another related phenomenon is that of pathological Fisher information. From a Bayesian
perspective, the matrix J ∶= Ex[∇wℓ∇T

wℓ] is the Fisher information of the system (Amari & Na-
gaoka, 2007). Our result implies that the Fisher information is singular close to any symmetry
solutions. Note that OT∇wℓ(w,x) = 0 for a symmetry solution and any x. Therefore, the Fisher
information has a zero eigenvalue along the directions orthogonal to any mirror symmetry. Previous
works have demonstrated that the learning of neural networks passes through regions of singular

6We use this approximation to highlight its qualitative dependence on the learning rate, batch size, and
gradient distribution. It should be noted that it is not an accurate approximation, and the computation and
estimation of the Lyapunov exponent for this process is a well-known open problem for the field of dynamical
systems (Pollicott, 2010).

7Alternatively, similar problems can also be analyzed using a continuous-time approximation and show that
when gradient noise is strong, these points are attractive (Vivien et al., 2022; Chen et al., 2023).
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Fisher information, where the learning dynamics is slow (Wei et al., 2008; Cousseau et al., 2008;
Fukumizu, 1996; Karakida et al., 2019a;b). Therefore, the Fisher information having flat directions
is also a sign that the symmetry solutions are reached.

4.4 LOSS OF PLASTICITY AND NEURAL COLLAPSES

Figure 3: Loss of plasticity in contin-
ual learning in a vanilla linear regres-
sor (dashed) and linear regressors with
rescaling symmetry (solid). Vanilla re-
gression has no symmetry and does not
suffer plasticity loss, whereas having sym-
metries leads to the loss of plasticity. One
can fix the problem with one of the two
suggested methods, either by removing
the symmetry in the model or removing
the absorbing states by injecting noise.

Our theory implies that the commonly observed loss of
plasticity problem in continual and reinforcement learning
(Lyle et al., 2023; Abbas et al., 2023; Dohare et al., 2023)
is attributable to symmetries in the model. For a given task,
weight decay or a finite learning rate makes the model con-
verge to symmetry solutions, which tend to be low-capacity
constrained solutions. If we train on an additional task, the
capacity of the model can only decrease because the sym-
metry solutions are also stationary conditions, which SGD
cannot escape. Fortunately, our theory suggests at least two
ways to fix this problem: (1) use an alternative parame-
terization that explicitly removes the symmetry and/or (2)
inject additive noise to the gradient to eliminate the station-
ary conditions.8 There are many ways to achieve (1). An
easy way is to bias every (symmetry-relevant) parameter by
a random bias: wi → wi + βi, where βi is a small fixed
random variable.9 See Figure 3 and Appendix A.

A related phenomenon that symmetry can explain is the col-
lapse of neural networks. The most common type of col-
lapse is when the learned representation of a neural network spans a low-rank subspace of the entire
available space, often leading to reduced expressive power. In Bayesian deep learning, a poste-
rior collapse happens when the stochastic latent variables are low-rank (Lucas et al., 2019; Wang
& Ziyin, 2022). This can be attributed to the double rotation symmetry of the encoder’s last layer
weight and the decoder’s first layer weight. In self-supervised learning, a dimensional collapse
happens when the representation of the last layer is low-rank (Tian, 2022), which has been found
to be explained by the rotation symmetry of the last layer weight matrix. This also explains why
many self-supervised learning methods focus on removing the symmetry (Bardes et al., 2021). The
rank collapse that happens in self-attention may also be relevant (Dong et al., 2021). In supervised
learning, the “neural collapse” happens when the learned representation of the penultimate learning
becomes low-rank, which happens when weight decay is present (Papyan et al., 2020). Figure 1
shows that such a phenomenon can be attributed to the permutation symmetry in the fully connected
layer. In summary, our result provides a unified perspective of the collapse phenomenon: collapses
are caused by symmetries in the loss function. Our theory also suggests that these collapse phe-
nomena have a natural interpretation as “phase transitions” in theoretical physics, where a collapse
solution corresponds to a symmetric state.

4.5 L1 EQUIVALENCE OF MIRROR SYMMETRIES

Parts 3 and 4 of Theorem 4 imply that constrained solutions are favored when weight decay is used.
These results can be stated in an alternative way: that every mirror symmetry plus weight decay has
an L1 equivalent. To see this, let the loss function L0(w) be O-symmetric, and P = OOT . Let w
be an arbitrary weight, which we decompose as w = w′ + sPw/∣∣Pw∣∣, where we define s = ∣∣Pw∣∣.
Let us define an equivalent loss function L̃0(w′, Pw/∣∣Pw∣∣, s2) ∶= L0(w). By definition, we have

8In fact, gradient noise injection is a known method to alleviate plasticity loss (Dohare et al., 2023).
9The effectiveness of this method raises an interesting question of why it works because adding biases

only removes mirror symmetries that pass through the origin, and symmetries with respect to a hyperplane still
exist. In short, it is usually not symmetries that lead to bad solutions but that these symmetries appear together
with small-norm solutions that are low-capacity. This is true for O-mirror symmetries, which pass through the
origin. However, when the symmetry does not intersect the origin, the symmetric solutions do not coincide
with small-norm solutions (which are preferred when there is weight decay), and are thus benign. For example,
consider the loss ℓ = (uwx− y)2. Here, the symmetry solution is u = w = 0, which is also low-capacity. When
we add a bias, say ℓ = ((u − 0.1)wx − y)2, the symmetric solution no longer coincides with a small-norm
solution, and adding weight decay actually prevents collapsing to the symmetric solution.

8



Under review as a conference paper at ICLR 2024

successfully constructed the L1 equivalent of the original loss.

L0(w)+γ∣∣w∣∣2 = L̃0(w′, Pw/∣∣Pw∣∣, s2)+γ(∣∣w′∣∣2+s2) = L̃0(w′, Pw/∣∣Pw∣∣, ∣z∣)+γ(∣∣w′∣∣2+ ∣z∣),
where we introduced ∣z∣ = s2. Therefore, along the symmetry-breaking direction, the loss function
has an equivalent L1 form. One can also show that L̃0 is well defined as an L1-constrained loss
function. If L0 is differentiable, L̃0 is differentiable except at s = 0. Thus, it suffices to show that
the right derivative of L̃0 with respect to z exists at z = 0+. As we have discussed, at z = 0, the
expansion of L0 is second order in s. This means that the leading order term of L̃0 is first order in
z, and so the L1 penalty is well-defined for this loss function.

4.6 AN ALGORITHM FOR DIFFERENTIABLE CONSTRAINT

Sparsity and low-rankness are typical structured constraints that practitioners often want to incor-
porate into their models (Tibshirani, 1996; Meier et al., 2008; Jaderberg et al., 2014). However,
the known methods of achieving these structured constraints tend to be tailored for specific prob-
lems and based on nondifferentiable operations. Our theory shows that incorporating symmetries is
a general and scalable way to introduce such constraints into deep learning. Consider solving the
following constrained problem: minθ L(θ) s.t. as many elements of Pθ are zero as possible. Here,
P = OOT is a projection matrix. Our theory implies an algorithm for enforcing such constraints
in a differentiable way: introducing an artificial O-symmetry to the loss function encourages the
constraint OT θ = 0, which can be achieved by running GD on the following loss function:

min
w,u,v

L(T (w,u, v)) + α(∣∣w∣∣2 + ∣∣u∣∣2), (10)

where w, u, v have the same dimension as θ and T (w,u, v) = (I − P )v + (Pw) ⊙ (Pu), where
⊙ denotes the Hadamard product. We call the algorithm DCS, standing for differentiable constraint
by symmetry. This parameterization introduces the mirror symmetry to which OTT (w,u, v) = 0 is
a stationary condition. By Theorem 4, a sufficiently large α ensures that OTT (w,u, v) = 0 is an
energetically favored solution. Also, note that this parametrization is a “faithful” parametrization
in the sense that it is always true that minw,u,v L(T (w,u, v)) = minθ L(θ). See Section A for an
application of the algorithm to ResNet18.

4.7 NUMERICAL RESULTS

We numerically illustrate the effects our theory implies. All the technical details of the experiments
are presented in Section A. We first conduct experiments relating to the rescaling symmetry. See
Figure 1-left and 3. Here, we consider a linear regression task with noisy Gaussian data, where the
loss function is ℓ = (vTx − y), where v is either directly trained or parametrized as the Hadamard
product of two parameter vectors to artificially introduce rescaling symmetry: v = u⊙w. We see that
without such symmetry, the model never converges to a sparse solution, whereas the symmetrized
parametrization converges to symmetry solutions. Figure 1-mid shows that low-rank solutions are
preferred in matrix factorization when the gradient noise is large, whereas such a tendency disap-
pears when one removes the rotation symmetry by introducing a residual connection. Figure 1-right
shows that homogeneous solutions are preferred when weight decay is used, in agreement with the
prediction of Theorem 4.

5 DISCUSSION

In this work, we studied the implications of loss function symmetries on the gradient-based learning
of models. We have shown that every mirror symmetry leads to a structured constraint of learning.
This statement is examined from two different angles: (1) such solutions are favored when L2 reg-
ularizations are applied; (2) they are favored when the gradient noise is strong (which can happen
when the learning rate is large, the batch size is small, or the data is noisy). We showed that the
theory can analyze and understand common structures such as sparsity and low-rankness. We also
discussed a variety of specific problems and phenomena in a unified manner. Our result is universal
in that it only relies on the existence of the specified symmetries and does not rely on the properties
of the loss function, model architectures, or data distributions. Per se, symmetry and its associated
constraint are both good and bad. On the bad side, it limits the expressivity of the network and its ap-
proximation power. On the good side, it leads to more condensed models and representations, tends
to ignore features that are noisy and can improve generalization capability thereby. Understanding
symmetry systematically can help us avoid its negative side and utilize it to our advantage.
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Figure 4: Stationary conditions in different loss landscapes. Left: L = (wu − 1)2. Here, u = w and u = −w
are the stationary conditions caused by the rescaling symmetry. Right: θ = (u,w) and L = −∣∣θ∣∣2 + ∣∣θ∣∣4.
Here, the stationary condition caused by the rotation symmetry is every straight line crossing the origin. Every
stationary condition delineates a submanifold of the entire landscape. Once the model is in this submanifold,
SGD cannot leave it.

A EXPERIMENTAL CONCERNS

A.1 ILLUSTRATION OF STATIONARY CONDITIONS

See Figure 4.
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Figure 5: Comparison for the correlation matrix of the neurons in the penultimate layer at zero
weight decay (left) and 0.001 weight decay (right). Upper: pre-activation correlation. Lower:
post-activation correlation. After training, the neurons are grouped into homogeneous blocks when
weight decay is present. The inset shows that such block structures are very rare when there is no
weight decay. Also, the patterns are similar for post-activation values, which further supports the
claim that the block structures are due to the symmetry, not because of linearity.

A.2 EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS FOR FIGURE 1

Here, we give the experimental details for the experiments in Figure 1.

For the sparsity experiments, we generate online data of batch size 1 in the following way. The
input x ∈ R200 is sampled from a diagonal normal distribution. The label y = 1

200 ∑i xi + ϵ ∈ R,
where ϵ is a noise term also sampled from a Gaussian distribution. The training proceeds with SGD
without weight decay or momentum for 105 iterations. The vanilla linear regression (labeled as
“w/o rescaling”) is parameterized in the standard way: f(x) = wTx. The regressor with rescaling
symmetry is parameterized as a Hadamard product, as in the spred algorithm (Ziyin & Wang, 2023):
f(x) = (w ⊙ u)Tx, where ⊙ denotes the element-wise product.

For the low-rank experiment with matrix factorization, we also generate online data of batch size
1 similarly. The input x ∈ R200 is sampled from a diagonal normal distribution. The label is y =
µx+(1−µ)ϵ ∈ R200, where µ controls the degree of noise in the label and can be seen as the effective
signal-to-noise ratio in the data. Here, the noise vector ϵ have different variances: ϵi ∼ N (0,2/i).
The vanilla matrix factorization model is f(x) = WUx, where both W and U ∈ R200×200. The
training proceeds with standard SGD without momentum or weight decay. For the inset figure,
we parameterize the network through residual connections: f(x) = (I200 +W )(I200 + U)x, thus
removing the rotation symmetry.

For the ResNet experiment, we train a standard ResNet18 with roughly 10M parameters in total on
the CIFAR-10 dataset. The SGD algorithm uses a batch size of 128 for 100 epochs with a fixed
learning rate of 0.1 and momentum of 0.9, with varying degrees of weight decay. To plot the activa-
tion correlation, we take the penultimate layer neurons of the fully connected layer with dimension
128 and compute the correlation matrix over their activation of 2000 unseen test points. The neurons
are sorted according to the eigenvector with the largest eigenvalue of the correlation matrix to reveal
its block structure. Importantly, the pre- and post-activations have a similar correlation structure,
showing that the effect is not due to linearity but the permutation symmetry. See Figure 5 for the
comparison between the pre- and post-activation correlations.
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A.3 EXPERIMENTAL DETAIL FOR CONTINUAL LEARNING

Here, we give the experimental detail for the continual learning experiment in Figure 3.

For all the experiments in the figure, the training proceeds with Adam without momentum with a
batch size of 16 for 25000 steps. Every task consists of a dataset of 100 data points drawn from
the following distribution. The input x ∈ R100 is sampled from a diagonal normal distribution. The
label y = 1

100 ∑i xi + ϵ ∈ R, where ϵ is a noise term also sampled from a Gaussian distribution. The
weights obtained from training on task j is used as the initialization for task j + 1, which consists of
another 100 data points sampled in the same way. We train for 10 tasks and record the number of
dead neurons in the model. The dead neurons are defined as the number of parameters that have a
vanishing gradient.

To have strong control over the experimental conditions, we use vanilla linear regression as a base
model, which is shown in the solid curve. Because there is no symmetry in the model, the vanilla
linear regression has a minimal level of dead neurons, and its number does not increase as the number
of tasks increases.

In contrast, for a linear regression with augmented rescaling symmetry where we reparameterize
every weight of the linear regressor by the Hadamard product of two independent weights (also
see the previous section), the loss of plasticity problem emerges, and the number of dead neurons
increases steadily as one train on more and more tasks. To show that symmetry is indeed the cause
of the problem, we fix the loss of plasticity problem in this model with the two suggested methods.
First, we inject a very weak Gaussian random noise with variance 1e − 4 to the gradient every step.
Because this removes the absorbing states, or equivalently the stationary conditions, the number of
dead neurons reduces to the same level as vanilla regression. Alternatively, we bias every weight
parameter by a random and fixed constant: wi → wt + βi, where βi is drawn from a Gaussian
distribution with variance 1e− 4. Because this parametrization removes the symmetry in the model,
it also fixes the loss of plasticity problem, as we expect from the theory.
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Figure 6: Training of a ResNet18 on CIFAR-10 without (vanilla) and with rescaling symmetry on
each parameter. Left: the two models are similar in terms of training time and final performance.
Right: with rescaling symmetry, the model parameters is very sparse. Here, sparsity is defined as
the fraction of parameters with a magnitude smaller than 10−6. Setting these parameters to zero has
no discernible effect on the model performance.

A.4 LEARNING DYNAMICS OF THE DCS ALGORITHM

To demonstrate the learning dynamics of the DCS algorithm, We consider training a sparse
ResNet18 on CIFAR-10. Here, the training proceeds with SGD with 0.9 momentum and batch
size 128, consistent with standard practice. We use a cosine learning rate scheduler for 200 epochs.
We compare the learning dynamics of vanilla ResNet18 and a ResNet18 with the rescaling symme-
try on every parameter, where we reparametrize the original parameter vector v as the Hadamard
product of two vectors w ⊗ v. Both models use a weight decay of 5e-4. We note that this special
case of the DCS algorithm is identical to the spred algorithm (Ziyin & Wang, 2023). After training,
both the vanilla model and the DCS model reach roughly 93% test accuracy (with the DCS model
higher by a small margin).

See Figure 6. As is clear, the training time required for a DCS model is similar to that of a vanilla
model. In terms of memory cost, we note that DCS costs twice as much memory as the vanilla at
batch size 1. However, at the batch size 128, the memory cost difference between the two is smaller
than 10 percent.
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B THEORETICAL CONCERNS

B.1 A FORMAL DERIVATION OF EQ. (9)

By Definition 2, the loss function has the O-symmetry if for any x

ℓ(w,x) = ℓ(I − 2OOTw,x). (11)

As we discussed, this means that for every data point x, the per-sample Hessian ∇2
wℓ(w,x) takes

the same block-wise structure outlined in Fig. 2. For this chapter, the most important consequence
of Theorem 4 is that OTw = 0 is a symmetry solution of ℓ(w,x) for all x.

We are interested in the stability of these solutions. Namely, we are interested in whether the model
will be attracted back to the solution if we are perturbatively away from it. The expansion of the
per-sample loss to the second order gives:

ℓ(w,x) = ℓ(w(0), x) + 1

2
wTP∇2

wℓ(w(0), x)Pw + o(s4), (12)

where P = OOT is a projection matrix, and w(0) = Pw is the component of w that is orthogonal
to the symmetry breaking subspace. Here, we care about when Pw is attracted towards 0. The
dynamics of z ∶= Pw is thus a stochastic linear dynamics:

zt+1 = zt − λĤ(w(0), x)zt, (13)

where Ĥ(w(0), x) = P∇2
wℓ(w(0), x)P .

To proceed, we make the following assumption.
Assumption 2. (Stationary background dynamics) The motion of w0 is sufficiently slow that
Ĥ(w(0), x) = Ĥ∗(x) is a constant function in w(0).

This also implies that any eigenvalue of H also only depends on x. This assumption holds when
the time scale of relaxation for w(0) is far slower than that of Pw or when the dynamics is already
stationary, namely, close to convergence.

When Assumption 2 holds, and O is rank-1, this dynamics is analytically solvable. By Theorem 4,
if O = n is rank-1, n is an eigenvector of Ĥ for all x. Thus, the dynamics simplifies to a one-
dimensional dynamics, where h(x) ∈ R is the corresponding eigenvalue of Ĥ(w0, x):

zt+1 = zt − λh(x)zt. (14)

The sufficient and necessary condition for the stability of this dynamics at z = 0 has an analytical
solution (Ziyin et al., 2023a), which is Eq. (9).
Theorem 5. (Ziyin et al. (2023a)) Let wt follow Eq. (14). Then, for any data set,

wt →p 0 (15)

if and only if10

Ex[log ∣1 − λh(x)∣] < 0. (16)

B.2 PROOFS

B.2.1 PROOF OF THEOREM 1

Proof. We first show part 1. The rescaling symmetry states that for any ϵ ≠ 1 and w, u,

ℓ0((1 + ϵ)u,w/(1 + ϵ)) = ℓ0(u,w). (17)

For an infinitesimal ϵ, this condition leads to

∇wℓ0 ⋅w = ∇uℓ0 ⋅ u. (18)
10This condition generalizes to the case when the batch size S is larger than 1, where h(x) becomes the

per-batch Hessian, and the expectation is taken over all possible batches.
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Taking the derivative of both sides over w, we obtain

∇wℓ0 = −∇2
wℓ0 ⋅w +∇w∇uℓ0 ⋅ u. (19)

Therefore, the gradient of ℓγ is −∇2
wℓ0 ⋅ w + 2γw + ∇w∇uℓ0 ⋅ u. When both w and u are zero,

∇wℓγ = 0. Likewise, we can show that ∇uℓγ = 0. This proves part 1.

For part 2, let us denote the quantity ℓγ(0,0) − ℓγ(u,w) as ∆. Now, note that ∆ = ℓ0(0,0) −
ℓ0(u,w) − γ(∣∣u∣∣2 + ∣∣w∣∣2), and so setting

γ >max(0, ℓ0(0,0) − ℓ0(u,w)
∣∣u∣∣2 + ∣∣w∣∣2

) (20)

fulfills the requirement. Note that because ℓ0 is differentiable, the fraction always exists. This proves
part 2.

B.2.2 PROOF OF THEOREM 2

Proof. We focus on proving part 1. For an arbitrary and fixed index, i, of the singular values of W ,
we consider a continuous transformation of W0 =W (s). Define a diagonal matrix Σ̃jj = Σjj for all
j ≠ i, and define

Σ̃jj(s) = {
Σjj if j ≠ i;
sΣjj if j = i. (21)

We also define a transformed version of V , which depends on an arbitrary vector z:

Ṽkl(z) = {
Vkl if k ≠ i;
zl if k = i. (22)

With Σ̃ and Ṽ , we define W̃
W̃ (s, z) = U Σ̃(s)Ṽ . (23)

We note two different features of this transformation: (1) W (0) is low-rank, and (2) for any s,
ℓ(W (s)) = ℓ(W (−s)). To see this, note that there exists an orthogonal matrix R such that

RW (s) =W (−s). (24)

By the assumed symmetry of the loss function, we have ℓ(W (s)) = ℓ(RW (s)) = ℓ(W (−s)).
Because

d

ds
Wjk(s, z) = UjiΣiiṼik(z) = UjiΣiizk, (25)

we can take the derivative of s of both sides of the equality ℓ(W (s)) = ℓ(W (−s)) to obtain a
low-rank condition on the gradient width as a matrix:

Σii∑
jk

[∇Wjk
ℓ(W (s)) +∇Wjk

ℓ(W (−s))]Ujizk = 0. (26)

In the limit s→ 0, W (s) =W (−s) and so the equality leads to

2Σii∑
jk

∇Wjk
L(W (0))Ujizk = 0. (27)

Because this equality must hold for any zk, we have that Uji must be a left eigenvector of
∇Wjk

ℓ(W (0)) with zero eigenvalues. Substituting into the gradient descent algorithm, we have

∑
j

UjiWjk,t+1 =∑
j

UjiWjk,t − λ∑
j

Uji∇Wjk
ℓ(Wt) = 0. (28)

This proves part 1.

For part 2, we note that the Frobenious norm of a matrix is the sum of its squared singular values.
Therefore, if we hold other singular values unchanged and shrink one of the singular values to 0, the
L2 regularization part of the loss function will strictly decrease. The rest of part 2 is the same as the
proof of Theorem 1.
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B.2.3 PROOF OF THEOREM 3

Proof. The symmetry condition is

ℓ0(θa, θb) = ℓ0(θb, θa). (29)

Taking the gradient of both sides with respect to θa, we obtain

∇θaℓ0(θa, θb) = ∇θaℓ0(θb, θa). (30)

When θa = θb, we can write the above condition as

∇θaℓ0(θa, θb) = ∇θbℓ0(θa, θb). (31)

This proves the first part of the theorem.

We now prove the second part of the theorem. Let us define interpolation functions ga and gb:

ga(µ) = (0.5 − µ)θa + (0.5 + µ)θb; (32)

gb(µ) = (0.5 + µ)θa + (0.5 − µ)θb. (33)
With these definitions, we have ga(µ) = gb(−µ). Also, we note that

ga(0) = gb(0) = 0.5θa + 0.5θb, (34)

which is the solution we want to compare with.

The loss function is given by

ℓγ(θa, θb) = ℓγ(ga(0.5), gb(0.5)). (35)

In contrast, for the homogeneous solution, the loss value is

ℓγ(ga(0), gb(0)). (36)

The norms of the two solutions, µ = 0.5 and µ = 0, can be compared:

∆ ∶= ∣∣ga(0)∣∣2 + ∣∣gb(0)∣∣2 − ∣∣ga(0.5)∣∣2 + ∣∣gb(0.5)∣∣2 < 0, (37)

where the inequality follows from the Cauchy-Schwarz inequality and the assumption that θa ≠ θb.
Therefore, for any

γ > ℓ0(ga(0.5), gb(0.5)) − ℓ0(ga(0), gb(0))
∆

, (38)

ℓγ(ga(0), gb(0)) < ℓγ(θa, θb). This proves the second part of the statement.

B.2.4 PROOF OF THEOREM 4

Proof. Part 1. Let R ∶= (I − 2OOT ). By assumption, we have OTw = 0. Now, consider a linearly
transformed version of w:

w̃(s) = w + sn, (39)

where n is any unit vector in the image of OOT . Note that we have the following relation:

Rw̃(s) = (I − 2OOT )(w + sn) = w − sn = w̃(−s). (40)

Therefore, by definition of the mirror symmetry, we have that for all s:

ℓγ(w̃(s)) = ℓγ(w̃(−s)). (41)

Dividing both sides by s and taking the limit s→ 0, we obtain

nT∇wℓγ(w) = 0. (42)

Because n is arbitrary, one can select a set of n such that they span the rows of OT , and we obtain
that OT∇wℓγ(w) = 0. This finishes part 1.

Part 2. Let OTw = 0. By symmetry, we have that for any s ∈ R and n ∈ ker(OT )⊥:11

ℓ0(w + sn) = ℓ0(w − sn). (43)

11We use ker(OT )⊥ to denote the set of all vectors that is perpendicular to all the vectors in ker(OT ).
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Let m be an arbitrary vector in ker(OT ). Then, we also have that for any s′ ∈ R

ℓ0(w + sn + s′m) = ℓ0(w − sn + s′m). (44)

Taking derivative over s′ for both sides and let s′ → 0, we obtain

mT∇ℓ0(w + sn) =mT∇ℓ0(w − sn). (45)

Taking derivative over s and let s→ 0, we obtain

2mT∇2
wℓ0(w)n = 0. (46)

Since m is an arbitrary vector in ker(OT ) and n is an arbitrary in ker(OT )⊥, this implies that

∇2
wℓ0(w)n ∈ ker(OT )⊥, (47)

∇2
wℓ0(w)m ∈ ker(OT ). (48)

Namely, a subset of the eigenvectors of∇2
wℓ0(w) spans ker(OT )⊥ and the rest spans ker(OT ). This

proves part 2.

To prove part 3, we first recognize that if we only look at the L2 regularization part of the loss
function, an orthogonal solution is always favored over a non-orthogonal solution. Let w be an
arbitrary solution such that OTw ≠ 0. We decompose w into an orthogonal part and a non-orthogonal
part:

w = u + sn, (49)
where OTu = 0 and OOTn = n. Since u and n are orthogonal, we have that

∣∣w∣∣2 − ∣∣u∣∣2 = s2 > 0. (50)

Therefore, if

γ > ℓ0(u) − ℓ0(w)
s2

, (51)

we have that

ℓγ(w) − ℓγ(u) = ℓ0(w) − ℓ0(u) + γ(∣∣w∣∣2 − ∣∣u∣∣2) (52)

= ℓ0(w) − ℓ0(u) + γs2 (53)

> ℓ0(w) − ℓ0(u) +
ℓ0(u) − ℓ0(w)

s2
s2 = 0. (54)

However, since we have u = (I −OOT )w, this proves part 3.

Part 4. By assumption, the smallest Hessian eigenvalue of ℓ0 is lower bounded by λmin. Therefore,
if γ > λmin, ℓγ has a positive definite Hessian everywhere, implying that its gradients are monotone
and that the global minimum is unique. Now, suppose there exists u = w + c0n such that c0 ≠ 0,
OTw = 0, OOTn = n, and

∇ℓγ(u) = 0. (55)
Then,

nT∇ℓγ(u) = 0 = nT∇ℓγ(w). (56)
This implies that the gradient is not monotone, which contradicts the assumption. Therefore, we
have proved part 4.
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