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ABSTRACT

We are concerned with offline reinforcement learning (RL) for which, a promising
paradigm is to constrain the learned policy to stay close to the dataset behaviors,
known as policy constrained offline RL. However, existing works rely heavily on
the purity of the data, exhibiting performance degradation or even catastrophic
failure when learning from contaminated datasets containing trajectories of di-
verse levels, e.g., expert level, medium level, etc., while offline contaminated data
logs exist commonly in the real world. To mitigate this, we first introduce gra-
dient penalty over the learned value function to tackle the exploding Q-function
gradients induced by the failed closeness constraint on non-expert states. We then
relax the harmful closeness constraints towards non-expert dataset actions with
critic weighted constraint relaxation. Experimental results show that the proposed
techniques effectively tame the policy constrained offline RL for non-expert tra-
jectories, evaluated on a set of contaminated D4RL Mujoco and Adroit datasets.

1 INTRODUCTION

Effective offline reinforcement learning (RL) should be able to extract policies with the maximum
possible utility out of the static demonstrations without interacting with the environment (Lange
et al., 2012; Fujimoto et al., 2019; Levine et al., 2020). One typical way of offline RL is to use
policy constraint, enforcing the learned policy to stay close to the behavior policy that generated the
dataset, involving various closeness metrics (Fujimoto et al., 2019; Aviral et al., 2019; Wu et al.,
2019a; Kostrikov et al., 2021).

However, we find many policy constrained offline RL methods suffer performance degradation and
even catastrophic failure (please see Figure 3) when trained on datasets containing different levels of
policy trajectories. For example, methods in Figure 1 show better performance on the expert dataset
while achieving lower scores on the medium-expert dataset. This is undesired as the medium-expert
datasets contain more dynamics, i.e., both expert and medium-level data (Fu et al., 2020).
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Figure 1: Performance degradation. We re-
port the paper results of CQL (Kumar et al.,
2020), AWAC (Nair et al., 2020), UWAC (Wu
et al., 2021b), TD3+BC (Fujimoto & Gu,
2021). For BEAR-QL (Aviral et al., 2019), we
report the result from D4RL (Fu et al., 2020).

Many real-world applications demand robust of-
fline RL algorithms, such as robotic controlling
tasks with datasets for multiple tasks or incom-
plete demonstrations (Sun & Ma, 2019; Fu et al.,
2020), recommendation tasks with datasets con-
taining non-user logs (Gunes et al., 2014; Huang
et al., 2021), and autonomous driving tasks with
trajectories with various levels. In these cases, the
dataset contains both expert demonstrations and tra-
jectories from non-experts who have not mastered
the task. Filtering out non-expert trajectories with
human effort is either expensive or impossible, ne-
cessitating robust offline RL algorithms that are re-
sistant to the effects of non-expert trajectories.

Why do the observed performance degradation and catastrophic failure occur? To answer this ques-
tion, we first introduce contaminated datasets, which contain trajectories from both expert and
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Figure 2: Non-expert data inhibit in two different ways. For non-expert states overlap with expert
dataset states (left), they influence the policy improvement in a supervised fashion. For non-expert
states far away from expert dataset states (right), policy improvement may lead to OOD actions.

non-expert behavior policies, including medium, cloned, and random levels (Fu et al., 2020). By
analyzing the learning behaviors on such datasets, we identify two key paths by which non-expert
trajectories inhibit policy constrained offline RL.

First, non-expert data can inhibit policy constrained offline RL in a supervised manner (see Figure 2,
left). The closeness constraint explicitly regresses the policy to both expert and non-expert actions,
leading to a compromised policy when the states visited by expert overlap that of non-experts (Wu
et al., 2019b). To tackle this issue, we propose critic weighted constraint relaxation (+ CR), which
leverages a polished Q-function to relax the harmful closeness constraint towards non-expert actions.

A more important finding of this work is non-expert trajectories can destroy the learned Q-function
via out-of-distribution (OOD) actions (Figure 2, right). Policy improvements on the contaminated
dataset make the learned policy closer to dataset expert actions while moving it away from non-
expert decisions. This implicitly leads to failed closeness constraint on non-expert state-action pairs
when expert and non-expert states follow different distributions, resulting in OOD actions and in turn
give rise to unstable Q-values (see Theorem 3.1), sharp Q-function gradients, and finally catastrophic
failures (as observed in Figure 3). We introduce the gradient penalty technique (+ GP) to suppress
the observed exploding Q-function gradients induced from the failed closeness constraint (OOD
actions). To justify the proposed GP technique, we theoretically show that there exists an upper
bound for the norm of (optimal) Q-function gradients (see Theorem 4.1).

We integrate the proposed two techniques on the top of BEAR-QL (Aviral et al., 2019) and
TD3+BC (Fujimoto & Gu, 2021), attaining BEAR++ and TD3BC++. Evaluations on the contami-
nated datasets for D4RL mujoco and adroit tasks demonstrate that the proposed techniques together
could serve as a general plugin to tame the policy constrained offline RL algorithms.

2 PRELIMINARIES

RL A Markov decision process (MDP) can be represented by M = ⟨S,A, T, d0, r, γ⟩, with state
space S, action space A, transition probability T (st+1|st, at), initial state distribution d0, reward
function r(st, at), and discount factor γ. RL methods aim to find a policy π(at|st), to maximize the
expected (discounted) cumulative reward Eτ∼pπ(τ)

[∑|τ |
t=0 γ

tr(st, at)
]
, with the trajectory distribu-

tion pπ(τ) = d0(s0)
∏|τ |

t=0 π(at|st)T (st+1|st, at).

Offline RL Offline RL algorithms aim to learn policies from a static set of interactions, D =
{(st, at, st+1, r(st, at))}Nt=0. One main challenge in offline RL lies in the distribution shift issue (Fu
et al., 2019) or the extrapolation error (Fujimoto et al., 2019) during training. For example, a Q-
function is trained on dataset actions µ(at|st) but evaluated on policy actions π(at+1|st+1):

Qk+1(st, at) = E
st,at,r,st+1∼D

[r + γQk(st+1, π(a|st+1))] (1)

The learned policy may generate out-of-distribution (OOD) actions that differ from dataset actions
since its optimization objective makes no other guarantees except for generating high-value actions:

πk+1 = argmax
π

Q(st, π(st)) (2)

Policy improvements implicitly drive the policy to explore OOD actions (Hu et al., 2021), and policy
evaluations exploit these OOD actions and in turn affect policy improvements.
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Policy constrained offline RL One main approach to offline RL is to enforce the learned policy
to stay close to the behavior policy that generated the dataset (Levine et al., 2020):

πk+1 = argmax
π

Q(st, π(st)), s.t. closeness constraint (3)

We try to address the performance degradation and catastrophic failure issues in two policy con-
strained offline RL algorithms, TD3+BC (Fujimoto & Gu, 2021) and BEAR-QL (Aviral et al., 2019),
without loss of generality.

TD3+BC adds a behavior cloning term on the top of TD3 (Fujimoto et al., 2018), resulting in:

π = argmax
π

E(st,at)∼D

[ α

E[|Q(st, at)|]
Q(st, π(st))− (π(st)− at)

2
]
, (4)

where α is a hyperparameter controlling the strength of the regularizer.

BEAR-QL constrains the learned policy to have non-negligible support under the data distribution:

π = argmax
π

Est∼D

[
Q(st, π(st))

]
s. t. Est∼D[MMD(β(st), π(st))] ≤ ϵ, (5)

with β approximating the behavior policy and ϵ being a threshold parameter set to 0.05.

3 CATASTROPHIC FAILURE HAPPENS WITH EXPLODING Q-GRADIENTS

Policy constrained offline RL methods fail to learn meaningful policies on contaminated datasets
that contain significantly multi-modal state distributions, e.g., expert-cloned, expert-random. We
call this catastrophic failure as it happens with exploding Q-function gradients (see Figure 3).

3.1 CATASTROPHIC FAILURE ON CONTAMINATED DATASETS
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Figure 3: Catastrophic failure. ER1 is short for
expert-random-10, which denotes a contaminated
dataset with 10% random trajectories and 90% expert
demonstrations.

In order to mimic real-world logs that con-
tain multi-level trajectories, we introduce
contaminated datasets, which can be gen-
erated by contaminating an expert dataset
with non-expert demonstrations. For in-
stance, ER3, short for expert-random-30,
refers to a dataset in which 70% are expert
trajectories and 30% are from random be-
havior policies. Please refer to Appendix
A for the detailed statistics and discussion
about the contaminated datasets.

We run TD3+BC and BEAR-QL on
contaminated datasets, walker2d-expert-
random-v0, as depicted in Figure 3. The
catastrophic failure occurs after the per-
centage of random data exceeds 30%.

3.2 ANALYSIS WITH DISTRIBUTION-CONSTRAINED Q-ITERATION

Why does catastrophic failure occur, and why is it so always after the learned policy’s performance
has improved? In order to give some insights, we use the analysis tool from Aviral et al. (2019),
which involves a constrained Bellman backup operator, defined as:

T ΠQ(st, at) := E
[
r + γmax

π∈Π
ET (st+1|st,at)[Vπ(st+1)]

]
, (6)

with state value function Vπ(st) := Eπ[Q(st, π(at|st))] and restricted set of policies Π.

Theorem 3.1. The performance of distribution-constrained Q-iteration can be bounded as:

lim
k→∞

Ed0

[∣∣∣V πk

(st)− V Π(st)
∣∣∣] ≤ 2γ

(1− γ)2
CΠ,µEµ

[
max
π∈Π

Eπ[δ(st, at)]
]

(7)
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with the concentrability coefficient CΠ,µ for quantifying how far the conditional distribution of the
policy action π(at|st) ∼ Π is from the corresponding dataset action µ(at|st), and V Π denotes the
fixed point of T Π, d0 denotes the initial state distribution.

To understand why the catastrophic failure happens, we simplify the concentrability coefficient
CΠ,µ (Munos & Szepesvári, 2008) as the distance between the decisions from π and µ.

Before the discussion, we first consider learning from a pure dataset generated by policies with
similar decision-making capabilities, e.g., D4RL expert datasets. The policy improvement implic-
itly drives the learned policy out of the dataset distribution (Hu et al., 2021), resulting in a large
concentrability coefficient (Aviral et al., 2019) for all dataset states. Policy constrained offline RL
algorithms force the learned policy π ∼ Π to be close to the behavior policy µ, yielding a low
concentrability coefficient and thus making it possible to learn RL policy from static datasets.

For the contaminated dataset having two (or more) behavior policies with significantly different
decision-making capacities, policy constrained offline RL faces a dilemma:

Adhering to the non-expert dataset decisions (low CΠ,µ) leads to bad policies, but driving out of the
non-expert trajectories (large CΠ,µ) give rise to OOD actions.
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Figure 4: Failed closeness constraint on
non-expert state-action pairs correlate
with catastrophic failures. Divergence:
the 75th percentile of the squared er-
ror between the policy decisions and the
corresponding dataset actions.

In this case, behavior policies show different state visits,
as depicted by Figure 2 and detailed in Figure 9. Pol-
icy improvements implicitly drive the learned policy to
be different from the non-expert actions and thus leads
to the failed closeness constraint on non-expert states, re-
sulting in OOD actions and a large CΠ,µ. We visualize
this in Figure 4. The catastrophic failure (bottom) cor-
relates with the failed constraint towards non-expert de-
cisions (top), i.e., the increasing divergence between the
policy and non-expert dataset actions. Please note that
the learned policy stays close to dataset expert actions
throughout.

The closeness constraint on non-expert state-action pairs
is destroyed by the policy improvement, which is why it
always occurs after achieving good performance. Such
failed closeness constraints lead to OOD actions, which
consitute the main challenge for offline RL that induces
erroneous Q-values, overestimation problems, and bad
policies. However, due to the dilemma above, it is hard to
find a proper closeness metric for contaminated datasets.

How to save the policy when OOD actions are inevitable? To the best of our knowledge, this work is
the first to observe that OOD actions correlate with extreme sharpness of the Q-values (with respect
to actions) and not just overly large values. This inspires us to attenuate the effect of OOD actions
from the perspective of gradient regularization.

4 RECOVERING FROM CATASTROPHIC FAILURE VIA GRADIENT PENALTY

We now introduce the gradient penalty technique to reduce the impact of OOD actions induced by
the failed closeness constraint on non-expert state-action pairs, and then give theoretical insights on
the proposed gradient penalty, followed by a discussion on the difference between our method and
a previous work.

4.1 PENALIZING THE UNSTABLE GRADIENTS

Recall that the policy improvement step with neural network approximation is πk+1
θ =

argmaxπ Q(st, π(st)). In practice, this can be achieved by gradient ascent in the parameter space:
θ = θ + α · ∇atQ(st, at)

∣∣∣
at=πθ(st)

· ∇θπθ(st).
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Figure 5: Performance of original TD3+BC algorithm (Original), and TD3+BC with gradient
penalty w.r.t. actions from different sampling strategies (Dataset action for a ∼ µ, Policy ac-
tion for a ∼ π, and Random action for a ∼ A) on the contaminated D4RL datasets. ER1 is short
for expert-random-10. Best viewed in color.

Recall that the improved policy generates OOD actions on non-expert states (with large CΠ,µ), which
cause a loose performance bound 7 and unstable Q-values. The policy resulted from the abnormal
Q gradients in turn produces OOD actions. To break the pathological loop, we propose our first
modification for policy constrained offline RL methods, i.e., gradient penalty term in the critic loss:

LGP = λGP E
st∼D, a

[
ReLU

(∥∥∇aQ(st, a)
∥∥
F
− 1

)]2
(8)

We introduce a one-sided penalty to encourage the norm of the Q-function gradient w.r.t. non-expert
actions stays below 1 while avoiding over-punishment for expert alike actions. λGP controls the
contribution of the gradient penalty term. In order to improve computational efficiency, we execute
the gradient penalty in every N training steps. We empirically set N to 5 in our experiments.

Note that we do not specify the sampling distribution for action a, as we find there is no significant
performance difference between the following three sampling strategies: 1) the current policy action
a ∼ π, 2) the dataset action distribution a ∼ µ, and 3) random sampling over the action space
a ∼ A. We will discuss the different motivations behind these choices later.

4.2 LIPSCHITZ PROPERTY OF THE LEARNED Q-FUNCTION

To motivate the proposed gradient penalty technique, we show that the Frobenius norm of the learned
Q-function gradient w.r.t. input actions is bounded.

Theorem 4.1. Suppose a policy π(at|st) on an MDP M = ⟨S,A, r, γ, T ⟩ with dynamics T sat-

isfies the inequality
∥∥∥∂π(at+1|st+1)

∂at

∥∥∥
F

≤ Lπ,T < 1 and the reward function r(st, at) satisfies∥∥∥∂r(st,at)
∂at

∥∥∥ ≤ Lr. If we denote the dimension of the action space as N , then the magnitude of
the gradient of the (optimal) Q-function w.r.t. action can be upper bounded as:∥∥∥∇at

Qπ(st, at)
∥∥∥
F
≤

√
NLr

1− γLπ,T
(9)

Proof. See Appendix B.
Remark 4.2. Theorem 4.1 holds for offline RL setting as the offline MDP is equal to an modified
online MDP with a constrained Bellman backup operator (Aviral et al., 2019). It indicates that the
Q-prediction should not vary much for perturbations in the action space, implying that the observed
exploding Q-function gradient is unreasonable and thus motivating our gradient penalty technique.

4.3 DIFFERENCE FROM FISHER-BRC

One may note that the proposed gradient penalty resembles the Fisher divergence term in Fisher-
BRC (Kostrikov et al., 2021):

E
st∼D

[
Fisher

( expQ(st, ·)∑
a expQ(st, a)

, µ(·|st)
)]

= E
st∼D,a∼πemb(·|st)

[
∥∇aQ(st, a)−∇a logµ(a|st)∥2F

]
.
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Figure 6: Q-function with gradient penalty can distinguish expert and random actions. We plot the
Q-value distributions of dataset actions (top) in the training process (bottom) of a TD3+BC agent
with (left) and without (right) gradient penalty. Diluted and raised histogram for random actions,
heavy color for expert actions. Task name is walker2d-expert-random-50-v0. Best viewed in color.

In fact, they are different because Fisher-BRC utilizes gradients to measure the Fisher information
distance between the learned policy and the behavior policy µ, while our method serves to reduce
the negative impact of OOD actions. With different motivations, our method 1) does not require an
entropy regularizer for recovering the Boltzmann policy πemb, and 2) should be insensitive to the
action sampling distribution in contrast to Fisher-BRC which needs a ∼ πemb. Figure 5 demon-
strates the insensitivity property of our method, where three types of sampling strategies show no
performance difference for expert-random-10 (ER1), ER3, and ER5 settings. We perform gradient
penalty w.r.t random actions in the section of experiments.

5 CONSTRAINT RELAXATION WITH POLISHED Q-FUNCTION

The harmful closeness constraints toward non-expert dataset actions make the learned policy deviate
from optima, see also in Wu et al. (2019b); Sasaki & Yamashina (2020). We further relax it by critic
weighted constraint relaxation (+ CR) in this section.

The key challenge to relaxing the harmful constraints is to identify the optimality of the dataset
actions, for which in offline RL we may make it by the learned Q-function. As depicted in Figure 6,
the polished Q-function could successfully discriminate expert decisions (dark colors) and random
actions (light colors), even when the policy performs not so well (left). On the other hand, without
the gradient penalty, the Q-function is not accurate even if the performance is good (right).

We use the Q-value to indicate the optimality, with a min-max normalization over a mini-batch:

W (st, at) =
Q(st, at)−Qmin

Qmax −Qmin
(10)

We then could rewrite the regularizer term in BEAR-QL as:

π = argmax
π

Est∼D

[
Q(st, π(st))

]
s. t.Est∼D[MMD

(
β(st), π(·|st)

)
·W

(
st, β(st)

)
] ≤ ϵ, (11)

and for TD3+BC we have:

π = argmax
π

E
(st,at)∼D

[ α

E[|Q(st, at)|]
Q(st, π(st))− (π(st)− at)

2 ·W (st, at)
]

(12)

Note that we do not propagate gradient through the relaxation weight, W (st, at).

6 EXPERIMENTS

We proposed two modifications for policy constrained offline RL: 1) gradient penalty (+ GP) to
alleviate the negative impacts of OOD actions induced from the failed closeness constraint and 2)
critic weighted constraint relaxation (+ CR) for the harmful closeness constraint. We integrated
them in TD3+BC and BEAR-QL, attaining TD3BC++ and BEAR++.
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Table 1: Evaluation on the D4RL Mujoco Gym tasks. ER1 is short for Expert-random-10. We
rerun all algorithms. With the proposed two techniques, BEAR++ and TD3BC++ could address the
performance degradation and catastrophic failures issues. The highest performing scores are bolded.

Task Setting BC 10%BC CQL BEAR-QL TD3+BC 10%TD3+BC Fisher-BRC UWAC IQL BEAR ++ TD3BC ++

W
al

ke
r2

d

Expert 66.1± 22.7 76.0± 17.5 104.0± 6.7 75.1± 15.7 104.5± 5.0 72.5± 19.6 75.6± 42.0 64.3± 23.9 105.6± 3.7 97.2± 8.3 102.9± 4.3
Expert-medium 11.3± 8.0 77.5± 19.3 102.4± 13.0 56.1± 11.7 101.6± 10.4 98.2± 14.8 103.3± 5.3 14.8± 9.5 105.1± 4.7 74.1± 9.0 104.3± 6.7

ER1 7.1± 15.5 74.8± 19.7 100.8± 10.8 68.9± 13.5 98.8± 20.3 100.9± 8.9 100.0± 16.0 6.6± 14.4 105.2± 3.6 94.5± 9.5 104.1± 5.2
ER3 0.8± 0.1 60.4± 24.8 97.8± 13.4 2.2± 5.0 14.2± 21.7 100.5± 10.5 95.0± 25.8 9.9± 19.9 102.9± 9.0 95.1± 8.1 104.3± 3.1
ER5 1.0± 0.3 30.5± 22.5 93.2± 21.9 5.2± 5.5 8.6± 16.3 72.2± 48.2 82.5± 26.0 4.0± 10.4 92.2± 12.6 87.0± 11.4 104.4± 5.2
ER7 3.4± 8.0 16.3± 21.0 77.0± 28.3 -0.2± 0.7 19.6± 23.0 47.7± 44.4 69.3± 33.7 2.2± 4.0 67.6± 29.5 73.1± 12.4 100.2± 9.0

H
op

pe
r

Expert 111.7± 1.7 109.6± 6.5 111.7± 2.3 61.5± 54.3 112.2± 0.2 69.3± 41.0 112.2± 0.7 106.8± 10.8 112.5± 0.2 111.4± 2.7 112.3± 0.2
Expert-medium 77.0± 38.6 111.0± 3.1 112.1± 0.3 85.1± 20.9 112.0± 0.4 66.0± 31.7 112.3± 0.3 70.8± 33.3 112.5± 0.4 110.3± 3.8 112.1± 0.3

ER1 106.6± 17.0 112.1± 2.3 112.1± 0.4 104.4± 12.8 112.2± 0.2 85.5± 24.6 112.3± 0.2 91.5± 23.6 112.6± 0.1 111.6± 3.6 112.3± 0.3
ER3 25.8± 25.9 112.1± 1.2 111.2± 2.8 82.0± 13.8 112.1± 0.2 80.4± 30.2 112.1± 0.7 9.9± 0.3 112.4± 0.2 104.8± 11.1 112.2± 0.2
ER5 15.8± 20.8 111.7± 1.2 112.0± 1.8 27.1± 11.1 112.2± 0.2 112.3± 0.19 112.2± 0.2 9.9± 0.2 111.6± 2.4 92.0± 12.0 112.2± 0.3
ER7 9.6± 0.2 105.9± 9.9 17.9± 21.0 10.0± 0.1 112.0± 0.7 112.1± 0.3 112.1± 0.8 9.7± 0.2 112.5± 0.1 45.8± 40.4 112.1± 0.2

H
al

fc
he

et
ah

Expert 105.8± 2.4 68.6± 17.8 94.7± 7.3 103.8± 6.0 105.3± 4.3 67.5± 16.6 106.5± 3.5 95.1± 10.2 102.4± 3.8 104.5± 3.4 105.9± 3.4
Expert-medium 65.9± 19.0 95.3± 8.6 33.3± 10.9 49.3± 9.5 94.9± 6.3 96.4± 10.3 95.3± 9.9 38.0± 4.4 81.9± 7.3 91.0± 9.3 105.3± 2.3

ER1 89.6± 11.1 68.6± 13.4 83.0± 11.4 93.9± 17.5 101.5± 5.2 64.9± 16.4 93.3± 11.3 63.5± 19.3 76.1± 9.1 100.4± 7.6 105.1± 3.9
ER3 66.1± 17.6 63.0± 16.7 62.0± 14.4 82.2± 19.4 98.4± 7.2 77.3± 12.3 67.8± 21.0 22.6± 17.4 64.2± 12.6 103.0± 5.3 103.8± 4.2
ER5 30.1± 15.5 66.2± 16.0 55.8± 11.5 43.4± 20.8 90.1± 9.7 70.3± 12.3 46.9± 17.7 2.3± 0.1 53.0± 10.1 100.3± 8.3 105.2± 2.2
ER7 2.5± 1.5 61.0± 16.9 40.2± 13.0 2.3± 0.0 67.6± 9.6 75.0± 15.2 29.0± 12.5 2.3± 0.0 31.0± 10.9 101.8± 4.6 99.8± 4.7

Total 796.2± 225.9 1420.6± 238.4 1521.2± 191.3 952.1± 238.4 1577.8± 140.9 1469.1± 356.7 1637.9± 227.3 624.1± 201.7 1663.3± 124.1 1697.9 (+78.3%) 1918.5 (+21.6%)

6.1 SETUP

Datasets We consider three types of contaminated datasets, expert-medium, expert-cloned, and
expert-random (see Appendix A). For performance on original tasks, please refer to Appendix C.3.

Evaluation We train each algorithm for 1 million time steps, evaluate them every 5000 time steps,
and finally report the mean and standard deviation of the normalized scores (Fu et al., 2020) over the
final 500 episodes (10 trajectories, 10 evaluations, and 5 seeds). Please note that 5-seed evaluation
is a common setting for offline RL literature (Aviral et al., 2019; Wu et al., 2019a; Fujimoto & Gu,
2021; Ma et al., 2021; Wu et al., 2021b; Sinha et al., 2022).

Baselines We compare TD3BC++ and BEAR++ with BC (Pomerleau, 1991), CQL (Kumar et al.,
2020), IQL (Kostrikov et al., 2022), UWAC (Wu et al., 2021b), Fihser-BRC(Kostrikov et al., 2021)
and original BEAR-QL (Aviral et al., 2019), TD3+BC (Fujimoto & Gu, 2021). We also examine
percentile BC and percentile TD3+BC, i.e., run BC and TD3+BC on the top 10% of trajectories
with higher rewards. Our BC performs similarly to that in Fujimoto & Gu (2021).

6.2 RESULTS AND DISCUSSION

Performance degradation (Table 1) For the expert-medium setting, in which states visited by
expert and medium-level policies show great overlaps (visualized in Figure 9), baseline algorithms
suffer performance degradation. In contrast, the proposed TD3BC++ and BEAR++ show resistance
to performance degradation, i.e., agents trained on expert-medium datasets perform as experts for
all 3 mujoco gym tasks.

Catastrophic failure (Table 1 and 2) BEAR-QL and TD3+BC suffer catastrophic failure when
learning on datasets containing trajectories from distinct behavior policies, e.g., expert-random and
expert-cloned datasets. Fortunately, the proposed methods alleviate the catastrophic failure issues
for all 7 tasks, and they could even help TD3+BC perform as well on ER7 as on the expert datasets,
in 6 out of 7 tasks.

Further penalization on OOD actions (Figure 7) Recall that the failed closeness constraint on
non-expert decisions produces OOD policy actions, and our proposed gradient penalty successfully
recovers the Q-function by penalizing the unstable sharp Q gradients. Based on the result, we
conjecture that the proposed gradient penalty could also contribute to reducing the strength of the
required closeness constraint for policy constrained offline RL.

To investigate this, we run TD3+BC plus gradient penalty, and change the hyperparameter α to
control the strength of BC term (Equation 4). Note that the agent with α = 1 prefers imitation while
with α = 4 for RL. Figure 7 demonstrates that GP reduces the dependence on policy constraints for
TD3+BC, and thus may stop from degrading to behavioral cloning. This is not surprising, because
the failed closeness constraint can be caused not only by the policy improvement on non-expert
demonstrations but also by poor closeness metrics.

Ablation study (Figure 8) We ablate the effects of the two proposed techniques when applied
individually. For datasets contain many low-level demonstrations (ER3 and ER5 settings), the gra-
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Table 2: Evaluation on the D4RL Adroit domain, involves controlling a 24-DoF robotic hand to
perform different tasks. EC1 is short for Expert-cloned-10, with cloned trajectories for non-expert
behaviors. The highest performing scores are bolded.

Task Setting BC %BC CQL BEAR-QL TD3+BC %TD3+BC Fisher-BRC UWAC IQL BEAR ++ TD3BC ++

D
oo

r

Expert 104.6± 1.1 104.8± 2.3 102.9± 5.0 104.8± 0.5 103.7± 3.5 105.7± 3.12 49.4± 23.5 104.5± 1.2 105.6± 1.4 104.8± 0.7 105.1± 0.3
EC3 102.3± 14.7 105.3± 2.0 101.9± 3.1 104.4± 1.0 0.0± 0.0 103.9± 4.49 -0.0± 0.1 104.0± 1.4 104.3± 2.5 104.5± 0.8 105.2± 0.6
EC5 103.5± 1.9 105.3± 0.8 -0.2± 0.0 82.4± 20.9 -0.1± 0.0 102.5± 5.9 -0.0± 0.1 101.9± 3.0 104.2± 2.8 104.6± 0.8 104.4± 1.8
EC7 52.2± 39.2 104.7± 1.5 -0.2± 0.1 -0.2± 0.1 0.0± 0.0 102.5± 4.4 -0.0± 0.1 92.3± 9.9 104.3± 2.5 103.0± 1.4 104.5± 1.4

H
am

m
er

Expert 126.6± 0.5 123.8± 7.9 - 126.9± 0.3 127.8± 0.6 129.9± 0.3 35.9± 33.9 126.2± 0.6 119.7± 12.5 126.9± 0.5 126.8± 0.5
EC3 126.9± 0.7 128.6± 0.6 - 84.7± 59.7 128.0± 0.4 129.5± 2.4 0.2± 0.1 126.6± 0.6 124.9± 5.8 126.7± 0.6 126.9± 0.5
EC5 120.4± 18.2 127.9± 2.0 - 90± 42.0 128.4± 0.7 129.5± 0.5 0.2± 0.0 125.4± 4.1 126.8± 2.4 127.0± 0.4 127.1± 0.5
EC7 73.7± 28.0 127.2± 1.8 - 21.0± 46.5 0.8± 0.6 128.6± 0.6 0.3± 0.2 107.9± 19.5 127.6± 0.6 127.0± 0.7 127.9± 1.9

Pe
n

Expert 157.5± 5.4 78.5± 30.6 94.7± 25.8 155.5± 2.0 132.5± 26.3 85.1± 24.4 - 155.1± 2.6 155.8± 5.4 155.0± 2.3 150.3± 9.1
EC3 145.8± 24.4 12.9± 17.6 66.1± 50.0 -3.7± 0.4 100.4± 10.3 85.5± 28.9 - 154.5± 2.4 156.1± 5.1 154.3± 1.8 128.9± 42.3
EC5 67.9± 38.1 -1.8± 2.4 -1.6± 2.1 -2.6± 0.2 67.1± 37.1 78.9± 25.0 - 152.6± 2.2 154.3± 6.1 153.9± 2.8 141.6± 17.8
EC7 61.8± 33.7 -0.8± 3.3 -1.6± 2.4 -2.4± 0.1 65.5± 25.5 38.0± 23.5 - 59.1± 15.6 154.6± 6.3 63.8± 15.5 101.5± 21.2

R
el

oc
at

e Expert 102.3± 3.6 52.9± 15.0 - 105.2± 1.5 105.2± 2.3 50.8± 13.9 3.9± 6.1 105.1± 2.8 104.9± 4.4 105.2± 2.5 103.5± 4.1
EC3 103.2± 3.8 65.4± 9.5 - -0.3± 0.0 103.9± 3.3 48.1± 13.2 -0.0± 0.1 104.1± 3.7 107.1± 2.7 105.9± 1.4 104.4± 2.5
EC5 82.1± 23.5 66.8± 14.7 - -0.3± 0.0 97.5± 9.0 64.8± 11.8 -0.0± 0.2 103.2± 3.5 106.2± 3.7 105.4± 1.7 103.4± 2.4
EC7 40.1± 27.4 75.9± 10.5 - -0.3± 0.0 27.4± 34.0 76.2± 15.8 -0.0± 0.1 74.9± 9.7 107.0± 3.1 102.4± 3.0 99.2± 6.7

Total 1571.1± 264.2 1270.1± 123.0 - 865.0± 175.2 1188.1± 153.7 1459.4± 178.6 - 1797.5± 82.9 1963.1±68.7 1870.3 (+116.2%) 1860.8 (+56.6%)
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Figure 7: Gradient penalty alleviates the dependence on policy constraints. We run TD3+BC plus
different strengths of gradient penalty (λGP = 0, 0.1, 1) and different strengths of BC term (X-axis,
α = 0 for entire BC and α = 4 for RL) on Adroit tasks.
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Figure 8: Ablation stduy. Box plot. We run original TD3+BC, TD3+BC with gradient penalty
(+GP), TD3+BC with critic weighted constraint relaxation (+CR), and TD3BC++ on walker2d tasks.

dient penalty stabilizes Q-values and prevents from catastrophic failure, and the constraint relaxation
with polished Q-weights brings performance back up to the expert level. For datasets that contain
a medium level or a low proportion of random demonstrations (EM and ER1 settings), catastrophic
failures do not occur. In this case, constraint relaxtion alone is effective, and it performs better in
conjunction with a polished Q-function.

Comparison with the naı̈ve solution (Table 1 and 2) %BC and %TD3+BC show slight resistance
to the two issues. We also set X to X ± 10 and find it performs worse. This tells that simply
discarding non-expert demonstrations may devastate expert trajectories.

Gradient penalty w.r.t. input states We investigate the effect of gradient penalty w.r.t. states.
However, we find experimentally that it performs much worse. This finding may prevent other
approaches to modify the Q-function gradients, e.g., spectral normalization (Gogianu et al., 2021).

Computational cost comparison We train TD3+BC and TD3BC++ agents for 1 million time
steps. The wall clock time of TD3+BC is 160m, and 173m for TD3BC++, indicating that the two
techniques proposed in this paper are light and efficient plugins for policy constrained offline RL.

7 RELATED WORK

Policy constrained offline RL One main approach for offline RL is to enforce the learned pol-
icy stay close to the behavior policy, involved with various closeness measurements such as KL-
divergence (Jaques et al., 2019), maximum mean discrepancy (MMD) (Aviral et al., 2019), Wasser-
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stein distance (Wu et al., 2019a), Fisher divergence (Kostrikov et al., 2021) and even Euclidean
distance (Fujimoto & Gu, 2021). Closeness constraints could help avoid OOD actions. However,
when training on contaminated datasets with non-expert demonstrations, a common setting in real-
world applications, these methods show performance degradation and even catastrophic failure in
our observation. The proposed two techniques serve to mitigate such issues.

Value regularizated offline RL Another offline RL approach is modifying the Q-values to prevent
overestimation on OOD actions. This can be achieved by directly penalizing the Q-values of OOD
actions in the regression target, e.g., CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), SAC-
N (An et al., 2021) or discounting them with uncertainty measurements e.g., UWAC (Wu et al.,
2021b), EDAC (An et al., 2021), PBRL (Bai et al., 2022), RORL (Yang et al., 2022). The proposed
gradient penalty aims not to prevent the OOD actions but rather to minimize their negative impact,
i.e., unstable Q-function gradients. In this work, this is caused by the failed closeness constraint on
non-expert states.

Lipschitzness in reinforcement learning Our method penalizes the sharp gradient derived from
the critic, which is similar to enforcing the learned Q-function to be locally Lipschitz-continuous.
Lipschitzness is often used for stabilizing generative adversarial network (GAN) training. It can
be achieved by gradient penalty (Thanh-Tung et al., 2019), spectral normalization (Miyato et al.,
2018), gradient normalization (Wu et al., 2021a), etc. In online RL, Gogianu et al. (2021) use
spectral normalization to better the optimization dynamics of the Bellman backups. Lecarpentier
et al. (2020) utilize Lipschitz continuity between MDPs to transfer knowledge for lifelong RL tasks.
Memarian et al. (2021) promotes a local Lipschitz discriminator for robust generative adversarial
imitation learning (GAIL) algorithms. Our method aims to minimize the effects of the OOD policy
actions non-expert trajectories, which carries a different motivation.

Learning from non-expert trajectories This work focus on the influence of non-expert trajec-
tories in the offline RL setting. Similarly, Zhang et al. (2021a) proposes an algorithm to address
this issue, assuming clustering methods can recognize transitions from different behavior policies.
Besides, Zhang et al. (2021c) consider the task of training policy from datasets with adversarial cor-
ruptions. Our method does not rely on such assumptions. In addition, Nair et al. (2020) proposes an
offline RL algorithm with advantage-based critic weight, which is theoretically superior to our CR
technique. We leave this for further work.

Learning from non-expert data is also a key challenge in imitation learning. Methods in this topic
can be mainly divided into two types. Ranking-based methods learn a policy from demonstra-
tions annotated with rankings (Akrour et al., 2011; Brown et al., 2019; 2020; Chen et al., 2020).
Confidence-based methods construct or learn a confidence value function describing the quality
of demonstrations and then reweight training samples for imitation (Wang et al., 2018; Wu et al.,
2019b; Zhu et al., 2020; Tangkaratt et al., 2020; Sasaki & Yamashina, 2020; Cao & Sadigh, 2021;
Zhang et al., 2021b; Wang et al., 2021). Our method utilizes the learned Q-function to indicate the
optimality of the transition, which is close to the confidence-based methods. l

8 CONCLUSION

By analyzing the learning behavoirs on datasets generated by multiple distinct behavior policies,
we identify two senarios where non-expert trajectories inhibit policy constrained offline RL: 1) the
harmful closeness constraint towards non-expert actions on overlaping states, and 2) the failed close-
ness constraint on non-expert states that causes OOD actions. The proposed CR and GP techniques
are tailored to handle the two issues, respectively, and their effectiveness is empirically evaluated in
expert-medium, expert-cloned, and expert-random settings.

The combination of the proposed two techniques extends the applicability of the policy constrained
offline RL to contaminated datasets. Particularly, the proposed gradient penalty can help mitigate
the negative impacts of OOD actions when the policy constraint fails (on contaminated datasets) or
when the constraint needs be weakened (in order to outperform the behavior policies). Hopefully,
our work would attract more attention to offline reinforcement learning in a way different from the
Q-value regularization or policy constraint.
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Appendices
A THE CONTAMINATED D4RL DATASETS

We first provide details about the contaminated D4RL datasets to accommodate reproducibility.
Then we give evidence to support the description of the different state overlaps in Figure 2. And
finally, we provide some perspectives on the proposed contaminated D4RL datasets.

A.1 DATASET STATISTICS

The contaminated D4RL mujoco gym datasets Each dataset contains trajectories from two dif-
ferent levels of policies. We use the D4RL medium-expert datasets for expert-medium settings,
which are combinations of expert and medium-level trajectories and are about twice the size of the
corresponding expert or medium datasets.

We also contaminate the expert demonstrations with random-levels. For example, ER-1, short for
Expert-random-10, represents a dataset constructed by first loading an expert dataset and then re-
placing the final 10 percent transitions with tuples from random trajectories, i.e., the first 10 percent
in the corresponding random dataset. We provide statistics:

Table 3: Statistics of the contaminated D4RL mujoco gym datasets (expert-random).
Task Setting Total transition Expert transition Random transition Averaged reward

Hopper

Expert-random-10 999,034 899,131 99,903 3.53
Expert-random-30 999,034 699,324 299,710 3.33
Expert-random-50 999,034 499,517 499,517 3.13
Expert-random-70 999,034 299,711 699,323 2.93

Walker

Expert-random-10 999,304 899,374 99,930 4.25
Expert-random-30 999,304 699,513 299,791 3.33
Expert-random-50 999,304 499,652 499,652 2.39
Expert-random-70 999,304 299,792 699,512 1.45

Halfcheetah

Expert-random-10 998,999 899,100 99,899 10.94
Expert-random-30 998,999 699,300 299,699 8.44
Expert-random-50 998,999 499,500 499,499 5.95
Expert-random-70 998,999 299,700 699,299 3.46

The contaminated D4RL adroit datasets The contaminated D4RL Adroit datasets can be con-
structed in a similar way, except that the non-expert trajectories are from cloned agents, i.e., imitation
policies trained from the human-level demonstrations. Statistics of the contaminated D4RL adroit
datasets used in our evaluations are:

Table 4: Statistics of the contaminated D4RL Adroit Datasets (expert-cloned).
Task Setting Total transition Expert transition Cloned transition Averaged reward

Door

Expert-cloned-10 995,000 895,500 99,500 13.08
Expert-cloned-30 995,000 696,500 298,500 10.13
Expert-cloned-50 995,000 497,500 497,500 7.16
Expert-cloned-70 995,000 298,500 696,500 4.83

Hammer

Expert-cloned-10 995,000 895,500 99,500 55.31
Expert-cloned-30 995,000 696,500 298,500 42.79
Expert-cloned-50 995,000 497,500 497,500 30.06
Expert-cloned-70 995,000 298,500 696,500 19.32

Pen

Expert-cloned-10 495,000 445,500 49,500 30.73
Expert-cloned-30 495,000 346,500 148,500 25.96
Expert-cloned-50 495,000 247,500 247,500 21.05
Expert-cloned-70 495,000 148,500 346,500 20.61

Relocate

Expert-cloned-10 995,000 895,500 99,500 19.44
Expert-cloned-30 995,000 696,500 298,500 15.10
Expert-cloned-50 995,000 497,500 497,500 10.80
Expert-cloned-70 995,000 298,500 696,500 8.27
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A.2 DIFFERENT STATE OVERLAPS

In Figure 2, We highlight two distinct situations involving different expert and non-expert state
overlaps. When states visited by experts show great overlaps with non-expert states, the harmful
closeness constraint toward non-expert decisions inhibits. For situation that expert states and non-
expert states are well-distinguished, the failed closeness constraint happens as the learned policy is
improved, showing different policy actions for dataset non-expert states.

We here provided some visualizations of the distribution of expert and non-expert states in the
expert-medium, expert-random, and expert-cloned settings.

Figure 9: We use UMAP to reduce the dimensionality of states in different D4RL tasks. Expert
states are visited by expert behavior policies, and non-expert states are from the medium, random or
the cloned policies. We enlarge the dot size of expert states for clarity.

Great state overlaps In this situation, e.g., expert-medium datasets, states visited by expert-level
behavior policies show great overlap with that of medium agents. Therefore, the closeness constraint
towards non-expert actions may prevent the learned policy from moving closer to the expert deci-
sions. Although offline RL with support-based policy constraints, e.g., BEAR, holds the promise
to solve such issues, their exquisite metrics are often difficult to achieve. We alleviate the observed
performance degradation by introducing a Q-weight for policy constraint methods (+CR).

Less state overlaps For datasets contaminated by low-level demonstrations, e.g., random and
cloned level data, the expert and non-expert states show greatly different distributions. In this case,
policy improvement inevitably changes the policy actions on non-expert states, increasing the prob-
ability of generating OOD decisions. This can be dangerous as OOD actions have been widely
recognized as the source of exploding value function and the failed learning process. We suppress
the OOD actions with the proposed GP technique.

The success of BC on adriot tasks For the simple mujoco tasks (controlling 3 or 6-DoF robotics),
states visited by expert policies show great overlap with those visited by non-expert policies. With
overlapped states, constraints toward non-expert actions affect the decision quality on expert states.
In contrast, such impacts are eliminated with fewer overlaps under the complex adroit tasks (24-DoF
robotics). The records of non-expert state-action pairs less influence the decisions for expert states,
thus leading to the success of BC agents on complex adroit tasks.
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Figure 10: Visulation of the harmful closeness constraint (left) and the faild closeness constraint
(middle and right). Divergence: the 75th percentile of the squared error between the decisions from
the learned policy and the corresponding dataset actions.

A.3 THE HARMFUL AND THE FAILED CLOSENESS CONSTRAINT.

The harmful closeness constraint When expert and non-expert behavior policies share great state
overlaps, two similar dataset states may correspond to two (or more) completely different actions.
The closeness constraint towards non-expert one would inhibit the policy improvement in a super-
vised fashion.

We visualize it in Figure 10, left. The divergence between decisions from the learned policy and the
expert behaviors becomes smaller as the policy improves. However, the distance to the non-expert
dataset actions also becomes smaller. This contributes to the observed performance degradation.
Although ideal support-based policy constraint methods hold the promise to handle this situation,
empirically, their performance deteriorates.

The failed closeness constraint The main contribution of this paper is the finding that the policy
improvement induces the failed closeness constraint on non-expert dataset states. That is, the policy
improvement implicitly drives the learned policy to be different from the decisions recorded for
non-expert states, inducing dangerous OOD actions.

In the middle and the right-hand side of Figure 10, we visualize the failed closeness constraint on
non-expert dataset states, which happens after the policy achieves a good performance.

A.4 REMARKS

Are expert-random datasets too extreme for mimicking real-life scenarios? The proposed con-
taminated dataset can be used to simulate the training behavior on a dataset containing two distinct
behavior policies. In this context, what matters is not the non-expert behavior policies’ quality but
the states’ overlap between the experts and non-experts.

Such datasets do not necessarily have to be constructed by expert and random policies. For example,
the catastrophic failures on expert-cloned datasets, see Table 2, indicate that the learned Q-functions
are destroyed by the sharp Q-function gradients, though the cloned behavior policies are far away
from randoms.

Difference with the D4RL replay datasets This work focuses on training from contaminated
datasets, including three types, expert-medium, expert-cloned, and expert-random. Another similar
setting is the medium-replay or the full-replay dataset, which records all the interactions during the
training. However, we think there is a significant difference between the two settings.

Firstly, the contaminated dataset better fits offline reinforcement learning scenarios. Recall that the
primary motivation of offline RL is to avoid the risky interactions for training policy from random
initializations. Thus, it is unfeasible to collect logs like medium-replay or full-replay datasets in most
situations. On the other hand, the contaminated dataset is used to simulate the training behavior on
a dataset where two different behavioral policies exist. We believe a dataset with multiple behavior
policies is a really common setting for real-life applications.

Another difference is that the medium-replay and full-replay dataset have a wider distribution of
state-action pairs and thus a lower probability of inducing OOD actions than the contaminated
dataset considered in this paper. The proportions of expert (medium) trajectories in the replay
datasets may also be smaller.
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B LIPSCHITZ PROPERTY OF THE LEARNED Q-FUNCTION OVER ACTION
DOMAIN

In this section, we provide proof for Theorem 4.1. In order to prove the desired Lipschitz continuity
property of the learned Q-function, we need to give an upper bound of the magnitude of the Q-
function gradient with respect to the input action, i.e., ∥∂Q(st,at)

∂at
∥F is bounded.

For notational clarity, we use Est+k|st [·] to denote the expectation of the argument with respect to the
conditional distribution of future state st+k given that the agent starts from current st and follows the
policy π(at|st), i.e., Est

[(∏k
j=0 π(at+j |st+j)T (st+1+j |st+j , at+j)

)
[·]
]
. Then we can rewrite the

learned Q-function Qπ(st, at) as
∑∞

k=0 γ
kEst+k|st [r(st+k, at+k)]. Our proof starts from the upper

bound of the Jacobian of the Q-function w.r.t. one dimension of the action space. In this case, we
denote the i−th dimension of the action space as ait. We then drive to the case of multi-dimensional
action space and complete our proof.

Proposition B.1. Suppose a policy π on an MDP M = ⟨S,A, T, d0, r, γ⟩ with dynamics T satisfies
the following inequality for any given non-negative integer t:∥∥∥∂π(at+1|st+1)

∂at

∥∥∥
F
≤ Lπ,T , (13)

then it holds for any given non-negative integer k, and t:∣∣∣∇ai
t
Est+k|st [r(st+k, at+k)]

∣∣∣ ≤ Lπ,T · Est+1|st

∣∣∣∇ai
t+1

Est+k|st+1
[r(st+k, at+k)]

∣∣∣. (14)

Proof. ∣∣∣∇ai
t
Est+k|st [r(st+k, at+k)]

∣∣∣ = ∣∣∣∇ai
t+1

Est+1|stEst+k|st+1
[r(st+k, at+k)] ·

∂ait+1

∂ait

∣∣∣
≤

∣∣∣∇ai
t+1

Est+1|stEst+k|st+1
[r(st+k, at+k)]

∣∣∣ · ∣∣∣∂ait+1

∂ait

∣∣∣
=

∣∣∣∂ait+1

∂ait

∣∣∣ · Est+1|st

∣∣∣∇ai
t+1

Est+k|st+1
[r(st+k, at+k)]

∣∣∣
≤ Lπ,T · Est+1|st

∣∣∣∇ai
t+1

Est+k|st+1
[r(st+k, at+k)]

∣∣∣

The above proposition gives a derivation from a mild assumption, which is helpful for our next step
proof.

Proposition B.2. Suppose a policy π on an MDP M = ⟨S,A, T, d0, r, γ⟩ with dynamics T satisfies
the following inequality for any given non-negative integer t:∥∥∥∂π(at+1|st+1)

∂at

∥∥∥
F
≤ Lπ,T (15)∥∥∥∂r(st, at)

∂at

∥∥∥
F
≤ Lr, (16)

then it holds for any given non-negative integer t:∣∣∣∇ai
t
Est+k|st [r(st+k, at+k)]

∣∣∣ ≤ Lk
π,T · Lr. (17)
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Proof.∣∣∣∇ai
t
Est+k|st [r(st+k, at+k)]

∣∣∣ ≤ Lπ,T · Est+1|st

∣∣∣∇ai
t+1

Est+k|st+1
[r(st+k, at+k)]

∣∣∣
≤ Lπ,T · Est+1|st · · ·Lπ,T · Est+k|st+k−1

∣∣∣∇ai
t+k

Est+k|st+k
[r(st+k, at+k)]

∣∣∣
= Lk

π,T · Est+k|st

∣∣∣∇ai
t+k

Est+k|st+k
[r(st+k, at+k)]

∣∣∣
= Lk

π,T · Est+k|st

∣∣∣∇ai
t+k

r(st+k, at+k)
∣∣∣

≤ Lk
π,T · Est+k|st · Lr

= Lk
π,T · Lr

Then we consider the case of multi-dimensional action space. An upper bound formulation of the
learned Q-function gradient w.r.t. action can be derived by using Proposition B.1 and Proposition
B.2.

Theorem 4.1. Suppose a policy π(at|st) on an MDP M = ⟨S,A, T, d0, r, γ⟩ with dynamics T

satisfies the inequality
∥∥∥∂π(at+1|st+1)

∂at

∥∥∥
F

≤ Lπ,T < 1 and the reward function r(st, at) satisfies∥∥∥∂r(st,at)
∂at

∥∥∥ ≤ Lr. If we denote the dimension of the action space as N , then the magnitude of the
gradient of the learned Q-function w.r.t. action can be upperbounded as:∥∥∥∇at

Qπ(st, at)
∥∥∥
F
≤

√
NLr

1− γLπ,T
. (18)

Proof. ∥∥∥∇at
Qπ(st, at)

∥∥∥2
F
=

N∑
i=0

(
∇ai

t
Qπ(st, at)

)2

=

N∑
i=0

( ∞∑
k=0

γk∇ai
t
Est+k|st [r(st+k, at+k)]

)2

≤
N∑
i=0

( ∞∑
k=0

γk
∣∣∣∇ai

t
Est+k|st [r(st+k, at+k)]

∣∣∣)2

=

N∑
i=0

( ∞∑
k=0

γk · Lk
π,T · Lr

)2

= N
(
Lr

∞∑
k=0

(γLπ,T )
k
)2
,

finally, we have: ∥∥∥∇at
Qπ(st, at)

∥∥∥
F
≤

√
NLr

∞∑
k=0

(γLπ,T )
k

=

√
NLr

1− γLπ,T

To better understand the proposed bound (18), we give some perspective on the constants in this
formulation. Clearly, Lr is the Lipschitz constant of the reward function w.r.t. the input action.
Then we consider the meaning of Lπ,T .

∥∥∥∂π(at+1|st+1)
∂at

∥∥∥
F

measures the change in the policy action
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at+1 at next state st+1 if we give an infinitesimal perturbation in the current policy action at. We
denote its upper bound as Lπ,T as the Jacobian is related with the policy π and the environment
dynamics T :

∂π(at+1|st+1)

∂at
=

∂

∂at
π
(
at+1|T (st+1|st, at)

)
=

∂T (st+1|st, at)
∂at

· ∂π(at+1|s′)
∂s′

∣∣∣
s′=T (st+1|st,at)

Then we can derive the upper bound of the Jacobian as:∥∥∥∂π(at+1|st+1)

∂at

∥∥∥
F
=

∥∥∥∂T (st+1|st, at)
∂at

· ∂π(at+1|s′)
∂s′

∣∣∣
s′=T (st+1|st,at)

∥∥∥
F

≤
∥∥∥∂π(at+1|st+1)

∂st+1

∥∥∥
F
·
∥∥∥∂T (st+1|st, at)

∂at

∥∥∥
F

The proposed constant Lπ,T is related with two Lipschitz constants, the first one for the policy π
w.r.t. the input states and another one for the environment dynamics T w.r.t. the inpuit action.

We refer the interested readers to Memarian et al. (2021) for the proof of the upper bound for
optimal Q-function gradients w.r.t. input states. For the Lipschitz continuity of the value function,
see Rachelson & Lagoudakis (2010).

C EXPERIMENT DETAILS

We run our experiments on a single machine with RTX3090 GPUs. All D4RL datasets use the v0
version.

C.1 BASELINES

Walker2d Hopper Halfcheetah Door Hammer Pen Relocate
min q weight 10 20 20 20 - 50 -

Table 5: Hyperparameter for CQL. We sweep it within the range of {5, 10, 20, 50, 100}.

Walker2d Hopper Halfcheetah Door Hammer Pen Relocate
f reg 1 1 1 5 10 0.01 0.1

Table 6: Hyperparameter for Fisher-BRC.

• CQL. We use a modular PyTorch implementation of CQL1. We are very sorry that we
cannot reproduce it on adroit hammer and relocate tasks. To be more specific, for these
omitted, the final D4RL normalized scores we got, acoss all swept paremeters, are about
zero (random). We thus have to omit these irrational scores to prevent distress or offense to
other readers and authors. Table 5 shows the hyperparameters used in our experiments.

• BEAR-QL. We use the recommended Github implementation 2. We follow the recom-
mended settings for mujoco tasks, and for four adroit tasks, we use the Gaussian kernel.

• UWAC. We use the official implementation 3, with default hyperparameters.

• IQL. We use the authors’ implementaion in JAX 4, which is really really fast.

1Code and license: https://github.com/young-geng/cql
2Code and license: https://github.com/rail-berkeley/d4rl evaluations
3Code and license: https://github.com/apple/ml-uwac
4Code and license: https://github.com/ikostrikov/implicit q learning
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• Fisher-BRC. We use the author’s implementation 5. We sweep the best hyperparameters
for D4RL adroit expert tasks and follow the suggested settings for D4RL mujoco tasks.

C.2 THE PROPOSED METHOD

Implementation We recommend interested readers to reproduce results of TD3BC++ on the top
of TD3+BC 6, which is really a minimalist approach to offline RL. The proposed plugin involves
two algorithmic modifications:

1 # Compute critic loss

2 critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)

3 + if self.total_it % N == 0: # We empirically set N to 5.

4 + _state_rep = state.clone().detach().repeat(16, 1).requires_grad_(True)

5 + _random_action = torch.rand(

6 + size=self.actor(_state_rep).size(),

7 + requires_grad=True

8 + ) * 2 - 1.0

9 + _random_action= _random_action.to(device)

10 + _current_Q1, _current_Q2 = self.critic(_state_rep, _random_action)

11 + grad_q1_wrt_random_action = torch.autograd.grad(

12 + outputs=_current_Q1.sum(),

13 + inputs =_random_action,

14 + create_graph=True

15 + )[0].norm(p=2, dim=-1)

16 + grad_q2_wrt_random_action = torch.autograd.grad(

17 + outputs=_current_Q2.sum(),

18 + inputs =_random_action,

19 + create_graph=True

20 + )[0].norm(p=2, dim=-1)

21 + grad_q_wrt_random_action = F.relu(grad_q1_wrt_random_action - self.k) **2 +\

22 + F.relu(grad_q2_wrt_random_action - self.k) **2

23 + critic_loss = critic_loss + grad_q_wrt_random_action.mean() * self.lambda_GP

24 ...

25 # Compute actor loss

26 - # actor_loss = -lmbda * Q. mean() + F. mse_loss(pi, action)

27 + current_Q = ((current_Q1 + current_Q2) * 0.5).squeeze().detach()

28 + actor_loss = -lmbda * Q.mean() + \

29 + (F.mse_loss(pi, action, reduction=’none’).mean(axis=-1) * current_Q).mean()

Listing 1: The proposed two small changes on the top of TD3+BC.

Hyperparameters used for experiments Our modification involves a weight factor λGP for gra-
dient penalty loss LGP . As for the backbone algorithm, TD3+BC, we find α, a factor to control
the strength of BC term in Equation 4, affects performance the most. Fujimoto & Gu (2021) use
α = 2.5 for their experiments on D4RL mujoco gym tasks. However, we find it does not work for
adroit tasks. We sweep it within the range of {0.05, 0.1, 0.2, 0.5, 1, 2, 2.5, 3, 4} and select the
maximum possible value that works. Note that, TD3+BC with a low value of α may degenerate to
imitation (BC term will dominate the learning) rather than RL. We report the settings used for our
experiments:

Walker2d Hopper Halfcheetah Door Hammer Pen Relocate
TD3+BC α 2.5 2.5 2.5 0.5 0.2 0.5 0.02

TD3BC++ α 2.5 2.5 2.5 0.5 0.2 0.5 0.02
λGP 1 1 1 1 1 1 0.1

BEAR++ λGP 1 1 1 1 1 1 0.1

Table 7: Hyperparameters for TD3+BC, TD3BC++, and BEAR++.

5Code and license: https://github.com/google-research/google-research/tree/master/fisher brc
6Code and license: https://github.com/sfujim/TD3 BC
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Figure 11: Hyperparameter study. Box plot. We run TD3BC++ with different λGP .

Hyperparameter study We fix the BC term α = 2.5 and vary the gradient penalty term λGP

in TD3BC++, sweeping on four different settings. Results are shown in figure 11. For the EM
setting, a small GP term (0.01, 0.02, or 0.05) can have a stabilizing effect on training while an
overlarge one would inhibit the learned Q-function. As for the difficult ER3, ER5, and ER7 settings,
we recommend practitioners choose a medium value (1, 2, 5) to stabilize learning while avoiding
making the Q-function too flat.

C.3 EVALUATION ON D4RL MUJOCO GYM TASKS.

This work focuses on addressing the performance degradation and the catastrophic failure issues for
policy constraint offline RL algorithms. Therefore, we are more concerned with the performance on
contaminated datasets with non-expert trajectories. In order to show the potential influence of the
proposed methods, we report the results of BEAR++ and TD3BC++ on classic D4RL mujoco gym
tasks.

Table 8: Evaluation on the original D4RL mujoco gym tasks.
Task Setting BC CQL Fisher-BRC AWAC BEAR TD3+BC BEAR ++ TD3BC ++

H
al

fc
he

et
ah Expert 105.20 82.40 108.40 78.50 103.77 105.70 104.53 105.87

Medium-expert 67.60 27.10 93.30 36.80 49.25 97.90 91.01 105.26
Medium 36.60 37.20 41.30 37.40 37.09 42.80 36.85 40.78

Medium-replay 34.7 41.9 43.3 −.− 37.7 43.3 38.4 43.6
Random 2.00 21.70 33.30 2.20 2.26 10.20 2.25 6.98

H
op

pe
r Expert 111.50 111.20 112.30 85.20 61.50 112.20 111.36 112.23

Medium-expert 89.60 111.40 112.40 80.90 85.12 112.20 110.28 111.57
Medium 30.00 44.20 99.40 72.00 37.89 99.50 39.84 100.13

Medium-replay 19.7 28.6 35.6 −.− 3.6 31.4 37.8 32.4
Random 9.50 10.70 11.30 9.60 10.22 11.00 10.04 10.58

W
al

ke
r2

d Expert 56.00 103.80 103.00 57.00 75.13 105.70 97.20 104.68
Medium-expert 12.00 68.10 105.20 42.70 56.08 101.10 74.13 104.46

Medium 11.40 57.50 78.80 30.10 57.87 79.70 62.46 75.79
Medium-replay 8.3 15.8 42.6 −.− 11.6 25.2 28.9 27.6

Random 1.20 2.70 1.50 5.10 3.27 1.40 19.90 5.26

We note that for the dataset generated by the single-level behavioral policy (medium, expert, and
random), the proposed plug-in has no significant gain, while it does not impair it. For datasets with
narrow distributions that generated by several behavior policies, the proposed method has significant
gains, e.g., the medium-expert datasets.

Finally, the performance on medium-replay datasets reflects the limitation of this work that the pro-
posed GP plug-in is designed to stabilize the training process by suppressing the unstable sharp
Q-functions induced by OOD actions that generated from the policy improvement step on dataset
non-expert states. The replay datasets record decision behaviors from random to near-expert policies
for each dataset state. Thus the probability of generating OOD actions during the policy improve-
ment steps is much smaller for the replay dataset.
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D BROADER IMPACT

Policy constrained offline RL is a crucial approach to data-driven decision-making machines. As
it enjoys many advantages, such as easy implementation, small training costs, and no need for
extensive domain knowledge, one can apply it to various scenarios. Therefore, we believe that
this work will inevitably inherit the social impact of application contexts.

The proposed plugins alleviate the observed performance degradation and catastrophic failure issues
for policy constrained offline RL. With them, one can make greater use of static demonstrations to
obtain stronger agents. To this degree, we believe our social impact lies in expanding the applicabil-
ity of policy constrained offline reinforcement learning methods.
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