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Abstract

Local clustering aims to identify specific substructures within a large graph without
any additional structural information of the graph. These substructures are typically
small compared to the overall graph, enabling the problem to be approached by
finding a sparse solution to a linear system associated with the graph Laplacian. In
this work, we first propose a method for identifying specific local clusters when
very few labeled data are given, which we term semi-supervised local clustering.
We then extend this approach to the unsupervised setting when no prior information
on labels is available. The proposed methods involve randomly sampling the
graph, applying diffusion through local cluster extraction, then examining the
overlap among the results to find each cluster. We establish the co-membership
conditions for any pair of nodes, and rigorously prove the correctness of our
methods. Additionally, we conduct extensive experiments to demonstrate that the
proposed methods achieve state of the art results in the low-label rates regime.

1 Introduction

The ability to learn from data by uncovering its underlying patterns and grouping it into distinct
clusters based on latent similarities and differences is a central focus in machine learning. Over the
past few decades, traditional clustering problems have been extensively studied as an unsupervised
learning task, leading to the development of a wide range of foundational algorithms, such as k-means
clustering [MacQueen, |1967]], density-based clustering [Ester et al.,|1996]], spectral clustering [Ng
et al., 2001} Zelnik-Manor and Peronal 2004], hierarchical clustering [Nielsen, 2016] and regularized
k-means [Kang et al.,[2011]]. These foundational methods have, in turn, inspired numerous variants
and adaptations tailored to specific data characteristics or application domains.

Researchers have also developed semi-supervised learning approach for clustering, which leverages
both labeled and unlabeled data in various learning tasks. One of the most commonly used methods
in graph-based semi-supervised learning is Laplace learning [Zhu et al.l 2003|]. Note that Laplacian
learning sometimes is also called Label propagation [Zhu and Ghahramani, 2002], which seeks a graph
harmonic function that extends the labels. Laplacian learning and its variants have been extensively
applied in semi-supervised learning tasks [Zhou et al.,|2004alb, 2005, |Ando and Zhang|, 2007} Kang
et al.,2014]]. A key challenge with Laplacian learning type of algorithms is their poor performance in
the low-label rates regime. To address this, recent approaches have explored p-Laplacian learning
[El Alaoui et al., 2016} [Flores et al.,[2022], higher order Laplacian regularization [Zhou and Belkin,
2011]], weighted nonlocal Laplacians [Shi et al., 2017]], properly weighted Laplacian [[Calder and
Slepcev, [2019]], and Poisson learning [Calder et al., 2020].
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Those aforementioned clustering algorithms are all global clustering algorithms, recovering all cluster
structures simultaneously. However, real-world applications often require identifying only specific
substructures within large, complex networks. For example, in a social network, an individual may
only be interested in connecting with others who share similar interests, while disregarding the rest of
individuals. In such cases, global clustering methods become inefficient, as they generate excessive
redundant information rather than focusing on the relevant local patterns.

In this paper, we turn our focus to a more flexible clustering method called local clustering or
local cluster extraction. Local clustering focus only on finding one target cluster which contains
those nodes of interest to us, and disregard the non-interest or background nodes. Researchers have
investigated in this direction over the recent decades such as [Lang and Rao} 2004, |Andersen et al.,
2006\ [Kloster and Gleich} 2014} |Spielman and Teng, 2013, |Andersen et al., 2016, |Veldt et al.| 2019,
Fountoulakis et al.l 2020]. More recently, inspired by the idea of compressive sensing, |[Lai and
Mckenzie| [2020]], Lai and Shen| [2023]], Shen et al.| [2023]] proposed a novel perspective for local
clustering by finding the target cluster via solving a sparse solution to a linear system associated with
the graph Laplacian matrix. Intuitively speaking, as local clustering only focus on finding “one cluster
at a time", it is flexible in practice and can be more efficient and effective than global clustering
algorithms.

Besides such merits that local clustering algorithms possesses, one big downside of it is the necessity
of having the initial nodes (we call them seeds) of interest as prior knowledge, and it also requires
a good estimate of the target cluster size. The seeds information is sometimes very limited and
even unavailable, which makes local clustering algorithm less popular. We propose a clustering
method which requires very few seeds (semi-supervised case) or no seeds (unsupervised case), see
Figure [I|and [2| for illustration. We provide a detailed discussion of the procedure, with analysis on
the correctness of the proposed method. The main contributions of our work are as follows:

1. We propose a semi-supervised (with very few labeled data) and an unsupervised (no labeled
data) local clustering methods which outperform the state-of-the-arts local and non-local
clustering methods in most cases.

2. For theoretical considerations, we relax the assumption on the spectral norm of perturbation
on the graph Laplacian and prove the correctness of our method in the semi-supervised case.
We also establish the co-membership conditions for any pair of nodes, and then prove the
correctness of our method in the unsupervised case.

3. Computationally the proposed method can also show benefits that our semi-supervised
method can find all the clusters simultaneously which improves the “one cluster at a
time" feature of local clustering algorithms in terms of efficiency. We provide extensive
experiments with comparisons to show the effectiveness of our methods in the low-label
rates regime.

The rest of the paper is organized as follows. In Section 2] we present step-by-step procedure of the
proposed methods in both semi-supervised and unsupervised settings, and prove their correctness
under certain assumptions. In section[5] we show the experimental results of the proposed methods and
compare them with the state-of-the-art semi-supervised clustering algorithms on various benchmark
datasets. Finally, in Section[6] we conclude the paper, discuss its limitations and societal impact.

2 Model Assumptions

For a graph G = (V, E), we use V' to denote the set of all nodes, and E to denote the set of all edges.
Suppose G has k non-overlapping underlying clusters C'y, Cy, - - - , Cj, we use n; to denote the size
of C; where i = 1,2,--- | k, and use n to denote the total size of graph G. Further, we use A to
denote the adjacency matrix (possibly weighted but non-negative) of graph G, and use D to denote
the diagonal matrix whose diagonal entries is the degree of the corresponding vertex. We make the
following assumptions on the graph model.

Assumption 1 The non-zero entries in the diagonal block is denser than the non-zero entries in
the off-diagonal block (after permutation according to the cluster membership). More precisely, we
assume the graph Laplacian satisfies | AL||s = ||L — Lo = o(1) and (6,(L))*8™ = o(1) as the
graph size n — oo. The definition of RIP constant by, is provided in Definition[l|in Appendix[D]
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Figure 1: Illustration of semi-supervised local clustering (SSLC) for a single cluster. Each subplot
indicates one iteration (Blue dots: seeds in I';. Brown dots: randomly sampled node in each iteration).

Assumption 2 The number of cluster k = O(1) > 2. The size of each cluster is not too small or too
large, i.e., there exist Ny = O(n) and nyax = O(n) such that Ny < 1y < Npax for any i > 1.

Assumption 3 For any distinct i,j € C with some s > 1, let K; ; C C, be the set of nodes such
that given any node in K; ; as the seed, LCE always finds node i and j into the same local cluster.

2
We assume the cardinality of K; ; is at least (1 — o(1)) ™= for any distinct pair of nodes i, j.

Throughout the paper, all the notation o(1) is with respect to the size of graph n — co. Assumption
[lis essentially a type of homogeneity assumption on each cluster of the graph in order to guarantee
the performance of LCE (see Algorithm ) on a randomly chosen node.

One notable theoretical contribution in this paper is that we relax the assumption from ||AL|2 =
o(n~'/?) (see Lemma[4]in Appendix [C) [Shen et al, 2023] to ||AL[> = o(1) (see Lemmall]in
Appendix [A). We consider the local clustering tasks under two settings: semi-supervised case and
unsupervised case.

3 Semi-supervised Local Clustering

For the semi-supervised case, we consider the following. Given a graph G = (V, E') with underlying
cluster Cy, -+ ,Cy such that V = UF_,C;, C;NCy = O for 1 <i,j < k,i# j.

1. Suppose a very small portion of seeds I'y C C is available, we would like to find all the
nodes in the target cluster C'.

2. Suppose a very small portion of seeds I'; C C; is available foreach i =1, - - | k, we would
like to assign all nodes to their corresponding underlying clusters.

Similar to the issue of Laplacian learning type of algorithms, local clustering approach such as LCE
(see Algorithm ) becomes less effective in the low-label rates regime. Therefore one wants to extract
more seeds from each cluster before applying LCE. We illustrate the idea in Figure[T} We assume our
target cluster is C'y, which is the cluster in the left of those three clusters illustrated in the first subplot
of Figure([l]

The procedure of semi-supervised local clustering (SSLC) is summarized as follows:

1. Given a graph G, and initial seed(s) I'; (indicated as the blue point in the first subplot), we
first apply LCE to have a rough estimate C (indicated by the solid blue circle) of C;.

2. Randomly sample a node v (the brown point in the first subplot) in G and apply LCE to get
a rough cluster around v (indicated by the dashed brown circle). Then check the overlap
between solid blue and dashed brown circle. If the overlap contains the majority of the
nodes in the brown circle, then add v into I';, otherwise sample another node.
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3. Continue this process and keep increasing the size of I'; until a predetermined iteration
number is reached (indicated in the process of from the second to the last subplots).

Note that this procedure can be applied when more than one cluster is of interest without increasing
the number of iterations. The procedures for the single cluster case with I'y and C; and multiple
clusters case I's and C; are summarized in Algorithm I)and [3|respectively. This method finds more
seeds based on the initial seeds, and the user can flexibly determine the number of seeds wanted by
increasing or decreasing the number of iterations. Theorem [I] essentially establishes the correctness
of Algorithm[T]and

Algorithm 1 Semi-supervised Local Clustering (SSLC) for a Single Cluster
Require: The adjacency matrix A of an underlying graph G, the initial seed(s) I'; for the target
cluster C1, the estimated size n1, the number of resampling iteration ¢
Ensure: desired output cluster Cf&
1: él — LCE(A, ni, Fl)
2: fori=1:/¢do
3: v < uniform randomly sampled seed node from G

4:  C# < LCE(A,n1,v)

5. if |C) N C#| > 0.5|C#| then
6: I'i«ITyu {U}

7: 01 — LCE(A, niy, F1)

8: endif

9: end for _

10: CF « ¢

Theorem 1 Suppose G satisfies Assumptions[l]-[B} Then when n (the size of G) gets large, for each
s=1,---,k, we have

G, C#| > (1—o(1)|CH|, ifveC,
|Cs N C#| < o|CH|), otherwise.

Theorem shows that whenever a node v being added to I'y (T's ) based on the large overlap criterion,
it satisfies v € C1(C5). This means that I'; (T's) only grow with the nodes within C; (C;), which is
the essential step to guarantee the correctness of Algorithm [I]and Algorithm 3]

4 Unsupervised Local Clustering

For unsupervised case, we assume the following: Given a graph G = (V, E) with underlying
cluster Cy,Cy, -+, where V. = U;>1C;, C; N C; = () for all i # j. Assume neither the prior
information about seeds nor the number of cluster & is given, the goal is to assign all the nodes to
their corresponding underlying clusters.

In this case, we randomly sample and build a local cluster from the sampled node every time. We
check its overlap with the local cluster obtained from any newly sampled node. After a certain number
of iterations, the nodes from the same underlying cluster are more likely to be clustered together. We
illustrate the idea of unsupervised local clustering in Figure[2] The procedure of unsupervised local
clustering (USLC) is summarized as follows:

1. Given a graph G, in each iteration, we randomly sample a node and find its local cluster via
LCE (as shown in the top row of Figure [2)).

2. Based on the found local cluster, build the co-membership matrix in such a way that it
outputs 1 in the location (%, j) when both 4, j are contained in that found cluster, and outputs
0 otherwise.

3. Aggregate the clustering results from all iteration into a co-membership matrix M (roughly
speaking, each entry M; ; represents the probability of a pair of nodes being clustered into
the same local cluster). The values in each block of matrix M asymptotically converges to
the same value, as the iteration number goes up (as shown in the bottom row of Figure [2)).
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Figure 2: llustration of USLC procedure. Top row: each dashed circle represents one iteration of
LCE generated from a randomly sampled node, different colors indicate local clusters generated from
nodes of different underlying clusters. Bottom row: Aggregated co-membership matrix.

4. Randomly sample a node ¢, and use a prescribed cutoff number § to select all the nodes u
such that M; ; > & and assign those j’s as one of the clusters C#.

5. Delete the subgraph generated by C# from G. Then keep iterating until the prescribed
maximum number of clusters is reached or the remaining size of graph is too small.

We summarize its procedure in Algorithm We first show in Propositionmthat M; ;, the probability
of a pair of nodes coming from the same underlying cluster, is significantly different from the
probability of a pair of nodes coming from two different underlying clusters. Then we show in
Theorem 2] the correctness of Algorithm[2] The detailed proofs are deferred to Appendix [A]

Algorithm 2 Unsupervised Local Clustering (USLC)
Require: The adjacency matrix A of an underlying graph G, the number of resampling iteration £
Ensure: The desired clusters Cf& , Cf oo
1: initialize s < 1
2: while |G| < nyin do
3:  initialize the comembership matrix M as zero matrix
fori=1:/do
v <— uniform randomly sampled seed node from G
C# + LCE(A, nmin, v)
M « M + 7 - comembership(1#)
end for
select a node v uniformly random such that M, ,, > d for some u # v, with some appropriate
§ € (0,1), then find all the j such that C¥ := {j : M, ; > 4}
10:  Let G®*) be the subgraph spanned by C#
11: G+ G\G®
122 s4s+1
13: end while

R A

It is worthwhile to mention that the value n.,;, can be a very rough lower bound, and Algorithm|Z|is

robust with respect to any reasonable choice of n,,;,. Since the choice of § for thresholding depends

on Ny, as long as we choose d accordingly, the algorithm is robust. As shown in the proof Theorem
in Appendix |Al we can use § = %(%)2 as a general guideline in practice.

Proposition 1 Suppose G satisfies Assumptions[I|-[3| Then, as n gets large, the co-membership

matrix M obtained from Algorithm[2has a clear block diagonal form (after permutation) as L — .
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Figure 3: Plots of Jaccard index (over 100 trials) and logarithm of running time of SSLC for stochastic
block model. (a) The first column shows experiment with three equal cluster size and single cluster
C1 extraction. (b) The middle column shows experiment with three equal cluster size and all clusters
C; extraction. (c) The right column shows experiment with unequal cluster sizes, focusing on the
most dominent cluster.

More precisely, the entries in M satisfy

Mi; > (1—-o(1))mme,  foranyi=j,
2
Mi,j 2 (1_0(1))@7 fOl"i,jECSﬂ;#j,SZl,

n2

2
M; ;<o (W) ., otherwise.

Theorem 2 Suppose the assumptions in Theorem[l|hold. For any v € C, s > 1, there exists some
§ € (0,1) and C# = {i : M,; > &} such that C¥ = Cy. Consequently, Algarithmassigns all
nodes into their clusters correctly.

It is worth of noting that Algorithms|T] 2] and 3] are applicable if there are outlier nodes, i.e., nodes
which do not belong to any underlying clusters, presented in the graph. In such case, we extract all
the clusters, and the remaining unclustered nodes are automatically classified as outlier nodes.

5 Experiments

We evaluate the performance of SSLC and USLC on both synthetic and real datasets, with a particular
focus on clustering in the low-label rates regime (with label rates at most 1%). Additionally, we
demonstrate the robustness of our methods by manually introducing outliers into the dataset and
assessing their impact. All experiments are conducted on a local machine with 8-core Ryzen 7 7700X
CPUs and 24 GB of RAM capacity. The runtime of SSLC/USLC is primarily determined by the LCE
procedure, which is O(ndmay log(n)). In the regime dyax = O(logn), this becomes O(nlog® n).
Therefore, if there are total k£ number of clusters, the total run time is O(kn log2 n). Samples of demo
code is available at https://anonymous.4open.science/r/Iterative_LCE-78C4.

Synthetic Data We first conduct two experiments for semi-supervised setting on stochastic block
model (SBM) with different cluster sizes and different connection probabilities in Figure 3] The first
cases (a) and (b) are symmetric SBM with three equal cluster size, the second case (c) is general
SBM with three unequal clusters sizes. For the symmetric case, we consider both the single cluster
extraction in (a) and all clusters extraction in (b). For the nonsymmetric case in (c), we only focus
on extracting the most dominant cluster, i.e., the cluster with the largest connection probability. The
parameters for generating data in both cases are presented in Appendix[E] We compare against several
other local clustering algorithms such as CS-LCE or LCE [Shen et al.| 2023]], LSC [Lai and Shen,


https://anonymous.4open.science/r/Iterative_LCE-78C4

187

189
190
191
192

193
194
195
196

197

198
199
200
201
202

203

204

206
207
208
209

210
211
212
213
214
215
216

217
218

Table 1: Average accuracy and standard deviation on geometric data over 100 trials

Datasets | 3 Lines 3 Circles 3 Moons
CP+RWT | 82.1 (9.1) 96.1 (5.1) 854 (1.3)
LSC 89.0 (5.5) 96.2 (3.7) 853 (1.9
LCE 924 (8.1) 97.6 (4.7) 96.8 (0.9)
SSLC 948 (7.2) 98.2 41) 9731.2)

Table 2: Average accuracy and standard deviation on FashionMNIST over 30 trials

# Labels per class 0 1 2 3 4 5

Laplace - 184 (7.3) 325(8.2) 44.0(8.6) 522(6.2) 579(6.7)
Random Walk - 49.0(44) 556(3.8) 59.4(3.00 61.6(2.5) 634(Q2.5)
VolumeMBO - 54.7(5.2) 61.7(44) 66.1(3.3) 685(2.8) 70.1(2.8)
WNLL - 446 (7.1) 59.1@4.7) 647@3.5) 6743.3) 70.02.8)
p-Laplace - 54.6(4.0) 574(3.8) 654(2.8) 68.0(2.9) 684(0.5)
PoissonMBO - 62.0(5.7) 67.2(4.8) 70.429) 7212.5) 73.12.7)
CutSSL - 62.0(5.7) 67.2(48) 70429 72.12.5) 73.12.7)
SSLC/USLC 61.6 (6.2) 658 (4.1) 69.13.2) 743(2.3) 77.2(2.6) 78.7(2.3)

2023[], CP+RWT [Lai1 and Mckenziel |2020]], HKGrow [Kloster and Gleich,|2014]], PPR [[Andersen
et al.,[2006]], ESSC [Wilson et al., 2014, and LBSA [Shi et al.,[2019]].

For the experiments on SBM, we set the number of initial seeds to be 1. We observe that SSLC has
a better Jaccard index compared to other methods in most cases. Moreover, for symmetric model,
the Jaccard index in both single cluster extraction and all clusters extraction are similar, while the
running time of all clusters extraction is more advantageous towards SSLC (see also Remark 2)).

To further validate that our assumption ||AL|s = ||L — L*||z = o(1), we conduct experiments on
symmetric stochastic block model by fixing the number of nodes, number of clusters, intra-connection
probability, while varying the inter-connection probability. The results are provided in Table[5] We
observe that the ||AL||2 decreases as n increases, which is as desired.

Our experimental results are also connected to the theoretical results in the SBM literature. Note

that when the signal-to-noise ratio SNR = #fi)b) > 1 (Kestem-Stigum threshold) in the

SBM literature gives a theoretical bound for weak recovery of SBM in the sparse regime (with
connectivity = and %). For our exact recovery case (with connectivity % and blo%), if we
fix a, b, k and increase n, then ||AL|| decreases (illustrated in Table [5). In our experiments, we
setk = 3,p = ak;g” ,q = blc’% with ¢ = 6 and b = 1, then we roughly satisfies the condition

Va — Vb = \/k for exact recovery, which is given in Theorem 14 and Remark 16 in Abbe[2018].

Besides SBM, we compare our algorithm against other compressive sensing based local clustering
methods on geometric dataset consisting of different shapes (three lines, three circles, three moons).
The 2D projection and more details of this dataset are provided in Appendix [E.3] Note that spectral
clustering often fails on these datasets when the noise level is large. However, compressive sensing
based approaches work better. We use 1 label per class, the clustering results are shown in Table[T} We
see that SSLC outperforms other compressive sensing based local clustering methods significantly.

Real Data For real datasets, we focus on clustering in the low-label rates regime on Fashion-
MNIST [Xiao et al., 2017, CIFAR-10 [Krizhevsky et al., 2009], and Planetoid (Cora, CiteSeer,
PubMed) [Yang et al.,2016]. To apply graph-based clustering algorithms on images, we first construct
an auxiliary K-NN graph, and compute the pairwise distance from Gaussian kernel based on the
Euclidean distance of the latent features with some scaling factors. Similar constructions have also
appeared among others [Zelnik-Manor and Peronal |2004, |Jacobs et al.,|2018| (Calder et al., |2020].
More detailed construction is provided in Appendix [E}

We compare against other modern semi-supervised methods such as Laplace learning [Zhu et al.|
2003]], lazy random walks [Zhou and Scholkopf] 2004, [Zhou et al., [2004a], weighted nonlocal
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Table 3: Average accuracy and standard deviation on CIFAR-10 over 30 trials

# Labels per class 0 1 2 3 4 5

Laplace - 104 (1.3) 11.02.1) 11.6(27) 12939 14.1(5.0)
Random Walk - 36.4(4.9) 4204.4) 45133) 4752.9) 49.02.6)
VolumeMBO - 38.0(7.2) 464 (7.2) 50.1(57) 533@44) 553(3.8)
WNLL - 16.6 (5.2) 26.2(6.8) 33.2(7.0)0 39.0(6.2) 44.0(5.5
p-Laplace - 26.0(6.7) 350(5.4) 42.1(3.1) 48.1(2.6) 49.7(3.8)
PoissonMBO - 41.8(6.5) 50.2(6.0) 53.5(4.4) 565@3.5) 579@3.2)
CutSSL - 41.8(6.5) 50.2(6.0) 53544 565@3.5) 57932
SSLC/USLC 48.2 (6.1) 51.2 (5.2) 57149 59.74.7) 61334 6352.7)

Table 4: Average accuracy and standard deviation of SSLC/USLC by adding 10% number of outliers

# Labels Per Class 0 1 2 3 4 5
FashionMNIST 55.6(6.7) 60.4(6.2) 656(59) 699@.7) 73.54.0)0 74.8(3.9)
CIFAR-10 45.1(7.9) 47.3(7.3) 51.6(7.0) 553(59) 58.1(54) 60.14.7)

laplacian (WNLL) [Shi et al.l 2017], VolumeMBO [Jacobs et al., 2018]], PoissonMBO [Calder et al.|
2020], p-Laplace learning [Flores et al., 2022f], and CutSSL [Holtz et al., [2024]. The results are
summarized in Table 2] for FashionMNIST dataset, and Table [3] for CIFAR-10 dataset. Additional
experimental results on Planetoid are included in Table [ in Appendix [F| Note that all the other
methods can only handle the semi-supervised case, i.e., the number of label(s) per class is at least 1.

It is worthwhile to note that deep clustering method such as SImCLR [Chen et al., 2020] gives a
strong baseline with 65% accuracy on FashionMNIST and 50% accuracy on CIFAR-10, which does
not show clear advantage over our method, yet our method is much efficient and easy to implement.

To further demonstrate the robustness of our methods against outliers in the graph, we manually add
some images consisting of random noise as outliers into datasets FashionMNIST and CIFAR-10.
Specifically, we add the number of outliers equal to 10% of the original dataset size. Each outlier
image is generated by setting its pixel values equal to the standard Gaussian random noise. For
example, as shown in Figure[5] the last block consists entirely of outliers, exhibiting no community
structure, while other blocks do. Such case is also called tight clustering in the literature [Tseng and
Wong| 2005} [Deng et al.| 2024]]. By comparing Table ] with Table[2]and 3] it further confirms that the
performance of our proposed methods remains largely unaffected in the presence of these outliers.

6 Conclusion and Discussion

Conclusion. We proposed a unified framework for extracting local clusters in both semi-supervised
and unsupervised settings with theoretical guarantees. The methods require minimal label information
in the semi-supervised case and no label information in the unsupervised case, achieving state-of-
the-art results. Notably, the methods are very effective particularly in the low-label rates regime,
and remain robust when outliers are presented. We point out two limitations of this work. First, our
methods mostly work well for sparse graph. This is mainly due to sparse graph has clear clustering
structure, meaning that it often have tightly connected clusters with fewer inter-cluster edges, making
local algorithms efficient at detecting boundaries. Second, when the label rate is not low, our proposed
method in the semi-supervised case do not exhibit advantages over other methods.

Broader Impact. While local clustering algorithms offer valuable insights for applications like
community detection and recommendation systems, their potential misuse raises ethical concerns,
particularly in contexts like surveillance or discriminatory profiling. By identifying tightly connected
groups in social networks, these techniques can inadvertently reinforce biases (e.g., via homophily) or
enable repression when deployed without transparency or consent. The societal impact hinges on in-
tent—clustering can empower communities when used responsibly, but it risks harming marginalized
groups if applied for unchecked monitoring or targeting. Practitioners should weigh considerations
like purpose, bias mitigation, and user awareness to ensure ethical deployment, acknowledging that
even mathematically neutral tools carry real-world consequences.
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A Lemmas and deferred proofs

Let us introduce

x" = argmin {|[LiAyx—y™[l2 ¢ [Ix[lo < 2 — U]}, M
x€RIVI-1U]|
where y' 1= — 37,y 6" = L 1y\p, and
x* = argmin {|[Ly\ox —yl2 : [xllo < 21 — U]}, @

x€RIVI-IUI
where y (= — ZieV\U ¢; = L1y\y. The solution x* gives the underlying true node indices
associated with L, while x# gives the algorithmic output node indices associated with L.
We highlight the following Lemmal [I| which is a crucial step in establishing the convergence result in
LCE. We relax the assumption from ||AL|s = o(n~='/?) (see Lemmain Appendix [Shen et al.,
2023] to ||[AL||2 = o(1).
Lemma 1 Let AL := L — L. Suppose U C Cy and 0.1|C4| < |U| < 0.9|C4|. Suppose further

log(n
that | AL|l> = o(1) and (83c, vy (L)) **™ = o(1). Then
[ — x|l

[l

= o(1). 3)

Lemma establishes the convergence result between x# and x* when AL is small, which is the key
step for establishing the correctness of our algorithms in Theorem T}

Lemma 2 Suppose G satisfies Assumptions[l]-[3| Let v be any sampled node with v € C for some
s > 1. Then, as n gets large, the cardinality of the set S := {i € C, : comembership(1c#),; =
comembership(1¢, )y, } satisfies

{|S > (1 —o(1)nmin, if T =s,

|S| < o(nmin), otherwise.

A.1 Proof of Lemmall]
Proof. [Proof of Lemma First, since | L — L] = o(1), we have

[Ay]2 _ ly =y 2 _ (L = L") 1\l < o(1)v/n

Iyl [yl ILLvwlz 7 IL1u]2
By Assumption 2], the cluster C' is on the same order as the size of the graph n, hence U C C is
also on the same order as n. By Assumption [3] all the nodes asymptotically have the same degree,

therefore | L1y ||2 = ©(||1y]l2) = ©(y/n). Hence
[y —y™ll2 _ o()v/n

Iyl — ©(V/n)
Therefore, the quantity €, = o(1) in Lemmal3]

=o(1).

With the same assumption ||L — L||; = o(1), it is not hard to see that, if the singular values
of L decays at a reasonable rate, then by applying the eigenvalue interlacing theorem, we have
€5 = o(1) as well (by letting ® = L in Lemmain Appendix @) With these, the second term on the
right-hand-side of the inequality in Lemma [5]satisfies

V1+0g

Tq(({fb + Ey) S 0(1)

Furthermore, since x* is the output of Algorithm E] after m = O(logn) iteration, we have p™ =
O ((33(/cy |- vy (L))'°8™) = o(1). Putting these together gives

=o(1)

as desired. O

[ — x|
1]l
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410 A.2 Proof of Theorem[Il

411 Proof. [Proof of Theoremm] For any s > 1, let us case on whether v € C; or not. If v € Cj, then by
412 Lemma[l]and Theorem[4] we have

[CFA(C, N CHF)| < [CFA(C, N CF)| +[(CeAC) N CH#| < o|CH]) + o(|CF]) = o(|CH)).
Cs N C#| > |C#| = o(|C#]) = (1 - o(1))|C#|.
sa Ifv € Ci,t # s, then |Cy N C#| < o(|C#|). We have
|C#A(CNCH)| = |CFA(CNCH)| = |[(CaAC)ONCH| > [CF[=o(|CF|)~o(|CH]) = [CF|—o(|C#)).
w5 Therefore, |Cy N C#| < [C#| — (|C#] — o(|C#])) = o(|C#]).

416 d

413 Therefore,

417 A3 Proof of Lemma[2

ste  Proof. [Proof of Lemmal[2] By Lemmal[l|and Theorem[d} we have [C#A(Cy N C#)| < o(C#) =
419 0(nmin ). Therefore,

|C#*AC| = |C*A(Cs N CHF)| 4 |Cs \ CF| < 0(Nmin) + s — Nmin-
420 Hence
|{i € Oy : comembership(1¢#),; # comembership(1c, ). }| = [(C*AC,) N Cy| < |CHFAC]
< 0(nmin) + 1 — Nmin.
421 So we conclude
[{i € Cs : comembership(1c#),,; = comembership(1c,)vi}| > ns — (0(Nmin) + s — Nmin)
= Nmin — 0(Mmin)-
22 As Cy, N Cy = ), we have |C# N Ci| < 0(nmin). Therefore,
|{i € Cy : comembership(1c#)y,; = comembership(1c,)v,i }| < 0(Mmin)-

423 d

24 A4  Proof of Proposition ]

425 Proof. [Proof of Proposition[I] By Lemma[2} we have the following estimates for the entries in the
426 comembership matrix M asymptotically.

427 Foranyi = j € (g, some s > 1, the entries in M satisfies

M. > Ns (1 —o(1))nmin
5T n

— (1 — o(1))2min,

Ng n

428 For any distinct i, j € Cy, s > 1, by Assumption [3] the entries in M satisfies

1 n?nin 1-o 1) n12nin
Mz b Pl 2O g ) T

n n

429 For any distinct ¢, j such thati € Cy, j € Cy, s # t, the entries in M satisfies

My, < ns (1 —o0(1))nmin  0(1min) Lo (1 —o(1))nmin  0(1min)

n N n—ns N—n Tt n

203, (1—0(1) -o(1) | 203, (1 —o(1)) -o(1)
< +
- n? n?

(4n1211in(1 - 0(1))>
=o\l— -
n
430 d
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A.5 Proof of Theorem 2|

Proof. [Proof of Theorem By direct computation, we can choose § = %(%)2 such that

(1 - o(1)) =22 >5>o(‘”’r2nin(1_0<1))>.

n2
e : 2 (1= (1)
M min 4nmin 1—o(1
Hence, for any ¢ € C satisfies M, ; > 4, and any ¢ € Cy,t # s, satisfies M,, ; < 6. So we conclude
C# = Cs,. O

Remark 1 Note that All the statements in Theorem[l|and[2] Lemmal[l|and[2} and Proposition[I} are
asymptotic statements. The o(-) notation is with respect to n — oo.

B Additional Algorithms

Algorithm 3 Semi-supervised Local Clustering (SSLC) for Multiple Clusters
Require: The adjacency matrix A of an underlying graph G, the number of cluster k, the initial

seed(s) I's for each cluster, the estimated size n for each cluster, s = 1, - - - , k, the number of
resampling iteration ¢
Ensure: desired output clusters Cf& R 7C’,7f

1: fors=1:kdo

2:  C5 + LCE(A,ng, Ts)

3: end for

4: fori=1:/¢do

5: v < uniform randomly sampled seed node from G
6:  C# + LCE(A, min{ns}s>1,)

7. if |Cs N C#| > 0.5|C#| for some s then

8

: I's « I's U{v}
9: Cs < LCE(A,n,, ')
10:  end if
11: end for

12: fors =1:kdo
13: C¥ « C;
14: end for

We use C7# to indicate the output of one of the LCE steps after sampling a random node v. Since
v can be from any cluster s, the notation C# is independent of s. Due to Theorem the condition
|Cs N C#| > 0.5|C#| can only happen for one particular s. Therefore, Step 7 in Algorithm will
only add each v to one of the clusters.

Remark 2 One key advantage of Algorithm|3|is its ability to simultaneously identify all clusters,
while previous method such as LCE can only detect one cluster at a time. This characteristic provides
greater flexibility and makes Algorithm [3| significantly more efficient for practical applications,
particularly when the number of clusters is large. This advantage is also reflected in the first and
second columns of Figure[3]

C Review on Local Cluster Extraction (LCE)

The following result is central to our proposed sparse solution based local clustering method. We
omit its proof by referring toVon Luxburg| [2007].

Lemma 3 Let G be an undirected graph with non-negative weights. The multiplicity k of the eigen-
value zero of the graph Laplacian L := I — D~ A equals to the number of connected components
C1,Cy, - -+, Cy in G. Further, the indicator vectors 1¢,, - - - ,1¢, € R™ on these components span
the kernel of L.
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For the convenience of our discussion, let us introduce more notations . For a graph G = (V, E)
with certain underlying community structure, it is convenient to write G = G U G°“!, where
G = (V,E™), Gout = (V, E°“!). Here E'™ is the set of all intra-connection edges within the
same community (cluster), £°% is the remaining edges in E. Further, we use A" and L*" to denote
the adjacency matrix and Laplacian matrix associated with G*™ respectively. In practice, we do not
guarantee knowledge of the cluster to which each individual vertex belongs, meaning that A*™ and
L™ are not directly accessible. Instead, we only have access to A and L. A summary of the notations
being used throughout this paper is included in Table[7]in Appendix [G]

Let us first briefly introduce the idea Local Cluster Extraction (LCE), which applies the idea of
compressive sensing (or sparse solution) technique to extract the target cluster in a semi-supervised
manner. See also [Lai and Mckenzie, [2020), [Lai and Shen, 2023, [Shen et al., [2023]] for references.

Suppose the graph G consists of k connected equal-size components C1, - - - , C, in other words,
there is no edge connection between different clusters, i.e., L = L*". For illustration purpose, let us
permute the matrix according to the membership of each node, then L*"* is in a block diagonal form
i.e., all the off-diagnoal blocks equal to zero:
Le
) LG
L=Lm"= @ . @)
Ln

Suppose that the target cluster is C;. By Lemma {1¢,, -+ ,1¢, } forms a basis of the kernel Wy
of L. Note that all the 1, have disjoint supports, so for w € Wj and w # 0, we have write

k
W = Zailci (5)
i=1

with some «; # 0. If a prior knowledge is given that first node v; € C', then the first cluster C; can
be found by solving _
min||wl|lp st L"w=0 and w; =1, (6)

which gives the solution w = 1¢, € R™ as desired. It is worthwhile to note that (6) is equivalent to
min |[|w_i|lo st L™w_j= {4, ™

where L' is a submatrix of L™ with first column being removed, /; is the first column of L*". The
solution to (7) is w_1 = 1¢,\,, € R"~! which encodes the same index information as the solution
to (6). The benefit of formulation (7) is that it can be solved by compressive sensing algorithms.
Note that the sparse solution from solving (€ or (7) always gives the indices corresponding to the
target cluster. Therefore, the permutation does not affect our analysis and clustering result. The above
procedure is named CS-LCE or LCE in [Shen et al., 2023]]. We summarize LCE as AlgorithmE]in
Appendix [C]and provide brief analysis. We also briefly introduce the compressive sensing and sparse
solution technique in Appendix [D]

The following results are established in [Shen et al.,[2023]], and we refer the proofs to [Shen et al.,
2023]]. Let L' be the matrix as in , then the true solution x* which encodes the local cluster
information is

x" = argmin {||LyApx —y™" |2 : [x[o < A1 — U]} ®
X€RIVI-1U]

where y** = — Yievn\u 0 = LMy

Theorem 3 Suppose U C Cy and 0.1|C1| < [U| < 0.9|Cy|. Then x* = 1¢\v € RIVI=IUL s the

unique solution to ().

Lemma 4 Let AL := L — L™, Suppose U C C; and 0.1|C1| < |U| < 0.9|C1|. Suppose further
that | AL||y = o(n™2) and d3(1cy|—jup (L) = o(1). Then

lc# — x|l
== 02— (1), 9
oW 2
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Theorem 4 Under the same assumption as Lemma 4} Then

#
|G AT < o(1). (10)
|C1

We make use of Lemmal|I| (improved version of Lemma4) and Theorem[d]in our main proofs. The
LCE algorithm is summarized in Algorithm 4]

Algorithm 4 Compressive Sensing of Local Cluster Extraction (CS-LCE or LCE [Shen et al.| [2023]])
Require: Adjacency matrix A, the seed(s) set I' C C for some target cluster C', a known estimated
size Ny & |C4], a fixed number of random walk depth ¢ € Z™, sparsity parameter v € [0.1,0.5],
random walk threshold parameter € € (0, 1), rejection parameter R € [0.1,0.9].
Ensure: the output target cluster C#
1: Compute L=1— D14, P =AD", v? = D1p and v®¥) = Ptv(®)
2: Define Q = L4)a(v?)
3: Let U be the set of column indices of + - |€2| smallest components of the vector |L,| - |L1g)|.
4 Sety := — Y,y bi = L1y\p- Let x*# be the solution to

argmin {[|[Ly\ox —yl2 : [[x[lo <721 —[U[} (11)
xER‘V|*|U‘

obtained by using O(logn) iterations of Subspace Pursuit Dai and Milenkovic|[2009].
5: Let C# = {i : x7 > R}UU

The notation £ is defined as

Ls(v) :={i € [n] : v; among s largest-in-magnitude entries in v}.

D Background on Compressive Sensing and Sparse Solution Technique

The concept of compressive sensing (also called compressed sensing or sparse sampling) emerged
from fundamental challenges in signal acquisition and efficient data compression. At its core, it
addresses the inverse problem of recovering a sparse (or compressible) signal from a small number of
noisy linear measurements:
min
x€R"

xllo st [[Px—y|=2 <k, (12)

where @ € R™*™ is called sensing matrix (usually underdetermined), y € R is called measurement
vector, and the “zero quasi-norm" || - ||o counts the number of nonzero components in a vector. Among
the key contributors, Donoho [Donohol 2006] and Candes, Romberg and Tao [Candes et al., 2006]]
are widely credited with being the first to explicitly introduce this concept and make it popular. Since
then, two families of approaches such as thresholding type of algorithms [Blumensath and Davies),
2009] and greedy type of algorithms [Tropp} 2004, [Feng et al., |2021} [Lai and Shen| [2020] have been
developed based on the idea of compressive sensing. One particular type of greedy algorithms that
has garnered our attention is the subspace pursuit [Dai and Milenkovic|, 2009].

One of the reasons behind the remarkable usefulness of compressive sensing lies in its robustness
against errors, including both additive and multiplicative types. More precisely, suppose we know
y = ®&x* where y is the exact measurement of the acquired signal and @ is the exact measurement
of the sensing matrix. However, we may only be able to access to the noisy version y =y + Ay
and ® = ® + A®. In such case, we can still approximate the solution x* well from the noisy
measurements y and fi), as explained in the work of [Herman and Strohmer, [2010]. A unified
framework of lifted ¢; form is explored in [Rahimi et al.,[2024].One crucial concept which is often
employed in the compressive sensing algorithm is called Restricted Isometry Property (RIP).

Definition 1 (Restricted Isometry Property) Let 0 < s < m be an integer, and sensing matrix
d € R™*™, Suppose there exists a constant §; > 0 such that

(1= 05[]l < l|®x(3 < (1 +0,) 113 (13)
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forall x € R™ with ||x||o < s. Then the matrix ® is said to have the Restricted Isometry Property
(RIP) of order s. The smallest constant §5(®) which makes hold is called the Restricted Isometry
Constant (RIC) of ®.

For Subspace Pursuit algorithm, we have the result in LemmaE] [Li1,{2016].

Lemma 5 Let x*, y, §j, ®, ® be as defined above, and for any t € [n], let 85 := 6,(®). Suppose that
|lx*|lo < s. Define the following constants:

ey = 8y[o/ Iyl and €= A5 /|25
where HM||§S) :=max{||Msgl||2 : S C [n], #(S) = s} for any matrix M. Define further:

\/202 (1 + 2 2 + 2)d35 2v2+1
pi= V205,(1 ¥ 055) ;_ 3s) and Tiii(\f+ )03 (1 =635)(1 = p) + = ks :
1_538 \/1_555 (1—535>(1—p)

Assume that 83 < 0.4859 and let (™) be the output of Algorithmafter m iterations. Then:
V146
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E Implementation Details

E.1 Constructing KNN Graphs

Let x; € R™ be the vectorization of an image or the feature extracted from an image, we define the
following affinity matrix of the K-NN auxiliary graph based on Gaussian kernel:

o e~ llxi=x;l1/oio;  if x; € NN(x;, K),
)0 otherwise.

Note that similar construction has also appeared among others [Zelnik-Manor and Perona, 2004,
Jacobs et al.| [2018} |Calder et al.,|2020]. To construct high-quality graphs, we trained autoencoders to
extract key features from the image data, we adopt the same parameters as [|Calder et al.,|2020] for
training autoencoders to obtain these features.

The notation N N (x;, K) indicates the set of K -nearest neighbours of x;, and o; := ||x; — xy) I

(r)

where x; ’ is the r-th closest point of x;. Note that the above A;; is not necessary symmetric,

so we consider /L-j = AT A for symmetrization. Alternatively, one may also want to consider
A = max{A;;,Aj;} or A = (A;; + Aj;)/2. We use A as the input adjacency matrix for our
algorithms. In our experiments, the local scaling parameters are chosen to be K = 15, r = 10 for all
three real image datasets.

E.2 Parameters of Synthetic Data Generating and Algorithms

In all implementations where the LCE are applied, we sampled the seeds I'; uniformly from each C;
for all the implementations. We fix the rejection parameter R = 0.1, the random walk depth ¢ = 3,
random walk threshold parameter ¢ = (.8, and the removal set parameter v = 0.2 for all experiments.

For synthetic data, the symmetric stochastic block model consists of three equal size clusters
of n; = 200,400,600, 800,1000 with connection probability p = 5log(3n1)/(3n;) and ¢ =
log(3n1)/(3n1). The general stochastic block model consists of clusters’ sizes as n = (ny, 2n1,5n1)
where n; is chosen from 200, 400, 600, 800, 1000, and the connection probability has the matrix
form

P = [P11, P12, P13; Po1, Pay, Pa3; P31, Pag, P33

with P11 = log2(8n1)/(6n1), P22 = 10g2(817,1)/(12n1), P33 = log2(8n1)/(30n1), P12 = P21 =
Pi3 = P3; = Py3 = P33 = log(8ny)/(6n1). In the implementation of SSLC on synthetic data, we
choose the iteration number L = 60 in the symmetric case and L = 90 in the nonsymmetric case.
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In the implementation of SSLC on FashionMNIST and CIFAR-10 (both with and w/o outliers), we
choose the iteration number to be L = 50k where k is the number of seeds, i.e., k = 1,2,3,4,5. In
the implementation of USLC on FashionMNIST and CIFAR-10 (both with and w/o outliers), we
choose the iteration number to be L = 1000, and we set § = 0.01 for FashionMNIST and § = 0.005
for CIFAR-10.

E.3 Geometric Dataset

Three Lines We generate three parallel lines in the z-y plane defined by:
* Line 1: y = 0 with z € [0, 6]
* Line 2: y = 1 withz € [0, 6]
* Line 3: y = 2 withz € [0, 6]

For each line, we sample 1,200 points uniformly at random. The embedding into R'%? is performed
as:

1. Zero-padding: (v,y) — (z,v,0,...,0) € R0

2. Noise addition: Each coordinate z; is perturbed as z; < z; + ¢; where ¢; ~ N(0,0.15)

Three Circles We construct three concentric circles with:

* Circle 1: Radius » = 1.0 (500 points)
* Circle 2: Radius » = 2.4 (1,200 points)
¢ Circle 3: Radius » = 3.8 (1,900 points)

Points are sampled uniformly along each circle, totaling 3,600 points. The R!%° embedding follows
the same zero-padding and noise injection procedure as above.

Three Moons Three semicircular clusters are generated with:

* Moon 1: Upper semicircle, radius 1.0, centered at (0, 0) (1,200 points)
* Moon 2: Lower semicircle, radius 1.5, centered at (1.5, 0.4) (1,200 points)
* Moon 3: Upper semicircle, radius 1.0, centered at (3, 0) (1,200 points)

Each dataset uses identical embedding:

(z,y) = (2,9,0,...,0) + € €~ N(0,0.15°T100)
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Figure 4: 2D Visulization of Geometric Dataset
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Table 5: Jaccard Index of SSLC compared against the spectral norm of AL and SNR value on
SSBM(n, k, p, q) with k = 3, p = 6logn/n, ¢ = logn/n.

n  Jaccard Index (%) Spectral norm of AL SNR

100 84.59 0.4543 4.80
200 93.73 0.4238 5.52
400 96.04 0.3982 6.24
800 99.18 0.3725 6.96

s77 F Additional Experimental Results

Table 6: Average accuracy and standard deviation on the largest connected subgraph over 100 trials

# Labels per class 0 1 3 5 10
Laplace (LP) - 21.8(14.3) 37.6(12.3) 51.3(11.9) 66.9(6.8)
Cora Poisson - 59.8(79) 662(5.8) 724(2.1) 741(.8)
PoissonMBO - 599(64) 69.13.1) 72424 T743(2.1)
CutSSL - 67434 732@3.1) 758(@2.1) 787@1.1)
SSLC/USLC 64.2(5.7) 69.2(4.0) 75534 769(2.6) 779(1.3)
Laplace (LP) - 27.9(104) 47.6(8.1) 56.0(59) 63.7(3.5)
CiteSeer Poisson - 59.4(54) 594354 62742 669(.8)
PoissonMBO - 47.7(8.0) 557@3.2) 61.0(1.7) 63.1(1.7)
CutSSL - 62.4(4.6) 634(7.2) 669(1.4) 68.1(1.3)
SSLC/USLC 59.8(5.7) 652(5.3) 67147 68.6(29) 69.3(1.6)
Laplace (LP) - 346(8.8) 357(82) 369(81) 39.6(9.1)
PubMed Poisson - 56.7(12.8) 66.5(6.6) 68.4(59) 71234
PoissonMBO - 569(7.3) 67934 69.6(3.1) 71.4(.5)
CutSSL - 63.1(47) 704@3.1) 72829 741014
SSLC/USLC 61.6 (6.2) 67.3(5.1) 71.73.9) 73129 7392

Figure 5: Affinity matrix of FashionMNIST after adding the outlier images (the last block consists of
10% outliers compared to the size of original dataset)
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sz G Notations

Table 7: Table of Notations

Symbols

Interpretations

G
E
V
Cs
cy
L'y
v
Gzn
Gout
Ein
Eout
L (Lm)
Le (L)
4 (6")
L§
| M|
[[M]]2
|v
vl
1o
A
Ls(v)

general graph of interest

set of edges of graph G

set of nodes in G (size denoted by n)

each underlying true cluster

each extracted cluster from algorithm

set of Seeds for each cluster

removal set from V' in Algorithm

subgraph of G on V with edge set £

subgraph of G on V with edge set

subset of E/ which consists only intra-connection edges
the complement of £ within F

adjacency matrix of G (G'")

random walk Laplacian matrix of G' (G*")
submatrix of L (L‘™) with column indices C C V'
i-th column of L (L")

submatrix of L™ with column indices Q C V
entrywised absolute value operation on matrix M
Il - |2 norm of matrix M

entrywised absolute value operation on vector v

|| - |2 norm of vector v.

indicator vector on subset C C V'

set symmetric difference

{i € [n] : v; among s largest-in-magnitude entries in v}
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TAG-DS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are accurately justified by
experiments and theoretical results presented in the main text.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations and broader impact of this work is discussed in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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631 Justification: We clearly state all assumptions in Section 2 and give complete proofs of all
632 the results in the appendix.

633 Guidelines:

634 * The answer NA means that the paper does not include theoretical results.

635  All the theorems, formulas, and proofs in the paper should be numbered and cross-
636 referenced.

637 * All assumptions should be clearly stated or referenced in the statement of any theorems.
638 * The proofs can either appear in the main paper or the supplemental material, but if
639 they appear in the supplemental material, the authors are encouraged to provide a short
640 proof sketch to provide intuition.

641 * Inversely, any informal proof provided in the core of the paper should be complemented
642 by formal proofs provided in appendix or supplemental material.

643 * Theorems and Lemmas that the proof relies upon should be properly referenced.

644 4. Experimental result reproducibility

645 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
646 perimental results of the paper to the extent that it affects the main claims and/or conclusions
647 of the paper (regardless of whether the code and data are provided or not)?

648 Answer: [Yes]

649 Justification: To ensure the reproducibility, we give a complete description of the datasets
650 usage, algorithms, and their hyperparameters in Section 5 and also in the appendix.

651 Guidelines:

652 * The answer NA means that the paper does not include experiments.

653 * If the paper includes experiments, a No answer to this question will not be perceived
654 well by the reviewers: Making the paper reproducible is important, regardless of
655 whether the code and data are provided or not.

656 * If the contribution is a dataset and/or model, the authors should describe the steps taken
657 to make their results reproducible or verifiable.

658 * Depending on the contribution, reproducibility can be accomplished in various ways.
659 For example, if the contribution is a novel architecture, describing the architecture fully
660 might suffice, or if the contribution is a specific model and empirical evaluation, it may
661 be necessary to either make it possible for others to replicate the model with the same
662 dataset, or provide access to the model. In general. releasing code and data is often
663 one good way to accomplish this, but reproducibility can also be provided via detailed
664 instructions for how to replicate the results, access to a hosted model (e.g., in the case
665 of a large language model), releasing of a model checkpoint, or other means that are
666 appropriate to the research performed.

667 * While NeurIPS does not require releasing code, the conference does require all submis-
668 sions to provide some reasonable avenue for reproducibility, which may depend on the
669 nature of the contribution. For example

670 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
671 to reproduce that algorithm.

672 (b) If the contribution is primarily a new model architecture, the paper should describe
673 the architecture clearly and fully.

674 (c) If the contribution is a new model (e.g., a large language model), then there should
675 either be a way to access this model for reproducing the results or a way to reproduce
676 the model (e.g., with an open-source dataset or instructions for how to construct
677 the dataset).

678 (d) We recognize that reproducibility may be tricky in some cases, in which case
679 authors are welcome to describe the particular way they provide for reproducibility.
680 In the case of closed-source models, it may be that access to the model is limited in
681 some way (e.g., to registered users), but it should be possible for other researchers
682 to have some path to reproducing or verifying the results.

683 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and its usage for the experiments conducted in the paper are provided
via an anonymous link in Section 5.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are provided in Section 5 in the main article and also in
the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard deviations are reported in Section 5 in the main article and Section F
in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide this information in Section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have reviewed the code of ethics and confirm our full compliance.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the societal impact in Section 6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite all the existing assets used in the paper and we follow all
licensing.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code and documentation for the experiments are provided in an anonymous
link in Section 5.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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888 * We recognize that the procedures for this may vary significantly between institutions

889 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
890 guidelines for their institution.

891 * For initial submissions, do not include any information that would break anonymity (if
892 applicable), such as the institution conducting the review.

893 16. Declaration of LLM usage

894 Question: Does the paper describe the usage of LLMs if it is an important, original, or
895 non-standard component of the core methods in this research? Note that if the LLM is used
896 only for writing, editing, or formatting purposes and does not impact the core methodology,
897 scientific rigorousness, or originality of the research, declaration is not required.

898 Answer: [NA]

899 Justification: This research does not involve LLMs as any important, original, or non-
900 standard components.

901 Guidelines:

902 * The answer NA means that the core method development in this research does not
903 involve LLMs as any important, original, or non-standard components.

904 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
905 for what should or should not be described.
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