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Abstract

Local clustering aims to identify specific substructures within a large graph without1

any additional structural information of the graph. These substructures are typically2

small compared to the overall graph, enabling the problem to be approached by3

finding a sparse solution to a linear system associated with the graph Laplacian. In4

this work, we first propose a method for identifying specific local clusters when5

very few labeled data are given, which we term semi-supervised local clustering.6

We then extend this approach to the unsupervised setting when no prior information7

on labels is available. The proposed methods involve randomly sampling the8

graph, applying diffusion through local cluster extraction, then examining the9

overlap among the results to find each cluster. We establish the co-membership10

conditions for any pair of nodes, and rigorously prove the correctness of our11

methods. Additionally, we conduct extensive experiments to demonstrate that the12

proposed methods achieve state of the art results in the low-label rates regime.13

1 Introduction14

The ability to learn from data by uncovering its underlying patterns and grouping it into distinct15

clusters based on latent similarities and differences is a central focus in machine learning. Over the16

past few decades, traditional clustering problems have been extensively studied as an unsupervised17

learning task, leading to the development of a wide range of foundational algorithms, such as k-means18

clustering [MacQueen, 1967], density-based clustering [Ester et al., 1996], spectral clustering [Ng19

et al., 2001, Zelnik-Manor and Perona, 2004], hierarchical clustering [Nielsen, 2016] and regularized20

k-means [Kang et al., 2011]. These foundational methods have, in turn, inspired numerous variants21

and adaptations tailored to specific data characteristics or application domains.22

Researchers have also developed semi-supervised learning approach for clustering, which leverages23

both labeled and unlabeled data in various learning tasks. One of the most commonly used methods24

in graph-based semi-supervised learning is Laplace learning [Zhu et al., 2003]. Note that Laplacian25

learning sometimes is also called Label propagation [Zhu and Ghahramani, 2002], which seeks a graph26

harmonic function that extends the labels. Laplacian learning and its variants have been extensively27

applied in semi-supervised learning tasks [Zhou et al., 2004a,b, 2005, Ando and Zhang, 2007, Kang28

et al., 2014]. A key challenge with Laplacian learning type of algorithms is their poor performance in29

the low-label rates regime. To address this, recent approaches have explored p-Laplacian learning30

[El Alaoui et al., 2016, Flores et al., 2022], higher order Laplacian regularization [Zhou and Belkin,31

2011], weighted nonlocal Laplacians [Shi et al., 2017], properly weighted Laplacian [Calder and32

Slepcev, 2019], and Poisson learning [Calder et al., 2020].33
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Those aforementioned clustering algorithms are all global clustering algorithms, recovering all cluster34

structures simultaneously. However, real-world applications often require identifying only specific35

substructures within large, complex networks. For example, in a social network, an individual may36

only be interested in connecting with others who share similar interests, while disregarding the rest of37

individuals. In such cases, global clustering methods become inefficient, as they generate excessive38

redundant information rather than focusing on the relevant local patterns.39

In this paper, we turn our focus to a more flexible clustering method called local clustering or40

local cluster extraction. Local clustering focus only on finding one target cluster which contains41

those nodes of interest to us, and disregard the non-interest or background nodes. Researchers have42

investigated in this direction over the recent decades such as [Lang and Rao, 2004, Andersen et al.,43

2006, Kloster and Gleich, 2014, Spielman and Teng, 2013, Andersen et al., 2016, Veldt et al., 2019,44

Fountoulakis et al., 2020]. More recently, inspired by the idea of compressive sensing, Lai and45

Mckenzie [2020], Lai and Shen [2023], Shen et al. [2023] proposed a novel perspective for local46

clustering by finding the target cluster via solving a sparse solution to a linear system associated with47

the graph Laplacian matrix. Intuitively speaking, as local clustering only focus on finding “one cluster48

at a time", it is flexible in practice and can be more efficient and effective than global clustering49

algorithms.50

Besides such merits that local clustering algorithms possesses, one big downside of it is the necessity51

of having the initial nodes (we call them seeds) of interest as prior knowledge, and it also requires52

a good estimate of the target cluster size. The seeds information is sometimes very limited and53

even unavailable, which makes local clustering algorithm less popular. We propose a clustering54

method which requires very few seeds (semi-supervised case) or no seeds (unsupervised case), see55

Figure 1 and 2 for illustration. We provide a detailed discussion of the procedure, with analysis on56

the correctness of the proposed method. The main contributions of our work are as follows:57

1. We propose a semi-supervised (with very few labeled data) and an unsupervised (no labeled58

data) local clustering methods which outperform the state-of-the-arts local and non-local59

clustering methods in most cases.60

2. For theoretical considerations, we relax the assumption on the spectral norm of perturbation61

on the graph Laplacian and prove the correctness of our method in the semi-supervised case.62

We also establish the co-membership conditions for any pair of nodes, and then prove the63

correctness of our method in the unsupervised case.64

3. Computationally the proposed method can also show benefits that our semi-supervised65

method can find all the clusters simultaneously which improves the “one cluster at a66

time" feature of local clustering algorithms in terms of efficiency. We provide extensive67

experiments with comparisons to show the effectiveness of our methods in the low-label68

rates regime.69

The rest of the paper is organized as follows. In Section 2, we present step-by-step procedure of the70

proposed methods in both semi-supervised and unsupervised settings, and prove their correctness71

under certain assumptions. In section 5, we show the experimental results of the proposed methods and72

compare them with the state-of-the-art semi-supervised clustering algorithms on various benchmark73

datasets. Finally, in Section 6, we conclude the paper, discuss its limitations and societal impact.74

2 Model Assumptions75

For a graph G = (V,E), we use V to denote the set of all nodes, and E to denote the set of all edges.76

Suppose G has k non-overlapping underlying clusters C1, C2, · · · , Ck, we use ni to denote the size77

of Ci where i = 1, 2, · · · , k, and use n to denote the total size of graph G. Further, we use A to78

denote the adjacency matrix (possibly weighted but non-negative) of graph G, and use D to denote79

the diagonal matrix whose diagonal entries is the degree of the corresponding vertex. We make the80

following assumptions on the graph model.81

Assumption 1 The non-zero entries in the diagonal block is denser than the non-zero entries in82

the off-diagonal block (after permutation according to the cluster membership). More precisely, we83

assume the graph Laplacian satisfies ∥∆L∥2 = ∥L− Lin∥2 = o(1) and (δn(L))
logn = o(1) as the84

graph size n→∞. The definition of RIP constant δn is provided in Definition 1 in Appendix D.85
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Figure 1: Illustration of semi-supervised local clustering (SSLC) for a single cluster. Each subplot
indicates one iteration (Blue dots: seeds in Γ1. Brown dots: randomly sampled node in each iteration).

Assumption 2 The number of cluster k = O(1) ≥ 2. The size of each cluster is not too small or too86

large, i.e., there exist nmin = Θ(n) and nmax = Θ(n) such that nmin ≤ ni ≤ nmax for any i ≥ 1.87

Assumption 3 For any distinct i, j ∈ Cs with some s ≥ 1, let Ki,j ⊂ Cs be the set of nodes such88

that given any node in Ki,j as the seed, LCE always finds node i and j into the same local cluster.89

We assume the cardinality of Ki,j is at least (1− o(1))
n2
min

n for any distinct pair of nodes i, j.90

Throughout the paper, all the notation o(1) is with respect to the size of graph n→∞. Assumption91

3 is essentially a type of homogeneity assumption on each cluster of the graph in order to guarantee92

the performance of LCE (see Algorithm 4) on a randomly chosen node.93

One notable theoretical contribution in this paper is that we relax the assumption from ∥∆L∥2 =94

o(n−1/2) (see Lemma 4 in Appendix C) [Shen et al., 2023] to ∥∆L∥2 = o(1) (see Lemma 1 in95

Appendix A). We consider the local clustering tasks under two settings: semi-supervised case and96

unsupervised case.97

3 Semi-supervised Local Clustering98

For the semi-supervised case, we consider the following. Given a graph G = (V,E) with underlying99

cluster C1, · · · , Ck such that V = ∪ki=1Ci, Ci ∩ Cj = ∅ for 1 ≤ i, j ≤ k, i ̸= j.100

1. Suppose a very small portion of seeds Γ1 ⊂ C1 is available, we would like to find all the101

nodes in the target cluster C1.102

2. Suppose a very small portion of seeds Γi ⊂ Ci is available for each i = 1, · · · , k, we would103

like to assign all nodes to their corresponding underlying clusters.104

Similar to the issue of Laplacian learning type of algorithms, local clustering approach such as LCE105

(see Algorithm 4) becomes less effective in the low-label rates regime. Therefore one wants to extract106

more seeds from each cluster before applying LCE. We illustrate the idea in Figure 1. We assume our107

target cluster is C1, which is the cluster in the left of those three clusters illustrated in the first subplot108

of Figure 1.109

The procedure of semi-supervised local clustering (SSLC) is summarized as follows:110

1. Given a graph G, and initial seed(s) Γ1 (indicated as the blue point in the first subplot), we111

first apply LCE to have a rough estimate C̃1 (indicated by the solid blue circle) of C1.112

2. Randomly sample a node v (the brown point in the first subplot) in G and apply LCE to get113

a rough cluster around v (indicated by the dashed brown circle). Then check the overlap114

between solid blue and dashed brown circle. If the overlap contains the majority of the115

nodes in the brown circle, then add v into Γ1, otherwise sample another node.116
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3. Continue this process and keep increasing the size of Γ1 until a predetermined iteration117

number is reached (indicated in the process of from the second to the last subplots).118

Note that this procedure can be applied when more than one cluster is of interest without increasing119

the number of iterations. The procedures for the single cluster case with Γ1 and C1 and multiple120

clusters case Γs and Cs are summarized in Algorithm 1 and 3 respectively. This method finds more121

seeds based on the initial seeds, and the user can flexibly determine the number of seeds wanted by122

increasing or decreasing the number of iterations. Theorem 1 essentially establishes the correctness123

of Algorithm 1 and 3.124

Algorithm 1 Semi-supervised Local Clustering (SSLC) for a Single Cluster
Require: The adjacency matrix A of an underlying graph G, the initial seed(s) Γ1 for the target

cluster C1, the estimated size n1, the number of resampling iteration ℓ

Ensure: desired output cluster C#
1

1: C̃1 ← LCE(A,n1,Γ1)
2: for i = 1 : ℓ do
3: v ← uniform randomly sampled seed node from G
4: C# ← LCE(A,n1, v)

5: if |C̃1 ∩ C#| > 0.5|C#| then
6: Γ1 ← Γ1 ∪ {v}
7: C̃1 ← LCE(A,n1,Γ1)
8: end if
9: end for

10: C#
1 ← C̃1

Theorem 1 Suppose G satisfies Assumptions 1 - 3. Then when n (the size of G) gets large, for each125

s = 1, · · · , k, we have126 {
|C̃s ∩ C#| > (1− o(1))|C#|, if v ∈ Cs,

|C̃s ∩ C#| ≤ o(|C#|), otherwise.

Theorem 1 shows that whenever a node v being added to Γ1(Γs) based on the large overlap criterion,127

it satisfies v ∈ C1(Cs). This means that Γ1(Γs) only grow with the nodes within C1(Cs), which is128

the essential step to guarantee the correctness of Algorithm 1 and Algorithm 3.129

4 Unsupervised Local Clustering130

For unsupervised case, we assume the following: Given a graph G = (V,E) with underlying131

cluster C1, C2, · · · , where V = ∪i≥1Ci, Ci ∩ Cj = ∅ for all i ̸= j. Assume neither the prior132

information about seeds nor the number of cluster k is given, the goal is to assign all the nodes to133

their corresponding underlying clusters.134

In this case, we randomly sample and build a local cluster from the sampled node every time. We135

check its overlap with the local cluster obtained from any newly sampled node. After a certain number136

of iterations, the nodes from the same underlying cluster are more likely to be clustered together. We137

illustrate the idea of unsupervised local clustering in Figure 2. The procedure of unsupervised local138

clustering (USLC) is summarized as follows:139

1. Given a graph G, in each iteration, we randomly sample a node and find its local cluster via140

LCE (as shown in the top row of Figure 2).141

2. Based on the found local cluster, build the co-membership matrix in such a way that it142

outputs 1 in the location (i, j) when both i, j are contained in that found cluster, and outputs143

0 otherwise.144

3. Aggregate the clustering results from all iteration into a co-membership matrix M (roughly145

speaking, each entry Mi,j represents the probability of a pair of nodes being clustered into146

the same local cluster). The values in each block of matrix M asymptotically converges to147

the same value, as the iteration number goes up (as shown in the bottom row of Figure 2).148
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Figure 2: Illustration of USLC procedure. Top row: each dashed circle represents one iteration of
LCE generated from a randomly sampled node, different colors indicate local clusters generated from
nodes of different underlying clusters. Bottom row: Aggregated co-membership matrix.

4. Randomly sample a node i, and use a prescribed cutoff number δ to select all the nodes u149

such that Mi,j > δ and assign those j’s as one of the clusters C#.150

5. Delete the subgraph generated by C# from G. Then keep iterating until the prescribed151

maximum number of clusters is reached or the remaining size of graph is too small.152

We summarize its procedure in Algorithm 2. We first show in Proposition 1 that Mi,j , the probability153

of a pair of nodes coming from the same underlying cluster, is significantly different from the154

probability of a pair of nodes coming from two different underlying clusters. Then we show in155

Theorem 2 the correctness of Algorithm 2. The detailed proofs are deferred to Appendix A.156

Algorithm 2 Unsupervised Local Clustering (USLC)
Require: The adjacency matrix A of an underlying graph G, the number of resampling iteration ℓ

Ensure: The desired clusters C#
1 , C#

2 , · · ·
1: initialize s← 1
2: while |G| < nmin do
3: initialize the comembership matrix M as zero matrix
4: for i = 1 : ℓ do
5: v ← uniform randomly sampled seed node from G
6: C# ← LCE(A,nmin, v)
7: M ←M + 1

ℓ · comembership(1C#)
8: end for
9: select a node v uniformly random such that Mv,u > δ for some u ̸= v, with some appropriate

δ ∈ (0, 1), then find all the j such that C#
s := {j : Mv,j > δ}

10: Let G(s) be the subgraph spanned by C#
s

11: G← G \G(s)

12: s← s+ 1
13: end while

It is worthwhile to mention that the value nmin can be a very rough lower bound, and Algorithm 2 is157

robust with respect to any reasonable choice of nmin. Since the choice of δ for thresholding depends158

on nmin, as long as we choose δ accordingly, the algorithm is robust. As shown in the proof Theorem159

2 in Appendix A, we can use δ = 1
2 (

nmin

n )2 as a general guideline in practice.160

Proposition 1 Suppose G satisfies Assumptions 1 - 3. Then, as n gets large, the co-membership161

matrix M obtained from Algorithm 2 has a clear block diagonal form (after permutation) as L→∞.162
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Figure 3: Plots of Jaccard index (over 100 trials) and logarithm of running time of SSLC for stochastic
block model. (a) The first column shows experiment with three equal cluster size and single cluster
C1 extraction. (b) The middle column shows experiment with three equal cluster size and all clusters
Cs extraction. (c) The right column shows experiment with unequal cluster sizes, focusing on the
most dominent cluster.

More precisely, the entries in M satisfy163 
Mi,j ≥ (1− o(1))nmin

n , for any i = j,

Mi,j ≥ (1− o(1))
n2
min

n2 , for i, j ∈ Cs, i ̸= j, s ≥ 1,

Mi,j ≤ o
(

4n2
min(1−o(1))

n2

)
, otherwise.

Theorem 2 Suppose the assumptions in Theorem 1 hold. For any v ∈ Cs, s ≥ 1, there exists some164

δ ∈ (0, 1) and C#
s = {i : Mv,i > δ} such that C#

s = Cs. Consequently, Algorithm 2 assigns all165

nodes into their clusters correctly.166

It is worth of noting that Algorithms 1, 2 and 3 are applicable if there are outlier nodes, i.e., nodes167

which do not belong to any underlying clusters, presented in the graph. In such case, we extract all168

the clusters, and the remaining unclustered nodes are automatically classified as outlier nodes.169

5 Experiments170

We evaluate the performance of SSLC and USLC on both synthetic and real datasets, with a particular171

focus on clustering in the low-label rates regime (with label rates at most 1%). Additionally, we172

demonstrate the robustness of our methods by manually introducing outliers into the dataset and173

assessing their impact. All experiments are conducted on a local machine with 8-core Ryzen 7 7700X174

CPUs and 24 GB of RAM capacity. The runtime of SSLC/USLC is primarily determined by the LCE175

procedure, which is O(ndmax log(n)). In the regime dmax = O(log n), this becomes O(n log2 n).176

Therefore, if there are total k number of clusters, the total run time is O(kn log2 n). Samples of demo177

code is available at https://anonymous.4open.science/r/Iterative_LCE-78C4.178

Synthetic Data We first conduct two experiments for semi-supervised setting on stochastic block179

model (SBM) with different cluster sizes and different connection probabilities in Figure 3. The first180

cases (a) and (b) are symmetric SBM with three equal cluster size, the second case (c) is general181

SBM with three unequal clusters sizes. For the symmetric case, we consider both the single cluster182

extraction in (a) and all clusters extraction in (b). For the nonsymmetric case in (c), we only focus183

on extracting the most dominant cluster, i.e., the cluster with the largest connection probability. The184

parameters for generating data in both cases are presented in Appendix E. We compare against several185

other local clustering algorithms such as CS-LCE or LCE [Shen et al., 2023], LSC [Lai and Shen,186
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Table 1: Average accuracy and standard deviation on geometric data over 100 trials

Datasets 3 Lines 3 Circles 3 Moons

CP+RWT 82.1 (9.1) 96.1 (5.1) 85.4 (1.3)
LSC 89.0 (5.5) 96.2 (3.7) 85.3 (1.9)
LCE 92.4 (8.1) 97.6 (4.7) 96.8 (0.9)
SSLC 94.8 (7.2) 98.2 (4.1) 97.3 (1.2)

Table 2: Average accuracy and standard deviation on FashionMNIST over 30 trials

# Labels per class 0 1 2 3 4 5

Laplace - 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)
Random Walk - 49.0 (4.4) 55.6 (3.8) 59.4 (3.0) 61.6 (2.5) 63.4 (2.5)
VolumeMBO - 54.7 (5.2) 61.7 (4.4) 66.1 (3.3) 68.5 (2.8) 70.1 (2.8)
WNLL - 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)
p-Laplace - 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)
PoissonMBO - 62.0 (5.7) 67.2 (4.8) 70.4 (2.9) 72.1 (2.5) 73.1 (2.7)
CutSSL - 62.0 (5.7) 67.2 (4.8) 70.4 (2.9) 72.1 (2.5) 73.1 (2.7)
SSLC/USLC 61.6 (6.2) 65.8 (4.1) 69.1 (3.2) 74.3 (2.3) 77.2 (2.6) 78.7 (2.3)

2023], CP+RWT [Lai and Mckenzie, 2020], HKGrow [Kloster and Gleich, 2014], PPR [Andersen187

et al., 2006], ESSC [Wilson et al., 2014], and LBSA [Shi et al., 2019].188

For the experiments on SBM, we set the number of initial seeds to be 1. We observe that SSLC has189

a better Jaccard index compared to other methods in most cases. Moreover, for symmetric model,190

the Jaccard index in both single cluster extraction and all clusters extraction are similar, while the191

running time of all clusters extraction is more advantageous towards SSLC (see also Remark 2).192

To further validate that our assumption ∥∆L∥2 = ∥L− Lin∥2 = o(1), we conduct experiments on193

symmetric stochastic block model by fixing the number of nodes, number of clusters, intra-connection194

probability, while varying the inter-connection probability. The results are provided in Table 5. We195

observe that the ∥∆L∥2 decreases as n increases, which is as desired.196

Our experimental results are also connected to the theoretical results in the SBM literature. Note197

that when the signal-to-noise ratio SNR = (a−b)2

k(a+(k−1)b) > 1 (Kestem-Stigum threshold) in the198

SBM literature gives a theoretical bound for weak recovery of SBM in the sparse regime (with199

connectivity a
n and b

n ). For our exact recovery case (with connectivity a logn
n and b logn

n ), if we200

fix a, b, k and increase n, then ∥∆L∥ decreases (illustrated in Table 5). In our experiments, we201

set k = 3, p = a logn
n , q = b logn

n with a = 6 and b = 1, then we roughly satisfies the condition202 √
a−
√
b ≈
√
k for exact recovery, which is given in Theorem 14 and Remark 16 in Abbe [2018].203

Besides SBM, we compare our algorithm against other compressive sensing based local clustering204

methods on geometric dataset consisting of different shapes (three lines, three circles, three moons).205

The 2D projection and more details of this dataset are provided in Appendix E.3. Note that spectral206

clustering often fails on these datasets when the noise level is large. However, compressive sensing207

based approaches work better. We use 1 label per class, the clustering results are shown in Table 1. We208

see that SSLC outperforms other compressive sensing based local clustering methods significantly.209

Real Data For real datasets, we focus on clustering in the low-label rates regime on Fashion-210

MNIST [Xiao et al., 2017], CIFAR-10 [Krizhevsky et al., 2009], and Planetoid (Cora, CiteSeer,211

PubMed) [Yang et al., 2016]. To apply graph-based clustering algorithms on images, we first construct212

an auxiliary K-NN graph, and compute the pairwise distance from Gaussian kernel based on the213

Euclidean distance of the latent features with some scaling factors. Similar constructions have also214

appeared among others [Zelnik-Manor and Perona, 2004, Jacobs et al., 2018, Calder et al., 2020].215

More detailed construction is provided in Appendix E.216

We compare against other modern semi-supervised methods such as Laplace learning [Zhu et al.,217

2003], lazy random walks [Zhou and Scholkopf, 2004, Zhou et al., 2004a], weighted nonlocal218
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Table 3: Average accuracy and standard deviation on CIFAR-10 over 30 trials

# Labels per class 0 1 2 3 4 5

Laplace - 10.4 (1.3) 11.0 (2.1) 11.6 (2.7) 12.9 (3.9) 14.1 (5.0)
Random Walk - 36.4 (4.9) 42.0 (4.4) 45.1 (3.3) 47.5 (2.9) 49.0 (2.6)
VolumeMBO - 38.0 (7.2) 46.4 (7.2) 50.1 (5.7) 53.3 (4.4) 55.3 (3.8)
WNLL - 16.6 (5.2) 26.2 (6.8) 33.2 (7.0) 39.0 (6.2) 44.0 (5.5)
p-Laplace - 26.0 (6.7) 35.0 (5.4) 42.1 (3.1) 48.1 (2.6) 49.7 (3.8)
PoissonMBO - 41.8 (6.5) 50.2 (6.0) 53.5 (4.4) 56.5 (3.5) 57.9 (3.2)
CutSSL - 41.8 (6.5) 50.2 (6.0) 53.5 (4.4) 56.5 (3.5) 57.9 (3.2)
SSLC/USLC 48.2 (6.1) 51.2 (5.2) 57.1 (4.9) 59.7 (4.7) 61.3 (3.4) 63.5 (2.7)

Table 4: Average accuracy and standard deviation of SSLC/USLC by adding 10% number of outliers

# Labels Per Class 0 1 2 3 4 5

FashionMNIST 55.6 (6.7) 60.4 (6.2) 65.6 (5.9) 69.9 (4.7) 73.5 (4.0) 74.8 (3.9)
CIFAR-10 45.1 (7.9) 47.3 (7.3) 51.6 (7.0) 55.3 (5.9) 58.1 (5.4) 60.1 (4.7)

laplacian (WNLL) [Shi et al., 2017], VolumeMBO [Jacobs et al., 2018], PoissonMBO [Calder et al.,219

2020], p-Laplace learning [Flores et al., 2022], and CutSSL [Holtz et al., 2024]. The results are220

summarized in Table 2 for FashionMNIST dataset, and Table 3 for CIFAR-10 dataset. Additional221

experimental results on Planetoid are included in Table 6 in Appendix F. Note that all the other222

methods can only handle the semi-supervised case, i.e., the number of label(s) per class is at least 1.223

It is worthwhile to note that deep clustering method such as SimCLR [Chen et al., 2020] gives a224

strong baseline with 65% accuracy on FashionMNIST and 50% accuracy on CIFAR-10, which does225

not show clear advantage over our method, yet our method is much efficient and easy to implement.226

To further demonstrate the robustness of our methods against outliers in the graph, we manually add227

some images consisting of random noise as outliers into datasets FashionMNIST and CIFAR-10.228

Specifically, we add the number of outliers equal to 10% of the original dataset size. Each outlier229

image is generated by setting its pixel values equal to the standard Gaussian random noise. For230

example, as shown in Figure 5, the last block consists entirely of outliers, exhibiting no community231

structure, while other blocks do. Such case is also called tight clustering in the literature [Tseng and232

Wong, 2005, Deng et al., 2024]. By comparing Table 4 with Table 2 and 3, it further confirms that the233

performance of our proposed methods remains largely unaffected in the presence of these outliers.234

6 Conclusion and Discussion235

Conclusion. We proposed a unified framework for extracting local clusters in both semi-supervised236

and unsupervised settings with theoretical guarantees. The methods require minimal label information237

in the semi-supervised case and no label information in the unsupervised case, achieving state-of-238

the-art results. Notably, the methods are very effective particularly in the low-label rates regime,239

and remain robust when outliers are presented. We point out two limitations of this work. First, our240

methods mostly work well for sparse graph. This is mainly due to sparse graph has clear clustering241

structure, meaning that it often have tightly connected clusters with fewer inter-cluster edges, making242

local algorithms efficient at detecting boundaries. Second, when the label rate is not low, our proposed243

method in the semi-supervised case do not exhibit advantages over other methods.244

Broader Impact. While local clustering algorithms offer valuable insights for applications like245

community detection and recommendation systems, their potential misuse raises ethical concerns,246

particularly in contexts like surveillance or discriminatory profiling. By identifying tightly connected247

groups in social networks, these techniques can inadvertently reinforce biases (e.g., via homophily) or248

enable repression when deployed without transparency or consent. The societal impact hinges on in-249

tent—clustering can empower communities when used responsibly, but it risks harming marginalized250

groups if applied for unchecked monitoring or targeting. Practitioners should weigh considerations251

like purpose, bias mitigation, and user awareness to ensure ethical deployment, acknowledging that252

even mathematically neutral tools carry real-world consequences.253
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A Lemmas and deferred proofs382

Let us introduce383

x∗ := argmin
x∈R|V |−|U|

{∥Lin
V \Ux− yin∥2 : ∥x∥0 ≤ n̂1 − |U |}, (1)

where yin := −
∑

i∈V \U ℓini = Lin1V \U , and384

x# := argmin
x∈R|V |−|U|

{∥LV \Ux− y∥2 : ∥x∥0 ≤ n̂1 − |U |}, (2)

where y := −
∑

i∈V \U ℓi = L1V \U . The solution x∗ gives the underlying true node indices385

associated with Lin, while x# gives the algorithmic output node indices associated with L.386

We highlight the following Lemma 1, which is a crucial step in establishing the convergence result in387

LCE. We relax the assumption from ∥∆L∥2 = o(n−1/2) (see Lemma 4 in Appendix C) [Shen et al.,388

2023] to ∥∆L∥2 = o(1).389

Lemma 1 Let ∆L := L − Lin. Suppose U ⊂ C1 and 0.1|C1| < |U | < 0.9|C1|. Suppose further390

that ∥∆L∥2 = o(1) and
(
δ3(|C1|−|U |)(L)

)log(n)
= o(1). Then391

∥x# − x∗∥2
∥x∗∥2

= o(1). (3)

Lemma 1 establishes the convergence result between x# and x∗ when ∆L is small, which is the key392

step for establishing the correctness of our algorithms in Theorem 1.393

Lemma 2 Suppose G satisfies Assumptions 1 - 3. Let v be any sampled node with v ∈ Cs for some394

s ≥ 1. Then, as n gets large, the cardinality of the set S := {i ∈ Cr : comembership(1C#)v,i =395

comembership(1Cs)v,i} satisfies396 {
|S| ≥ (1− o(1))nmin, if r = s,

|S| ≤ o(nmin), otherwise.

A.1 Proof of Lemma 1397

Proof. [Proof of Lemma 1] First, since ∥L− Lin∥2 = o(1), we have398

∥∆y∥2
∥y∥2

=
∥y − yin∥2
∥y∥2

=
∥(L− Lin)1V \U∥2
∥L1V \U∥2

≤ o(1)
√
n

∥L1U∥2
.

By Assumption 2„ the cluster C1 is on the same order as the size of the graph n, hence U ⊂ C1 is399

also on the same order as n. By Assumption 3, all the nodes asymptotically have the same degree,400

therefore ∥L1U∥2 = Θ(∥1U∥2) = Θ(
√
n). Hence401

∥y − yin∥2
∥y∥2

≤ o(1)
√
n

Θ(
√
n)

= o(1).

Therefore, the quantity ϵy = o(1) in Lemma 5.402

With the same assumption ∥L − Lin∥2 = o(1), it is not hard to see that, if the singular values403

of L decays at a reasonable rate, then by applying the eigenvalue interlacing theorem, we have404

ϵsΦ = o(1) as well (by letting Φ = L in Lemma 5 in Appendix D). With these, the second term on the405

right-hand-side of the inequality in Lemma 5 satisfies406

τ

√
1 + δs
1− ϵsΦ

(ϵsΦ + ϵy) ≤ o(1).

Furthermore, since x# is the output of Algorithm 4 after m = O(log n) iteration, we have ρm =407

O
(
(δ3(|C1|−|U |)(L))

logn
)
= o(1). Putting these together gives408

∥x# − x∗∥2
∥x∗∥2

= o(1)

as desired. 2409
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A.2 Proof of Theorem 1410

Proof. [Proof of Theorem 1] For any s ≥ 1, let us case on whether v ∈ Cs or not. If v ∈ Cs, then by411

Lemma 1 and Theorem 4, we have412

|C#△(C̃s ∩ C#)| ≤ |C#△(Cs ∩ C#)|+ |(Cs△C̃s) ∩ C#| ≤ o(|C#|) + o(|C#|) = o(|C#|).

Therefore, |C̃s ∩ C#| ≥ |C#| − o(|C#|) = (1− o(1))|C#|.413

If v ∈ Ct, t ̸= s, then |Cs ∩ C#| ≤ o(|C#|). We have414

|C#△(C̃s∩C#)| ≥ |C#△(Cs∩C#)|−|(Cs△C̃s)∩C#| ≥ |C#|−o(|C#|)−o(|C#|) = |C#|−o(|C#|).

Therefore, |C̃s ∩ C#| ≤ |C#| − (|C#| − o(|C#|)) = o(|C#|).415

2416

A.3 Proof of Lemma 2417

Proof. [Proof of Lemma 2] By Lemma 1 and Theorem 4, we have |C#△(Cs ∩ C#)| ≤ o(C#) =418

o(nmin). Therefore,419

|C#△Cs| = |C#△(Cs ∩ C#)|+ |Cs \ C#| ≤ o(nmin) + ns − nmin.

Hence420

|{i ∈ Cs : comembership(1C#)v,i ̸= comembership(1Cs)v,i}| = |(C#△Cs) ∩ Cs| ≤ |C#△Cs|
≤ o(nmin) + ns − nmin.

So we conclude421

|{i ∈ Cs : comembership(1C#)v,i = comembership(1Cs
)v,i}| ≥ ns − (o(nmin) + ns − nmin)

= nmin − o(nmin).

As Cs ∩ Ct = ∅, we have |C# ∩ Ct| ≤ o(nmin). Therefore,422

|{i ∈ Ct : comembership(1C#)v,i = comembership(1Ct
)v,i}| ≤ o(nmin).

2423

A.4 Proof of Proposition 1424

Proof. [Proof of Proposition 1] By Lemma 2, we have the following estimates for the entries in the425

comembership matrix M asymptotically.426

For any i = j ∈ Cs, some s ≥ 1, the entries in M satisfies427

Mi,i ≥
ns

n
· (1− o(1))nmin

ns
= (1− o(1))

nmin

n
.

For any distinct i, j ∈ Cs, s ≥ 1, by Assumption 3, the entries in M satisfies428

Mi,j ≥
1

n
· n

2
min(1− o(1))

n
= (1− o(1))

n2
min

n2
.

For any distinct i, j such that i ∈ Cs, j ∈ Ct, s ̸= t, the entries in M satisfies429

Mi,j ≤
ns

n
· (1− o(1))nmin

ns
· o(nmin)

n− ns
+

nt

n− nt
· (1− o(1))nmin

nt
· o(nmin)

n

≤ 2n2
min(1− o(1)) · o(1)

n2
+

2n2
min(1− o(1)) · o(1)

n2

= o

(
4n2

min(1− o(1))

n2

)
.

2430
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A.5 Proof of Theorem 2431

Proof. [Proof of Theorem 2] By direct computation, we can choose δ = 1
2 (

nmin

n )2 such that432

(1− o(1))
nmin

n
> δ > o

(
4n2

min(1− o(1))

n2

)
.

and433

(1− o(1))
n2
min

n2
> δ > o

(
4n2

min(1− o(1))

n2

)
.

Hence, for any i ∈ Cs satisfies Mv,i > δ, and any i ∈ Ct, t ̸= s, satisfies Mv,i < δ. So we conclude434

C#
s = Cs. 2435

Remark 1 Note that All the statements in Theorem 1 and 2, Lemma 1 and 2, and Proposition 1, are436

asymptotic statements. The o(·) notation is with respect to n→∞.437

B Additional Algorithms438

Algorithm 3 Semi-supervised Local Clustering (SSLC) for Multiple Clusters
Require: The adjacency matrix A of an underlying graph G, the number of cluster k, the initial

seed(s) Γs for each cluster, the estimated size ns for each cluster, s = 1, · · · , k, the number of
resampling iteration ℓ

Ensure: desired output clusters C#
1 , · · · , C#

k
1: for s = 1 : k do
2: C̃s ← LCE(A,ns,Γs)
3: end for
4: for i = 1 : ℓ do
5: v ← uniform randomly sampled seed node from G
6: C# ← LCE(A,min{ns}s≥1, v)

7: if |C̃s ∩ C#| > 0.5|C#| for some s then
8: Γs ← Γs ∪ {v}
9: C̃s ← LCE(A,ns,Γs)

10: end if
11: end for
12: for s = 1 : k do
13: C#

s ← C̃s

14: end for

We use C# to indicate the output of one of the LCE steps after sampling a random node v. Since439

v can be from any cluster s, the notation C# is independent of s. Due to Theorem 1, the condition440

|C̃s ∩ C#| > 0.5|C#| can only happen for one particular s. Therefore, Step 7 in Algorithm 3 will441

only add each v to one of the clusters.442

Remark 2 One key advantage of Algorithm 3 is its ability to simultaneously identify all clusters,443

while previous method such as LCE can only detect one cluster at a time. This characteristic provides444

greater flexibility and makes Algorithm 3 significantly more efficient for practical applications,445

particularly when the number of clusters is large. This advantage is also reflected in the first and446

second columns of Figure 3.447

C Review on Local Cluster Extraction (LCE)448

The following result is central to our proposed sparse solution based local clustering method. We449

omit its proof by referring to Von Luxburg [2007].450

Lemma 3 Let G be an undirected graph with non-negative weights. The multiplicity k of the eigen-451

value zero of the graph Laplacian L := I −D−1A equals to the number of connected components452

C1, C2, · · · , Ck in G. Further, the indicator vectors 1C1
, · · · , 1Ck

∈ Rn on these components span453

the kernel of L.454
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For the convenience of our discussion, let us introduce more notations . For a graph G = (V,E)455

with certain underlying community structure, it is convenient to write G = Gin ∪ Gout, where456

Gin = (V,Ein), Gout = (V,Eout). Here Ein is the set of all intra-connection edges within the457

same community (cluster), Eout is the remaining edges in E. Further, we use Ain and Lin to denote458

the adjacency matrix and Laplacian matrix associated with Gin respectively. In practice, we do not459

guarantee knowledge of the cluster to which each individual vertex belongs, meaning that Ain and460

Lin are not directly accessible. Instead, we only have access to A and L. A summary of the notations461

being used throughout this paper is included in Table 7 in Appendix G.462

Let us first briefly introduce the idea Local Cluster Extraction (LCE), which applies the idea of463

compressive sensing (or sparse solution) technique to extract the target cluster in a semi-supervised464

manner. See also [Lai and Mckenzie, 2020, Lai and Shen, 2023, Shen et al., 2023] for references.465

Suppose the graph G consists of k connected equal-size components C1, · · · , Ck, in other words,466

there is no edge connection between different clusters, i.e., L = Lin. For illustration purpose, let us467

permute the matrix according to the membership of each node, then Lin is in a block diagonal form468

i.e., all the off-diagnoal blocks equal to zero:469

L = Lin =


Lin
C1

Lin
C2

. . .
Lin
Ck

 . (4)

Suppose that the target cluster is C1. By Lemma 3, {1C1 , · · · ,1Ck
} forms a basis of the kernel W0470

of L. Note that all the 1Ci have disjoint supports, so for w ∈W0 and w ̸= 0, we have write471

w =

k∑
i=1

αi1Ci (5)

with some αi ̸= 0. If a prior knowledge is given that first node v1 ∈ C1, then the first cluster C1 can472

be found by solving473

min ||w||0 s.t. Linw = 0 and w1 = 1, (6)
which gives the solution w = 1C1

∈ Rn as desired. It is worthwhile to note that (6) is equivalent to474

min ||w−1||0 s.t. Lin
−1w−1 = −ℓ1, (7)

where Lin
−1 is a submatrix of Lin with first column being removed, ℓ1 is the first column of Lin. The475

solution to (7) is w−1 = 1C1\v1 ∈ Rn−1 which encodes the same index information as the solution476

to (6). The benefit of formulation (7) is that it can be solved by compressive sensing algorithms.477

Note that the sparse solution from solving (6) or (7) always gives the indices corresponding to the478

target cluster. Therefore, the permutation does not affect our analysis and clustering result. The above479

procedure is named CS-LCE or LCE in [Shen et al., 2023]. We summarize LCE as Algorithm 4 in480

Appendix C and provide brief analysis. We also briefly introduce the compressive sensing and sparse481

solution technique in Appendix D.482

The following results are established in [Shen et al., 2023], and we refer the proofs to [Shen et al.,483

2023]. Let Lin be the matrix as in (4), then the true solution x∗ which encodes the local cluster484

information is485

x∗ := argmin
x∈R|V |−|U|

{∥Lin
V \Ux− yin∥2 : ∥x∥0 ≤ n̂1 − |U |} (8)

where yin = −
∑

i∈V \U ℓini = Lin1V \U .486

Theorem 3 Suppose U ⊂ C1 and 0.1|C1| < |U | < 0.9|C1|. Then x∗ = 1C1\U ∈ R|V |−|U | is the487

unique solution to (8).488

Lemma 4 Let ∆L := L − Lin. Suppose U ⊂ C1 and 0.1|C1| < |U | < 0.9|C1|. Suppose further489

that ∥∆L∥2 = o(n− 1
2 ) and δ3(|C1|−|U |)(L) = o(1). Then490

∥x# − x∗∥2
∥x∗∥2

= o(1). (9)
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Theorem 4 Under the same assumption as Lemma 4. Then491

|C1△C#
1 |

|C1|
≤ o(1). (10)

We make use of Lemma 1 (improved version of Lemma 4) and Theorem 4 in our main proofs. The492

LCE algorithm is summarized in Algorithm 4.493

Algorithm 4 Compressive Sensing of Local Cluster Extraction (CS-LCE or LCE [Shen et al., 2023])
Require: Adjacency matrix A, the seed(s) set Γ ⊂ C for some target cluster C, a known estimated

size n̂1 ≈ |C1|, a fixed number of random walk depth t ∈ Z+, sparsity parameter γ ∈ [0.1, 0.5],
random walk threshold parameter ϵ ∈ (0, 1), rejection parameter R ∈ [0.1, 0.9].

Ensure: the output target cluster C#

1: Compute L = I −D−1A, P = AD−1, v0 = D1Γ and v(t) = P tv(0)

2: Define Ω = L(1+ϵ)n̂(v
(t))

3: Let U be the set of column indices of γ · |Ω| smallest components of the vector |L⊤
Ω | · |L1Ω|.

4: Set y := −
∑

i∈V \U ℓi = L1V \U . Let x# be the solution to

argmin
x∈R|V |−|U|

{∥LV \Ux− y∥2 : ∥x∥0 ≤ n̂1 − |U |} (11)

obtained by using O(log n) iterations of Subspace Pursuit Dai and Milenkovic [2009].
5: Let C# = {i : x#

i > R} ∪ U

The notation L is defined as494

Ls(v) := {i ∈ [n] : vi among s largest-in-magnitude entries in v}.

D Background on Compressive Sensing and Sparse Solution Technique495

The concept of compressive sensing (also called compressed sensing or sparse sampling) emerged496

from fundamental challenges in signal acquisition and efficient data compression. At its core, it497

addresses the inverse problem of recovering a sparse (or compressible) signal from a small number of498

noisy linear measurements:499

min
x∈Rn

∥x∥0 s.t. ∥Φx− y∥2 ≤ ϵ, (12)

where Φ ∈ Rm×n is called sensing matrix (usually underdetermined), y ∈ Rn is called measurement500

vector, and the “zero quasi-norm" ∥·∥0 counts the number of nonzero components in a vector. Among501

the key contributors, Donoho [Donoho, 2006] and Candès, Romberg and Tao [Candès et al., 2006]502

are widely credited with being the first to explicitly introduce this concept and make it popular. Since503

then, two families of approaches such as thresholding type of algorithms [Blumensath and Davies,504

2009] and greedy type of algorithms [Tropp, 2004, Feng et al., 2021, Lai and Shen, 2020] have been505

developed based on the idea of compressive sensing. One particular type of greedy algorithms that506

has garnered our attention is the subspace pursuit [Dai and Milenkovic, 2009].507

One of the reasons behind the remarkable usefulness of compressive sensing lies in its robustness508

against errors, including both additive and multiplicative types. More precisely, suppose we know509

y = Φx∗ where y is the exact measurement of the acquired signal and Φ is the exact measurement510

of the sensing matrix. However, we may only be able to access to the noisy version ỹ = y +∆y511

and Φ̃ = Φ + ∆Φ. In such case, we can still approximate the solution x∗ well from the noisy512

measurements ỹ and Φ̃, as explained in the work of [Herman and Strohmer, 2010]. A unified513

framework of lifted ℓ1 form is explored in [Rahimi et al., 2024].One crucial concept which is often514

employed in the compressive sensing algorithm is called Restricted Isometry Property (RIP).515

Definition 1 (Restricted Isometry Property) Let 0 < s < m be an integer, and sensing matrix516

Φ ∈ Rm×n. Suppose there exists a constant δs > 0 such that517

(1− δs)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δs)∥x∥22 (13)
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for all x ∈ Rn with ∥x∥0 ≤ s. Then the matrix Φ is said to have the Restricted Isometry Property518

(RIP) of order s. The smallest constant δs(Φ) which makes (13) hold is called the Restricted Isometry519

Constant (RIC) of Φ.520

For Subspace Pursuit algorithm, we have the result in Lemma 5 [Li, 2016].521

Lemma 5 Let x∗, y, ỹ, Φ, Φ̃ be as defined above, and for any t ∈ [n], let δs := δs(Φ̃). Suppose that522

∥x∗∥0 ≤ s. Define the following constants:523

ϵy := ∥∆y∥2/∥y∥2 and ϵsΦ := ∥∆Φ∥(s)2 /∥Φ∥(s)2

where ∥M∥(s)2 := max{∥MS∥2 : S ⊂ [n],#(S) = s} for any matrix M . Define further:524

ρ :=

√
2δ23s(1 + δ23s)

1− δ23s
and τ :=

(
√
2 + 2)δ3s√
1− δ23s

(1− δ3s)(1− ρ) +
2
√
2 + 1

(1− δ3s)(1− ρ)
.

Assume that δ3s < 0.4859 and let x(m) be the output of Algorithm 4 after m iterations. Then:525

∥x∗ − x(m)∥2
∥x∗∥2

≤ ρm + τ

√
1 + δs
1− ϵsΦ

(ϵsΦ + ϵy).

E Implementation Details526

E.1 Constructing KNN Graphs527

Let xi ∈ Rn be the vectorization of an image or the feature extracted from an image, we define the528

following affinity matrix of the K-NN auxiliary graph based on Gaussian kernel:529

Aij =

{
e−∥xi−xj∥2/σiσj if xj ∈ NN(xi,K),

0 otherwise.

Note that similar construction has also appeared among others [Zelnik-Manor and Perona, 2004,530

Jacobs et al., 2018, Calder et al., 2020]. To construct high-quality graphs, we trained autoencoders to531

extract key features from the image data, we adopt the same parameters as [Calder et al., 2020] for532

training autoencoders to obtain these features.533

The notation NN(xi,K) indicates the set of K-nearest neighbours of xi, and σi := ∥xi − x
(r)
i ∥534

where x
(r)
i is the r-th closest point of xi. Note that the above Aij is not necessary symmetric,535

so we consider Ãij = ATA for symmetrization. Alternatively, one may also want to consider536

Ã = max{Aij , Aji} or Ã = (Aij + Aji)/2. We use Ã as the input adjacency matrix for our537

algorithms. In our experiments, the local scaling parameters are chosen to be K = 15, r = 10 for all538

three real image datasets.539

E.2 Parameters of Synthetic Data Generating and Algorithms540

In all implementations where the LCE are applied, we sampled the seeds Γi uniformly from each Ci541

for all the implementations. We fix the rejection parameter R = 0.1, the random walk depth t = 3,542

random walk threshold parameter ϵ = 0.8, and the removal set parameter γ = 0.2 for all experiments.543

For synthetic data, the symmetric stochastic block model consists of three equal size clusters544

of n1 = 200, 400, 600, 800, 1000 with connection probability p = 5 log(3n1)/(3n1) and q =545

log(3n1)/(3n1). The general stochastic block model consists of clusters’ sizes as n = (n1, 2n1, 5n1)546

where n1 is chosen from 200, 400, 600, 800, 1000, and the connection probability has the matrix547

form548

P = [P11, P12, P13;P21, P22, P23;P31, P32, P33]

with P11 = log2(8n1)/(6n1), P22 = log2(8n1)/(12n1), P33 = log2(8n1)/(30n1), P12 = P21 =549

P13 = P31 = P23 = P32 = log(8n1)/(6n1). In the implementation of SSLC on synthetic data, we550

choose the iteration number L = 60 in the symmetric case and L = 90 in the nonsymmetric case.551
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In the implementation of SSLC on FashionMNIST and CIFAR-10 (both with and w/o outliers), we552

choose the iteration number to be L = 50k where k is the number of seeds, i.e., k = 1, 2, 3, 4, 5. In553

the implementation of USLC on FashionMNIST and CIFAR-10 (both with and w/o outliers), we554

choose the iteration number to be L = 1000, and we set δ = 0.01 for FashionMNIST and δ = 0.005555

for CIFAR-10.556

E.3 Geometric Dataset557

Three Lines We generate three parallel lines in the x-y plane defined by:558

• Line 1: y = 0 with x ∈ [0, 6]559

• Line 2: y = 1 with x ∈ [0, 6]560

• Line 3: y = 2 with x ∈ [0, 6]561

For each line, we sample 1,200 points uniformly at random. The embedding into R100 is performed562

as:563

1. Zero-padding: (x, y) 7→ (x, y, 0, . . . , 0) ∈ R100564

2. Noise addition: Each coordinate zi is perturbed as zi ← zi + ϵi where ϵi ∼ N (0, 0.15)565

Three Circles We construct three concentric circles with:566

• Circle 1: Radius r = 1.0 (500 points)567

• Circle 2: Radius r = 2.4 (1,200 points)568

• Circle 3: Radius r = 3.8 (1,900 points)569

Points are sampled uniformly along each circle, totaling 3,600 points. The R100 embedding follows570

the same zero-padding and noise injection procedure as above.571

Three Moons Three semicircular clusters are generated with:572

• Moon 1: Upper semicircle, radius 1.0, centered at (0, 0) (1,200 points)573

• Moon 2: Lower semicircle, radius 1.5, centered at (1.5, 0.4) (1,200 points)574

• Moon 3: Upper semicircle, radius 1.0, centered at (3, 0) (1,200 points)575

Each dataset uses identical embedding:576

(x, y) 7→ (x, y, 0, . . . , 0) + ϵ, ϵ ∼ N (0, 0.152I100)

Figure 4: 2D Visulization of Geometric Dataset
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Table 5: Jaccard Index of SSLC compared against the spectral norm of ∆L and SNR value on
SSBM(n, k, p, q) with k = 3, p = 6 log n/n, q = log n/n.

n Jaccard Index (%) Spectral norm of ∆L SNR

100 84.59 0.4543 4.80
200 93.73 0.4238 5.52
400 96.04 0.3982 6.24
800 99.18 0.3725 6.96

F Additional Experimental Results577

Table 6: Average accuracy and standard deviation on the largest connected subgraph over 100 trials

# Labels per class 0 1 3 5 10

Cora

Laplace (LP) - 21.8 (14.3) 37.6 (12.3) 51.3 (11.9) 66.9 (6.8)
Poisson - 59.8 (7.9) 66.2 (5.8) 72.4 (2.1) 74.1 (1.8)
PoissonMBO - 59.9 (6.4) 69.1 (3.1) 72.4 (2.4) 74.3 (2.1)
CutSSL - 67.4 (3.4) 73.2 (3.1) 75.8 (2.1) 78.7 (1.1)
SSLC/USLC 64.2 (5.7) 69.2 (4.0) 75.5 (3.4) 76.9 (2.6) 77.9 (1.3)

CiteSeer

Laplace (LP) - 27.9 (10.4) 47.6 (8.1) 56.0 (5.9) 63.7 (3.5)
Poisson - 59.4 (5.4) 59.4 (5.4) 62.7 (4.2) 66.9 (1.8)
PoissonMBO - 47.7 (8.0) 55.7 (3.2) 61.0 (1.7) 63.1 (1.7)
CutSSL - 62.4 (4.6) 63.4 (7.2) 66.9 (1.4) 68.1 (1.3)
SSLC/USLC 59.8 (5.7) 65.2 (5.3) 67.1 (4.7) 68.6 (2.9) 69.3 (1.6)

PubMed

Laplace (LP) - 34.6 (8.8) 35.7 (8.2) 36.9 (8.1) 39.6 (9.1)
Poisson - 56.7 (12.8) 66.5 (6.6) 68.4 (5.9) 71.2 (3.4)
PoissonMBO - 56.9 (7.3) 67.9 (3.4) 69.6 (3.1) 71.4 (2.5)
CutSSL - 63.1 (4.7) 70.4 (3.1) 72.8 (2.9) 74.1 (1.4)
SSLC/USLC 61.6 (6.2) 67.3 (5.1) 71.7 (3.9) 73.1 (2.9) 73.9 (2.2)

Figure 5: Affinity matrix of FashionMNIST after adding the outlier images (the last block consists of
10% outliers compared to the size of original dataset)
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G Notations578

Table 7: Table of Notations

Symbols Interpretations

G general graph of interest
E set of edges of graph G
V set of nodes in G (size denoted by n)
Cs each underlying true cluster
C#

s each extracted cluster from algorithm
Γs set of Seeds for each cluster
U removal set from V in Algorithm 4
Gin subgraph of G on V with edge set Ein

Gout subgraph of G on V with edge set Eout

Ein subset of E which consists only intra-connection edges
Eout the complement of Ein within E

A (Ain) adjacency matrix of G (Gin)
L (Lin) random walk Laplacian matrix of G (Gin)
LC (Lin

C ) submatrix of L (Lin) with column indices C ⊂ V
ℓi (ℓ

in
i ) i-th column of L (Lin)

Lin
Ω submatrix of Lin with column indices Ω ⊂ V
|M | entrywised absolute value operation on matrix M
∥M∥2 ∥ · ∥2 norm of matrix M
|v| entrywised absolute value operation on vector v
∥v∥2 ∥ · ∥2 norm of vector v.
1C indicator vector on subset C ⊂ V
△ set symmetric difference
Ls(v) {i ∈ [n] : vi among s largest-in-magnitude entries in v}
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TAG-DS Paper Checklist579

1. Claims580

Question: Do the main claims made in the abstract and introduction accurately reflect the581

paper’s contributions and scope?582

Answer: [Yes]583

Justification: The claims made in the abstract and introduction are accurately justified by584

experiments and theoretical results presented in the main text.585

Guidelines:586

• The answer NA means that the abstract and introduction do not include the claims587

made in the paper.588

• The abstract and/or introduction should clearly state the claims made, including the589

contributions made in the paper and important assumptions and limitations. A No or590

NA answer to this question will not be perceived well by the reviewers.591

• The claims made should match theoretical and experimental results, and reflect how592

much the results can be expected to generalize to other settings.593

• It is fine to include aspirational goals as motivation as long as it is clear that these goals594

are not attained by the paper.595

2. Limitations596

Question: Does the paper discuss the limitations of the work performed by the authors?597

Answer: [Yes]598

Justification: The limitations and broader impact of this work is discussed in Section 6.599

Guidelines:600

• The answer NA means that the paper has no limitation while the answer No means that601

the paper has limitations, but those are not discussed in the paper.602

• The authors are encouraged to create a separate "Limitations" section in their paper.603

• The paper should point out any strong assumptions and how robust the results are to604

violations of these assumptions (e.g., independence assumptions, noiseless settings,605

model well-specification, asymptotic approximations only holding locally). The authors606

should reflect on how these assumptions might be violated in practice and what the607

implications would be.608

• The authors should reflect on the scope of the claims made, e.g., if the approach was609

only tested on a few datasets or with a few runs. In general, empirical results often610

depend on implicit assumptions, which should be articulated.611

• The authors should reflect on the factors that influence the performance of the approach.612

For example, a facial recognition algorithm may perform poorly when image resolution613

is low or images are taken in low lighting. Or a speech-to-text system might not be614

used reliably to provide closed captions for online lectures because it fails to handle615

technical jargon.616

• The authors should discuss the computational efficiency of the proposed algorithms617

and how they scale with dataset size.618

• If applicable, the authors should discuss possible limitations of their approach to619

address problems of privacy and fairness.620

• While the authors might fear that complete honesty about limitations might be used by621

reviewers as grounds for rejection, a worse outcome might be that reviewers discover622

limitations that aren’t acknowledged in the paper. The authors should use their best623

judgment and recognize that individual actions in favor of transparency play an impor-624

tant role in developing norms that preserve the integrity of the community. Reviewers625

will be specifically instructed to not penalize honesty concerning limitations.626

3. Theory assumptions and proofs627

Question: For each theoretical result, does the paper provide the full set of assumptions and628

a complete (and correct) proof?629

Answer: [Yes]630
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Justification: We clearly state all assumptions in Section 2 and give complete proofs of all631

the results in the appendix.632

Guidelines:633

• The answer NA means that the paper does not include theoretical results.634

• All the theorems, formulas, and proofs in the paper should be numbered and cross-635

referenced.636

• All assumptions should be clearly stated or referenced in the statement of any theorems.637

• The proofs can either appear in the main paper or the supplemental material, but if638

they appear in the supplemental material, the authors are encouraged to provide a short639

proof sketch to provide intuition.640

• Inversely, any informal proof provided in the core of the paper should be complemented641

by formal proofs provided in appendix or supplemental material.642

• Theorems and Lemmas that the proof relies upon should be properly referenced.643

4. Experimental result reproducibility644

Question: Does the paper fully disclose all the information needed to reproduce the main ex-645

perimental results of the paper to the extent that it affects the main claims and/or conclusions646

of the paper (regardless of whether the code and data are provided or not)?647

Answer: [Yes]648

Justification: To ensure the reproducibility, we give a complete description of the datasets649

usage, algorithms, and their hyperparameters in Section 5 and also in the appendix.650

Guidelines:651

• The answer NA means that the paper does not include experiments.652

• If the paper includes experiments, a No answer to this question will not be perceived653

well by the reviewers: Making the paper reproducible is important, regardless of654

whether the code and data are provided or not.655

• If the contribution is a dataset and/or model, the authors should describe the steps taken656

to make their results reproducible or verifiable.657

• Depending on the contribution, reproducibility can be accomplished in various ways.658

For example, if the contribution is a novel architecture, describing the architecture fully659

might suffice, or if the contribution is a specific model and empirical evaluation, it may660

be necessary to either make it possible for others to replicate the model with the same661

dataset, or provide access to the model. In general. releasing code and data is often662

one good way to accomplish this, but reproducibility can also be provided via detailed663

instructions for how to replicate the results, access to a hosted model (e.g., in the case664

of a large language model), releasing of a model checkpoint, or other means that are665

appropriate to the research performed.666

• While NeurIPS does not require releasing code, the conference does require all submis-667

sions to provide some reasonable avenue for reproducibility, which may depend on the668

nature of the contribution. For example669

(a) If the contribution is primarily a new algorithm, the paper should make it clear how670

to reproduce that algorithm.671

(b) If the contribution is primarily a new model architecture, the paper should describe672

the architecture clearly and fully.673

(c) If the contribution is a new model (e.g., a large language model), then there should674

either be a way to access this model for reproducing the results or a way to reproduce675

the model (e.g., with an open-source dataset or instructions for how to construct676

the dataset).677

(d) We recognize that reproducibility may be tricky in some cases, in which case678

authors are welcome to describe the particular way they provide for reproducibility.679

In the case of closed-source models, it may be that access to the model is limited in680

some way (e.g., to registered users), but it should be possible for other researchers681

to have some path to reproducing or verifying the results.682

5. Open access to data and code683
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Question: Does the paper provide open access to the data and code, with sufficient instruc-684

tions to faithfully reproduce the main experimental results, as described in supplemental685

material?686

Answer: [Yes]687

Justification: The code and its usage for the experiments conducted in the paper are provided688

via an anonymous link in Section 5.689

Guidelines:690

• The answer NA means that paper does not include experiments requiring code.691

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/692

public/guides/CodeSubmissionPolicy) for more details.693

• While we encourage the release of code and data, we understand that this might not be694

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not695

including code, unless this is central to the contribution (e.g., for a new open-source696

benchmark).697

• The instructions should contain the exact command and environment needed to run to698

reproduce the results. See the NeurIPS code and data submission guidelines (https:699

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.700

• The authors should provide instructions on data access and preparation, including how701

to access the raw data, preprocessed data, intermediate data, and generated data, etc.702

• The authors should provide scripts to reproduce all experimental results for the new703

proposed method and baselines. If only a subset of experiments are reproducible, they704

should state which ones are omitted from the script and why.705

• At submission time, to preserve anonymity, the authors should release anonymized706

versions (if applicable).707

• Providing as much information as possible in supplemental material (appended to the708

paper) is recommended, but including URLs to data and code is permitted.709

6. Experimental setting/details710

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-711

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the712

results?713

Answer: [Yes]714

Justification: Experimental details are provided in Section 5 in the main article and also in715

the appendix.716

Guidelines:717

• The answer NA means that the paper does not include experiments.718

• The experimental setting should be presented in the core of the paper to a level of detail719

that is necessary to appreciate the results and make sense of them.720

• The full details can be provided either with the code, in appendix, or as supplemental721

material.722

7. Experiment statistical significance723

Question: Does the paper report error bars suitably and correctly defined or other appropriate724

information about the statistical significance of the experiments?725

Answer: [Yes]726

Justification: Standard deviations are reported in Section 5 in the main article and Section F727

in the appendix.728

Guidelines:729

• The answer NA means that the paper does not include experiments.730

• The authors should answer "Yes" if the results are accompanied by error bars, confi-731

dence intervals, or statistical significance tests, at least for the experiments that support732

the main claims of the paper.733
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• The factors of variability that the error bars are capturing should be clearly stated (for734

example, train/test split, initialization, random drawing of some parameter, or overall735

run with given experimental conditions).736

• The method for calculating the error bars should be explained (closed form formula,737

call to a library function, bootstrap, etc.)738

• The assumptions made should be given (e.g., Normally distributed errors).739

• It should be clear whether the error bar is the standard deviation or the standard error740

of the mean.741

• It is OK to report 1-sigma error bars, but one should state it. The authors should742

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis743

of Normality of errors is not verified.744

• For asymmetric distributions, the authors should be careful not to show in tables or745

figures symmetric error bars that would yield results that are out of range (e.g. negative746

error rates).747

• If error bars are reported in tables or plots, The authors should explain in the text how748

they were calculated and reference the corresponding figures or tables in the text.749

8. Experiments compute resources750

Question: For each experiment, does the paper provide sufficient information on the com-751

puter resources (type of compute workers, memory, time of execution) needed to reproduce752

the experiments?753

Answer: [Yes]754

Justification: We provide this information in Section 5.755

Guidelines:756

• The answer NA means that the paper does not include experiments.757

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,758

or cloud provider, including relevant memory and storage.759

• The paper should provide the amount of compute required for each of the individual760

experimental runs as well as estimate the total compute.761

• The paper should disclose whether the full research project required more compute762

than the experiments reported in the paper (e.g., preliminary or failed experiments that763

didn’t make it into the paper).764

9. Code of ethics765

Question: Does the research conducted in the paper conform, in every respect, with the766

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?767

Answer: [Yes]768

Justification: We have reviewed the code of ethics and confirm our full compliance.769

Guidelines:770

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.771

• If the authors answer No, they should explain the special circumstances that require a772

deviation from the Code of Ethics.773

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-774

eration due to laws or regulations in their jurisdiction).775

10. Broader impacts776

Question: Does the paper discuss both potential positive societal impacts and negative777

societal impacts of the work performed?778

Answer: [Yes]779

Justification: We discuss the societal impact in Section 6.780

Guidelines:781

• The answer NA means that there is no societal impact of the work performed.782

• If the authors answer NA or No, they should explain why their work has no societal783

impact or why the paper does not address societal impact.784
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• Examples of negative societal impacts include potential malicious or unintended uses785

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations786

(e.g., deployment of technologies that could make decisions that unfairly impact specific787

groups), privacy considerations, and security considerations.788

• The conference expects that many papers will be foundational research and not tied789

to particular applications, let alone deployments. However, if there is a direct path to790

any negative applications, the authors should point it out. For example, it is legitimate791

to point out that an improvement in the quality of generative models could be used to792

generate deepfakes for disinformation. On the other hand, it is not needed to point out793

that a generic algorithm for optimizing neural networks could enable people to train794

models that generate Deepfakes faster.795

• The authors should consider possible harms that could arise when the technology is796

being used as intended and functioning correctly, harms that could arise when the797

technology is being used as intended but gives incorrect results, and harms following798

from (intentional or unintentional) misuse of the technology.799

• If there are negative societal impacts, the authors could also discuss possible mitigation800

strategies (e.g., gated release of models, providing defenses in addition to attacks,801

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from802

feedback over time, improving the efficiency and accessibility of ML).803

11. Safeguards804

Question: Does the paper describe safeguards that have been put in place for responsible805

release of data or models that have a high risk for misuse (e.g., pretrained language models,806

image generators, or scraped datasets)?807

Answer: [NA]808

Justification: This paper poses no such risks.809

Guidelines:810

• The answer NA means that the paper poses no such risks.811

• Released models that have a high risk for misuse or dual-use should be released with812

necessary safeguards to allow for controlled use of the model, for example by requiring813

that users adhere to usage guidelines or restrictions to access the model or implementing814

safety filters.815

• Datasets that have been scraped from the Internet could pose safety risks. The authors816

should describe how they avoided releasing unsafe images.817

• We recognize that providing effective safeguards is challenging, and many papers do818

not require this, but we encourage authors to take this into account and make a best819

faith effort.820

12. Licenses for existing assets821

Question: Are the creators or original owners of assets (e.g., code, data, models), used in822

the paper, properly credited and are the license and terms of use explicitly mentioned and823

properly respected?824

Answer: [Yes]825

Justification: We properly cite all the existing assets used in the paper and we follow all826

licensing.827

Guidelines:828

• The answer NA means that the paper does not use existing assets.829

• The authors should cite the original paper that produced the code package or dataset.830

• The authors should state which version of the asset is used and, if possible, include a831

URL.832

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.833

• For scraped data from a particular source (e.g., website), the copyright and terms of834

service of that source should be provided.835
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• If assets are released, the license, copyright information, and terms of use in the836

package should be provided. For popular datasets, paperswithcode.com/datasets837

has curated licenses for some datasets. Their licensing guide can help determine the838

license of a dataset.839

• For existing datasets that are re-packaged, both the original license and the license of840

the derived asset (if it has changed) should be provided.841

• If this information is not available online, the authors are encouraged to reach out to842

the asset’s creators.843

13. New assets844

Question: Are new assets introduced in the paper well documented and is the documentation845

provided alongside the assets?846

Answer: [Yes]847

Justification: The code and documentation for the experiments are provided in an anonymous848

link in Section 5.849

Guidelines:850

• The answer NA means that the paper does not release new assets.851

• Researchers should communicate the details of the dataset/code/model as part of their852

submissions via structured templates. This includes details about training, license,853

limitations, etc.854

• The paper should discuss whether and how consent was obtained from people whose855

asset is used.856

• At submission time, remember to anonymize your assets (if applicable). You can either857

create an anonymized URL or include an anonymized zip file.858

14. Crowdsourcing and research with human subjects859

Question: For crowdsourcing experiments and research with human subjects, does the paper860

include the full text of instructions given to participants and screenshots, if applicable, as861

well as details about compensation (if any)?862

Answer: [NA]863

Justification: Our work does not involve crowdsourcing or research with human subjects.864

Guidelines:865

• The answer NA means that the paper does not involve crowdsourcing nor research with866

human subjects.867

• Including this information in the supplemental material is fine, but if the main contribu-868

tion of the paper involves human subjects, then as much detail as possible should be869

included in the main paper.870

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,871

or other labor should be paid at least the minimum wage in the country of the data872

collector.873

15. Institutional review board (IRB) approvals or equivalent for research with human874

subjects875

Question: Does the paper describe potential risks incurred by study participants, whether876

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)877

approvals (or an equivalent approval/review based on the requirements of your country or878

institution) were obtained?879

Answer: [NA]880

Justification: Our work does not involve crowdsourcing or research with human subjects.881

Guidelines:882

• The answer NA means that the paper does not involve crowdsourcing nor research with883

human subjects.884

• Depending on the country in which research is conducted, IRB approval (or equivalent)885

may be required for any human subjects research. If you obtained IRB approval, you886

should clearly state this in the paper.887
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• We recognize that the procedures for this may vary significantly between institutions888

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the889

guidelines for their institution.890

• For initial submissions, do not include any information that would break anonymity (if891

applicable), such as the institution conducting the review.892

16. Declaration of LLM usage893

Question: Does the paper describe the usage of LLMs if it is an important, original, or894

non-standard component of the core methods in this research? Note that if the LLM is used895

only for writing, editing, or formatting purposes and does not impact the core methodology,896

scientific rigorousness, or originality of the research, declaration is not required.897

Answer: [NA]898

Justification: This research does not involve LLMs as any important, original, or non-899

standard components.900

Guidelines:901

• The answer NA means that the core method development in this research does not902

involve LLMs as any important, original, or non-standard components.903

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)904

for what should or should not be described.905
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