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ABSTRACT

While momentum-based optimization algorithms are commonly used in the no-
toriously non-convex optimization problems of deep learning, their analysis has
historically been restricted to the convex and strongly convex setting. In this article,
we partially close this gap between theory and practice and demonstrate that virtu-
ally identical guarantees can be obtained in optimization problems with a ‘benign’
non-convexity. We show that these weaker geometric assumptions are well justified
in overparametrized deep learning, at least locally. Variations of this result are
obtained for a continuous time model of Nesterov’s accelerated gradient descent
algorithm (NAG), the classical discrete time version of NAG, and versions of NAG
with stochastic gradient estimates with purely additive noise and with noise that
exhibits both additive and multiplicative scaling.

1 INTRODUCTION

Accelerated first order methods of optimization are the backbone of modern deep learning. So far,
theoretical guarantees that momentum-based methods accelerate over memory-less gradient-based
methods have been limited to the setting of convex objective functions. Indeed, recent work of Yue
et al. (2023) shows that the assumption of convexity cannot be weakened as far as, for instance, the
Polyak-Lojasiewicz (PL) condition ∥∇f∥2 ≥ 2µ (f − inf f), which has been used to great success
in the study of gradient descent algorithms without momentum for instance by Karimi et al. (2016).

Optimization problems in deep learning are notoriously non-convex. Initial theoretical efforts focused
on approximating the training of very wide neural networks by the parameter optimization in a related
linear model: The neural tangent kernel (NTK). Jacot et al. (2018); E et al. (2019) show that for
randomly initialized parameters, gradient flow and gradient descent trajectories remain uniformly
close to those which are optimized by the linearization of the neural network around the law of its
initialization. This analysis was extended to momentum-based optimization by Liu et al. (2022).

On the other hand, strictly negative (but small) eigenvalues of the Hessian of the loss function have
been observed close to the set of global minimizers experimentally by Sagun et al. (2017; 2018);
Alain et al. (2018) and their presence has been explained theoretically by Wojtowytsch (2023). This
poses questions about the use of momentum-based optimizers such as SGD with (heavy ball or
Nesterov) momentum or Adam in the training of deep neural networks. In this work, we show that
acceleration can be guaranteed for Nesterov’s method under much weaker geometric assumptions
than (strong) convexity, in particular functions with non-unique and non-isolated minimizers and
whose Hessian may have negative eigenvalues up to a certain size.

In the remainder of this section, we briefly review how our work fits into the literature. In Section
2, we precisely state the assumptions under which we prove convergence at an accelerated rate and
demonstrate how our work connects to optimization in deep learning. Our main results are presented
in Section 3, both in discrete and continuous time. We discuss the implications and further directions
in Section 4. Some technical details are postponed to the Appendix.

1.1 PREVIOUS WORK

Gradient-based optimization was first proposed by Cauchy et al. (1847) in form of the gradient
descent algorithm. Over a century later, momentum-based ‘accelerated’ algorithms were introduced
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by Hestenes & Stiefel (1952) for convex quadratic functions and by Nesterov (1983) for general
smooth and convex objective functions. Nesterov’s work was generalized to non-smooth convex
optimization by Beck & Teboulle (2009) and to stochastic smooth convex optimization among others
by Nemirovski et al. (2009); Shamir & Zhang (2013); Jain et al. (2019); Laborde & Oberman (2020)
for additive noise and by Liu & Belkin (2018); Even et al. (2021); Vaswani et al. (2019); Gupta et al.
(2023) for multiplicatively scaling noise. See also (Ghadimi & Lan, 2012; 2013) for more information
on accelerated stochastic gradient methods. While the heavy ball method is used extensively in
deep learning, Lessard et al. (2016); Goujaud et al. (2023) prove that it does not achieve accelerated
convergence for smooth strongly convex functions in general and may even diverge in some cases.

Accelerated gradient methods have been studied e.g. by Josz et al. (2023) under much weaker
regularity conditions and weaker geometric conditions than (strong) convexity, namely the Kurdyka-
Lojasiewicz (KL) condition. Under those weaker assumptions, it is at best possible to prove con-
vergence to a local minimizer at a non-acclerated rate: Under the (comparatively weak) Polyak-
Lojasiewicz (PL) condition, a special case of the KL condition, Yue et al. (2023) show that it is
not possible to obtain an accelerated rate of convergence. A slower linear rate of convergence
is established by Apidopoulos et al. (2022) in continuous time under the assumption that the ob-
jective function f satisfies has an L-Lipschitz continuous gradient and satisfies the PL-inequality
2µ
(
f − inf f

)
≤ ∥∇f∥2. The rate of convergence is

√
µ
(√

L/µ−
√

L/µ− 1
)
=

√
L

(
1−

√
1− µ

L

)
≈

√
L · µ

2L
=

µ

2
√
L
.

A stable time-discretization can generally be attained with effective step-size 1/
√
L for momentum

methods as we explain below, suggesting that this corresponds to convergence at the non-accelerated
linear rate (1− µ/2L)k in discrete time. To the best of our knowledge, no proof has been given yet.

There have been several efforts to find a reasonable relaxation of convexity for which accelerated
convergence can still be achieved. Hinder et al. (2020); Fu et al. (2023); Wang & Wibisono (2023);
Guminov et al. (2023) consider acceleration under the weaker condition that the objective function is
γ-quasar or (γ, µ)-strongly quasar-convex, i.e. the inequality

⟨∇f(x), x− x∗⟩ ≥ γ
(
f(x)− f(x∗) +

µ

2
∥x− x∗∥2

)
holds for any x ∈ Rd and any minimizer x∗ of f . Compared to (strong) convexity, it relaxes the
condition in two ways: It only considers pairs (x, x∗) rather than general pairs of points x, y ∈ Rd,
and it introduces a factor γ into the inequality which may be strictly smaller than one. Still, it has
geometric implications which may be too strong in the context of deep learning: In the strongly quasar-
convex case, minimizers are unique, and in the quasar-convex case, sub-level sets are star-shaped
with respect to any minimizer x∗ since f(tx+ (1− t)x∗) is monotone increasing on [0, 1].

Accelerated rates of convergence were obtained by Necoara et al. (2019) in discrete time and by
Aujol et al. (2022) in continuous time under the assumption that the objective function is both convex
and quasi-strongly convex, and that it has a unique minimizer. Closest to our work is (Hermant
et al., 2024), where convergence is studied under a similar lower bound on the ‘curvatures’ of the
objective function (essentially a lower bound on the eigenvalues of the Hessian), but also under the
assumption of unique minimizers. Hermant et al. (2024) only consider the deterministic case, but
also in the composite non-smooth setting. See also (Aujol et al., 2024, Table 1) for a great overview
of theoretical guarantees of acceleration without strong convexity.

In general deep learning applications, the set of minimizers of the loss function is a (generally curved)
manifold, and tangential motion to the manifold can have important implications on the implicit
bias of an algorithm (Li et al., 2021; Damian et al., 2021). Any notion that takes into account all
minimizers is quite rigid for such tasks. A more realistic assumption is the ‘aiming condition’ of Liu
et al. (2024) that

⟨∇f(x), x− π(x)⟩ ≥ γ
(
f(x)−min f

)
where π(x) is the closest minimizer to the point x. This notion enjoys much greater flexibility in
terms of the global geometry of f . Liu et al. (2024) investigate the convergence of gradient flows
under the aiming condition, but not that of momentum methods.

Our study can be seen as combining geometric ideas pertaining to (1, µ)-quasar convexity and the
aiming condition. To the best of our knowledge, it is the first study which takes into account tangential
motion along the set of minimizers and obtains an accelerated rate of convergence.
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1.2 OUR CONTRIBUTION

In overparametrized learning, the set of minimizers of a loss function is a submanifold of high
dimension in a usually much higher-dimensional space. Unless the manifold of minimizers is a linear
space, the Hessian of the loss function is geometrically required to have negative eigenvalues in any
neighborhood of the set of a minimizer where the manifold is curved. Still, accelerated methods
in first order optimization have been found to be highly successful in deep learning. A common
heuristic has been that as long as the objective function is convex in the direction towards the set
of minimizers, small negative eigenvalues in directions parallel to the set of minimizers can safely
be ignored: Tangential drift along the set of minimizers should not affect the decay of the objective
function significantly. We prove that this intuition indeed applies in a continuous time model for
gradient descent with momentum (Theorems 7 and 8) and for Nesterov’s time-stepping scheme
(Theorems 11, 13 and 14) in deterministic optimization and stochastic optimization with bounded
noise. With ‘multiplicative (state-dependent) noise’ motivated by overparametrized deep learning,
we prove an analogous statement for a modified version of Nesterov’s algorithm (Theorem 15).

Our assumption in (1) is equivalent to quasi-strong convexity, but notably we do not make any
additional assumptions about the convexity of the objective function or uniqueness of minimizers
unlike prior works. The main technical challenge in this more general setting is to control the
movement in tangential direction to the set of minimizers and the ‘drift’ in directions where the
objective function is negatively curved. This requires a modification of the usual Lyapunov function
and a more careful control of inequalities in the proof to get sharp estimates.

2 SETTING

2.1 ASSUMPTIONS

We always make the following assumptions on the regularity and geometry of the function f and its
set of minimizers.

1. The objective function f : Rd → R is bounded from below, C1-smooth and its gradient
∇f : Rd → Rd is locally Lipschitz continuous.

2. The set M = {x ∈ Rd : f(x) = infz∈Rd f(z)} of minimizers of f is a (non-empty)
k-dimensional C2-submanifold of Rd for k < d.

3. There exists an open sub-level set Uα = {x ∈ Rd : f(x) < α} for some α > 0 such that
for every x ∈ Uα there exists a unique z ∈ M which is closest to x. We denote z as π(x)
and assume that the closest point projection map π : Uα → M is C1-smooth.

4. f is first order µ-strongly-convex with respect to the closest minimizer in Uα, i.e.

∇f(x) ·
(
x− π(x)

)
≥ f(x)− f

(
π(x)

)
+

µ

2
∥x− π(x)∥2 ∀ x ∈ Uα. (1)

These assumptions are significantly weaker than the assumption of strong convexity, but for instance
strong enough to imply a PL inequality with constant µ (see Appendix C). As illustrated in Section
2.3, they match many geometric features of overparametrized deep learning. For an analysis in
discrete time, we will make stronger quantitative assumptions.
Lemma 1. Let M be a C2-submanifold of Rd and U an open set containing M such that there exists
a unique closest point projection π : U → M. Let x : (−ε, ε) → U a C1-curve and z(t) := π ◦ x(t).
Then ⟨ẋ, ż⟩ ≥ 0 on (−ε, ε).

Geometrically, Lemma 1 states that the closest point projection z of a point x does not move in the
opposite direction when we move x. Despite its geometric simplicity, Lemma 1 is non-trivial and a
crucial ingredient in our proofs. Its proof is given in Appendix A.

2.2 SIMPLE EXAMPLES

We give a number of examples which are covered by these assumptions where f is not merely a
µ-strongly convex function. The first example illustrates how subtle the interplay between geometric
conditions is, even in one dimension.
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Figure 1: We visualize f from Example 2 in the top row and its derivative in the bottom row
with R = 2 and ε = 0.2 (left), ε = 0.1 (middle) and ε = 0.05 (right). In the left plot, f has
many local minimizers as the derivative crosses 0 an infinite number of times. In the middle plot, f
satisfies the PL condition, but not the first order strong convexity condition with respect to the unique
global minimizer. In the right plot, f is strongly first-order convex with respect to the unique global
minimizer (which implies the PL condition). In all plots, f is non-convex since f ′ is non-monotone.

Example 2. For ε,R > 0, consider the function f(x) = x2

2 + ε
2 x

2 sin(2R log(|x|). The function
f has a unique global minimizer at x∗ = 0 and its derivative f ′ is a Lipschitz-continuous function
with Lipschitz-constant 1 + ε

√
1 + 5R2 + 4R4. Furthermore, f has an infinite number of strict local

minimizers if ε
√
1 +R2 > 1, but satisfies favorable geometric properties under stronger assumptions:

PL condition µ-sc wrt minimizer µ-strongly convex

Must be < 1 ε
√
1 +R2 ε

√
1 + 4R2 ε

√
1 + 5R2 + 4R4

Constant (1− ε
√
1 +R2)2/(1 + ε) 1− ε

√
1 + 4R2 1− ε

√
1 + 5R2 + 4R4

Evidently, the geometric conditions and associated constants are quite different if R ≫ 1. See Figure
1 for an illustration of f . Further details for the example and a comparison to less common notions
such as quasar-convexity are given in Appendix C. We note that the example exploits the fact that f is
C1,1- but not C2-smooth: For C2-functions, Rebjock & Boumal (2023) prove that the PL condition
locally implies strong convexity with respect to the closest minimizer.

The next example is trivial, but useful to illustrate why tangential movement should not matter.
Example 3. Let f̃1 : Rd−k → [0,∞) be a non-negative µ-strongly convex function such that
f̃1(0) = 0 and let f̃2 : Rk → [a,∞) be a continuous function for a > 0. Define

f : Rd → R, f(x) = f̃2(x1, . . . , xk) · f̃(xk+1, . . . , xd).

Then f is aµ-strongly convex with respect to the closest minimizer π(x) = (x1, . . . , xk, 0, . . . , 0),
but not strongly convex since the minimizer is non-unique. Similarly, if A : Rk → R(d−k)×(d−k) is a
function which takes values in the set of symmetric matrices with eigenvalues larger than µ, then

f : Rd → R, f(x) =
1

2
(xk+1, . . . , xd)A(x1,...,xk) · (xk+1, . . . , xd)

T

is µ-strongly convex with respect to the closest minimizer, but generally non-convex.
Example 4. Let M be a compact Ck-submanifold of Rd, k ≥ 2 and d(x) := dist(x,M). Then there
exists a ‘tubular neighborhood’ Uε = {x ∈ Rd : d(x) < ε} on which d is Ck-smooth and the unique
closest point projection π is well-defined and Ck−1-smooth – see Appendix A.

Assume that f : Uε → R is given by f(x) = µ
2 d(x)2 (and extended arbitrarily to Rd \ Uε). Recall

that ∇d(x) is the unit vector pointing towards the closest point in M at all points x where the distance
function is smooth, so in particular ∥∇d(x)∥ = 1. Thus π(x) = x− d(x)∇d(x) and

∇f(x) · (x− π(x)) = µd(x)∇d(x) ·
(
x− (x− d(x)∇d(x))

)
= µd2(x) ∥∇d(x)∥2

=
µ

2
d2(x) +

µ

2
d2(x) = f(x)− f(π(x)) +

µ

2
∥x− π(x)∥2

4
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Figure 2: Left: The dashed red line connects two minimizers of the function f . Along the line, f
must achieve an interior local maximum. At this point, the Hessian D2f cannot be positive definite.
Middle, Right: Optimization trajectories for Nesterov’s method (top) and its associated energy curve
(bottom). The selection of limit point may depend crucially on optimization parameters: In the middle
plot, we take 800 steps with stepsize 10−2 while on the right, we take 8,000 steps with stepsize 10−3

from the same initial point. The decay of f(xt) is similar for both trajectories, but the limit points on
the manifold of minimizers are far apart. The objective function is f(x, y) = (x2/2 + 3y2 − 1)2.

for x ∈ Uε, i.e. f is first order µ-strongly convex with respect to the closest minimizer.

On the other hand, f is not convex unless M is. Otherwise, take x1, x2 ∈ M and t ∈ (0, 1) such
that tx1 + (1− t)x2 /∈ M. Then the map t 7→ d2

(
tx1 + (1− t)x2

)
attains a maximum inside the

interval (0, 1), meaning that d2 cannot be convex.

This consideration more generally shows that if the manifold of minimizers M of a function f is not
perfectly straight, then the objective function cannot be convex – see also Figure 2. More precisely:
Lemma 5. (Wojtowytsch, 2023, based on Appendix B) Let f : Rd → R be a C2-function and
M = {x ∈ Rd : f(x) = inf f}. Assume that M is a k-dimensional C1-submanifold of Rd, z ∈ M,
TzM the tangent space at z, r > 0. If M∩Br(z) is not the same set as (z + TzM) ∩Br(z), then
there exists x ∈ Br(z) such that D2f(x) has a strictly negative eigenvalue.

2.3 CONNECTION TO DEEP LEARNING

An important class of objective functions are those which combine the geometric features of Examples
3 and 4. Such functions can be seen as geometric prototypes for loss functions in overparametrized
regression problems, such as in deep learning. Namely, consider a parametrized function class
h : Rp × Rd → R of weights w ∈ Rp and data x ∈ Rd (e.g. a neural network) and the mean squared
error (MSE) loss function

Ly : Rp → [0,∞), Ly(w) =
1

2n

n∑
i=1

(
h(w, xi)− yi

)2
, y = (y1, . . . , yn) ∈ Rn. (2)

If h is sufficiently smooth in w and for every vector y ∈ Rn, there exists wy ∈ Rp such that
Ly(wy) = 0, then Cooper (2021) showed that for Lebesgue-almost all y ∈ Rn, the set My = {w ∈
Rp : Ly(w) = 0} is a p − n-dimensional submanifold of Rp. Essentially, the solution set of n
equations h(w, xi) = yi in p variables is p− n-dimensional, much like when h is linear in w.

Cooper (2021) demonstrates that the expressivity and smoothness assumptions provably apply to
parametrized function classes h(w, x) of sufficiently wide neural networks with analytic activation
function such as tanh or sigmoid. Cooper (2021)’s proof involves the regular value theorem and
Sard’s theorem to show that all gradients ∇hw(w, xi) are linearly independent on almost every level
set My . As a byproduct, this implies that the Hessian of the loss function

D2L(w) =
1

n

n∑
i=1

((
h(w, xi)− yi

)︸ ︷︷ ︸
=0

D2
wh(w, xi) +∇wh(w, xi)⊗∇wh(w, xi)

)
has full rank n at every x ∈ My (for almost every y). Thus, all n eigenvalues in direction orthogonal
to M are non-zero. We prove the following in Appendix A. The same connection has been made e.g.
by Rebjock & Boumal (2023) for C2-functions and overparametrized regression problems.
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Figure 3: We investigate the convexity of the function ϕ(t) = L(w + tg) for a point w which
is very close to the set of global minimizers of a loss function L as in (2) and the direction g =
∇L(w)/∥∇L(w)∥. We plot ϕ(t) (left), the second derivative of ϕ (middle), and an estimate of the
parameter µ of strong convexity with respenct to the minimizer (right) for t ∈ [−1, 1]. Evidently, ϕ
is strongly convex in a neighborhood of the set of global minimizers and the first order convexity
inequality with respect to the minimizer along the line yields (in some cases significantly) larger
constants than the parameter of strong convexity found by the second derivative. Different colors
correspond to different runs with different random initialization.

Lemma 6. Assume that f : Rd → R is C2-smooth and that M = {x ∈ Rd : f(x) = inf f} is a
closed k-dimensional C2-submanifold of Rd (i.e. compact and without boundary). If D2f(x) has
rank d− k everywhere on M, then there exist µ, α > 0 such that there exists a C1-smooth closest
point projection π : Uα → R with Uα = {x : f(x) < α} as in Section 2.1 and (1) holds for f and π.

In particular, f,M meet all conditions in Section 2.1. Note that by Lemma 5, the loss function f
cannot be convex since a compact manifold cannot be perfectly straight everywhere.

Wojtowytsch (2023, Theorem 2.6) shows that the assumption that M is compact is a simplification
and generally does not apply in deep learning. Local versions of Lemma 6 could be proved with
µ, α which are positive functions on the manifold, but not necessarily bounded away from zero.
Naturally, this suffices in all cases where we provably remain in a local neighborhood in the course
of optimization. We eschew this greater generality for the sake of geometric clarity and commit the
pervasive sin of optimization theory for deep learning: We make global assumptions which can only
be guaranteed locally. For a further discussion of geometric conditions in optimization and deep
learning, see also Appendix C.3. We illustrate in Figure 3 that our assumptions are locally reasonable
in deep learning – details are provided in Appendix C.3.

3 MAIN CONTRIBUTIONS

3.1 OPTIMIZATION IN CONTINUOUS TIME

In this section, we study a continuous time version of gradient descent with (heavy ball or Nesterov)
momentum derived by Su et al. (2016). Namely, we study solutions of the heavy ball ODE

ẍ+ γ ẋ = −∇f(x), x(0) = x0, ẋ(0) = 0. (3)

This is a popular model for the study of accelerated methods in optimization which avoids some
of the technicalities of discrete time stepping algorithms while relying on the same core geometric
concepts. Our main result is the following.
Theorem 7. [Continuous time convergence guarantee] Assume that f satisfies the assumptions of
Section 2.1, γ = 2

√
µ and that x0 satisfies f(x0)− inf f < α where α is as in Section 2.1. Then there

exists a unique solution x(t) = xt of (3) and xt ∈ Uα for all t > 0. Furthermore, x is C2-smooth
and

f(xt)− inf
z∈Rd

f(z) ≤ e−
√
µ t
(
f(x0)− inf f +

µ

2
dist(x0,M)2

)
.

The proof can be found in Appendix B. There, we prove that the function

L(t) = f(xt)− f(π(xt)) +
1

2

∥∥ẋt +
√
µ
(
xt − π(xt)

)∥∥2
6
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satisfies L(t) ≤ e−
√
µtL(0). The function L can be considered as a modified energy with potential

energy f − inf f + µ
2 ∥x − π(x)∥2 and kinetic energy 1

2∥ẋ∥
2, but with a more complex quadratic

term in which velocity and position interact. Going back to (Su et al., 2016), this strategy of proof
is common in convex optimization. Our contribution is the combination with Lemma 1 to control
additional terms in the more general geometric setting.

Venturi et al. (2019) show that loss functions in overparametrized deep learning do not have strict local
minimizers outside the set of global minimizers (under suitable assumptions). Under a quantitative
version of this geometric assumption, we obtain a global version of Theorem 7, albeit with less
precise quantitative guarantees.
Theorem 8. In addition to the assumptions of Section 2.1, assume that

1. for every R > inf f , there exists LR > 0 such that ∇f is Lipschitz-continuous with Lipschitz
constant LR on UR = {x : f(x) < R} and

2. there exists a value δ > 0 such that ∥∇f(x)∥2 < δ implies that f(x)− inf f < α
2 .

Then, for any x0 ∈ Rd, there exists T ≥ 0 such that x(t) ∈ Uα for all t ≥ T and such that
f(x(t))− inf f ≤

(
3α/2 + dist(xT ,M)2

)
e
√
µ(T−t) for all t > T .

The rate of decay is ‘accelerated’ since the rate of decay e−
√
µ t depends on the square root of the

surrogate of the convexity parameter rather than µ. For comparison, under the same assumptions, the
gradient flow would decay like e−µt (since first order strong convexity with respect to the closest
minimiser implies the PL condition). We see more clearly why we speak of acceleration in discrete
time (see the discussion below Theorem 11).
Remark 9. We conjecture that Theorem 7 remains valid if the set M is convex rather than a smooth
manifold. Then π is defined globally, but generally only Lipschitz-continuous and not smooth.

3.2 DETERMINISTIC OPTIMIZATION IN DISCRETE TIME

We can equivalently write the heavy ball ODE (3) as a system of two first order ODEs:{
ẋ = v
v̇ = −2

√
µ v −∇f(x),

x(0) = x0, v(0) = 0. (4)

We choose a time-stepping scheme

x′
n = xn +

√
ηvn, gn = ∇f(x′

n), xn+1 = x′
n − ηgn, vn+1 = ρ

(
vn −√

ηgn
)

(5)

for ρ =
1−√

µη

1+
√
µη = 1− 2

√
µη +O(η). In particular, we have

xn+1 = xn +
√
η vn +O(η), vn+1 = vn −√

η
(
2
√
µ vn +∇f(xn)

)
+O(η),

i.e. the scheme is a time discretization of the heavy ball system (4) with time-step size
√
η. The

square root is chosen for consistency with the literature. This scheme is a geometrically intuitive
reparametrization of Nesterov’s accelerated gradient descent algorithm, except for the fact that
Nesterov’s scheme typically begins with the gradient descent step rather than the momentum step.

In discrete time, we need to make additional quantitative regularity assumptions on both f and
the projection map π in order to ensure that the time step size is sufficiently small to recover the
continuous time behavior. Note that the Hessian of the objective function f is non-negative semi-
definite on the set of global minimizers M, i.e. it stands to reason that any negative eigenvalues of
D2f should be small, at least close to M. We note the following.
Lemma 10. Assume that D2f(x) ≥ −ε in a ball Br(x0). Then

⟨∇f(x), x− z⟩ ≥ f(x)− f(z)− ε

2
∥x− z∥2 ∀ x, z ∈ Br(x0).

This Lemma informs our geometric assumptions on the objective function f . For the closest point
projection π, we assume that π(x) = Px + x∗ for some (linear) orthogonal projection P onto a
subspace V ⊆ Rd and a fixed vector x∗ which is the unique element with the smallest Euclidean
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norm in the affine space Ṽ = x∗ + V . The assumption that the derivative Dπ ≡ P is constant is a
(very restrictive) geometric linearization, and relaxing it is an important subject of future research.
Still, it applies to many functions which are not convex, such as those with a unique minimizer (i.e.
P ≡ 0) or those in Example 3. With an eye towards stochastic optimization, we opt for the simpler
global geometric assumptions, see also Remark 16.
Theorem 11. Assume that f is L-smooth and the sequences xn, x

′
n, vn are generated according to

the Nesterov scheme (5) with parameters η ≤ 1/L and ρ = (1−√
µη)/(1 +

√
µη). Assume further

that there exists an affine linear projection map π(x) = Px+ x∗ such that

⟨∇f(x), x− π(x)⟩ ≥ f(x)− f(π(x)) +
µ

2
∥x− π(x)∥2. (6)

Finally, assume that for arbitrary x, v ∈ Rd we have

⟨∇f(x+ v), v⟩ ≥ f(x+ v)− f(x)− ε

2
∥v∥2 (7)

with some ε ≤
√
µ/η. Then

f(xn)− inf f ≤ (1−√
µη)n

[
f(x0)− inf f +

µ

2
∥x0 − π(x0)∥2

]
.

The proof is a more complicated version of that of Theorem 7 in which we control for difficulties
stemming from the time-discrete setting. It can be found in Appendix B.2.

In Theorem 11, we see more clearly than in Theorem 7 why we talk of acceleration: While gradient
descent would achieve a decay rate of (1−µ/L)n with the commonly proposed step size η = 1/L in
discrete time based on our assumptions, Nesterov’s method achieves decay like (1−

√
µ/L)n with

η = 1/L. If µ/L is close to zero, Nesterov’s method converges much faster than gradient descent.
Remark 12. Note that the negative eigenvalues of the Hessian may be as large as

√
µ/η in Theorem

11. If η is chosen as large as 1/L, this is a real restriction of the eigenvalues to the range [−
√
µL,L].

However, since the Hessian eigenvalues of an L-smooth function are in [−L,L] a priori, there is
no additional restriction if

√
µ/η ≥ L, i.e. if η < µ

L2 . This corresponds to the continuous time
guarantee of Theorem 7, which does not depend on the magnitude of the negative eigenvalues.

However, if the eigenvalues of D2f are as negative as −L, the step size η = µ/L2 is so small that
it does not improve upon gradient descent with step size η = 1/L since

√
µη = µ/L in this case.

Thus, if f is too far from being convex, acceleration may not be achievable in discrete time. Notably,
especially close to the set of global minimizers, we can picture ε as a small compared to L.

The condition on ε is less restrictive in Theorem 15 for the stochastic setting: As we contend with the
major challenge of stochastic gradient estimates, the best achievable rate of convergence becomes
much slower. In this setting, the additional complication of tangential drift becomes less dire.

3.3 STOCHASTIC OPTIMIZATION IN DISCRETE TIME

In typical applications in deep learning, the gradient ∇f of the objective function/loss function f is
prohibitively expensive to evaluate, but we have access to stochastic estimates of the true gradient. In
this section, in addition to the assumptions of Theorem 11, we assume that we are given a probability
space (Ω,A,Q) and a (measurable) function g : Rd × Ω → Rd such that

Eω∼Q
[
g(x, ω)

]
= ∇f(x), Eω∼Q

[
∥g(x, ω)∥2

]
< +∞ ∀ x ∈ Rd. (8)

For quantitative statements, a more precise assumption on the variance of the gradient estimates must
be made. We make the modelling assumption

Eω∼Q
[
∥g(x, ω)−∇f(x)∥2

]
≤ σ2

a + σ2
m∥∇f(x)∥2 ∀ x ∈ Rd. (9)

We call σa the additive standard deviation and σm the multiplicative standard deviation since they
resemble the prototypical example g = (1+ σmN1)∇f + σaN2 where N1, N2 are random variables
with mean zero and variance one. The case of purely additive noise (i.e. σm = 0) is classical and
hails back to the seminal article of Robbins & Monro (1951). The case of purely multiplicative noise
is much closer to reality in overparametrized learning: If all data points can be fit exactly, there is no
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noise when estimating the gradient of the empirical risk/training loss on the set of global minimizers.
It has received significant attention more recently by Liu & Belkin (2018); Bassily et al. (2018);
Vaswani et al. (2019); Even et al. (2021); Wojtowytsch (2023); Gupta et al. (2023) and others.

Let us consider the purely additive case first. We follow the scheme (5), but we replace the determin-
istic gradient ∇f(x′

n) by gn = g(x′
n, ωn) where ω0, ω1, . . . are drawn from Ω independently of each

other and the initial condition x0 with law Q. This framework allows e.g. for minibatch sampling
(but assumes that all batches are drawn independently from the dataset without correlation between
the batch in one timestep and the next).
Theorem 13. [Acceleration with additive noise] Assume that f, P are as in Theorem 11 and that
the g satisfies (8) and (9) with σm = 0. Assume that the sequences xn, x

′
n, vn are generated by the

scheme (5) for parameters η ≤ 1/L and ρ =
1−√

µη

1+
√
µη , but with the stochastic gradient estimates

g(x′
n, ωn) with independently identically distributed ωn in place of ∇f(x′

n). Then

E[f(xn)− inf f ] ≤ (1−√
µη)n

[
f(x0)− inf f +

µ

2
∥x0 − π(x0)∥2

]
+

σ2
a
√
η

√
µ

.

Thus Nesterov’s method reduces f(xn) below a ‘noise level’ proportional to σ2
a
√
η/

√
µ at a linear

rate (1 − √
µη)n in the presence of additive noise. The analogous bound for stochastic gradient

descent was obtained (in the more general setting of PL functions) in (Karimi et al., 2016, Theorem
4) as

E[f(xn)− inf f ] ≤ (1− µη)k E
[
f(x0)− inf f

]
+

Lσ2
aη

2µ
.

With the largest admissible learning rate η = 1/L, the noise level for GD is σ2
a/2µ compared to the

usually much lower value σ2
a/
√
Lµ for Nesterov’s method. Keeping a memory of previous gradient

estimates facilitates ‘averaging out’ the random noise.

With a fixed positive learning rate η, generally f(xn) ̸→ 0. We therefore consider a sequence of
decreasing step sizes.
Theorem 14. [Additive noise and decreasing step size] Assume that f, g are as in Theorem 13 and
that the sequences xn, x

′
n, ρn are generated by the scheme

x′
n = xn +

√
ηn−1vn, xn+1 = x′

n − ηngn, vn+1 = ρn(vn −√
ηngn)

for parameters ηn = µ
(n+

√
Lµ+1)2

, ρn =
1−√

µηn

1+
√
µηn

. If ε ≤
√
µ/η0 = µ+

√
Lµ, then

E
[
f(xn)− inf f

]
≤

√
L
µ E

[
f(x0)− inf f + 1

2∥x0 − π(x0)∥2
]
+

σ2
a

µ log
(
1 + n

√
µ/L

)
n+

√
L/µ

.

Note that the ‘physical’ step size
√
ηn decays as 1/n and thus satisfies the (non-)summability

conditions of Robbins & Monro (1951). We can allow for larger ε by choosing ηn = µ/(n + n0)

with n0 >
√
L/µ− 1 for a smaller initial step size.

If σm > 0, Liu & Belkin (2018) and Gupta et al. (2023) show that Nesterov’s scheme no longer
achieves acceleration. For general noise, we therefore consider a modified Nesterov scheme:

x′
n = xn +

√
αvn, xn+1 = x′

n − ηgn, vn+1 = ρn
(
vn −

√
αgn) (10)

where again gn = g(x′
n, ωn). The scheme (10) was introduced as the Accelerated Gradient method

with Noisy EStimators method (AGNES) by Gupta et al. (2023) in convex and strongly convex
optimization with purely multiplicative noise. Compared to Nesterov’s algorithm, AGNES has an
additional parameter α which is required to adapt to the multiplicative variance, at least if σm ≥ 1.
Here, we generalize the work of Gupta et al. (2023) by both allowing noise with general scaling for
σa, σm > 0 and relaxing the convexity assumption on f .
Theorem 15. [Additive and multiplicative noise] Assume that f, P, x∗ are as in Theorem 11 and
that g is a family of gradient estimators such that (8) and (9) hold for some σa, σm ≥ 0. Assume that
the sequences xn, x

′
n, vn are generated by the AGNES scheme (10) with parameters

0 < η ≤ 1

L(1 + σ2)
, ρ =

1−
√

µη
1+σ2

m

1 +
√

µη
1+σ2

m

, α =
1−

√
µ(1 + σ2

m)η

1−
√
µ(1 + σ2

m)η + σ2
m

η.

9
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Figure 4: We compare the trajectories of gradient descent and Nesterov’s algorithm for the objective
function f in Example 2 with R = 6 and ε = 0.075 (left), ε = 0.08 (middle) and ε = 0.085
(right). Evidently, if ε

√
1 + 4R2 is very close to the threshold value 1, gradient descent outperforms

Nesterov’s algorithm with the theoretically guaranteed parameters.

Then, if ε <
√
µ(1 + σ2

m)/η, we have

E
[
f(xn)− inf f

]
≤
(
1−

√
µη

1 + σ2
m

)n

E
[
f(x0)− inf f +

µ

2
∥x0 − π(x0)∥2

]
+

σ2
a
√
η√

µ(1 + σ2
m)

.

While at a glance it appears that the multiplicative noise is helping us reduce the additive error term,
this is merely a consequence of the small learning rate which it forced upon us.

The proof of Theorem 15 is given in Appendix B.4. As indicated in Remark 12, the condition
on the negative eigenvalues is relaxed to ε ≤

√
Lµ(1 + σ2

m) with the largest admissible step size
η = 1/(L(1 + σ2

m)) as the issues stemming from tangential drift pale in comparison to those
stemming from stochastic gradient estimates. For comparison, if we chose the same η in Theorem
11, we could only allow for ε ≤

√
µL
√
1 + σ2

m < ε
√
µL(1 + σ2

m), but we would obtain a rate of
convergence of 1−

√
µ/L(1 + σ2

m). In the stochastic case, we only achieve 1−
√

µ/L/(1 + σ2
m).

Thus the limiting factor is the stochastic noise, not the geometry of f .
Remark 16. We opted for a linear closest point projection map to facilitate proofs. In the non-linear
case, closest point projections cannot be defined globally: Jessen (1940); Busemann (1947); Phelps
(1957) show that if K is a subset of Rd such that for every x ∈ Rd there exists a unique closest point
in K, then K is closed and convex. If K is both a k-dimensional submanifold of Rd and a convex set,
then K is an affine k-dimensional subspace of Rd, i.e. our assumptions are the most general when
assuming that a unique closest point projection onto a submanifold is defined globally.

Thus, if M is not an affine space, we can only assume that π is ‘good’ in a neighborhood of M.
In stochastic optimization, where we can randomly ‘jump’ out of the good neighborhood, this
leads to serious technical challenges. Guarantees on ‘remaining local’ with high probability have
recently been derived for SGD with additive noise and decaying learning rates by Mertikopoulos et al.
(2020) and with multiplicative noise by Wojtowytsch (2023). To avoid obscuring the new geometric
constructions, we opted to forgo this highly technical setting here and prioritize the extension of
Theorems 7 and 11 towards stochastic optimization.

4 CONCLUSION

We have proved that first order momentum-based methods accelerate convergence in a much more
general setting than convex optimization with many geometric features motivated by realistic loss
landscapes in deep learning. The models we studied include the heavy ball ODE and deterministic
and stochastic optimization schemes in discrete time under various noise assumptions.

Let us conclude by discussing the guarantees obtained in this work. In the case of quadratic objective
functions or functions modelled on them (such as the distance function from a manifold), the PL
constant is essentially the same as the parameter of strong convexity. For the function f in Example
2 on the other hand, the PL constant is noticeable larger than the parameter of strong convexity
with respect to the unique minimizer. In Figure 4, we observe that with the theoretically guaranteed
parameters η = 1/L and ρ = (1−√

µη)/(1 +
√
µη), gradient descent may at times converge faster.
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A PROOFS OF LEMMAS 1 AND 6: GEOMETRY OF THE ENERGY LANDSCAPE

We assume that the reader is familiar with basic concepts of differential geometry, such as subman-
ifolds of Euclidean spaces and tangent spaces and with concepts of multi-variate analysis such as
compactness and the inverse function theorem.

We first recall an important observation: Assume that M is a C1-manifold. Fix a point x ∈ Rd.
Assume that the function d : M → R given by d(z) = ∥x − z∥ has a local extremum at z ∈ M.
Then for every C1-curve γ : (−ε, ε) → M such that γ(0) = z, we have

0 =
d

dt

∣∣∣∣
t=0

d(γ(t))2 = 2⟨x− γ(0), γ̇(0)⟩ = 2⟨x− z, γ̇(0)⟩

or in other words: the connecting line x − z is orthogonal to the tangent space TzM. This is in
particular true if z is the closest point in M to x.

Lemma 1. Let M be a C2-submanifold of Rd and U an open set containing M such that there exists
a unique closest point projection π : U → M. Let x : (−ε, ε) → U a C1-curve and z(t) := π ◦ x(t).
Then ⟨ẋ, ż⟩ ≥ 0 on (−ε, ε).

Proof. The closest point projection onto a C2-manifold is C1-smooth and satisfies

π(x) = x− d(x)∇d(x) (11)

where d(x) = dist(x,M) is the distance function to the manifold, i.e. ∇d(x) gives the unit vector
pointing directly towards the manifold. For details, see the proof of Lemma 6.

We can rewrite (11) as

π(x) = ∇
(
∥x∥2

2
− d(x)2

2

)
= ∇

(
∥x∥2

2
− minx∈M ∥x− z∥2

2

)
= ∇x max

M

(
∥x∥2

2
− ∥x∥2 − 2⟨x, z⟩+ ∥z∥2

2

)
= ∇x max

z∈M

(
⟨x, z⟩ − ∥z∥2

2

)
.

We are taking the (pointwise in x) maximum over a class of functions which are linear in x, i.e. we
find that

ξ(x) := max
z∈M

(
⟨x, z⟩ − ∥z∥2

2

)
is convex. In particular, the derivative matrix Dπ = D2ξ is symmetric and non-negative semi-definite
and thus 〈

ẋ,
d

dt
π ◦ x

〉
= ⟨ẋ, Dπ(x) ẋ⟩ ≥ 0.

Lemma 6. Assume that f : Rd → R is C2-smooth and that M = {x ∈ Rd : f(x) = inf f} is a
closed k-dimensional C2-submanifold of Rd (i.e. compact and without boundary). If D2f(x) has
rank d− k everywhere on M, then there exist µ, α > 0 such that there exists a C1-smooth closest
point projection π : Uα → R with Uα = {x : f(x) < α} as in Section 2.1 and (1) holds for f and π.

Proof. This result uses standard ideas from differential geometry. For the reader’s convenience, we
provide a full proof sketch.

Step 1. Closest point projection. Assume that M is a Cm-manifold for m ≥ 2. Fix a point z0 ∈ M,
a radius r > 0 and the neighbourhood U = Br(z0). We assume that r > 0 is so small that there exists
a Cm-diffeomorphism ϕ : U → V ⊆ Rd such that ϕ(U ∩M) = V ∩ {y : yk+1 = · · · = yd = 0}.
If M is a Cm-manifold, we can find a collection of Cm−1-smooth vector fields A1, . . . , Ad such that

1. A1(z), . . . , Ad(z) span the tangent space TzM for all z ∈ M∩ U and

2. ⟨Ai(z), Aj(z)⟩ = δij for all i, j = 1, . . . , d and z ∈ M∩ U .
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Such vector fields can be obtained for instance by applying the Gram-Schmidt algorithm to the
columns of the derivative matrix D(ϕ−1)ϕ(z) = (Dϕz)

−1 of the inverse diffeomorphism. The
algorithm returns an orthonormal basis since ϕ is a diffeomorphism, i.e. Dϕ has full rank. The first k
columns span the tangent space of TxM since motion tangential to M in U corresponds to motion
where the last d− k coordinates are kept zero in V , i.e. to the first k columns of Dϕ−1.

We now introduce new coordinates: Denote by V̂ ⊆ Rk the set such that V̂ × {0d−k} = V ∩ {y :
yk+1 = · · · = yd = 0} and

Ψ : V̂ × Rd−k → Rd, Ψ(ŷ, sk+1, . . . , sd) = ϕ−1(ŷ, 0) +

d∑
i=k+1

si Ai

(
ϕ−1(ŷ, 0)

)
.

The map Ψ is Cm−1-smooth since it is linear in s and the least regular components, the vector fields
Ai, are Cm−1-smooth in y. If m ≥ 2, we trivially find that Ψ is differentiable and DΨ(ŷ,0) =
(∂ŷ1

ϕ, . . . , ∂ŷk
ϕ,Ak+1, . . . , Ad) is invertible. Hence, the map Ψ is a local diffeomorphism by the

inverse function theorem. Notably, we see that

x−Ψ(ŷ, 0)⊥TΨ(ŷ,0)M ⇔ x−Ψ(ŷ, 0) ∈ span {Ak+1(Ψ(ŷ, 0)), . . . , Ad(Ψ(ŷ, 0))}

and thus if and only if

x = Ψ(ŷ, 0) +

d∑
i=k+1

siAi

(
Ψ(ŷ, 0)

)
= Ψ(ŷ, s)

for some s ∈ Rd−k. In a neighbourhood of z0 where Ψ is a diffeomorphism, we set π(Ψ(ŷ, s)) =
Ψ(ŷ, 0), i.e.

π = Ψ ◦ PRk ◦Ψ−1, P (y1, . . . , yd) = (y1, . . . , yk, 0, . . . , 0).

The map is as smooth as Ψ, i.e. Cm−1-smooth (assuming that m ≥ 2). The map π defined in this
way may not be the unique closest point projection on all of U (e.g. when a point z′ ∈ M \ U is
closer), but it is guaranteed to be the unique closest point projection on a smaller subset Br/2(z

∗)
where the closest point on M is closer than the boundary of U .

Thus, for every point z ∈ M, there exists a neighborhood Br(z)(z) for r(z) > 0 in which a unique
closest point projection is defined. Setting U :=

⋃
z∈M Br(z)(z), we find a neighborhood of the

manifold M inside of which the closest point projection is defined.

Assume that the radius r(z) is chosen as the supremum of all admissible radii. Then the function
r(z) is strictly positive and Lipschitz-continuous with Lipschitz-constant 1: r(z′) ≥ r(z)− ∥z − z′∥
since Br−∥z−z′∥(z

′) ⊆ Br(z). Exchanging the role of z, z′ shows that

r(z′) ≥ r(z)−∥z−z′∥, r(z) ≥ r(z′)−∥z−z′∥ ⇒ |r(z)−r(z′)| ≤ ∥z−z′∥ ∀ z, z′ ∈ M.

In particular, if M is compact, then as a continuous positive function, r is uniformly positive and
there exists a neighborhood Wδ := {x ∈ Rd : dist(x,M) < δ} on which the unique closest point
projection is defined. Additionally, we find that

∥∥Ψ(ŷ, s)− π ◦Ψ(ŷ, s)
∥∥ =

∥∥∥∥∥
d∑

i=k+1

siAi(Ψ(ŷ, 0))

∥∥∥∥∥ = ∥s∥

since the vector fields Ai are orthonormal.

In Lemma 1, we require π(x(t)) to be C2-smooth if x(t) is C2-smooth due to the technicalities of
the proof. For this reason, we make the assumption that M is a C3-manifold to ensure that π is a
C2-map. For the required smoothness of solutions to the heavy ball ODE, it is sufficient to require
that f is C2-smooth.

Step 2. The geometry of f . Since M is the set of minimizers of f , the Hessian D2f(z) is non-
negative semi-definite for every z ∈ M. As f is constant on M, we for every curve γ : (−ε, ε) → M
we have

0 =
d2

dt2
f(γ(t)) = ∇f(γ(t)), γ′′(t)⟩+ γ′(t)T D2f(γ(t)) γ′(t) = γ′(t)T D2f(γ(t)) γ′(t)
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because ∇f ≡ 0 on the set M of minimizers of f , i.e. vTD2f(z)v = 0 for all z ∈ M and v ∈ TzM.
If we assume that D2f(z) has rank d− k for all z ∈ M, then necessarily vTD2f(z)v > 0 for all v
which are orthogonal to M or equivalently

vTD2f(z)v ≥ λ(z)
∥∥P⊥

z v
∥∥2 ∀ z ∈ M, v ∈ Rd

where P⊥
z denotes the orthogonal projection onto the orthogonal complement of the tangent space of

M at z, i.e.

P⊥
z v =

d∑
i=k+1

⟨v,Ai(z)⟩Ai(z).

If M is compact, then the function λ is bounded from below by some λ0 > 0. Let ε = λ0/2. Using
the uniform continuity of π, P and D2f on a compact set Wδ and choosing δ > 0 suitably small, we
find that

vTD2f(x)v ≥ λ0

2

∥∥P⊥
π(x)v∥

2 − ε∥v∥2 ≥ ∀ x ∈ Wδ, v ∈ Sd−1

since the map from matrix to smallest eigenvalue is continuous on the space of symmetric matrices.
In particular, for any fixed (ŷ, s) ∈ V̂ × Sd−1 we see that the function

g : (−δ, δ) → R, g(t) = f
(
Ψ(ŷ, ts)

)
is λ0 − ε strongly convex. To see this, abbreviate v :=

∑d
i=k+1 s

iAi(ŷ) and compute

g′′(t) =
d2

dt2
f (Ψ(ŷ, 0) + tv) = vTD2f (Ψ(ŷ, ts)) v ≥ (λ0 − ε) ∥v∥2 = λ0 − ε

since v ∈ TΨ(ŷ,0)M⊥ and ∥v∥ = ∥s∥ = 1. Hence

f
(
Ψ(ŷ, 0)

)
= g(0) ≥ g(t)− g′(t)t+

λ0 − ε

2
t2

= f
(
Ψ(ŷ, ts)

)
− t ⟨∇f(Ψ(ŷ, ts)), v⟩+ λ0 − ε

2

∥∥tv∥∥2
= f

(
Ψ(ŷ, ts)

)
+ ⟨∇f(Ψ(ŷ, ts)),Ψ(ŷ, 0)−Ψ(ŷ, ts)⟩+ λ0 − ε

2

∥∥Ψ(ŷ, 0)−Ψ(ŷ, ts)
∥∥2

or in the original coordinates of Wδ ⊆ Rd:

f(π(x)) ≥ f(x) + ⟨∇f(x), π(x)− x⟩+ λ0 − ε

2
∥x− π(x)∥2.

By the same argument with reversed roles for x, π(x) we have

f(x) ≥ f(π(x)) +
λ0 − ε

2
∥x− π(x)∥2 = inf f +

λ0 − ε

2
dist(x,M)2.

In particular: f(x) < inf f + α implies that

dist(x,M) ≤
√

2

λ0 − ε

(
f(x)− inf f

)
<

√
2α

λ0 − ε
.

Choosing α small enough, we see that the open neighborhood

Uα := {x : f(x) < inf f + α}

is a subset of Wδ. Within this neighborhood, the unique closest point projection is therefore well-
defined. This concludes the proof of the Lemma and shows that the Assumptions of Section 2.1 are
satisfied in this setting.

Remark 17. Controlling the largest eigenvalue of the Hessian rather than the smallest, we see that
there exist 0 < µ < L such that

µ

2
dist(x,M)2 ≤ f(x) ≤ L

2
dist(x,M)2

in a neighborhood of U . For this reason, we presented Example 4 for context and intuition.
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B PROOFS OF ACCELERATION IN OPTIMIZATION

B.1 PROOF OF THEOREMS 7 AND 8: OPTIMIZATION IN CONTINUOUS TIME

We first prove the ‘local’ convergence statement.

Theorem 7. [Continuous time convergence guarantee] Assume that f satisfies the assumptions of
Section 2.1, γ = 2

√
µ and that x0 satisfies f(x0)− inf f < α where α is as in Section 2.1. Then there

exists a unique solution x(t) = xt of (3) and xt ∈ Uα for all t > 0. Furthermore, x is C2-smooth
and

f(xt)− inf
z∈Rd

f(z) ≤ e−
√
µ t
(
f(x0)− inf f +

µ

2
dist(x0,M)2

)
.

Proof. Step 0: Existence and Uniqueness. Note that a solution to the heavy ball ODE can be
obtained as a solution to the ODE system{

ẋ = v
v̇ = −γv −∇f(x).

If ∇f is locally Lipschitz-continuous (for instance if f is C2-smooth), a unique C1-solution (x, v)
of the ODE system exists by the Picard-Lindelöff Theorem. Since ẋ = v is C1-smooth, we see that
the solution x of the heavy ball ODE is C2-smooth.

Step 1: xt remains in Uα. Note that

d

dt

(
f(xt) +

1

2
∥ẋt∥2

)
= ⟨∇f(xt), ẋt⟩+ ⟨ẋt, ẍt⟩ = ⟨ẍ+∇f(x), ẋ⟩ = −2

√
µ ∥ẋt∥2 ≤ 0,

so
f(xt) ≤ f(xt) +

1

2
∥ẋt∥2 ≤ f(x0) +

1

2
∥ẋ0∥2 = f(x0) < α

for all t ≥ 0 since ẋ0 = 0, which implies xt ∈ Uα for all t ≥ 0.

Step 2: Bounding f(xt). Let zt := π(xt) denote the closest point projection of xt onto M and by
żt its derivative. Consider the Lyapunov function

L(t) = f(xt)− f(π(xt)) +
1

2
∥ẋt +

√
µ(xt − π(xt))∥2

We will show that L′(t) ≤ −√
µL(t) under some neighborhood assumption on xt. Using the heavy

ball dynamics and properties of the projection, we can bound L′(t) as:

L′(t) = ⟨∇f(xt), ẋt⟩+
〈
ẋt +

√
µ(xt − π(xt)), ẍt +

√
µ(ẋt − żt)

〉
=
〈
ẋt, ∇f(xt) + ẍt +

√
µ ẋt −

√
µ żt

〉
+

√
µ
〈
xt − π(xt), ẍt +

√
µ ẋt −

√
µżt
〉

=
〈
ẋt,−

√
µ ẋt −

√
µżt,

〉
+

√
µ
〈
xt − zt, −

√
µ ẋt −∇f(xt)−

√
µ żt

〉
≤ −√

µ∥ẋt∥2 − µ⟨xt − zt, ẋt⟩ −
√
µ ⟨∇f(xt), xt − zt⟩

where we used the heavy ball dynamics ẍt = −2
√
µẋt −∇f(xt) and the geometric properties of

the closest point projection:

1. −⟨ẋt, żt⟩ ≤ 0 by Lemma 1 and

2. ⟨xt − zt, żt⟩ = 0 since xt − zt meets M orthogonally at zt and żt is tangent to M at zt.

Next, using the µ-strong convexity of f with respect to the closest minimizer, we have

⟨∇f(xt), xt − π(xt)⟩ ≥ f(xt)− f(π(xt)) +
µ

2
∥xt − π(xt)∥2.

Substituting this into the bound on L′(t) and simplifying gives:

L′(t) ≤ −√
µ ∥ẋt∥2 − µ ⟨xt − π(xt), ẋt⟩ −

√
µ
(
f(xt)− f(π(xt)) +

µ

2
∥xt − π(xt)∥2

)
17
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= −√
µ

(
f(xt)− f(π(xt)) +

1

2

∥∥ẋt +
√
µ
(
xt − π(xt)

)∥∥2 + 1

2
∥ẋt∥2

)
≤ −√

µL(t).

Now, we can bound the initial value of the Lyapunov function L(0) as follows:

L(0) = f(x0)− inf
z∈Rd

f(z) +
1

2
∥ẋ0 +

√
µ(x0 − π(x0))∥2

= f(x0)− inf
z∈Rd

f(z) +
µ

2
dist(x0,M)2

since ẋ0 = 0 and dist(x,M) = ∥x− π(x)∥. We deduce that

d

dt
e
√
µtL(t) =

(√
µL(t) + L′(t)

)
e
√
µt ≤ 0

so

f(xt)− inf f ≤ L(t) ≤ e−
√
µtL(0) = e−

√
µt
(
f(x0)− inf f +

µ

2
dist(x0,M)2

)
Next, we prove the ‘global convergence’ statement.

Theorem 8. In addition to the assumptions of Section 2.1, assume that

1. for every R > inf f , there exists LR > 0 such that ∇f is Lipschitz-continuous with Lipschitz
constant LR on UR = {x : f(x) < R} and

2. there exists a value δ > 0 such that ∥∇f(x)∥2 < δ implies that f(x)− inf f < α
2 .

Then, for any x0 ∈ Rd, there exists T ≥ 0 such that x(t) ∈ Uα for all t ≥ T and such that
f(x(t))− inf f ≤

(
3α/2 + dist(xT ,M)2

)
e
√
µ(T−t) for all t > T .

Proof. The idea of the proof is to show that at some large time T , the trajectory of x enters the set
Uα with sufficiently low velocity that it gets trapped in Uα. From that point onwards, the proof of
Theorem 7 applies with minor modifications.

Step 1. Denote by E(t) = f(xt)+
1
2 ∥ẋt∥2 the ‘total energy’ of the curve x at time t. As in the proof

of Theorem 7, we find that E′(t) = −2
√
µ ∥ẋt∥2, so in particular ∥ẋ∥2 is square integrable in time:∫ ∞

0

∥ẋ∥2 dt = E(0)− limt→∞ E(t)

2
√
µ

≤ f(x0)− inf f

2
√
µ

.

Recall for future use that f(xt) ≤ E(t) ≤ E(0) = f(x0) for t ≥ 0.

Step 2. In this step, we show that also ∇f(xt) is square integrable in time. To do this, we first
observe that∫ T

0

∥∇f(x) + 2
√
µ ẋ∥2 dt =

∫ T

0

∥∇f(x)∥2 + 4
√
µ ⟨∇f(x), ẋ⟩+ ∥ẋ∥2 dt

=

∫ T

0

∥∇f(x)∥2 dt+ 4
√
µ

∫ T

0

d

dt
f(xt) dt+ 4µ

∫ T

0

∥ẋ∥2 dt.

On the other hand, we can write∫ T

0

∥∇f(x) + 2
√
µ ẋ∥2 dt = −

∫ T

0

⟨∇f(x) + 2
√
µ ẋ, ẍ⟩dt

= −
∫ T

0

⟨∇f(x), ẍ⟩dt−√
µ

∫ T

0

d

dt
∥ẋ∥2 dt

= −⟨∇f(xT ), ẋT ⟩+
∫ T

0

⟨D2f(x)ẋ, ẋ⟩dt−√
µ ∥ẋT ∥2

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

since ẋ0 = 0. Overall, we find that∫ T

0

∥∇f(x)∥2 dt = 4
√
µ
(
f(x0)− f(xT )

)
+ ⟨∇f(xT ), ẋT ⟩ −

√
µ ∥ẋT ∥2

+

∫ T

0

⟨D2f(x)ẋ, ẋ⟩ − 4µ ∥ẋ∥2 dt

≤ 4
√
µ
(
f(x0)− inf f

)
+ L

∫ T

0

∥ẋ∥2 dt+ ⟨∇f(x), ẋ⟩(T )

where L = Lf(x0) is the Lipschitz-constant of ∇f on the set {x : f(x) < f(x0)}. Note that

t 7→ ⟨∇f(x), ẋ⟩ = d

dt
f(xt)

is the derivative of the bounded function f(xt) ∈ [inf f, f(x0)] and continuous, so there exists a
sequence of times Tn → ∞ such that ⟨f(x), ẋ⟩(Tn) → 0. Since ∥∇f∥2 is a non-negative integrand,
we can bound∫ ∞

0

∥∇f(x)∥2 dt ≤ lim
n→∞

(
4
√
µ
(
f(x0)− inf f

)
+ L

∫ Tn

0

∥ẋ∥2 dt+ ⟨∇f(x), ẋ⟩(Tn)

)

= 4
√
µ
(
f(x0)− inf f

)
+ L

∫ ∞

0

∥ẋ∥2 dt < +∞.

Step 3. Using Steps 1 and 2, we find that∫ T

0

∥∇f(xt)∥2 + ∥ẋt∥2 dt < +∞.

In particular, there exists a sequence of times tn → ∞ such that

∥∇f(x(tn))∥2 + ∥ẋ(tn)∥2 → 0

as n → ∞. We can therefore choose T > 0 such that

∥∇f(xT )∥2 + ∥ẋT ∥2 < min
{
δ, α}.

Then we find that

∥∇f(xT )∥2 < δ ⇒ f(xT ) < α, ∥ẋT ∥2 < α ⇒ E(T ) = f(xT ) +
1

2
∥ẋT ∥2 < α.

In particular, we conclude that f(xt) ≤ E(t) < α for all t > T , i.e. xt ∈ Uα for all t > T . Thus, by
the same argument as Theorem 7, we find that

L(t) := f(xt)− inf f +
1

2

∥∥ẋ+
√
µ
(
xt − π(xt)

)∥∥2
satisfies L(t) ≤ e−

√
µ(t−T )L(T ) for t > T , so

f(xt)− inf f ≤ L(t) ≤ e
√
µ(T−t)

(
f(xT )− inf f +

1

2

∥∥ẋT +
√
µ(xT − π(xT ))

∥∥2)
≤ e

√
µ(T−t)

(
f(xt)− inf f +

2

2

{
∥ẋT ∥2 + ∥xT − π(xT )∥2

})
≤ e

√
µ(T−t)

(
3α

2
+ dist(xT ,M)2

)
.

Remark 18. Obviously, the condition that ∇f is Lipschitz-continuous on all sublevel sets could easily
be relaxed to requiring that the initialization x0 is such that ∇f is merely Lipschitz-continuous on
the set {x : f(x) < f(x0)}, or even on every connected component of the set.
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B.2 PROOF OF THEOREM 11: ACCELERATION IN DISCRETE TIME (DETERMINISTIC SETTING)

Lemma 10. Assume that D2f(x) ≥ −ε in a ball Br(x0). Then

⟨∇f(x), x− z⟩ ≥ f(x)− f(z)− ε

2
∥x− z∥2 ∀ x, z ∈ Br(x0).

Proof. The function f(x) + ε
2∥x∥

2 is convex since all eigenvalues of its Hessian D2f + εI are
non-negative, so

f(z) +
ε

2
∥z∥2 ≥ f(x) +

ε

2
∥x∥2 + ⟨∇f(x) + εx, z − x⟩

which is equivalent to

⟨∇f(x), x− z⟩ ≥ f(x)− f(z) +
ε

2
∥x∥2 + ε⟨x, z − x⟩ − ε

2
∥z∥2

= f(x)− f(z) +
ε

2
∥x∥2 + ε⟨x, z⟩ − ε∥x∥2 − ε

2
∥z∥2

= f(x)− f(z)− ε

2
∥z − x∥2.

Before proving Theorem 11, we recall a well-known auxiliary result.
Lemma 19. (Gupta et al., 2023, Lemma 13) Assume that ∇f is Lipschitz-continuous with Lipschitz-
constant L. Then

f(x− ηg) ≤ f(x)− η⟨∇f(x), g⟩+ Lη2

2
∥g∥2.

Theorem 11. Assume that f is L-smooth and the sequences xn, x
′
n, vn are generated according to

the Nesterov scheme (5) with parameters η ≤ 1/L and ρ = (1−√
µη)/(1 +

√
µη). Assume further

that there exists an affine linear projection map π(x) = Px+ x∗ such that

⟨∇f(x), x− π(x)⟩ ≥ f(x)− f(π(x)) +
µ

2
∥x− π(x)∥2. (6)

Finally, assume that for arbitrary x, v ∈ Rd we have

⟨∇f(x+ v), v⟩ ≥ f(x+ v)− f(x)− ε

2
∥v∥2 (7)

with some ε ≤
√
µ/η. Then

f(xn)− inf f ≤ (1−√
µη)n

[
f(x0)− inf f +

µ

2
∥x0 − π(x0)∥2

]
.

Proof. Setup. Denote by P⊥ = I − P the orthogonal projection onto the orthogonal complement of
the space V which P projects onto. Consider the Lyapunov sequence defined by

Ln = f(xn)− inf f +
1

2
∥ P⊥vn + x′

n − π(x′
n)∥2 +

(1 +
√
µη)2

2(1−√
µη)

∥Pvn∥2.

This is a variation of the usual Lyapunov sequence in which we separately analyze the tangential and
normal velocities. Note however that

(1 +
√
µη)2

(1−√
µη)

= 1 +O(
√
η),

i.e. if η → 0, we recover the Lyapunov function in the continuous time setting where tangential and
normal velocity are not separated:

∥ P⊥v+ x− π(x)∥2 +
(1 +

√
µη)2

2(1−√
µη)

∥Pv∥2 → ∥ P⊥v+ x− π(x)∥2 + ∥Pv∥2 = ∥v+ x− π(x)∥2

as η → 0 since the vectors Pv and P⊥v+ x− π(x) are orthogonal and v = Pv+P⊥v. We want to
show that Ln+1 ≤ (1−√

µη)Ln. Note that 1−√
µη ≥ 1−

√
µ
L ≥ 0 since µ ≤ L by Lemma 24.
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For simplicity, we assume that x∗ = 0, i.e. x′
n − π(x′

n) = x′
n − Px′

n = P⊥x′
n.

Step 1. Since f is L-smooth and η ≤ 1/L, we have

f(xn+1) ≤ f(x′
n)−

(
1− Lη

2

)
η ∥∇f(x′

n)∥2 = f(x′
n)−

η

2
∥∇f(x′

n)∥2

by Lemma 19 with x = x′
n and g = ∇f(x′

n).

Step 2. Denote P⊥ = I − P the orthogonal projection onto the orthogonal complement of the space
that P projects onto. We compute

P⊥vn+1 +
√
µP⊥x′

n+1 = P⊥vn+1 +
√
µP⊥(x′

n +
√
ηvn+1 − η∇f(x′

n))

= (P⊥ +
√
µηP⊥)vn+1 +

√
µP⊥x′

n − η
√
µP⊥∇f(x′

n)

= ρ(1 +
√
µη)P⊥vn +

√
µP⊥x′

n −√
η
(√

µη + ρ(1 +
√
µ
√
η)
)
P⊥∇f(x′

n)

= (1−√
µη)P⊥vn +

√
µP⊥x′

n −√
η P⊥∇f(x′

n),

where we simplify the coefficients in the last step by substituting ρ =
1−√

µη

1+
√
µη . So,

1

2

∥∥P⊥vn+1 +
√
µP⊥x′

n+1

∥∥2 =
(1−√

µη)2

2
∥P⊥vn∥2 +

µ

2
∥P⊥x′

n∥2 +
η

2
∥P⊥∇f(x′

n)∥2

+
√
µ(1−√

µη)⟨P⊥vn, P
⊥x′

n⟩ −
√
µη ⟨∇f(x′

n), P
⊥x′

n⟩
− √

η(1−√
µη)⟨∇f(x′

n), P
⊥vn⟩.

Recall that since both P and P⊥ are orthogonal projections, for any x, y ∈ Rd, ⟨Px, Py⟩ =
⟨Px, y⟩ = ⟨x, Py⟩, and the analogous result holds for P⊥ as well.

Step 3. Now we expand the last term in the Lyapunov sequence,

(1 +
√
µη)2

2(1−√
µη)

∥Pvn+1∥2 =
(1 +

√
µη)2

2(1−√
µη)

ρ2∥P (vn −√
η∇f(x′

n))∥2

=
1−√

µη

2

(
∥Pvn∥2 + η∥P∇f(x′

n)∥2 − 2
√
η⟨∇f(x′

n), Pvn⟩
)
.

Step 4. We add the expressions from the previous steps and use the fact that Pvn + P⊥vn = vn to
get

Ln+1 =
(1−√

µη)2

2
∥P⊥vn∥2 +

µ

2
∥P⊥x′

n∥2 +
η

2
∥P⊥∇f(x′

n)∥2

+
√
µ(1−√

µη)⟨P⊥vn, P
⊥x′

n⟩ −
√
µη ⟨∇f(x′

n), P
⊥x′

n⟩

− √
η(1−√

µη)⟨∇f(x′
n), vn⟩+

1−√
µη

2
∥Pvn∥2

+
η(1−√

µη)

2
∥P∇f(x′

n)∥2 + f(xn+1)− inf f.

Using (6) and (7) to bound the inner products ⟨∇f(x′
n), vn⟩ and ⟨∇f(x′

n), P
⊥x′

n⟩,

Ln+1 ≤
(1−√

µη)2

2
∥P⊥vn∥2 +

µ

2
∥P⊥x′

n∥2 +
η

2
∥P⊥∇f(x′

n)∥2

+
√
µ(1−√

µη)⟨P⊥vn, P
⊥x′

n⟩ −
√
µη
(
f(x′

n)− inf f +
µ

2
∥P⊥x′

n∥2
)

− (1−√
µη)

(
f(x′

n)− f(xn)−
ε

2
∥√η vn∥2

)
+

1−√
µη

2
∥Pvn∥2

+
η(1−√

µη)

2
∥P∇f(x′

n)∥2 + f(x′
n)−

η

2
∥∇f(x′

n)∥2 − inf f.

Now, we use Pythagoras theorem, i.e. for all w ∈ Rd, ∥Pw∥2+∥P⊥w∥2 = ∥Pw+P⊥w∥2 = ∥w∥2,
and rearrange some of the terms,

Ln+1 ≤
(1−√

µη)2 + (1−√
µη)ηε

2
∥P⊥vn∥2 +

(1−√
µη)(1 + ηε)

2
∥Pvn∥2
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+
µ(1−√

µη)

2
∥P⊥x′

n∥2 +
η − η

2
∥∇f(x′

n)∥2 −
√
η3
√
µ

2
∥P∇f(x′

n)∥2

+
√
µ(1−√

µη)⟨P⊥vn, P
⊥x′

n⟩
+ (1−√

µη − 1 +
√
µη)f(x′

n) + (1−√
µη)(f(xn)− inf f).

The coefficients of f(x′
n) and ∥∇f(x′

n)∥2 are zero and the coefficient of ∥P∇f(x′
n)∥2 is negative,

so we can disregard those terms. If ε ≤
√

µ/η, the coefficient ∥P⊥vn∥2 can be bounded as

(1−√
µη)(1−√

µη + ηε)

2
≤

(1−√
µη)(1−√

µη +
√
µη)

2
≤

1−√
µη

2
,

and the coefficient of ∥P⊥vn∥2 can be bounded as

(1−√
µη)(1 + ηε)

2
≤

(1−√
µη)(1 +

√
µη)

2
≤

(1 +
√
µη)2

2
.

Thus, we conclude that

Ln+1 ≤ (1−√
µη)(f(xn)− inf f) +

1−√
µη

2
∥P⊥vn∥2

+
µ(1−√

µη)

2
∥P⊥x′

n∥2 +
√
µ(1−√

µη)⟨P⊥vn, P
⊥x′

n⟩

+
(1 +

√
µη)2

2
∥Pvn∥2

= (1−√
µη)Ln.

Consequently,

f(xn)− inf f ≤ Ln ≤ (1−√
µη)nL0 = (1−√

µη)n
[
f(x0)− inf f +

µ

2
∥P⊥x0∥2

]
.

B.3 PROOF OF THEOREMS 13 AND 14: ACCELERATION WITH ADDITIVE NOISE

The proof of Theorem 13 mimics that of Theorem 11 with minor modifications to account for
stochastic gradient estimates. Since ωn is stochastically independent of anything which has happened
in the algorithm before, in particular of x′

n, vn, we have the following.

Lemma 20. For all n ∈ N, we have

E
[
⟨g(x′

n, ωn),∇f(x′
n)⟩
]
= E

[
∥∇f(x′

n)∥2]
E
[
⟨g(x′

n, ωn), vn⟩
]
= E

[
⟨∇f(x′

n), vn⟩]
E
[
⟨g(x′

n, ωn), P
⊥x′

n⟩
]
= E

[
⟨∇f(x′

n), P
⊥x′

n⟩]
E
[
∥gn∥2

]
= E

[
∥∇f(x′

n)∥2
]
+ E

[
∥gn −∇f(x′

n)∥2
]

where the expectations are taken over the (potentially random) initial condition x0 as well as the
random coefficients ω0, . . . , ωn which govern the gradient estimates.

A proof can be found in (Gupta et al., 2023, Lemma 15). The second identity, which is not included,
can be analogously. As an application, we prove a stochastic analogue of Lemma 19.

Lemma 21. Assume that f is L-smooth and E
[
∥g(x, ω)−∇f(x)∥2

]
≤ σ2

a + σ2
m∥∇f(x)∥2 for all

x ∈ Rd. Then, if x, ω are independent random variables, we have

E(x,ω)

[
f(x− ηg(x, ω))

]
≤ E

[
f(x)

]
−
(
1− L(1 + σ2)η

2

)
η E
[
∥∇f(x)∥2

]
+

Lη2

2
σ2
a.

Proof. Recall that for any x, η, g, the following holds

f(x− ηg) ≤ f(x)− η⟨∇f(x), g⟩+ Lη2

2
∥g∥2
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by Lemma 19. We now assume that g = g(x, ω) is a random estimator for ∇f(x), where x may be
random, but ω is independent of x. Then, by Lemma 20, we have

E
[
f(x− ηg)

]
≤ E

[
f(x)

]
− η E

[
∥∇f(x)∥2

]
+

Lη2

2
E
[
∥g∥2

]
= E

[
f(x)

]
− η E

[
∥∇f(x)∥2

]
+

Lη2

2

{
E
[
∥∇f(x)∥2 + E

[
∥g −∇f(x)∥2

]}
≤ E

[
f(x)

]
−
(
1− Lη

2

)
η E
[
∥∇f(x)∥2

]
+

Lη2

2

{
σ2
a + σ2

m E
[
∥∇f(x)∥2

]
= E

[
f(x)

]
−
(
1− L(1 + σ2

m)η

2

)
η E
[
∥∇f(x)∥2

]
+

Lη2

2
σ2
a.

Finally, we provide an auxiliary result to resolve a slightly more complicated recursion.
Lemma 22. Assume a sequence xn satisfies the recursive estimate xn+1 ≤ axn + b for a ∈ (0, 1)
and b ≥ 0. Then

xn ≤ anx0 +
b

1− a
.

Proof. Consider the sequence yn := xn + b
a−1 . Then

yn+1 = xn+1 +
b

a− 1
≤ axn + b+

b

a− 1
= axn +

a− 1

a− 1
b+

b

a− 1
= axn +

ab

a− 1

= a

(
xn +

b

a− 1

)
= ayn.

In particular, yn ≤ any0, so

xn = yn +
b

1− a
≤ an

(
x0 +

b

a− 1

)
+

b

1− a
.

If b > 0, the estimate follows since b/(a− 1) < 0.

We now prove the first main result of this section.
Theorem 13. [Acceleration with additive noise] Assume that f, P are as in Theorem 11 and that
the g satisfies (8) and (9) with σm = 0. Assume that the sequences xn, x

′
n, vn are generated by the

scheme (5) for parameters η ≤ 1/L and ρ =
1−√

µη

1+
√
µη , but with the stochastic gradient estimates

g(x′
n, ωn) with independently identically distributed ωn in place of ∇f(x′

n). Then

E[f(xn)− inf f ] ≤ (1−√
µη)n

[
f(x0)− inf f +

µ

2
∥x0 − π(x0)∥2

]
+

σ2
a
√
η

√
µ

.

Proof. The proof is mostly identical to that of Theorem 11 with minor modifications: In Step 1, we
obtain the estimate

E[f(xn+1] ≤ E[f(x′
n)]−

η

2
∥∇f(x′

n)∥2 +
Lσ2

aη
2

2
by Lemma 21. In the quadratic term, we need to take the expectation of gn rather than f(x′

n). By
construction, the terms involving E[∥∇f(x′

n)∥2] still balance with the same parameters, leading to
an additional contribution of η σ2

a due to the stochastic gradient estimates. Since η ≤ 1/L, we can
bound Lη2 ≤ η so overall we obtain the estimate

Ln+1 ≤ (1−√
µη)Ln + σ2

aη.

in place of Ln+1 ≤ (1 − √
µη)Ln since all other terms are identical under the expectation using

Lemma 20. The claim now follows from Lemma 22.

For readers who are looking for a more detailed proof, we note that Theorem 13 is a special case of
Theorem 15 with σm = 0, where we provide a full proof.

In the same spirit, we sketch the proof of Theorem 14. Let us recall the statement.
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Theorem 14. [Additive noise and decreasing step size] Assume that f, g are as in Theorem 13 and
that the sequences xn, x

′
n, ρn are generated by the scheme

x′
n = xn +

√
ηn−1vn, xn+1 = x′

n − ηngn, vn+1 = ρn(vn −√
ηngn)

for parameters ηn = µ
(n+

√
Lµ+1)2

, ρn =
1−√

µηn

1+
√
µηn

. If ε ≤
√
µ/η0 = µ+

√
Lµ, then

E
[
f(xn)− inf f

]
≤

√
L
µ E

[
f(x0)− inf f + 1

2∥x0 − π(x0)∥2
]
+

σ2
a

µ log
(
1 + n

√
µ/L

)
n+

√
L/µ

.

Proof. Note that in the proof of Theorem 15, we build on the relationships

f(xn+1) ≤ f(x′
n)−

ηn
2

∥∇f(x′
n)∥2

x′
n+1 = x′

n − ηngn +
√
αnvn

vn+1 = ρn(vn −
√
αngn)

and do not enter further into the recursion. We additionally note that if ηn is a monotone decreasing
sequence, then the sequence λn+1 :=

(1+
√
µηn)

2

1−√
µηn

is also monotone decreasing. Hence, if ηn ≤
1

L(1+σ2
m) for all n ∈ N, then by the same proof as Theorem 13, the sequence

Ln+1 := f(xn)− inf f +
1

2

∥∥P⊥vn +
√
µP⊥x′

n

∥∥2 + λn

2
∥Pvn∥2

satisfies

Ln ≤
(
1−√

µηn)
){

f(xn)− inf f +
1

2

∥∥P⊥vn +
√
µP⊥x′

n

∥∥2 + λn+1

2
∥Pvn∥2

}
+ σ2

aηn

≤
(
1−√

µηn)
)
Ln + σ2

aηn

if the parameters are chosen as in the theorem statement. If specifically ηn = 1
µ (n+n0+1)2 for

n0 =
√
L/µ, then

Ln+1 ≤
(
1− 1

n+ n0 + 1

)
Ln +

σ2
a

µ(n+ n0 + 1)2
=

n+ n0

n+ n0 + 1
Ln +

σ2
a

µ(n+ n0 + 1)2
.

Thus the sequence zn := (n+ n0)Ln satisfies the relation

zn+1 = (n+ n0 + 1)Ln+1 ≤ (n+ n0)Ln +
σ2
a

µ(n+ n0 + 1)
= zn +

σ2
a

µ(n+ n0 + 1)

so

zn = z0 +

n∑
k=1

(zk − zk−1) ≤ z0 +

n−1∑
k=0

σ2
a

µ(k + n0 + 1)
≤ n0L0 +

σ2
a

µ

∫ n−1

0

1

n0 + t
dt

≤ n0L0 +
σ2
a

µ
log

(
1 +

n− 1

n0

)
.

Overall, we find that

E
[
f(xn)− inf f

]
≤ Ln =

zn
n+ n0

≤

√
L
µ E

[
f(x0)− inf f + 1

2∥x0 − π(x0)∥2
]
+

σ2
a

µ log
(
1 + n−1

n0

)
n+ n0

.
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B.4 PROOF OF THEOREM 15: ACCELERATION WITH BOTH ADDITIVE AND MULTIPLICATIVE
NOISE

In the convex setting, Gupta et al. (2023) state a version of Theorem 15 in slightly greater generality
in terms of choosing variables. The same more general proof goes through also here.
Theorem 15. [Additive and multiplicative noise] Assume that f, P, x∗ are as in Theorem 11 and
that g is a family of gradient estimators such that (8) and (9) hold for some σa, σm ≥ 0. Assume that
the sequences xn, x

′
n, vn are generated by the AGNES scheme (10) with parameters

0 < η ≤ 1

L(1 + σ2)
, ρ =

1−
√

µη
1+σ2

m

1 +
√

µη
1+σ2

m

, α =
1−

√
µ(1 + σ2

m)η

1−
√
µ(1 + σ2

m)η + σ2
m

η.

Then, if ε <
√

µ(1 + σ2
m)/η, we have

E
[
f(xn)− inf f

]
≤
(
1−

√
µη

1 + σ2
m

)n

E
[
f(x0)− inf f +

µ

2
∥x0 − π(x0)∥2

]
+

σ2
a
√
η√

µ(1 + σ2
m)

.

Proof. Setup. Mimicking the proof of Theorem 11, consider the sequence

Ln = E
[
f(xn)− f(x∗)

]
+

1

2
E
[∥∥b P⊥vn + a

(
x′
n − π(x′

n)
)
∥2
]
+

λ

2
E
[
∥Pvn∥2

]
for constants

b =

√
(1 + σ2

m)α

η
, λ =

(b+
√
µγ)2

b−√
µγ

γ√
α

where γ =
√
µ(η − α) + b

√
α.

The constants will be motivated below where they are introduced. Note that we have η = α if
σm = 0 and thus b = 1 and γ =

√
α, recovering the situation of Theorem 13. We want to show

that Ln+1 ≤ (1 − √
µ
√
α/b)Ln. For simplicity, we again assume without loss of generality that

π(x) = Px, i.e. x∗ = 0 throughout the proof.

Step 1. Consider the first term first. Note that

E
[
f(xn+1)

]
= E

[
f(x′

n − ηgn)
]
≤ E

[
f(x′

n)
]
−
(
1− L(1 + σ2)

2
η

)
η E
[
∥∇f(x′

n)∥2
]
+

Lη2

2
σ2
a

≤ E
[
f(x′

n)
]
− η

2
E
[
∥∇f(x′

n)∥2
]
+

Lη2

2
σ2
a

if η ≤ 1
L(1+σ2) by Lemma 21.

Step 2. We now turn to the second term and use the definition of x′
n+1 from (10),

bP⊥vn+1 +
√
µP⊥x′

n+1 = bP⊥vn+1 +
√
µP⊥(x′

n +
√
α vn+1 − ηgn)

= (b+
√
µα)ρP⊥(vn −

√
αgn) +

√
µP⊥x′

n −√
µηP⊥gn

= (b+
√
µα)ρP⊥vn +

√
µP⊥x′

n −
(√

µη + ρ(b+
√
µα)

√
α
)
P⊥gn.

In analogy to the proof of Theorem 11, we have ρ =
b−√

µα

b+
√
µα , so

bP⊥vn+1 +
√
µP⊥x′

n+1 = (b−√
µα)P⊥vn +

√
µP⊥x′

n −
(√

µη + (b−√
µα)

√
α
)
gn.

In the deterministic case where η = α, the coefficient
√
µ(η − α) + b

√
α of gn simplified to b

√
α. It

does not in this more general setting anymore, so we introduce a new notation: γ =
√
µ(η−α)+b

√
α.

Taking expectation of the square, we find that

E
[∥∥bP⊥vn+1 +

√
µP⊥x′

n+1

∥∥2]
= (b−√

µα)2 E
[
∥P⊥vn∥2

]
+ 2

√
µ(b−√

µα)E
[
⟨P⊥vn, P

⊥x′
n⟩
]
+ a2E

[
∥P⊥x′

n∥2
]
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− 2(b−√
µα)γ E

[
⟨gn, P⊥vn⟩

]
− 2

√
µγ E

[
⟨gn, P⊥x′

n⟩
]
+ γ2 E

[
∥P⊥gn∥2

]
= (b−√

µα)2 E
[
∥P⊥vn∥2

]
+ 2

√
µ(b−√

µα)E
[
⟨P⊥vn, P

⊥x′
n⟩
]
+ µE

[
∥P⊥x′

n∥2
]

− 2(b−√
µα)γ E

[
⟨∇f(x′

n), P
⊥vn⟩

]
− 2

√
µγ E

[
⟨∇f(x′

n), P
⊥x′

n⟩
]
+ γ2 E

[
∥P⊥gn∥2

]
.

Step 3. We now consider the third term
λE

[
∥Pvn+1∥2

]
= λρ2 E

[
∥P (vn −

√
αgn)∥2

]
= λρ2 E

[
∥Pvn∥2 + α∥Pgn∥2 − 2

√
α⟨gn, Pvn⟩

]
= λρ2 E

[
∥Pvn∥2 + α∥Pgn∥2 − 2

√
α⟨∇f(x′

n), Pvn⟩
]
.

Step 4. We now add the estimates of steps 2 and 3, with

λ =
(b−√

µα)γ

ρ2
√
α

=
(b+

√
µα)2

b−√
µα

γ√
α

such that the coefficients −2(b − √
µα)γ of E[⟨∇f(x′

n), P
⊥vn⟩] and −2λρ2

√
α of

E[⟨∇f(x′
n), Pvn⟩] coincide. Note that in the deterministic case γ = b

√
α =

√
α and we recover the

coefficient chosen in the proof of Theorem 11.

E
[
∥bP⊥vn+1 +

√
µP⊥x′

n+1∥2 + λ∥Pvn+1∥2
]

= (b−√
µα)2 E

[
∥P⊥vn∥2

]
+ 2

√
µ(b−√

µα)E
[
⟨P⊥vn, P

⊥x′
n⟩
]
+ µE

[
∥P⊥x′

n∥2
]

− 2(b−√
µα)γ E

[
⟨∇f(x′

n), vn⟩
]
− 2

√
µγ E

[
⟨∇f(x′

n), P
⊥x′

n⟩
]
+

(b−√
µα)γ

√
α

E
[
∥Pvn∥2

]
+ γ2 E

[
∥P⊥gn∥2

]
+ (b−√

µα)γ
√
αE
[
∥Pgn∥2

]
.

We note that the coefficient of the norm of the tangential gradient is (b−√
µα)

√
αγ ≤ γ2 by the

definition of γ = (b−√
µα)

√
α+

√
µη. Next, we combine this estimate with the bound on f(xn+1)

from Step 1 and use the geometric conditions (6) and (7) on f to control the inner products of ∇f(x′
n)

with vn and P⊥x′
n in the previous expression as well as the variance bound (9) for the gradient

estimates:

Ln+1 ≤ E
[
f(x′

n)− inf f
]
− η

2
E
[
∥∇f(x′

n)∥2
]
+

γ2

2
E
[
∥gn∥2

]
+

Lη2

2
σ2
a

+
(b−√

µα)2

2
E
[
∥P⊥vn∥2

]
+

√
µ(b−√

µα)E
[
⟨P⊥vn, P

⊥x′
n⟩
]
+

µ

2
E
[
∥P⊥x′

n∥2
]

− (b−√
µα)

γ√
α
E
[
f(x′

n)− f(xn)−
εα

2
∥vn∥2

]
−√

µγ E
[
f(x′

n)− inf f +
µ

2
∥P⊥x′

n∥2
]
+

(b−√
µα)γ

2
√
α

E
[
∥Pvn∥2

]
=

(
1− (b−√

µα)
γ√
α
−√

µγ

)
E
[
f(x′

n)
]
− (1−√

µγ) inf f + (b−√
µα)

γ√
α
E[f(xn)]

+
γ2(1 + σ2

m)− η

2
E
[
∥∇f(x′

n)∥2
]
+

Lη2 + γ2

2
σ2
a

+
(b−√

µα)2 + (b−√
µα)εγ

√
α

2
E
[
∥Pvn∥2

]
+

√
µ(b−√

µα)E
[
⟨P⊥x′

n, P
⊥vn⟩

]
+

µ−√
µγµ

2
E
[
∥P⊥x′

n∥2] +
(b−√

µα)γ(1 + εα)

2
√
α

E
[
∥Pvn∥2

]
.

Step 5. Recall that

α =
1−

√
µη(1 + σ2

m)

1−
√
µ(1 + σ2

m)η + σ2
m

η, b =

√
(1 + σ2

m)α

η

and thus

ρ =
b−√

µα

b+
√
µα

=

√
(1 + σ2

m)α/η −√
µα√

(1 + σ2
m)α/η +

√
µα

=
1−

√
µη

1+σ2
m

1 +
√

µη
1+σ2

m
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as desired.

Let us verify that γ =
√
α/b. This is equivalent to

√
µ(η − α) +

√
1 + σ2

m

η
α−

√
η

1 + σ2
m

=

(√
1 + σ2

m

η
−√

µ

)
α+

(
√
µη −

√
η

1 + σ2
m

)
= 0

i.e. to the choice

α =

√
µη −

√
η

1+σ2
m

√
µ−

√
1+σ2

m

η

=

√
µη − 1√

1+σ2
m

√
µη −

√
1 + σ2

m

η =
1−

√
µη(1 + σ2

m)

1 + σ2
m −

√
µη(1 + σ2

m)
η

which we made above. In particular, we find that

(b−√
µα)

γ√
α
+
√
µγ =

(
b√
α
−√

µ+
√
µ

)
γ =

bγ√
α

= 1

and therefore(
1− (b−√

µα)
γ√
α
−√

µγ

)
E
[
f(x′

n)
]
+ (1−√

µγ) inf f + (b−√
µα)

γ√
α
E[f(xn)]

= (1−√
µγ)E

[
f(xn)− inf f

]
.

In the coefficient of E
[
∥∇f(x′

n)∥2, we have the cancellations

(1 + σ2
m)γ2 − η = (1 + σ2

m)
α

b2
− η =

η

(1 + σ2
m)α

α− η = 0.

By the same analysis, the coefficient of additive noise is

Lη2 + γ2 = Lη2 +
η

1 + σ2
m

,

so overall

Ln+1 ≤ (1−√
µγ)E

[
f(xn)− inf f

]
+

Lη2 + η
1+σ2

m

2
σ2
a

+
(b−√

µα)2 + (b−√
µα)εγ

√
α

2
E
[
∥Pvn∥2

]
+

√
µ(b−√

µα)E
[
⟨P⊥x′

n, P
⊥vn⟩

]
+

a2 −√
µγµ

2
E
[
∥P⊥x′

n∥2] +
(b−√

µα)γ(1 + ε
√
α)

2
√
α

E
[
∥Pvn∥2

]
.

We now analyze the terms corresponding to the quadratic terms. Using γ =
√
α/b, we obtain

(b−√
µα)2 + (b−√

µα)εγ
√
α

b2
≤
(
1−

√
µα

b

)(
1 +

(εγ −√
µ)
√
α

b

)
= (1−√

µγ)

(
1 +

(εγ −√
µ)
√
α

b

)
≤ 1−√

µγ

for the coefficient of E[∥vn∥2] if εγ ≤ a, i.e. if ε ≤
√
µ

γ =
√

µ(1+σ2
m)

η Analogously, we see that the

coefficient of E
[
⟨P⊥vn, P

⊥x′
n⟩
]

that

√
µ(b−√

µα) =
√
µb

b−√
µα

b
=

√
µb

(
1−√

µ

√
α

b

)
=

√
µb(1−√

µγ)

and for the coefficient of E
[
∥P⊥x′

n∥2
]

that

µ−√
µγµ

µ
= 1− γµ

√
µ

= 1−√
µγ.
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Before proceeding to the next term, we observe that

γ2 =
η

1 + σ2
≥ η

1−
√
µη(1 + σ2)

1 + σ2 −
√
µη(1 + σ2)

= α,

and hence ε ≤ √
µ/γ ≤ √

µγ/α. Finally, we note for the coefficient of E[∥Pvn∥2] that

(b−√
µα)γ(1 + εα)
√
αλ

=
(b−√

µα)γ(1 + εα)(b−√
µα)

√
α

√
αγ(b+

√
µα)2

=

(
b−√

µα

b+
√
µα

)2

(1 + εα)

≤
(
b−√

µα

b

)2

(1 + εα)

= (1−√
µγ)

2
(1 + εα)

≤ (1−√
µγ)

2
(1 +

√
µγ)

= (1−√
µγ)
(
1− µγ2)

≤ 1−√
µγ

as desired. Overall, we find that

Ln+1 ≤ (1−√
µγ)

{
E[f(xn)− inf f ] +

b2

2
E
[
∥P⊥vn∥2

]
+ abE

[
⟨P⊥vn, P

⊥x′
n⟩
]

+
µ

2
E
[
∥P⊥x′

n∥2
]
+

λ
E
[
∥Pvn∥2

]}
+

Lη2 + η
1+σ2

m

2
σ2
a

= (1−√
µγ)

{
E
[
f(xn)− inf f

]
+

1

2
E
[
∥P⊥vn + P⊥x′

n∥2
]
+

λ

2
E
[
∥Pvn∥2

]}
+

Lη2 + η
1+σ2

m

2
σ2
a

= (1−√
µγ)Ln +

Lη2 + η
1+σ2

m

2
σ2
a.

By Lemma 22, we deduce

Ln ≤ (1−√
µγ)nL0 +

Lη2 + η
1+σ2

m

2
√
µγ

σ2
a =

L(1 + σ2
m)η2 + η

2(1 + σ2
m)

√
µ
√
η/(1 + σ2

m)
.

Since L(1 + σ2
m)η ≤ 1, we can simplify the noise term to

L(1 + σ2
m)η2 + η

2(1 + σ2
m)

√
µ
√

η/(1 + σ2
m)

≤
σ2
a
√
η√

µ(1 + σ2
m)

.

C A BRIEF COMPARISON OF GEOMETRIC CONDITIONS FOR OPTIMIZATION

C.1 DEFINITIONS AND ELEMENTARY PROPERTIES

In this section, we compare some common geometric assumptions in optimization theory. Recall the
following notions.
Definition 23. Let U ⊆ Rd be an open set. We say that a C1-function f : U → R

1. is γ-quasar convex if argmin f ̸= ∅ and if the inequality

⟨∇f(x), x− x∗⟩ ≥ γ
(
f(x)− f(x∗)

)
holds for any x ∈ U and any x∗ ∈ argmin f .
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2. star-convex if it is 1-quasar convex.

3. (γ, µ)-strongly quasar convex if argmin f ̸= ∅ and

⟨∇f(x), x− x∗⟩ ≥ γ
(
f(x)− f(x∗) +

µ

2
∥x− x∗∥2

)
4. is first order µ-strongly convex if

f(x) ≥ f(z) + ⟨∇f(z), x− z⟩+ µ

2
∥x− z∥2 ∀ x, z ∈ U.

5. satisfies the first order µ-strong convexity condition with respect to the closest minimizer if
for all x we have

f(π(x)) ≥ f(x) + ⟨∇f(x), π(x)− x⟩+ µ

2
∥x− π(x)∥2 ∀ x ∈ U

where

π(x) = argmin

{
∥x− z∥2 : f(z) = inf

x′∈U
f(x′)

}
.

In particular, we assume that the set of minimizers of f is non-empty and that there exists a
unique closest point π(x) for all x ∈ U .

6. satisfies a PL condition with PL constant µ if

∥∇f(x)∥2 ≥ 2µ
(
f(x)− inf f

)
.

If U is a convex set, the fourth condition is of course equivalent to regular µ-strong convexity.
Lemma 24. 1. If f is first order µ-strongly convex and has a minimizer in U , then f satisfies

the first order µ-strong convexity condition with respect to the closest minimizer.

2. If f satisfies the first order µ-strong convexity condition with respect to the closest minimizer,
then f satisfies the PL condition with the same constant µ.

3. If f is µ-strongly convex with respect to the closest minimizer on Uα = {x ∈ Rd : f(x) <
α}, then the line segment connecting x and π(x) is contained in Uα for all x ∈ Uα.

4. If f is L-Lipschitz continuous on Uα and satisfies the PL-inequality with constant µ on Uα,
then µ ≤ L.

5. If f is (γ, µ)-strongly quasar convex, then argmin f consists of a single point.

6. If f is γ-quasar convex and U is star-shaped with respect to the minimizer x∗ ∈ argmin f ,
then all sub-level sets of f are star-shaped with respect x∗. In particular, the set of minimizers
is convex.

If U = Rd, then any strongly convex function f : U → R has a minimizer in U . On general open
sets, this is not guaranteed.

Proof. First claim. If f is first order µ-strongly convex and has a minimizer in U , then the minimizer
x∗ is unique since for x ̸= x∗ we have

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩+ µ

2
∥x− x∗∥2 = f(x∗) +

µ

2
∥x− x∗∥2 > f(x∗).

In particular, for every x there exists a unique closest minimizer π(x) = x∗. The first order convexity
condition with respect to the closest minimizer therefore requires the first order convexity condition
only for pairs of points x, x∗ rather than all points x, z.

Second claim. This result follows by the same proof that implies the PL condition for strongly
convex functions: If f satisfies a first order µ-strong convexity condition with respect to the closest
minimizer, then

⟨∇f(x), x− π(x)⟩ ≥ f(x)− f(π(x)) +
µ

2
∥x− π(x)∥2
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and thus

∥∇f(x)∥ ≥
〈
∇f(x),

x− π(x)

∥x− π(x)∥

〉
≥ f(x)− f(π(x))

∥x− π(x)∥
+

µ

2
∥x− π(x)∥

≥ min
ξ>0

(
f(x)− f(π(x))

ξ
+

µ

2
ξ

)
.

Setting the derivative with respect to ξ to zero, we find that the minimum is achieved when

f(x)− f(π(x))

ξ2
=

µ

2
, so ξ =

√
2
(
f(x)− inf f

)
µ

,

so

∥∇f(x)∥ ≥

√
µ
(
f(x)− inf f

)
2

+
µ

2

√
2

µ

(
f(x)− inf f

)
=
√
2µ
(
f(x)− inf f

)
.

The PL condition follows by squaring both sides.

Third claim. Let xt = (1 − t)π(x) + tx for 0 ≤ t ≤ 1. First we observe that π(xt) = π(x) for
every t ∈ [0, 1]. Indeed, if there is another minimizer z of f such that ∥xt − z∥ ≤ ∥xt, π(x)∥ then

∥x− π(x)∥ = ∥x− xt∥+ ∥xt − π(x)∥ ≤ ∥x− xt∥+ ∥xt − z∥ ≤ ∥x− z∥
since x, xt, and π(x) all lie on a straight line. If there exists a unique closest point π(x) in M, then
we find that z = π(x).

We note that xt − π(x) = t(x− π(x)) and thus
d

dt
f(xt) = ⟨∇f(xt), x− π(x)⟩ = 1

t
⟨∇f(xt), xt − π(xt)⟩ ≥ 0.

In particular, t 7→ f(xt) is an increasing function on the set Ix := {t > 0 : xt ∈ Uα}. If Ix has
multiple connected components in (0, 1), this is only possible if f = α on the boundaries. If f = α
on the lower boundary of a connected component, then f ≥ α inside the entire interval as f increases,
contradicting the definition of Uα.

Fourth claim. Since f is continuous, Uα is open. Therefore, xt := xt − t∇f(x) ∈ Uα if t is small.
If f is L-Lipschitz continuous in Uα, then

f(xt) ≤ f(x) + ⟨f(x), xt − x⟩+ L

2
∥xt − x∥2

for all t such that xs ∈ Uα for s ∈ (0, t) and t ≤ 1/L by Lemma 19. Since the function t 7→
f(x)− t

2∥∇f(x)∥2 is decreasing in t, we see that xt ∈ Uα for t ∈ [0, 1/L]. In particular, we note
that

0 ≤ f(x−∇f/L)− inf f ≤ f(x)− 1

2L
∥∇f(x)∥2 − inf f ≤ f(x)− 2µ

2L

(
f(x)− inf f

)
− inf f

≤ (1− µ/L)
(
f(x)− inf f

)
,

implying the result.

Fifth claim. Assume that x∗, x′ ∈ argmin f . Define xt = tx∗ + (1− t)x′. Then
d

dt
f(xt) = ⟨∇f(xt), x

∗ − x′⟩ =
〈
∇f(xt),

xt − x′

t

〉
≥ γ

t

(
f(xt)−min f +

µ

2
∥xt − x′∥2

)
> 0

unless ∥xt − x′∥2 = 0, i.e. unless x∗ = x′. Thus f(xt) is strictly monotone increasing on {t ∈
[0, 1] : xt ∈ U}. Since x∗ ∈ U , this means that f must be strictly increasing on the final segment
(1− ξ, 1] where it reaches the global minimizer x∗ at t = 1, leading to a contradiction.

Sixth claim. This follows by essentially the same argument as the fifth claim: If x is any point, then
tx+ (1− t)x∗ ∈ U since U is star-shaped about x∗ and

d

dt
f(xt) = ⟨∇f(xt), x− x∗⟩ =

〈
∇f(xt),

xt − x∗

t

〉
≥ γ

t
(f(xt)− f(x∗)) ≥ 0.

In particular, f is increasing along any rays starting at x∗, so if f(x) < α, then f(xt) < α for any
t ∈ [0, 1].

The set of minimizers is star-shaped about every minimizer, hence convex.
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C.2 A ONE-DIMENSIONAL EXAMPLE

In the following simple one-dimensional example, we illustrate the hierarchy of geometric conditions
between convexity and the PL condition.
Example 25. Let R > 0 and ε ∈ (0, 1). Consider the even function given for x > 0 by

f(x) =
1 + ε sin(2R log x)

2
x2

f ′(x) =
(
1 + ε sin(2R log x) +Rε cos(2R log x)

)
x

f ′′(x) = 1 + ε sin(2R log x) +Rε cos(2R log x) + 2Rε cos(2R log x)− 2R2ε sin(2R log x)

= 1 + ε(1− 2R2) sin(2R log x) + 3Rε cos(2R log x).

We first note that evidently 1−ε
2 x2 ≤ f(x) ≤ 1+ε

2 x2 for all x. In particular, x∗ = 0 is the unique
global minimizer of f .

L-smoothness. The function g(ξ) = A sin(ξ) + B cos(ξ) attains its maximum when A cos ξ −
B sin ξ = 0 for A,B ∈ R, i.e. sin ξ = A√

A2+B2
and cos ξ = B√

A2+B2
. In particular maxξ g(ξ) =√

A2 +B2, so

|f ′′(x)| ≤ 1 + ε

√(
1− 2R2

)2
+ (3R)2 = 1 + ε

√
1 + 5R2 + 4R4.

The second derivative is discontinuous at x∗ = 0, but bounded on R \ {0} by L = 1 +

ε
√
1 + 5R2 + 4R4, i.e. f is L-smooth.

Convexity. By the same consideration, we see that f is convex if and only if f ′′ ≥ 0, i.e. if
and only if ε

√
1 + 5R2 + 4R4 ≤ 1. If the inequality is strict, f is strongly convex with constant

µ = 1− ε
√
1 + 5R2 + 4R4.

PL inequality. By the same argument as above, we see that

|f ′(x)|2 ≥
(
1 + ε sin+Rε cos

)2
x2 ≥

(
1− ε

√
1 +R2

)2
x2

if ε
√
1 +R2 < 1, where all trigonometric functions are evaluated at ξ = 2R log x.

In particular, if ε
√
1 +R2 < 1, then

|f ′(x)|2 ≥
(
1− ε

√
1 +R2

)2
x2 ≥ 2

(
1− ε

√
1 +R2

)2
1 + ε

1 + ε

2
x2 ≥ 2

(
1− ε

√
1 +R2

)2
1 + ε

f(x),

i.e. f satisfies the PL condition with constant

µ =
(1− ε

√
1 +R2)2

1 + ε
.

Infinite number of local minimizers cluster at the orgin. If ε
√
1 +R2 > 1 on the other hand, then

by the same argument f ′ changes sign an infinite number of times in any neighborhood of the origin
since limx→0+ log x = −∞.

First order strong convexity with respect to the closest minimizer. Note that

x · f ′(x)− f(x) =

(
1

2
+

ε

2
sin(2R log x) +Rε cos(log x)

)
x2

≥
(
1

2
−
√
(ε/2)2 + (Rε)2

)
x2

=
1

2

(
1− ε

√
1 + 4R2

)
x2.

In particular, f is µ-strongly convex with respect to the global minimizer with

µ = 1− ε
√
1 + 4R2
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if ε
√
1 + 4R2 < 1 and it fails to be µ-strongly convex with respect to the global minimizer for any

µ > 0 otherwise.

Quasar-convexity. Since the minimizer is unique, (γ, µ)-strong convexity is a strictly more general
notion than first order strong convexity with respect to the closest minimizer as we have an additional
parameter γ to relax the requirements. Essentially the same calculation reads

x · f ′(x)− γ f(x) =
(
1− γ

2
+ ε ((1− γ/2) sin(. . . ) +R cos(. . . ))

)
x2

≥
(
1− γ

2
− ε

√
(1− γ/2)2 +R2

)
x2.

In particular, f is γ-quasar convex if

1− γ

2
− ε
√

(1− γ/2)2 +R2 ≥ 0 ⇔ 1− ε

√
1 +

(
R

1− γ/2

)2

≥ 0

⇔ 1 +

(
R

1− γ/2

)2

≤ 1

ε2
.

Such a γ can be found if and only if R2 < 1−ε2

ε2 . Choosing γ slightly smaller, it is then also always
possible to make f (γ′, µ′)-strongly convex for some γ′ ∈ (0, γ) and µ′ > 0.

Relationship between conditions. We quickly summarize the various parameter ranges for which
the function f satisfies good geometric conditions.

PL condition µ-sc wrt minimizer µ-strongly convex

Must be < 1 ε
√
1 +R2 ε

√
1 + 4R2 ε

√
1 + 5R2 + 4R4

Constant (1−ε
√
1+R2)2

1+ε 1− ε
√
1 + 4R2 1− ε

√
1 + 5R2 + 4R4

Evidently, classical strong convexity implies strong convexity with respect to the global minimizer
which in turn implies the PL condition. The parameter ranges and constants are generally vastly
different. All estimates, except for the PL constant, are sharp.

In particular, the one-dimensional examples demonstrate that first order convexity with respect to the
closest minimizer is strictly weaker than convexity along the line segment connecting x to π(x).

C.3 CONNECTION TO DEEP LEARNING

While some notions of a ‘good’ geometry are weaker than others (for instance, strong convexity
implies the PL condition but not vice versa), they all share an important common feature: If x
is a critical point of f , then it is a global minimizer. Namely, the PL inequality implies that
∥∇f(x)∥2 > 0 unless f(x) = inf f and γ-quasar convexity implies that ⟩∇f(x), x−x∗⟩ > 0 unless
f(x) = f(x∗) = inf f , showing that ∇f(x) ̸= 0.

In deep learning applications, critical points are guaranteed to occur under very general circumstances:
If

f(β, a,W, b;x) = β +

n∑
i=1

aiσ(w
T
i x+ b)

is a neural network with a single hidden layer and a C1-activation function satisfying σ(0) = 0 (e.g.
tanh), then the loss function

L(β, a,W, b) =
1

n

n∑
j=1

∣∣f(β, a,W, b;xj)− yj
∣∣2,

satisfies
∇L(β, a,W, b) = 0

for a = b = 0 ∈ Rn, W = 0 ∈ Rn×d and β = 1
n

∑n
j=1 yj . The same is true if a row wi of W is

merely orthogonal to all data points xj but does not vanish.
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Figure 2.3: We investigate the convexity of the function ϕ(t) = L(w + tg) for a point w which
is very close to the set of global minimizers of a loss function L as in (2) and the direction g =
∇L(w)/∥∇L(w)∥. We plot ϕ(t) (left), the second derivative of ϕ (middle), and an estimate of the
parameter µ of strong convexity with respenct to the minimizer (right) for t ∈ [−1, 1]. Evidently, ϕ
is strongly convex in a neighborhood of the set of global minimizers and the first order convexity
inequality with respect to the minimizer along the line yields (in some cases significantly) larger
constants than the parameter of strong convexity found by the second derivative. Different colors
correspond to different runs with different random initialization.

For deeper networks, the set of critical points becomes larger: As long as the parameters of two
layers are all zero, the remaining layers can be chosen arbitrarily. If more than two layers are all zero,
then the also the second parameter derivative vanishes. In particular, the critical point for which all
parameters are zero cannot be a strict saddle point.

While there are guarantees that individual algorithms escape certain types of critical points almost
surely (e.g. strict saddles, (Lee et al., 2019; O’Neill & Wright, 2019)), they may take very long to do
so (Du et al., 2017). The analysis of accelerated rates becomes asymptotic at best. We claim that our
notion of strong convexity with respect to the closest minimizer suffers from the same ‘optimism’
globally, but locally captures two important features of deep learning landscapes close to the set of
global minimizers which are not captured by concepts which require a geometric condition with
respect to all minimizers: A manifold along which we can move tangentially, and convexity in
directions which are perpendicular to the manifold.

D EXPERIMENT FOR FIGURE 3

We trained a fully connected neural network with 10 layers of width 35 and tanh activation to fit
labels yi at 100 randomly generated datapoints xi in R12. The small dataset size allowed us to use
the exact gradient and loss function rather than stochastic approximations for a better exploration
of the loss landscape. As the direction to the closest minimizer generally cannot be found, we use
the gradient as a proxy and investigate the convexity of the function ϕ(t) = L(w + tg) for a point w
which is very close to the set of global minimizers of a loss function L as in (2) and the direction
g = ∇L(w)/∥∇L(w)∥.

The labels were generated by a teacher network of width 20 and depth 7 with randomly initialized
parameters. The student networks were trained for 10,000 epochs using stochastic gradient descent
with Nesterov momentum and learning rate η = 0.005, momentum ρ = 0.99. At the end of training,
the training loss was between 10−12 and 10−9 for all five runs. Second derivatives are approximated
by second order difference quotients ϕ(t) ≈ ϕ(t+h)−2ϕ(t)+ϕ(t−h)

h2 for h = 0.01. Similarly, the strong

convexity parameter with respect to the global minimizer is estimated by 2ϕ′(t)t−ϕ(t)+inf ϕ
t2 where

ϕ′(t) is estimated by ϕ(t+h)−ϕ(t−h)
2h .

It should be noted that due to the inherent randomness of the experiment, a variety of geometric
behaviors was observed. Generally, the loss function is convex in gradient direction in a neighborhood
of a global minimizer, but the size of the neighborhood may vary, as well as the magnitude of second
derivatives and the steepness of the objective function. In several experiments, there were examples
of convex but not strongly convex behavior in gradient directions. In some experiments, training
failed and the minimum value achieved along the line w + tg/∥g∥ was larger than zero. The gradient
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is an imperfect approximation of the direction towards the minimizer and rounding errors may occur
as the gradient is very small so close to the set of minimizers.
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