
Under review as submission to TMLR

On Equivalences between Weight and Function-Space
Langevin Dynamics

Anonymous authors
Paper under double-blind review

Abstract

Approximate inference for overparameterized Bayesian models appears challenging, due to
the complex structure of the posterior. To address this issue, a recent line of work has
investigated the possibility of directly conducting approximate inference in the “function
space”, the space of prediction functions. This paper provides an alternative perspective to
this problem, by showing that for many models – including a simplified neural network model
– Langevin dynamics in the overparameterized “weight space” induces equivalent function-
space trajectories to certain Langevin dynamics procedures in function space. Thus, the
former can already be viewed as a function-space inference algorithm, with its convergence
unaffected by overparameterization. We provide simulations on Bayesian neural network
models and discuss the implication of the results.

1 Introduction

Consider a common Bayesian predictive modeling setting: we are provided with i.i.d. observations D :=
{(xi, yi)}ni=1 where xi ∈ X , yi ∈ R and X denotes the input space; a likelihood model p({yi} | {xi}, θ) =∏n
i=1 p(yi | f(xi; θ)) determined by a prediction function f(·; θ); and a prior πθ(dθ). We are interested in

the predictive distribution p(y∗ | x∗,D) =
∫
πθ|D(dθ)p(y∗ | x∗, θ), induced by the posterior πθ|D.

Modern machine learning models are often overparameterized, meaning that multiple parameters may define
the same likelihood. For example, in Bayesian neural network (BNN) models where θ ∈ Rd denote the
network weights, we can obtain a combinatorial number of equivalent parameters by reordering the neurons,
after which f(·; θ), and thus the likelihood, remain unchanged. Consequently, the posterior measure exhibits
complex structures and becomes hard to approximate; for example, its Lebesgue density may contain a large
number of global maxima.

Starting from Sun et al. (2019); Wang et al. (2019); Ma et al. (2019), a recent literature investigates the
possibility of simplifying inference by approximating a function-space posterior. Concretely, let A : Rd →
F ⊂ RX , θ 7→ f(·; θ) denote a “parameterization map”. Then

p(y∗ | x∗,D) =
∫
πθ|D(dθ) p(y∗ | f(x∗; θ)) =

∫
(A#πθ|D)(df) p(y∗ | f(x∗)) =

∫
πf |D(df) p(y∗ | f(x∗)),

where A#(·) refers to the pushforward measure (Villani, 2009, p. 11), and πf |D denotes the function-space
posterior defined by the prior A#πθ =: πf and likelihood p(y | x, f) = p(y | f(x)). As shown above, πf |D is
sufficient for prediction. Moreover, it often has simpler structures: for example, for ultrawide BNN models
with a Gaussian πθ, πf may converge to a Gaussian process (GP) prior (Lee et al., 2018; Matthews et al.,
2018; Yang, 2019), in which case πf |D will also converge to a GP posterior. Thus, it is natural to expect
approximate inference to be easier in function space.

While the intuition has been appealing, existing works on function-space inference tend to be limited by the-
oretical issues: principled applications may require full-batch training (Sun et al., 2019), Gaussian likelihood
(Shi et al., 2019), or specifically constructed models (Ma et al., 2019; Ma & Hernández-Lobato, 2021). Many
approaches rely on approximations to the function-space prior, which can make the functional KL divergence
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unbounded (Burt et al., 2020). Additionally, there is a lack of understanding about optimization convergence,
or the expressivity of the variational families used. In contrast, gradient-based MCMC methods, such as
Hamiltonian Monte Carlo (HMC) or Langevin dynamics (LD)-based algorithms, can be applied to a broad
range of models. Their convergence behaviors are well-understood (Roberts & Tweedie, 1996; Villani, 2009),
and intriguingly, their performance often appears to be satisfying on massively overparameterized models
(Zhang et al., 2019; Izmailov et al., 2021), even though they are implemented in weight space.

This paper bridges the two lines of approaches by showing that

• In various overparameterized models, including two simplified BNN models (Sec. 2.1 and Ex. 2.3), weight-
space Langevin dynamics (LD) is equivalent to a reflected / Riemannian LD procedure in function space,
defined by the pushforward metric.

• For practical feed-forward network models, a possible consequence of the equivalence still appears to hold
in simulations (Sec. 3): weight-space LD produces predictive distributions that appears to approach the
functional posterior, at a rate that does not depend on the degree of overparameterization.

The equivalence has important implications: it means that principled function-space inference has always been
possible and in use. Thus, explicit consideration of function-space posteriors alone will not be sufficient to
guarantee improvement over existing approaches, and more careful analyses are necessary to justify possible
improvement. We also discuss how further insights into the behavior of weight-space LD could be gained by
comparing the pushforward metric with the prior (Sec. 2.2).

It should be noted that in several scenarios, it has been established that overparameterization does not nec-
essarily hinder the convergence of LD. Moitra & Risteski (2020) proves that polynomial convergence can be
possible for a family of locally overparameterized models, despite the non-convexity introduced by the over-
parameterization.1 Dimensionality-independent convergence has also been established for infinite-width NNs
in the mean-field regime (e.g., Mei et al., 2019), even though its implication for practical, finite-width models
is less clear. More broadly, at a high level our work is also related to past works that studied alternative
inference schemes for different models that exhibit some redundancy in the parameterization (Papaspiliopou-
los et al., 2007; Yu & Meng, 2011). We are unaware of strict equivalence results as provided in this paper,
but we should also emphasize that it is not their technical sophistication that makes them interesting; it is
rather their implications for BNN inference, which appear underappreciated: the results justify the use of LD
as an effective function space inference procedure, in settings that match or generalize previous work. For
example, Example 2.1 covers overparameterized linear models, and many popular approaches (e.g., Osband
et al., 2018; He et al., 2020) are only justified in this setting.

Our results contribute to the understanding of the real-world performance of BNN models, as they provide
a theoretical support for the hypothesis that inference may be good enough in many applications, and is not
necessarily the limiting factor in a predictive modeling workflow. In this aspect, our results complement a
long line of existing work which examined the influence of likelihood, prior and data augmentation in BNN
applications, with an emphasis on classification tasks with clean labels; see Aitchison (2020); Wenzel et al.
(2020); Fortuin et al. (2021), to name a few.

2 Equivalence between Weight and Function-Space Langevin Dynamics

Suppose the prior measure πθ is supported on an open subset of Rd and has Lebesgue density pθ. The weight-
space posterior πθ|D can be recovered as the stationary measure of the (weight-space) Langevin dynamics

dθt = ∇θ(log p(Y | θt,X) + log pθ(θt))dt+
√

2dBt, (WLD)

where we write X := {xi}ni=1,Y := {yi}ni=1 for brevity.

1This result is still not fully unimpeded by overparameterization, as it quantifies convergence to the weight-space posterior,
which necessarily requires traversal through all symmetric regions.
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The pushforward measure A#πθ =: πf provides a prior in function space. Combining πf and the likelihood
leads to a posterior, πf |D. When the function space F := suppπf is a Riemannian manifold2 of dimensionality
k ≤ d, it is intuitive that we could sample from πf |D by simulating a Riemannian Langevin dynamics on
F (Girolami & Calderhead, 2011). In coordinate form:

df̃t = V (f̃t)dt+
√

2G−1(f̃t)dBt, (FLD)

where f̃t ∈ Rk is the coordinate of ft ∈ F , G−1(f̃) = (gij)i,j∈[k] is the inverse of the metric matrix and gij
are the local representations for the metric (Lee, 2018, p. 13), dBt is the standard Brownian motion, and

V i(f̃) =
k∑
j=1

gij∂j

(
log p(Y | f̃ ,X) + log dπf

dµF
(f̃)− log |G|

2

)
+

k∑
j=1

∂jg
ij .

In the above, µF denotes the corresponding Riemannian measure (Do Carmo, 1992, p. 45), and p(Y |
f̃ ,X) := p(Y | f(X)) denotes the likelihood of the function f corresponding to f̃ .

We are interested in possible equivalences between the induced function-space trajectory of (WLD), {Aθt},
and the trajectory of possibly generalized versions of (FLD), with metric defined as the pushforward of the
Euclidean metric by A or its generalization. By equivalence we mean that for any k ∈ N and {ti}ki=1 ⊂ [0,∞),
{Aθti}ki=1 and {fti}ki=1 equal in distribution. When it holds, an algorithm that simulates (WLD) for a time
period of T and returns AθT can be equivalently viewed as a “function-space inference algorithm”, as it is
then equivalent (in distribution) to the simulation of (FLD) which does not have to be defined w.r.t. an
overparameterized model.

We will first illustrate the equivalence on linear models (Sec. 2.1) which, while technically simple, pro-
vides intuition and formally covers NN models in the “kernel regime” (Woodworth et al., 2020). We will
then discuss the role of the pushforward metric in (FLD) (Sec. 2.2), and analyze general models in which
overparameterization can be characterized by group actions (Sec. 2.3).

2.1 Overparameterized Linear Models

The following is the easiest example where the equivalence can be demonstrated:
Example 2.1 (equivalence in linear models; see Appendix B.1 for details). Suppose the map A is linear. For
expository simplicity, further assume that πθ = N (0, I), and that the input space X = {x1, x2, . . . , xK} has
finite cardinality K, so that any function can be represented by a K dimensional vector (f(x1), . . . , f(xK)),
and A can be identified as a matrix A ∈ RK×d.

(i) If A is a bijection (i.e., d = K and A is invertible), the above vector representation will provide a
coordinate for F . In this coordinate, the metric matrix G is (AA>)−1 (see e.g., Bai et al., 2022).
(FLD) with this metric reduces to

df̃t = (AA>)∇f̃
(

log p(Y | f̃t,X)− 1
2‖A

−1f̃t‖2
2

)
dt+

√
2AA>dBt. (1)

By Itô’s lemma, the above SDE also describes the evolution of Aθt, for θt following (WLD).

(ii) The equivalence continue to hold in the overparameterized case (e.g., when d > K): consider the de-
composition Rd = Ran(A>)⊕Ker(A). Then the evolution of θt in (WLD) “factorizes” along the decom-
position: the likelihood gradient is fully contained in Ran(A>) and thus only influences ProjRan(A>)θt,
whereas ProjKer(A)θt has no influence on Aθt. Therefore, we can describe the evolution of the former
independently, thereby reducing to the exactly parameterized case.

The second case above provides the first intuition on why (WLD) is not necessarily influenced by overparam-
eterization. While technically simple, it is relevant as it covers random feature models, which only require

2See Appendix A.2 for a conceptual review of relevant notions in Riemannian geometry.
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replacing X with preprocessed features. Random feature models formally include infinitely wide DNNs in
the “kernel regime” (Jacot et al., 2018), where the pushforward metric converges to a constant value. As
referenced before, many popular procedures for BNN inference are only justified in this regime.

2.2 The Pushforward Metric

The pushforward metric that instantiates our (FLD) is an important object in the study of DNNs, in which
it is named the “neural tangent kernel” (NTK, Jacot et al., 2018). It acts as a preconditioner in our
function-space dynamics, and makes a similar appearance in the analysis of gradient descent (GD) where its
preconditioning effect is often believed to be desirable (Arora et al., 2019a;b; Lee et al., 2019).

As cited before, for BNN models with a Gaussian πθ, the function-space prior can converge to a Gaussian
process (the “NNGP”, Lee et al., 2018) as the network width goes to infinity. The NTK is closely related
to the covariance kernel of the NNGP; they are equivalent if only the last layer of the DNN is learnable,
and for more general models may still share the same Mercer eigenfunctions (Arora et al., 2019a, App. H).
When the two kernels are close and the BNN model is correctly specified, it can be informally understood
that (FLD) may enjoy good convergence properties, by drawing parallels to the analyses of GD (Arora et al.,
2019a; Lee et al., 2019);3 consequently, the approximate posterior will have a good predictive performance.
However, for very deep networks, the Mercer spectra of the two kernels can be very different (Arora et al.,
2019a, Fig. 4), in which case we can expect (FLD) to have poor convergence.

The above discussions immediately apply to (WLD) when it is equivalent to (FLD) or its suitable variants.
More generally, however, it can still be helpful to check for significant differences between the NNGP and
NTK kernels when using (WLD), as part of a prior predictive check (Box, 1980) process. This is especially
relevant for deeper models, because in certain initialization regimes, both kernels can have pathological
behavior as the network depth increases (Schoenholz et al., 2016; Hayou et al., 2019).

2.3 Overparameterization via Group Actions

It is often the case that overparameterization can be characterized by group actions; in other words, there
exists some group H on Rd s.t. any two parameters θ, θ′ ∈ Rd induce the same function Aθ = Aθ′ if and
only if they belong to the same orbit. In such cases, we can identify F as the quotient space Rd/H and the
map A : Rd → F as the quotient map, and it is desirable to connect (WLD) to possibly generalized versions
of (FLD) on F . This subsection presents such results.

To introduce our results, we first recall some basic notions in group theory. (Additional background knowl-
edge is presented in Appendix A.) Let H be a Lie group. The unit element of H is denoted as e, and we use
ϕ1ϕ2 ∈ H to denote the group operation of ϕ1, ϕ2 ∈ H. An action of H on Rd is a map Γ : H × Rd → Rd,
s.t. for all ϕ1, ϕ2 ∈ H and p ∈ Rd, we have Γ(e, p) = p,Γ(ϕ1,Γ(ϕ2, p)) = Γ(ϕ1ϕ2, p) where e ∈ H de-
notes the identity. We use ϕ · p to denote Γ(ϕ, p) for simplicity. For any ϕ ∈ H, introduce the map
Γϕ : Rd → Rd, p 7→ ϕ · p. Then the action is free if Γϕ has no fixed point for all ϕ 6= e, proper if the preimage
of any compact set of the map (ϕ, p) 7→ ϕ · p is also compact, and smooth if Γϕ is smooth for each ϕ ∈ H.
An orbit is defined as H · p := {ϕ · p : ϕ ∈ H} where p ∈ Rd.

Analysis of free group actions The quotient manifold theorem (Lee, 2012, Theorem 21.10) guarantees
that the quotient space Rd/H is a smooth manifold if the action is smooth, proper and free. To define the
pushforward metric on F , we further assume that the action is isometric, i.e., Γϕ is an isometry for every
ϕ ∈ H. Under this condition, a metric on F can be defined as4

〈(dA|p)(u), (dA|p)(v)〉TApF := 〈u, v〉Rd , ∀p ∈ F , u, v ∈ Tp(H · p)⊥ ⊂ Rd.

3For the kernel regime and a Gaussian likelihood, a precise analysis can be possible: the evolution of ft(X) factorizes along
the eigenvectors of the NTK Gram matrix. We forgo it for brevity.

4It is well-defined since dA|p is an isomorphism between Tp(H · p)⊥ and TApF , and the isometry assumption ensures that
the definition is independent of the choice of p in the orbit (Lee, 2018).
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The above equation used some standard notations in differential geometry (Lee, 2018, p. 16): dA|p : Rd →
TApF is the differential of A at p, Tp denotes the tangent space of a manifold, and Tp(H ·p)⊥ is the orthogonal
complement of the tangent space of the orbit H · p, which is a submanifold of Rd.

The following proposition establishes the equivalence under discrete group action.
Proposition 2.1 (proof in Appendix B.2). Suppose H is a discrete group (Hall, 2013, p. 28) acting smoothly,
freely, properly on Rd, and A is such that Aθ = Aθ′ if and only if θ′ ∈ H · θ. If either (a) the (improper)
prior pθ is constant and the group action is isometric; or (b) H = {e} is trivial, then the equivalence between
(WLD) and (FLD) will hold.
Remark 2.1. For continuous groups that act freely, the situation is more complicated, and depends on how
the orbits are embedded in the ambient space Rd. For example, a drift term depending on the mean curvature
vector of the orbit may be introduced when pushing a Brownian motion using the quotient map (JE, 1990),
and when the mean curvature vanishes, the equivalence will continue to hold, as shown in our Example 2.1 (ii).
Analysis for non-free group actions is primarily complicated by the fact that the quotient space is no longer
a manifold in general (Satake, 1956). Still, as we show in Example 2.3, similar results can be established
under the action of symmetric groups.

We now provide a concrete, albeit artificial, example in which the equivalence implies fast convergence to
the function-space posterior. It also highlights that VI and MCMC methods can have different behavior
on overparameterized models, and that for VI methods it may still be necessary to explicitly account for
overparameterization. While recent works have made similar observations (e.g., Sun et al., 2019), and
provided some examples (Wang et al., 2019; Kurle et al., 2022), our example may provide additional insight:
Example 2.2 (LD vs. particle-based VI on torus). Let Aθ := ([θ1], . . . , [θd]), where [a] := a − bac ∈ [0, 1).
Let πθ, πf have constant densities, and the negative log likelihood be unimodal and locally strongly convex.
Then we have F = Td, the d-dimensional torus, and by Proposition 2.1, (WLD) is equivalent to Riemannian
LD on F . As Td is a compact manifold, (FLD) enjoys exponential convergence (Villani, 2009), and so does
the induced function-space measure of (WLD).

Particle-based VI methods approximate the weight-space posterior with an empirical distribution of particles
{θ(i)}Mi=1, and update the particles iteratively. Consider the W-SGLD method in Chen et al. (2018): its
update rule resembles (WLD), but with the diffusion term replaced by a deterministic “repulsive force” term,
ṽt(θ)dt, where

ṽt(θ) :=
M∑
j=1

∇θ(j)kh(θ, θ(j))∑M
k=1 kh(θ(j), θ(k))

+
∑M
j=1∇θ(j)kh(θ, θ(j))∑M
k=1 kh(θ, θ(k))

,

and kh is a radial kernel with bandwidth h. Formally, in the infinite-particle, continuous time limit, as
h → 0, both ṽtdt and the diffusion term implements the Wasserstein gradient of an entropy functional
(Carrillo et al., 2019), and W-SGLD and LD are formally equivalent (Chen et al., 2018).

The asymptotic equivalence between (WLD) and W-SGLD breaks down in this example: whereas (WLD)
induces a function-space measure that quickly converges to πf |D, this is not necessarily true for W-SGLD.
Indeed, its induced function-space measure may well collapse to a point mass around the MAP, regardless of
the number of particles. To see this, let θ∗ ∈ [0, 1)d be any MAP solution so that ∇θ log p(Y | X, θ∗)p(θ∗) = 0.
Then for any fixed h = O(1), as M → ∞, the configuration {θ(i,M) = (1010Mi

, 0, . . . , 0) + θ∗}Mi=1 will
constitute an approximate stationary point for the W-SGLD update. This is because the posterior gradient
term is always zero, but the repulsive force term vanishes due to the very large distances between particles in
weight space.

Past works have noted the pathologies of particle-based VI in high dimensions (Zhuo et al., 2018; Ba et al.,
2021), but this example is interesting as it does not require an increasing dimensionality. Rather, it is global
overparameterization that breaks the asymptotic convergence to LD.

Analysis of non-free group actions As we have shown in Example 2.2, Proposition 2.1 already demon-
strates some equivalence between (WLD) and (FLD) in the presence of global overparameterization. It can
also be combined with Example 2.1 (ii) to construct models exhibiting both local and global overparameter-
ization. Still, we present a more relevant example below, which is a BNN model exhibiting permutational
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symmetry. Note that the model will still be different from practical models, in particular because it precludes
continuous symmetry. However, it allows for a non-constant NTK, which is an important feature of effective
NN models for high-dimensional data (see e.g., Ghorbani et al., 2019; Wei et al., 2019).

Example 2.3 (simplified BNN model). Consider the model f(x; θ) :=
∑d
i=1 sin(θix), which is a two-layer

BNN with the second layer frozen at initialization.

Let the prior support supp πθ be contained in (0,+∞)d. Then by the linear independence of sine functions,
for Aθ = Aθ′ to hold, θ′ must be a permutation of θ, and thus the symmetry in this model can be described
by the symmetric group Sd consisting of all permutations on the set {1, . . . , d}. The action of Sn on the
weight space Rd is non-free, and the function space is a manifold with boundary, namely a polyhedral cone
Cn := {θ ∈ Rd : θ1 ≤ θ2 ≤ · · · ≤ θd}.

Let {θt} be the trajectory of (WLD) and pt denote the distribution of θt. Appendix B.3 proves that the push-
forward distribution p̃t := A#pt follows the Fokker-Planck equation with the Neumann boundary condition:{

∂tp̃t(θ) = −∇ · (p̃t(θ)∇θ(log p(Y | θ,X) + log pθ(θ))) + ∆p̃t(θ), θ ∈ F◦

∂θp̃t(θ)/∂v = 0, v ∈ Nθ, θ ∈ ∂F ,
(2)

where ∂F and F◦ are the boundary and the interior of F , respectively, and Nθ is the set of inward normal
vectors of F at θ. The evolution of p̃t is closely related to the reflected Langevin dynamics in F (Sato
et al., 2022), which keeps its trajectory in F by reflecting it at ∂F ; when the posterior is strongly log-
concave in Cn, the connection suggests that the function-space measure p̃t may enjoy a fast convergence.5 In
contrast, convergence of (WLD) to the weight-space posterior may be much slower, as it will have to visit
an exponential number of equivalence classes.

We note that mixture models exhibit a similar permutational invariance, and their inferential and computa-
tional issues have been extensively studied (Celeux et al., 2000; Frühwirth-Schnatter, 2001; Jasra et al., 2005;
Frühwirth-Schnatter & Frèuhwirth-Schnatter, 2006). However, those works typically focus on the mixing in
the parameter (i.e., weight) space, which is different from our work which only concerns the function space.

3 Numerical Study

While our theoretical results have covered two simplified BNN models, the models are still different from
those employed in practice. In this section we present numerical experiments that evaluate the efficacy of
(WLD)-derived algorithms on practical BNN models. While they cannot provide direct evidence on the
equivalence between (WLD) and (FLD), they are still validating a possible consequence of it, as we expect
(FLD) to have good convergence properties (when the NTK and the NNGP kernels are not too different,
Sec. 2.2) and (WLD) will inherit such a property if the equivalence holds. We will experiment on two setups,
a toy 1D regression dataset (Sec. 3.1) and a collection of semi-synthetic datasets adapted from the UCI
regression datasets (Sec. 3.2).

We note that it is impossible to implement (WLD) exactly, as it is a continuous-time process; thus, we will
experiment with Metropolis-adjusted Langevin algorithm (MALA, Roberts & Stramer, 2002) and unadjusted
Langevin algorithm (ULA, Grenander & Miller, 1994), which are two standard, widely-used algorithms
derived from LD.6 More importantly, it is difficult to directly validate the equivalence between (WLD) and
(FLD) empirically, as the latter involves the function-space prior which cannot be computed or approximated
efficiently; for this reason we have resorted to indirect experiments. The experiments also share a similar
goal to our theoretical analysis, which is to understand the behavior of (WLD)-derived algorithms on BNN
models. In this aspect they complement previous works, by investigating practical, finite-width NN models
and eliminating the influence of possible model misspecification in the evaluation.

5For a bounded convex domain and a smooth boundary, we can prove that (2) describes the density evolution of the reflected
LD, and its convergence rate has also been established (Bubeck et al., 2018, Proposition 2.6).

6Briefly, ULA simulates a discretization of (WLD) and MALA corrects for the bias arising from the discretization. For
simplicity, we may refer to them as simulating (WLD) in the following.
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3.1 Sample Quality on a Toy Dataset

We first consider BNN inference on a toy 1D regression dataset, and check if the function-space measure
induced by simulating (WLD) (i.e., the distribution of Aθt) appears to converge at a similar rate, across
models with increasing degree of overparameterization.

1. we will visualize the pointwise credible intervals of Aθt, which are informative about one-dimensional
marginal distributions of the function-space measure;

2. when the training sample size n is small, we approximately evaluate the approximation quality of (n+ 1)-
dimensional marginal distributions of f(Xe) := (f(x1), . . . , f(xn), f(x∗)) with f ∼ πf |D, by estimating
the kernelized Stein discrepancy (KSD, Liu et al., 2016; Chwialkowski et al., 2016) between the marginal
distribution q(f(Xe)) (where f = Aθt and θt follows (WLD)), and the true marginal posterior p(f(Xe))
(where f ∼ πf |D).

KSD is often used for measuring sample quality (Gorham & Mackey, 2017; Anastasiou et al., 2023). We
use the U-statistic estimator in Liu et al. (2016, Eq. 14), which only requires the specification of a kernel in
Rn+1, samples from q and the score function of p(f(Xe)). Importantly, we can estimate the score since it
admits the following decomposition:

∇f(Xe) log p = ∇f(Xe)

(
log

dπf(Xe)

dµLeb
+ log p(Y | f(Xe))

)
= ∇f(Xe)

(
log

dπf(Xe)

dµLeb
+ log p(Y | f(X))

)
, (since X ⊂ Xe) (3)

where πf(Xe) denotes the respective marginal distribution of πf , and µLeb denotes the Lebesgue measure.
We estimate the first term by fitting nonparametric score estimators (Zhou et al., 2020) on prior samples.
The second term can be evaluated in closed form.
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Figure 1: 1D regression: visualization of the induced function-space measure of MALA after I iterations.
We plot the pointwise 80% credible intervals. The results for L = 2 are deferred to Fig. 4.

We use feed-forward networks with factorized Gaussian priors, and the standard initialization scaling:
f(x; θ) := f (L)(f (L−1)(. . . f (0)(x))), where

f (l)(h(l−1)) := σ(l)
(
B(l)h(l−1) + b(l)

)
, vec(B(l)) ∼ N

(
0, (dim h(l−1))−1I

)
, b(l) ∼ N (0, 0.2I), (4)
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Figure 2: 1D regression: estimated
√
KSD between the LD predictive distribution q(f(Xe)) and the approx-

imate function-space posterior p(f(Xe)). We simulate 1000 LD chains. For the approximate posterior, we
estimate the prior score term in (3) using 5× 106 samples.

and the activation functions σ(l) are SELU (Klambauer et al., 2017) for hidden layers (l < L) and the identity
map for the output layer (l = L). We vary the network depth L ∈ {2, 3}, and the width of all hidden layers
W ∈ [20, 500].

The training data is generated as follows: the inputs consist of b2n/3c evenly spaced points on [−2.5,−0.5],
and the remaining points are evenly placed on [1, 2]. The output is sampled from p(y | x) = N (x sin(1.5x) +
0.125x3, 0.01). We use n = 7 for visualization, and n = 3 for KSD evaluation. The difference is due to
challenges in approximating our KSD: (3) involves score estimation, and in our case we further need the
estimate to generalize to out-of-distribution inputs (approximate posterior as opposed to prior samples);
both are extremely challenging tasks in high dimensions7. We simulate (WLD) with MALA, and evaluate
the induced function-space samples for varying number of iterations. The step size is set to 0.025/nW , so
that the function-space updates have a similar scale.

We visualize the posterior approximations in Fig. 1 and Fig. 4, and report the approximate KSD in Fig. 2.
As we can see, the convergence appears to happen at a similar rate, which is a possible consequence of the
equivalence results.

3.2 Average-Case Predictive Performance on Semi-Synthetic Data

The previous experiments cannot scale to larger datasets due to the aforementioned challenges in estimating
the KSD. To investigate the behavior of (WLD)-derived algorithms on more realistic datasets, we turn to less
direct experiments and check whether in the absence of model misspecification (WLD)-derived algorithms
will lead to competitive predictive performance.

Our experiments use semi-synthetic datasets adapted from the UCI machine learning repository. Specifically,
we modify the UCI datasets by keeping the input data and replacing the output with samples from the model
likelihood p(y | x, f0), where f0 = fBNN(·; θ0) is sampled from the BNN prior:

θ0 ∼ πθ, y | x ∼ p(y = · | fBNN(x; θ0)). (5)

We will consider Gaussian (resp. Laplacian) likelihood and check whether an approximate posterior mean
(resp. median) estimator, constructed using the (WLD)-derived algorithms, has a competitive average-case
performance across randomly sampled θ0. This will happen if the weight-space algorithms provide a reason-
ably accurate approximation to the function-space posterior, since the exact posterior mean (resp. median)
estimator will minimize the similarly defined average-case risk

f̂ 7→ Ef0∼πf
EY∼p(·|f0(X))Ex∗∼px,y∗∼p(·|f0(x∗))`(f̂(x∗), y∗), (6)

7Without strong differentiability assumptions, the error of score estimation may suffer from curse of dimensionality (Tsybakov
& Zaiats, 2009).
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where ` denotes the loss function derived from the model likelihood, and f̂ denotes any estimator that maps
the data (X,Y) to a prediction function (we dropped the dependency on the data for readability). Therefore,
competitive predictive performance of the approximate predictor will provide evidence on the quality of
posterior approximation. Note that by using a semi-synthetic data generating process, we can allow the
input features to have realistic distributions, while avoiding the possible influence of model misspecification
which cannot be ruled out in past works that experiment on real-world data (Wenzel et al., 2020; Fortuin
et al., 2021).

We estimate the average-case risk (6) for MALA and ULA, using a Monte-Carlo estimate; the full procedure
is summarized as Algorithm 1 in appendix. We instantiate (6) with Gaussian and Laplacian likelihoods,
which correspond to the square loss and the absolute error loss, respectively. The feed-forward network
architecture fBNN follows Sec. 3.1 by varying L ∈ {2, 3},W ∈ {50, 200}, and we use 80% samples for
training and 20% for testing. To understand the performance of the (WLD)-derived algorithms, we report
the Bayes error, which is the minimum possible average-case risk attainable with infinite samples; we also
include a baseline that replaces the (WLD)-derived algorithm with an ensemble gradient descent (GD)
procedure for a maximum a posterior (MAP) estimate. For all methods, the step size is selected from
{η/2nW : η ∈ {1, 0.5, 0.1, 0.05, 0.01, 0.005}} such that the average acceptance rate of the first 200 MALA
iterations is closest to 0.7, where n denotes the size of training set.

We plot the Bayes error and the estimated average-case risk against the number of iterations in Fig. 3 and
Fig. 5-6 in appendix, and report the performance at the best iteration in Table 1-3. As we can see, across all
settings, MALA and ULA lead to a similar predictive performance to GD, and all of them attain errors close
to the Bayes error, especially for a dataset with a larger training set. As it is well known that GD methods
perform well on DNN models (Du et al., 2018; Allen-Zhu et al., 2019; Mei et al., 2019; Arora et al., 2019a),
these results provide further evidence on the efficacy of the (WLD)-derived algorithms.

4 Conclusion

In this work we have investigated the function space behavior of weight-space Langevin-type algorithms
on overparameterization models. Across multiple settings that encompass simplified BNN models, we have
established the equivalence of the function-space pushforward of weight-space LD to its various function-
space counterparts. Within their scope, the equivalence results allow us to view weight-space LD as a
function-space inference procedure, and understand its behavior by examining the preconditioner in the
equivalent function-space dynamics. Numerical experiments provide additional evidence for the efficacy of
Langevin-type algorithms on practical feed-forward network models.
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Figure 3: Semi-synthetic experiment: estimated average-case risk (6) under different choices of likelihood,
for L = 2,W = 200. Shade indicates standard deviation across 8 independent replications.
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A Background Knowledge

A.1 Groups

A group H is a set equipped with an operation Ψ : H ×H → H. It satisfies the following properties:

• There is a unit element e in H such that Ψ(e, ϕ) = Ψ(ϕ, e) = ϕ for every ϕ ∈ H.

• Every element ϕ ∈ H has an inverse ϕ−1 ∈ H such that Ψ(ϕ,ϕ−1) = Ψ(ϕ−1, ϕ) = e.

• The operation Ψ is associative, i.e., for ϕ1, ϕ2, ϕ3 ∈ H, it holds that Ψ(ϕ1,Ψ(ϕ2, ϕ3)) =
Ψ(Ψ(ϕ1, ϕ2), ϕ3).

For simplicity, we use ϕ1ϕ2 to denote Ψ(ϕ1, ϕ2) for every ϕ1, ϕ2 ∈ H.

A group H is a Lie group if it is a smooth manifold (Hall, 2013), and we say H is discrete if for each ϕ ∈ H
there exists a neighborhood Uϕ 3 ϕ containing only ϕ.

A.2 Riemannian Manifolds

To aid understanding, we provide a conceptual introduction of some relevant notions in Riemannian geometry
in this section. We refer interested readers to Do Carmo (1992); Lee (2018) for rigorous definitions.

A k-dimensional manifold M is a topological space locally resembling a k-dimensional Euclidean space.
Specifically, for any p ∈ M, there exist open neighborhoodsM⊃ U 3 p and Rk ⊃ V 3 0 and a homeomor-
phism ψ : V → U . The map ψ is called a coordinate map near p if ψ(0) = p, and the coordinate of a point
q ∈ U is ψ−1(q). If two coordinate maps ψ1, ψ2 overlap, we require the transition ψ−1

2 ◦ ψ1 to be smooth.

The tangent space at p ∈ M is a k-dimensional linear space “orthogonal to M”, denoted as TpM. A
Riemannian structure equips the tangent space TpM with an inner product 〈·, ·〉p for every p ∈ M. Given
a coordinate map ψ : V → U and a ∈ V , the differential dψ|a at a is a linear bijection between Rk and
Tψ(a)M. Let e1, e2, . . . , ek ∈ Rk be the standard basis of Rk, then {Ei(a) := (dψ|a)(ei)}i∈[k] is a basis of
Tψ(a)M. We call gij(a) := 〈Ei(a), Ej(a)〉ψ(a) the coordinate representation of the Riemannian metric and
G(a) := (gij(a))i,j∈[k] ∈ Rk×k the coordinate representation of the metric matrix. For simplicity, we omit
the dependence on a of gij(a) and G(a).

Also, under a coordinate ψ : V → U , the volume of a set R ⊂ U is defined as (Do Carmo, 1992, p. 45)

Vol(R) :=
∫
ψ−1(R)

√
|G|dµLeb,

where |G| denotes the determinant of G, and µLeb is the k-dimensional Lebesgue measure. The measure
dµM :=

√
|G|dµLeb is called the Riemannian measure or the volume form, and is independent of the choice

of the coordinate ψ.
Example A.1. As an example, let M := T2 := {(cosα, sinα, cosβ, sin β) : α, β ∈ [0, 2π)} be the two-
dimensional torus considered in Example 2.2. For any p = (cosα, sinα, cosβ, sin β) ∈ T2, we can find a
coordinate map ψ(ζ, ξ) := (cos(α + ζ), sin(α + ζ), cos(β + ξ), sin(β + ξ)) ∈ R4 with (ζ, ξ) ∈ V := (−1, 1) ×
(−1, 1). The tangent space TpT2 = p+ {(−t sinα, t cosα,−s sin β, s cosβ) : t, s ∈ R} is the plane orthogonal
to p. For t1, t2, s1, s2 ∈ R and tangent vectors v1 = p + (−t1 sinα, t1 cosα,−s1 sin β, s1 cosβ) and v2 =
p + (−t2 sinα, t2 cosα,−s2 sin β, s2 cosβ), we can define an inner product 〈v1, v2〉p := (v1 − p)>(v2 − p) =
t1t2 + s1s2. The differential of ψ is (dψ|0)(t, s) = (−t sinα, t cosα,−s sin β, s cosβ), mapping the basis
e1 = (1, 0), e2 = (0, 1) in R2 to E1 = p + (− sinα, cosα, 0, 0), E2 = p + (0, 0,− sin β, cosβ) ∈ TpT2. The
coordinate representation of the metric is such that gij(0) = 1 if i = j and gij(0) = 0 otherwise, and the

metric matrix is G(0) =
(

1 0
0 1

)
.
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B Proofs

B.1 Details in Example 2.1

As mentioned in this example, when the input space X has finite cardinalityK ∈ N, a function f : X → R can
be identified as the vector (f(x1), f(x2), . . . , f(xK)) ∈ RK . Conversely, for a vector v = (v1, v2, . . . , vK) ∈ RK
we can define a function fv : X → R such that fv(xj) = vj for j = 1, . . . ,K. In the remaining part, we will
represent the function fv ∈ RX by the vector v ∈ RK .

Proof of Example 2.1. Since the map A is linear, there exists a matrix A ∈ RK×d such that Aθ = Aθ for
every θ ∈ Rd.

Now the claim (i) follows by Proposition 2.1 (b): clearly, in this case H = {e} fulfills the conditions in the
proposition.

We now turn to (ii). When A is a surjection with d > K. Let Ker(A) := Ker(A) := {x ∈ Rd : Ax = 0} be
the kernel of A, and Ran(A>) := Ran(A>) := {A>y ∈ Rd : y ∈ RK} be the range of A>, then the space Rd
has the orthogonal decomposition Rd = Ker(A)⊕Ran(A>), and there exists an orthogonal matrix Q ∈ Rd×d
such that Q(Ker(A)) = {0}k × Rd−k and Q(Ran(A>)) = Rk × {0}d−k, where k := dim Ran(A>) ≤ K < d.
Then, θ ∈ Rd has the representation θ = Q>(θ‖, θ⊥) for θ‖ ∈ Rk and θ⊥ ∈ Rd−k. Under this representation,
A becomes Ã := A ◦ Q> and Ã|Rk×{0}d−k is a bijection. We can also define a reduced likelihood p̃(Y |
θ‖,X) := p(Y | Q>(θ‖, 0),X), then

d
(
θ
‖
t

θ⊥t

)
= d(Qθ) = (Q∇θ log p(Y | θt,X)−Qθt)dt+

√
2QdBt (pθ = N (0, Id))

=
((
∇θ‖ log p̃(Y | θ‖t ,X)

0

)
−
(
θ
‖
t

θ⊥t

))
dt+

√
2dB̃t (QdBt

d=
√
QQ>dBt = dB̃t)

where B̃t denotes another Brownian motion. Therefore, θ‖t and θ⊥t factorize to independent processes, and
the equivalence holds by applying the result of (i) to θ‖t and Ã (and noting that Ãθ‖t = Aθt).

B.2 Proof of Proposition 2.1

Proof of Proposition 2.1. By definitions, for any f ∈ F , there exists some θ ∈ Rd and one of its neighborhood
N such that f = Aθ, and that for U = A(N), (U,A|N ) forms a coordinate chart. On this chart, the
coordinate matrix of the pushforward metric tensor equals identity, by its definition. Thus, the coordinate
representation (FLD) reduces to

dθt = ∇θ
(

log p(Y | θt,X) + log dπf
dµF

)
dt+

√
2dBt,

and it differs from (WLD) only on the prior term. When condition (a) in the proposition holds, the prior is
uniform so the gradient vanishes. When condition (b) holds, the group is trivial and the quotient map A is
a bijection. Thus, it suffices to show that for all θ ∈ supp πθ, we have

dπf
dµF

(Aθ) = dπθ
dµLeb

(θ) = pθ(θ),

where µLeb denotes the Lebesgue measure. By the change of measure formula, the above will be implied by

πf
(i)= A#πθ, µF

(ii)= A#µLeb.

(i) is the definition of πf . For (ii), let ζ : F → R be any measurable function with a compact support,
{(Ui = A(Ni),A|Ni

) : i ∈ [h]} be a finite chart covering of supp ζ, and {ρi} be a corresponding partition of
unity. Then∫

F
ζ(f)µF (df) =

h∑
i=1

∫
Ni

(ρiζ)(A(θ))
√
|G(θ)|µLeb(dθ) =

∫
A−1(supp ζ)

ζ(A(θ))µLeb(dθ).
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This establishes (ii), and thus completes the proof.

B.3 Details in Example 2.3

Recall the definition of the cone Cd := {x ∈ Rd : x1 ≤ x2 ≤ ... ≤ xd}, and the group Sd that consists of all
permutations of length d. An action of Sd on Rd can be naturally defined, under which we have Cd = Rd/Sd.

We introduce a few additional notations. For x ∈ Rd, the stabilizer subgroup is defined as StabSd
x := {ϕ ∈

Sd : ϕ · x = x}, and the orbit is Sd · x := {ϕ · x : ϕ ∈ Sd}. A vector nx ∈ Rd is an inward normal vector of
Cd at x if 〈nx, y − x〉 ≥ 0 holds for all y ∈ Cd. Denote by Nx the set of all inward normal vector of Cd at x.
For any f : Rd → R, define the function

f̃ : Cd → R, f̃(x) := 1
|Sd|

∑
ϕ∈Sd

f(ϕ · x). (7)

When f is the density function of a measure π on Rd, the pushforward measure under the quotient map
Rd → Cd has the density function f̃ . The following lemma shows that the directional derivative of f̃ along
the normal direction vanishes.
Lemma B.1. Let x ∈ Cd and assume f is differentiable at every y ∈ Sd · x. Then

Dv f̃(x) = 1
|Sd|

∑
y:=ψ·x∈Sd·x

Dψ·Wx(v)f(y), where Wx(v) :=
∑

ϕ∈Stab x
ϕ · v,

where Dv denotes the directional derivative along v. Moreover, Wx(v) = v for x ∈ C◦n and v ∈ Rd, and
Wx(v) = 0 for x ∈ ∂Cd and v ∈ Nx.

We postpone the proof of the above lemma to the end of this section, and first present the following lemma,
which implies the invariance of the Fokker-Planck equation under orthogonal transformations.
Lemma B.2. Let f, g : Rd → R be two functions and Q ∈ Rd×d be an orthogonal matrix, then [∇(f ◦
Q)]T∇(g ◦ Q) = [(∇f)T∇g] ◦ Q and ∆(f ◦ Q) = ∆f ◦ Q, in which Q is also regarded as a linear map
Q : Rd → Rd.

Proof. Note that ∇(f ◦Q) = QT (∇f ◦Q). Let Qi be the i-th column of Q, then

[∇(f ◦Q)]T∇(g ◦Q) =
d∑
i=1

(∇f ◦Q)TQiQTi (∇g ◦Q) = (∇f ◦Q)T (∇g ◦Q).

A similar result also holds for the Laplacian:

∆(f ◦Q) =
d∑
i=1

∂i∂i(f ◦Q) =
d∑

i,j=1
∂i(∂jf ◦Q)qji =

d∑
i,j,k=1

(∂k∂jf ◦Q)qjiqki.

As Q is orthogonal, we know
∑d
i=1 qjiqki = δjk, which completes the proof.

As the pushforward measure A#p has density p̃, the following proposition establishes the equivalence result
claimed in the text.
Proposition B.1. Let p : Rd → R be any function that is invariant under the action of Sd, and Xt follow
the Langevin dynamics on Rd,

dXt = ∇ log p(Xt)dt+
√

2dBt.

Then, the pushforward density p̃t of Xt will evolve as{
∂tp̃t = −∇ · (p̃t∇ log p) + ∆p̃t, in C◦n,
∂p̃t

∂v (x) = 0, ∀v ∈ Nx, x ∈ ∂Cd.
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Proof. Let pt be the density of the distribution of Xt, then it follows the Fokker-Planck equation

∂tpt = −∇ · (pt∇ log p) + ∆pt = −(∇pt)T∇ log p− pt∆ log p+ ∆pt.

For ϕ ∈ Sd, we denote Pϕ ∈ Rd×d by the corresponding matrix such that ϕ · x = Pϕx for every x ∈ Rd.
Then, Pϕ is an orthogonal matrix, and by Lemma B.2

∂t(pt ◦ Pϕ) = (∂tpt) ◦ Pϕ = −(∇pt · ∇ log p) ◦ Pϕ − (pt∆ log p) ◦ Pϕ + (∆pt) ◦ Pϕ
= −[∇(pt ◦ Pϕ)]T∇ log p− (pt ◦ Pϕ)∆ log p+ ∆(pt ◦ Pϕ),

where the first equation is because Pϕ is independent to t, and the last equation follows from Lemma B.2
and log p ◦ Pϕ = log p.

Therefore, we obtain the equation for p̃t:

∂tp̃t = 1
|Sd|

∑
ϕ∈Sd

∂(pt ◦ Pϕ) = 1
|Sd|

∑
ϕ∈Sd

(−∇ · ((pt ◦ Pϕ)∇ log p) + ∆(pt ◦ Pϕ))

= −∇ · (p̃t∇ log p) + ∆p̃t. (8)

Combining with Lemma B.1 yields the boundary condition

∂p̃t
∂v

(x) = 0, ∀v ∈ Nx, x ∈ ∂Cd. (9)

Proof of Lemma B.1. Since the group action is linear (i.e., ϕ · (x + y) = ϕ · x + ϕ · y and ϕ · (tx) = tϕ · x),
we have

Dv f̃(x) = lim
t→0+

1
t

(
f̃(x+ tv)− f̃(x)

)
= 1
|Sd|

∑
ϕ∈Sd

Dϕ·vf(ϕ · x).

To simplify the above summation, we introduce the coset ϕStabx := {ϕψ : ψ ∈ Stabx} for each ϕ ∈ Sd,
and the set of cosets Sd/ Stabx := {ϕStabx : ϕ ∈ Sd}. Clearly, any two cosets are either equal or disjoint,
and the group Sd is partitioned by Sd/Stabx. The orbit-stabilizer theorem (Dummit & Foote, 2004, p. 114)
states that the map ϕStabx 7→ ϕ · x is a bijection between cosets Sd/ Stabx and the orbit Sd · x, and thus8

Dv f̃(x) = 1
|Sd|

∑
ϕ∈Sd

Dϕ·vf(ϕ · x)

= 1
|Sd|

∑
ϕ∈C

C=ψ Stab x∈Sd/ Stab x

Dϕ·vf(ϕ · x) (partition)

= 1
|Sd|

∑
ϕ∈ψ Stab x
y:=ψ·x∈Sd·x

Dϕ·vf(ϕ · x) (ψ Stabx 7→ ψ · x bijective)

= 1
|Sd|

∑
y:=ψ·x∈Sd·x

∑
ϕ′∈Stab x

Dψ·(ϕ′·v)f(y) (ϕ′ := ψ−1ϕ)

= 1
|Sd|

∑
y:=ψ·x∈Sd·x

Dψ·Wx(v)f(y). (linearity of D(·)f)

This proves the first claim.

For any interior point x ∈ C◦d , we have Stabx = {e} and thus Wx(v) = v. For any boundary point x ∈ ∂Cd,
the stabilizer subgroup is non-trivial, and it remains to show that Wx(v) = 0 for normal vectors.

8It can be verified that the proof is independent on the choice of ψ.
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Table 1: Semi-synthetic experiment: average-case test risk for the best stopping iteration, for L = 2,W =
200.

Likelihood Algorithm boston concrete energy kin8nm naval power plant wine yacht

Gaussian
MALA 0.067 0.058 0.056 0.055 0.051 0.050 0.063 0.055
GD 0.068 0.059 0.056 0.055 0.051 0.050 0.063 0.056
ULA 0.067 0.058 0.056 0.055 0.051 0.050 0.063 0.055

Laplacian
MALA 0.188 0.174 0.167 0.170 0.160 0.160 0.186 0.172
GD 0.189 0.175 0.167 0.170 0.161 0.160 0.186 0.173
ULA 0.188 0.175 0.167 0.170 0.161 0.160 0.186 0.171

An element ϕ ∈ Sd can be identified as a permutation matrix Pϕ ∈ Rd×d s.t. the group action is the matrix-
vector multiplication ϕ · v = Pϕv, and clearly, the stabilizer of x ∈ ∂Cd always has the form of a Cartesian
product,

∏mx

j=1 Scj , where {cj} is s.t.
∑mx

j=1 cj = d.9 Therefore, we have

Wx(v) =
∑

ϕ∈Stab x
ϕ · v =

 ∑
ϕ∈
∏mx

j=1
Scj

Pϕ

 v.

Note that Pϕ = blkdiag(P1, P2, . . . , Pmx
),10 with each Pj ∈ Rcj×cj being a permutation matrix, and the

sum of all size cj permutation matrices is (cj − 1)!1cj×cj , where 1 denotes the all-ones matrix. Thus, by
decomposing Wx(v) ∈ Rd into Rc1 × Rc2 × · · · × Rcmx we have

Wx(v) =
(
A0

c1

s1∑
i=s0+1

vi1c1 ,
A0

c2

s2∑
i=s1+1

vi1c2 , . . . ,
A0

cmx

smx∑
i=smx−1+1

vi1cmx

)
,

where A0 =
∏mx

j=1 cj ! and sj =
∑
l≤j cl.

Let e(j) ∈ Rd be such that e(j)
k = 1 if sj−1 < k ≤ sj , and e(j)

k = 0 otherwise. Then a sufficient condition for
Wx(v) = 0 is that 〈v, e(j)〉 = 0 for all j ∈ [mx]. Let nx ∈ Nx be an inward normal vector and fix j ∈ [mx].
Since x±αje(j) ∈ Cd for αj = min(xsj −xsj−1 , xsj+1 −xsj ) > 0, we conclude that 〈nx,±e(j)〉 ≥ 0 and hence
〈nx, e(j)〉 = 0. Thus, Wx(nx) = 0.

C Additional Results and Full Algorithm for Section 3.2

9For example, for x ∈ C5 with x1 = x2 < x3 = x4 < x5, the stabilizer is S2 × S2 × S1.

10blkdiag(P1, P2, . . . , Pmx ) is the block diagonal matrix


P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · Pmx

 ∈ Rd×d.
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Table 2: Semi-synthetic experiment: average-case test risk for the best stopping iteration, for L = 2,W = 50.

Likelihood Algorithm boston concrete energy kin8nm naval power plant wine yacht

Gaussian
MALA 0.071 0.058 0.053 0.054 0.052 0.050 0.063 0.057
GD 0.071 0.058 0.053 0.054 0.051 0.050 0.063 0.057
ULA 0.070 0.058 0.053 0.054 0.051 0.050 0.063 0.057

Laplacian
MALA 0.194 0.172 0.170 0.167 0.161 0.160 0.186 0.167
GD 0.194 0.173 0.170 0.168 0.161 0.160 0.187 0.168
ULA 0.192 0.172 0.170 0.166 0.161 0.160 0.186 0.169

Table 3: Semi-synthetic experiment: average-case test risk for the best stopping iteration, for L = 3,W = 50.

Likelihood Algorithm boston concrete energy kin8nm naval power plant wine yacht

Gaussian
MALA 0.069 0.059 0.055 0.056 0.051 0.052 0.068 0.053
GD 0.070 0.059 0.056 0.056 0.051 0.051 0.069 0.054
ULA 0.069 0.059 0.055 0.056 0.051 0.050 0.068 0.053

Laplacian
MALA 0.193 0.176 0.173 0.173 0.161 0.161 0.189 0.176
GD 0.197 0.176 0.172 0.173 0.161 0.161 0.190 0.175
ULA 0.194 0.176 0.172 0.172 0.161 0.161 0.190 0.174

Algorithm 1 The algorithm for evaluating (6) with MALA
Require: A training set Xtrain and a test set Xtest; a BNN fBNN(·; θ) and a prior pθ; a likelihood p(· | ·).
Ensure: An approximation of (6).
1: for i = 1, . . . , 8 do
2: θ

(i)
∗ ∼ pθ . the groundtruth

3: Y(i)
train ∼ p(· | fBNN(Xtrain; θ(i)

∗ ))
4: Y(i)

test ∼ p(· | fBNN(Xtest; θ(i)
∗ ))

5: for j = 1, · · · , 50 do
6: θ

(j)
init ∼ pθ . the initial state

7: θ
(j)
MALA ← MALA(θ(j)

init,Xtrain,Y(i)
train) . the posterior sample

8: end for
9: if the likelihood is Gaussian then
10: `(ŷ, y) := (ŷ − y)2 . the loss function derived from the likelihood
11: f̂ (i)(x) := 1

50
∑50
k=1 fBNN(x; θ(k)

MALA) . the predictive function
12: else if the likelihood is Laplacian then
13: `(ŷ, y) := |ŷ − y|
14: f̂ (i)(x) := median of {y(k) : y(k) ∼ p(· | fBNN(x; θ(k)

MALA)), k = 1, . . . , 50}
15: end if
16: L(i) ← 1

|Xtest|
∑

(x,y)∈(Xtest,Y(i)
test) `(f̂

(i)(x), y)
17: end for
18: L← 1

8
∑8
i=1 L

(i) . the approximated average-case risk (6)
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Figure 4: Additional visualizations in the setting of Fig. 1.
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Figure 5: Semi-synthetic experiment: estimated loss (6) under different likelihoods, for L = 2,W = 50.
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Figure 6: Semi-synthetic experiment: estimated loss (6) under different likelihoods, for L = 3,W = 50.
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