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Abstract

In this work, we consider the linear inverse problem y = Ax+ε, whereA : X → Y
is a known linear operator between the separable Hilbert spaces X and Y , x is
a random variable in X and ε is a zero-mean random process in Y . This setting
covers several inverse problems in imaging including denoising, deblurring and X-
ray tomography. Within the classical framework of regularization, we focus on the
case where the regularization functional is not given a priori, but learned from data.
Our first result is a characterization of the optimal generalized Tikhonov regularizer,
with respect to the mean squared error. We find that it is completely independent of
the forward operator A and depends only on the mean and covariance of x. Then,
we consider the problem of learning the regularizer from a finite training set in two
different frameworks: one supervised, based on samples of both x and y, and one
unsupervised, based only on samples of x. In both cases we prove generalization
bounds, under some weak assumptions on the distribution of x and ε, including the
case of sub-Gaussian variables. Our bounds hold in infinite-dimensional spaces,
thereby showing that finer and finer discretizations do not make this learning
problem harder. The results are validated through numerical simulations.

1 Introduction

The aim of an inverse problem is to recover information about a physical quantity from indirect
measurements. Virtually all imaging problems and modalities fall within this framework, including
denoising, deblurring [14], computed tomography [41] and magnetic resonance imaging [15]. Classi-
cal and general approaches to solve inverse problems consist in studying a variational (minimization)
problem and can be divided into two classes.

The first is based on the so-called regularization theory [14]. The aim is to recover a single, determin-
istic, unknown x† from noisy data y = F (x†) + ε by solving a minimization problem

min
x
dY (F (x), y) + J(x) (1)
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for a fidelity term dY : Y × Y → R and a regularization functional J : X → [0,+∞). The latter is
chosen in order to mitigate the ill-posedness of the map F , and represent some a-priori knowledge on
x. For instance, in the classical Tikhonov regularization we have J(x) = λ‖x‖2X for λ > 0.

The second approach considers the unknown as a random variable and is based on statistical/Bayesian
methods [23, 45]. In this case one can recover the unknown using point estimators such as the
maximum a posteriori (MAP) estimator, or extract richer information on the probability distribution
of the unknown. In practice, the MAP estimator is found by solving a minimization problem of the
same form as (1). The main difference is that the fidelity term and the regularizer are tailored to the
statistical properties of the unknown and the noise, which are usually assumed to be known.

In recent years, machine learning techniques, and especially deep learning, have shaken the field
of inverse problems by providing the basis for data-driven methods that have outperformed the
state-of-the-art in most imaging modalities [3, 43]. The most successful methods take inspiration
from regularization theory [10, 1, 26, 2, 36, 21, 22, 27, 34, 39, 8, 17, 40]: the physical model given by
the forward map F is assumed to be known while the regularizer (or the gradient updates related to it)
is learned from a training set. While these approaches have shown impressive results in applications,
a solid theory behind their successes is lacking. In view of the many sensitive applications where
these methods are already being employed, e.g. in medical imaging, it is of utmost importance
to fill this theoretical gap to better understand the strengths and limits of data-driven imaging
modalities. Moreover, many inverse problems are naturally formulated in infinite-dimensional spaces
[14, 41, 23, 15, 45, 37], and their discretization must be carefully treated due to their ill-posedness
[25]. Hence, it is of main interest to provide a theoretical analysis in the infinite-dimensional setting.

In this work, we consider the problem of learning a regularizer for a linear inverse problem in the
framework of statistical learning theory, which is the natural setting to derive precise theoretical
guarantees. This is part of the growing research area of learning an operator between infinite
dimensional spaces [46, 13, 32, 42, 31]. We study the case where the measurements are modeled by
a linear, possibly ill-posed, forward map, and the penalty term is a generalized Tikhonov regularizer
[47].

More precisely, let A : X → Y be a bounded linear operator between the separable real Hilbert
spaces X and Y . We consider the inverse problem

y = Ax+ ε, (2)

which consists of the reconstruction of x from the knowledge of y, where ε represents noise. We
assume that x is a random variable onX with mean µ and covariance Σx, and the noise ε, independent
of the variable x, is a zero-mean random process on Y with covariance Σε, (see Section 2 for more
details). The operator A is typically injective but its inverse may be unbounded: typical examples
include denoising (A is the identity) and deblurring (A is a convolution operator).

We aim to recover the unknown via generalized Tikhonov regularization. For a quadratic fidelity term
dY : Y × Y → R, the minimization problem

min
x
dY (Ax, y) + ‖B−1(x− h)‖2X , (3)

has a unique solution Rh,B(y), called the generalized Tikhonov reconstruction. Here the pair (h,B),
where h ∈ X and B : X → X is a positive bounded operator, is considered as a free parameter
that we call regularization pair. For example, the operator B can be a smoothing operator in L2,
as a negative power of the Laplacian, so that B−1 is a differential operator, yielding a classical
regularization in Sobolev spaces. We want to characterize and learn the optimal pair (h,B) with
respect to the expected, or mean squared, error

L(h,B) = Ex,y‖Rh,B(y)− x‖2X .

Our first contribution is a complete characterization of the minimizers of L. In particular we find
that (µ,Σ

1/2
x ) is a global minimizer (and is unique if A is injective), which shows that the best

regularizer is completely independent of the forward operator A and depends only on the mean and
covariance of x. This is consistent with the known linearized minimum mean squared error estimator
in the finite-dimensional case [24], but it is usually not taken into account in the machine learning
approaches to inverse problems mentioned above. The extension to the infinite-dimensional case is
not straightforward due to the presence of unbounded operators in inverse problems.
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Since the computation of the expected error requires the full distribution ρ of x and y, we study how
this can be approximated from a finite training set. We suppose to have access to a sample of m
pairs z = {(xj , yj)}mj=1 drawn independently from ρ. In view of the results on the expected error,
we consider two alternative ways to learn a regularizer pair (ĥz, B̂z) from a training set z: either
by minimizing the empirical risk [12] (supervised learning), or by using the empirical mean and
covariance of {xj} (unsupervised learning). In both cases, we prove generalization bounds for the
sample error |L(ĥz, B̂z)− L(µ,Σ

1/2
x )|. Under some natural compactness assumptions on the class

of regularization pairs, we prove that the sample error has the asymptotic behavior

|L(ĥz, B̂z)− L(µ,Σ1/2
x )| . 1√

m
, (4)

with high probability, in both the supervised and the unsupervised approaches. We stress the point
that these bounds hold in the infinite-dimensional setting, or, in other words, they do not depend on
the discretization of the signal and of the measurements.

Finally, we complement our theoretical findings with some numerical experiments. For a 1D
denoising problem (i.e. A is the identity operator) we replicate the asymptotic bound (4) at different
discretization scales. Moreover, we find that the unsupervised approach, despite yielding the same
rate (4), clearly outperforms the supervised one.

The paper is organized as follows. In Section 2 we introduce the main notation and technical
assumptions that will be used throughout the paper, including several examples. Section 3 presents
the main results for the minimization of the expected error, while Section 4 is devoted to the study
of the sample error. Numerical experiments are the subject of Section 5. Concluding remarks and
discussions are reserved for Section 6.

2 Setting the stage

2.1 The random objects x and ε

As mentioned in the introduction, we formulate (2) as a statistical inverse problem, where x and ε are
not deterministic but random. Let us start with the description of the prior on x.
Assumption 2.1. Let x be a random variable on a probability space (Ω,P) taking values in X . More
precisely, x is square-integrable, so that its expectation µ ∈ X and its covariance Σx : X → X is a
trace-class operator. We assume that Σx is injective.

Without loss of generality we can always assume that Σx is injective (i.e., x is non-degenerate), since
otherwise it would be enough to consider the inverse problem only in (ker Σx)⊥ ( X .

Let us consider some common examples of priors arising in inverse problems.
Example 2.2 (Gaussian random variables). A general class of priors arises when considering Gaus-
sian random variables. We recall that x is a Gaussian random variable if for all v ∈ X , 〈x, v〉 is a real
Gaussian random variable and, by Fernique’s theorem, x is square-integrable [7]. Since Σx : X → X
is self-adjoint, positive and trace-class, we can write its singular value decomposition (SVD) as

Σxv =
∑
k

σ2
k〈v, ek〉Xek, v ∈ X,

where {ek}k is an orthonormal basis of X ,
∑
k σ

2
k < +∞ and 〈x, ek〉 ∼ N (µk, σk), where

µ =
∑
k µkek is the mean of x. In other words,

x = µ+
∑
k

σkakek, (5)

where ak are i.i.d. standard Gaussian variables. This shows that, in infinite dimension, since σk → 0,
the variations of x along the direction ek become smaller and smaller as k → +∞.

This abstract construction reduces to a smoothness prior by suitably choosing the covariance operator.
Example 2.3 (Smoothing priors). Let X = L2(Td), where Td = Rd/Zd is the d-dimensional torus
and d ≥ 1. Let ∆ denote the Laplace-Beltrami operator on Td, which is simply the classical Laplace
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operator on [0, 1]d with periodic boundary conditions. For s > d
2 , the operator

(I −∆)−s : L2(Td)→ L2(Td)
is trace class, and can be used to define the Gaussian distribution N (0, (I −∆)−s). In the notation
of Example 2.2, the SVD of (I −∆)−s is given by σ2

k = (1 + 4π|k|2)−s and ek(t) = e2πik·t with
k ∈ Zd. This enforces a smoothness prior on x, depending on the parameter s, which controls the
decay of the Fourier coefficients of x (see [33, Appendix B] and [7]).

Let us now discuss the model for the noise ε.
Assumption 2.4. Let ε = (ε)v∈Y be a (linear) random process on Y with zero mean and such that
its covariance Σε : Y → Y defined by E[εvεw] = 〈Σεv, w〉Y is bounded and injective.

Notice that the injectivity of Σε implies that noise is present in all directions of Y , whereas the
boundedness of Σε allows us to regard the random process ε as a bounded (linear) operator from Y
into L2(Ω,P). The reader is referred to [16] and to Appendix A.1 for additional details on random
processes in Hilbert spaces. We mention here some basic properties that will be needed for the
following discussion.
Remark 2.5. Even if ε may not belong to Y almost surely (see Example 2.7 below), it is always
possible to view it as an element of a larger space, as we now discuss. Let K be a separable Hilbert
space and ι : K → Y be an injective linear map such that ι(K) is dense in Y and

ι∗ ◦ Σε ◦ ι : K → K∗ is trace-class,1 (6)
where we identify Y ∗ = Y , but we do not identify K∗ with K, and we regard ι∗ as the canonical
embedding Y → K∗. The restriction of ε to K is a Hilbert-Schmidt operator from K into L2(Ω,P),
hence there exists a unique square-integrable random vector ε taking values in K∗ such that εv =
〈ε, v〉K∗×K for v ∈ K. It is easy to show that the random vector ε has zero mean and its covariance
operator is ι∗ ◦ Σε ◦ ι : K → K∗, since

E[〈ε, v〉K∗×K〈ε, w〉K∗×K ] = E[ει(v)ει(w)] = 〈Σειv, ιw〉Y , v, w ∈ K. (7)

A random variable is always a random process, as we now describe.
Example 2.6. A simple example of this abstract construction consists of considering a random
variable ε. In this case Σε is trace-class itself, so that we can choose K = Y and ι = I and ε ∈ Y
almost surely. As discussed in Example 2.2 for Gaussian variables, this means that, since σk → 0,
the expected amplitude of the noise in the direction ek goes to 0 as k →∞. For instance, the choice
of Σε = (I −∆)−s as in Example 2.3 corresponds to smaller noise levels for higher Fourier modes.

A random process allows for considering noise that is uniformly distributed in all directions.
Example 2.7 (White noise). The Gaussian white noise ε is a random process on Y such that for
any v ∈ Y it holds that εv is a standard Gaussian variable (mean 0 and variance 1), so that Σε = I .
Heuristically, in the notation of Example 2.2, this corresponds to σk = 1 for every k, and so by (5)

ε =
∑
k

akek, ak ∼ N (0, 1),

so that ε /∈ Y with probability 1 whenever Y is infinite dimensional (see, e.g., [16]). In view
of Remark 2.5, it is possible to consider a larger space K∗ so that ε ∈ K∗ almost surely. For
concreteness of explanation, we focus on the case when Y = L2(Td), a typical framework in
imaging. A possible choice for the space K is the Sobolev space Hs(Td) with s > d/2 (see [25]),
so that the canonical embedding ι : Hs(Td)→ L2(Td) is a Hilbert-Schmidt operator, hence (6) is
satisfied and ε can naturally be seen as an element of H−s(Td) = Hs(Td)∗.

2.2 The new formulation of the inverse problem and of the regularization

As a consequence of Assumptions 2.4, since ε may not belong to Y , the inverse problem (2)
must be interpreted from a different perspective, namely considering y as the stochastic process
yv = 〈Ax, v〉Y + εv on Y or by formulating the problem as an equation in K∗:

y = ι∗Ax+ ε,

1It is worth observing that K and ι always exist: it is enough to choose them, independently of ε, so that the
embedding ι : K → Y is Hilbert-Schmidt, which implies that ι∗ ◦ Σε ◦ ι is trace class, since Σε is bounded.
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i.e. 〈y, v〉K∗×K = 〈Ax, ι(v)〉Y + 〈ε, v〉K∗×K for v ∈ K, where ι∗ : Y → K∗ is the natural
embedding. We denote the joint probability distribution of (x, y) on X ×K∗ by ρ.

We now provide a consistent formulation of the quadratic functional appearing in (3). The goal is to
replicate what would be the natural choice in a finite dimensional context, i.e.

min
x
‖Σ−1/2

ε (Ax− y)‖2Y + ‖B−1(x− h)‖2X . (8)

Unfortunately, if Y is infinite dimensional, the first factor is in general not well-defined, since for
example for Gaussian processes ε ∈ Im Σ

1/2
ε with probability 0 [7]. Thus, we need to write this

minimization problem in a different formulation. We start by stating the assumptions we make on B.
Assumption 2.8. Let us assume that B : X → X is a bounded positive operator such that

Im(AB) ⊆ Im(Σει). (9)

It is worth observing that, whenever Y is infinite dimensional, then Im(Σει) ( Y since Σει is
compact. Furthermore, (9) requires, in some sense, the operator AB : X → Y to be at least as
“smoothing” as the operator Σει : K → Y . For instance, in the case when AB and Σει have the same
left-singular vectors, this condition means that the singular values of AB should go to 0 at least as
fast as the singular values of Σει.

We are now ready to rewrite the functional in (8). The penalty term involving B−1(x− h) suggests
the change of variables x = h+Bx′. The corresponding minimization problem for x′ reads

min
x′∈X

‖Σ−1/2
ε (A(h+Bx′)− y)‖2Y + ‖x′‖2X . (10)

This expression does not require the injectivity of B. By formally expanding the first factor we obtain

‖Σ−1/2
ε ABx′‖2Y − 2〈Σ−1/2

ε (y −Ah),Σ−1/2
ε ABx′〉Y + ‖Σ−1/2

ε (y −Ah)‖2Y .

Let us analyze these three terms separately:

1. Since Σε is self-adjoint we have ‖Σ−1/2
ε ABx′‖2Y = 〈Σ−1

ε ABx′, AB′x〉Y , which is well-defined
because Im(AB) ⊆ Im(Σε) thanks to (9).

2. The second factor is formally equivalent to −2〈y − Ah,Σ−1
ε ABx′〉Y , which is not well-

defined as scalar product in Y since y may not belong to Y . However, since y ∈ K∗

and Σ−1
ε ABx′ ∈ ι(K) by (9), this scalar product can be interpreted as the duality pairing

−2〈y − ι∗Ah, ι−1Σ−1
ε ABx′〉K∗×K .

3. The third factor ‖Σ−1/2
ε (y−Ah)‖2Y is independent of x, and so it irrelevant for the minimization

task: thus, we remove it. This is a key step in infinite dimension, since, as mentioned above,
‖Σ−1/2

ε y‖2Y = +∞ almost surely. See [45, Remark 3.8] for additional details on this aspect.

This discussion motivates the introduction of the following functional, formally equivalent to (10).
For y ∈ K∗, we define the regularized solution of the inverse problem as x̂ = h+Bx̂′, where

x̂′ = arg min
x′∈X

‖Σ−1/2
ε ABx′‖2Y − 2〈y − ι∗Ah, (Σει)−1ABx′〉K∗×K + ‖x′‖2X . (11)

The minimizer exists and is unique, and gives the following expression for x̂:

Rh,B(y) := h+Bx̂′ = h+B(BA∗Σ−1
ε AB + I)−1((Σει)

−1AB)∗(y − ι∗Ah), (12)

where Rh,B : K∗ → X is a bounded affine map. See Proposition A.2 for all the details. Note that
((Σει)

−1AB)∗ : K∗ → X is well-defined thanks to (9).

3 The optimal regularizer

The regularization approach described so far is based on the choice of h and B. In classical
regularization theory, these are chosen depending on the prior knowledge of the problem under
consideration. In the data-driven approach we consider in this work, h and B are learned from
training data. In this section, we let learning come into play and consider the problem of determining
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the optimal h and B, under the assumptions that the distributions of x and ε are fully known. More
precisely, this allows for the explicit computation of the expected error

L(h,B) = E(x,y)∼ρ‖Rh,B(y)− x‖2X = Ex,ε‖Rh,B(ι∗Ax+ ε)− x‖2X ,
which quantifies the mean square error that our regularization functional (11) yields. Optimal choices
of h? and B? are those that minimize L(h,B), and are characterized in the following result.
Theorem 3.1. Let X and Y and be separable real Hilbert spaces, A : X → Y be a bounded
linear operator, x and ε satisfy Assumptions 2.1 and 2.4 and be independent, and K and ι be as in
Remark 2.5. Suppose B = Σ

1/2
x satisfies Assumption 2.8.

Consider the minimization problem

min
h,B
{E(x,y)∼ρ

[
‖Rh,B(y)− x‖2X

]
}, (13)

where the minimum is taken over all B satisfying Assumption 2.8 and over all h ∈ X . Then (B?, h?)
is a global minimizer of (13) if and only if

h? = µ and B2|(kerA)⊥ = Σx|(kerA)⊥ .

In particular, B? = Σ
1/2
x is always a global minimizer, and is unique if A is injective. Furthermore,

for every minimizer (h?, B?), the corresponding reconstruction map is independent of B? and, for
all y ∈ K∗, is given by

R?(y) = µ+ Σ1/2
x (Σ1/2

x A∗Σ−1
ε AΣ1/2

x + IX)−1((Σει)
−1AΣ1/2

x )∗(y − ι∗Aµ) (14)

= µ+ ΣxA
∗(ι∗(AΣxA

∗ + Σε))
−1(y − ι∗Aµ). (15)

The proof is in Appendix A.3. Some comments on this result are in order.

• By assumption ι∗(AΣxA
∗ + Σε) is an injective compact operator from Y to K∗, so that

its inverse is not bounded, however it is possible to prove that ΣxA
∗(ι∗(AΣxA

∗ + Σε))
−1

extends to a bounded operator from K∗ into X . With a slight abuse of notation, we denote
this extension in the same way, so that (15) makes sense for all y ∈ K∗.

• To prove this result, we first consider the minimization in (13) over all possibile affine maps,
which yields the so-called Linearized Minimum Mean Square Error (LMMSE) estimator of
x. Then, it is possible to show that such optimal affine functional is of the form Rh?,B? , for
suitable B? and h?. In a finite-dimensional context, such a result is a direct consequence
of the expression of the LMMSE estimator (see, e.g., [24, Theorem 12.1]). Theorem 3.1
generalizes this result to the infinite-dimensional case.

• In the case of Gaussian random variables, the expression of the optimal regularizer R?
coincides with the maximum a posteriori (MAP) estimator. Nevertheless, our result does
not require any assumptions on x and ε being Gaussian (see the discussion in [19, 20]).

• The minimum expected loss can be computed as

L(h?, B?) = tr
(
Σ1/2
x (Σ1/2

x A∗Σ−1
ε AΣ1/2

x + IX)−1Σ1/2
x

)
, (16)

as it is reported in Appendix A.3.

• It is worth observing that the optimal regularization parameters B? = Σ
1/2
x and h? = µ are

independent of A and ε, and depend only on the mean and the covariance of x.

4 Finding the optimal regularizer: the sample error

The computation of the optimal regularizer proposed in the previous section through the minimization
of the expected loss L requires the knowledge of the joint probability distribution ρ of x and y. In
this section, we suppose that ρ is unknown, 2 but we have access to a sample z = {(xj , yj)}mj=1 of
m pairs (xj , yj) ∈ Z = X ×K∗ drawn independently from the joint probability distribution ρ, and
we study how to learn an estimator (ĥz, B̂z) of the optimal parameters (h?, B?). We propose two
alternative ways to learn an estimator based on a training sample z. For the ease of notation, from
now on we omit the dependence on z.

2More precisely, we only assume that Σε is known.
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1. Supervised learning: (ĥS , B̂S) is determined by minimizing the empirical risk L̂, namely

(ĥS , B̂S) = argmin
(h,B)∈Θ

L̂(h,B), L̂(h,B) =
1

m

m∑
j=1

‖Rh,B(yj)− xj‖2X , (17)

where Θ is a suitable subset of X × L(X,X).

2. Unsupervised learning: since the best parameters are h? = µ and B? = Σ
1/2
x , a natural estimator

is provided by means of the sample {xj} alone as follows:

ĥU = µ̂ =
1

m

m∑
j=1

xj , B̂U = Σ̂x
1/2
, Σ̂x =

1

m

m∑
j=1

(xj − µ̂)⊗ (xj − µ̂). (18)

In both cases, we evaluate the quality of (ĥ, B̂) in terms of its excess error L(ĥ, B̂)− L(h?, B?).

4.1 Supervised learning: empirical risk minimization

There exist several techniques to show the convergence of the empirical risk minimizer to the optimal
parameter, involving tools such as the VC dimension and the Rademacher complexity (see, e.g., [44]),
which require some compactness assumption on Θ. Here, we fix a Hilbert space H with a compact
embedding j : H → X having dense range. For %1 > 0, set

Θ1 = {j(h̄) : h̄ ∈ H, ‖h̄‖H ≤ %1}, Θ2 = {jB̄j∗ : B̄ ∈ HS(H∗, H), ‖B̄‖HS(H∗,H) ≤ %1}, (19)

and define Θ as the set of pairs {(h,B) ∈ Θ1 ×Θ2 : B is positive}. Here, HS(H∗, H) denotes the
space of Hilbert-Schmidt operators from H∗ to H . We further assume that

a) the map j can be decomposed as j = j2 ◦ j1, where j1 : H → X and j2 : X → X are compact
and satisfy

sk(j1) . k−s, s > 0, being sk(j1) the singular values of j1; (20)

whereas j2 is such that
Im(Aj2) ⊆ Im(Σει). (21)

b) The optimal parameter (h?, B?) = (µ,Σ
1/2
x ) belongs to Θ.

Assumption a), and in particular (20), allows us to explicitly compute the covering numbers, whereas
(21) ensures that Assumption 2.8 holds uniformly for each positive operator B ∈ Θ2. For example,
when H = Hσ1(T1) and X = Hσ2(T1) are Sobolev spaces on the one-dimensional torus, assump-
tion a) is satisfied if s = σ1 − σ2 > 0. As a consequence, assumption b) can be interpreted as an
a priori regularity assumption on the problem. Such hypothesis can be relaxed by introducing the
approximation error, namely, the rate at which the space Θ approximates X ×L(X,X) as the radius
%1 grows to∞. Such an analysis, which easily follows from the range-density property of j, is not
treated here.

Finally, we assume that both the inputs and the outputs are bounded, i.e.

supp(ρ) ⊂ BZ(%2), a ball of Z = X ×K∗ of radius %2. (22)

Theorem 4.1. Under the above conditions, let (ĥS , B̂S) be defined by (17) and take τ > 0. We have

|L(ĥS , B̂S)− L(h?, B?)| ≤
(
c1 + c2

√
τ√

m

)1− 1
2s′+1

, m ≥ m0, (23)

with probability exceeding 1− e−τ , being 0 < s′ < s, where c1, c2,m0 are independent of m and τ .

The proof of Theorem 4.1 is reported in the Appendices A.4 and A.5. The approach is inspired by
[12, Proposition 4] and is suited for a much broader class of learning problems: by adapting Lemma
A.6, it is possible to extend the current approach to non-quadratic regularization functionals.

A prominent example of H satisfying (20) comes from Sobolev spaces. Consider, e.g., X = L2(Td),
where Td is the d-dimensional torus, and H = Hσ(Td). If σ > 0, the embedding of H in X is
compact, and its singular values show a polynomial decay (20) with s = σ/d.
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4.2 Unsupervised learning: empirical mean and covariance

As pointed out in (18), it is possible to recover an approximation of the optimal parameter (h?, B?)
only by taking advantage of a sample of the output variable {xj}mj=1. Since this technique does not
require matched couples of inputs and outputs, we refer to it as an unsupervised learning approach.
In order to prove a bound in probability for the sample error, in this section we assume that x is a
κ-sub-Gaussian random vector, i.e.,

∀v ∈ X, 〈x, v〉X is a real sub-Gaussian r.v., i.e. ‖〈x, v〉X‖p ≤ κ
√
p‖〈x, v〉X‖2, ∀p > 1, (24)

where ‖〈x, v〉‖pp = E[|〈x, v〉|p]. It its known [48] that E[‖x‖p] is finite for all p > 0, so that x
has finite mean and its covariance operator Σx is trace-class. Gaussian random variables are a
particular instance of sub-Gaussian random variables by Fernique’s theorem [7]. Note that, in
infinite-dimensional spaces, bounded random vectors in general are not sub-Gaussian.

We further assume that the injective operator Σε has a bounded inverse, thus Σε + AΣxA
∗ is

invertible. This is satisfied for example if ε is the white-noise, since Σε = I. We also require that
A∗(ι∗(Σε +AΣxA

∗))−1, defined on ι∗(Y ) ⊂ K∗, extends to a bounded operator from K∗ into X .

Theorem 4.2. Under the above conditions, let (ĥU , B̂U ) be defined by (18) and take τ > 0. Then,

|L(ĥU , B̂U )− L(h?, B?)| ≤ c3 + c4
√
τ√

m
, m ≥ m0, (25)

with probability exceeding 1− e−τ , where m0, c3 and c4 depend only on Σx, Σε and A.

The proof of Theorem 4.2 is based on several concentration estimates reported in Appendix A.6. The
rates we obtain can be meaningfully compared with recent results in supervised learning: see [6, 35].

5 Numerical simulations

We report some numerical results obtained from the supervised and unsupervised strategies for a
denoising problem, using synthetic data. The goal of these experiments is twofold: on one hand, we
want to study the asymptotic properties of the regularizers learned with the techniques proposed in
Section 4 as the sample size m grows, verifying Theorems 4.1 and 4.2. On the other hand, we want
to assess that those properties, obtained in an infinite-dimensional setting, do not suffer from the
curse of dimensionality. We do so by introducing finer and finer discretizations, and showing that the
theoretical bounds do not degrade as the dimension of the problem increases.

5.1 Problem formulation and discretization

We consider a denoising problem on X = Y = L2(T1), being T1 = R/Z the one-dimensional torus,
which consists in determining a signal x from the noisy measurement y = x+ ε and thus corresponds
to the case A = I . We define a statistical model both for ε and for x, which we use for the generation
of the training data. In the learning process, though, we do not take advantage of the knowledge
of the introduced probability distributions, apart from the covariance operator of the noise Σε. In
accordance with Assumption 2.4, we assume that ε is a random process on Y , and in particular we
consider a white noise process, i.e. with zero mean and Σε = σ2I . We consider a noise level of 5%,
namely, the standard deviation σ is set to the 5% of the peak value of the average signal. In different
tests, we employ different white noise processes with different distributions, including the Gaussian
(cfr. Example 2.7) and the uniform distributions. Regarding x, we assume a Gaussian distribution
with fixed mean µ and covariance Σx, where µ = 1− |2x− 1| and Σ

1/2
x is a convolution operator.

In order to discretize the described problem, we fix N > 0 and approximate the space X by means of
the N−dimensional space generated by a 1D-pixel basis. As a consequence, the functions in X and
Y are approximated by vectors in RN , and the linear operators by matrices in RN×N . More details
on the discretizations and on the random process generation are reported in Appendix A.7.

5.2 Implementation and results

We denote θ = (h,B). The workflow of the numerical experiments is described as follows:
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(a) (b) (c)

Figure 1: Decay of the excess risks |L(θ̂S)− L(θ?)| and |L(θ̂U )− L(θ?)| in three different cases:
Gaussian variable x and (a) Gaussian white noise ε, (b) uniform white noise ε, and (c) white noise ε
uniformly distributed w.r.t. the Haar wavelet transform. We also report standard deviation error bars.

(a) (b) (c)

Figure 2: Comparison of decay the excess risks |L(θ̂S)− L(θ?)| and |L(θ̂U )− L(θ?)| with N = 64
and N = 256, in same three statistical models as in Figure 1.

1. Fix the discretization size N , define the optimal regularizer Rθ? . Compute L(θ?).

2. For each selected value of the sample size m,

• generate the samples {xj}mj=1, {εj}mj=1;

• minimize the empirical risk L̂(θ) to find θ̂S ;
• compute the empirical mean and covariance µ̂, Σ̂x to find θ̂U ;
• compute the excess risks |L(θ̂S)− L(θ?)| and |L(θ̂U )− L(θ?)|.

3. Show the decay of both computed quantities as m increases.

We compute the mean squared errors L(θ?), L(θ̂S) and L(θ̂U ) according to the definition of L, thus
avoiding the use of a test set. Moreover, we perform the minimization of the empirical risk analytically,
thanks to the explicit expression of the regularization functional provided by (12) (see Appendix
A.7). As a final remark, the generalization bounds in Theorems 4.1 and 4.2 can be reformulated
in expectation. Thus, to verify the expected decay, we repeat the same experiment 30 times, with
different training samples for each size m and taking the average in each repetition.3

In Figure 1, we present the outcome of the numerical experiments, conducted under different statistical
models for x and ε. The sample size ranges between 3 · 103 and 3 · 105. In all the presented scenarios,
the decay of the excess risk both in the supervised and in the unsupervised cases agrees with the
theoretical estimates, showing a decay of the order 1/

√
m. Finally, in Figure 2, we show that the

theoretical results are equivalently matched by numerics when the discretization size is increased.

Additional details regarding the results of the numerical experiments are reported in Appendix A.7.
Moreover, in Appendix A.8 we replicate the presented numerical study for a different example,

3All computations were implemented with Matlab R2019a, running on a laptop with 16GB of RAM and 2.2
GHz Intel Core i7 CPU. All the codes are available at https://github.com/LearnTikhonov/Code
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namely, a deconvolution problem for 1D signals. In this case, A is a convolution operator with respect
to a continuous kernel, whose inverse is in general unbounded.

6 Conclusions and limitations

We studied the problem of learning a regularization functional for an inverse problem between infinite
dimensional spaces. This problem has received huge interest in recent years due to the successes in
several imaging modalities. Our work provides theoretical support to machine learning approaches in
sensitive applications such as medical imaging.

We have considered the case of a linear inverse problem that is solved via generalized Tikhonov
regularization. This involves an unknown operator B and a signal h, both to be learned from data. We
proposed two learning strategies, one supervised and one unsupervised. Surprisingly, we found that
the regularizer learned with the unsupervised strategy has the same (or slightly better) generalization
bounds than the supervised one. Furthermore, the unsupervised approach does not need the knowledge
of the forward operator A nor that of the distribution of the noise ε. This motivates the development
of more advanced unsupervised approaches to the problem, e.g. with deep learning methods (see
[26, 27, 34, 36, 39]).

The analysis presented here was possible thanks to the simple form of the regularizer. Our work does
not cover, for instance, the case of sparsity promoting regularization functionals [18] or more general
convex or non-convex penalty terms arising from deep learning methods. Some results regarding
optimal (non-quadratic) regularizers associated with different priors can be found e.g. in [19, 20, 9],
which nevertheless deal with a finite-dimensional setting. Extensions to more general regularizers
will be the subject of future studies.
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