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Abstract

Transformer based re-ranking models can001
achieve high search relevance through context-002
aware soft matching of query tokens with003
document tokens. To alleviate runtime com-004
plexity of such inference, previous work has005
adopted a late interaction architecture with pre-006
computed contextual token representations at007
the cost of a large online storage. This pa-008
per proposes contextual quantization of to-009
ken embeddings by decoupling document-010
specific and document-independent ranking011
contributions during codebook-based compres-012
sion. This allows effective online decompres-013
sion and embedding composition for better014
search relevance. This paper presents an eval-015
uation of the above compact token representa-016
tion model in terms of relevance and space ef-017
ficiency.018

1 Introduction019

Modern search engines for text documents typi-020

cally employ multi-stage ranking. The first retrieval021

stage extracts top candidate documents matching022

a query from a large search index with a simple023

ranking method. The second stage or a later stage024

uses a more complex machine learning algorithm to025

re-rank top results thoroughly. Recently neural re-026

ranking techniques from transformer-based archi-027

tectures have achieved impressive relevance scores028

for top k document re-ranking, such as MacAvaney029

et al. (2019). However, using a transformer-based030

model to rank or re-rank is extremely expensive dur-031

ing the online inference (Lin et al., 2020). Various032

efforts have been made to reduce its computational033

complexity (e.g. Gao et al. (2020)).034

A noticeable success in time efficiency improve-035

ment is accomplished in ColBERT (Khattab and036

Zaharia, 2020) which conducts late interaction037

of query terms and document terms during run-038

time inference so that token embeddings for doc-039

uments can be pre-computed. Using ColBERT040

re-ranking after a sparse retrieval model called 041

DeepImpact (Mallia et al., 2021) can further en- 042

hance relevance. Similarly BECR (Yang et al., 043

2021), CEDR-KNRM (MacAvaney et al., 2019), 044

and PreTTR (MacAvaney et al., 2020) have also 045

adopted the late interaction architecture in their 046

efficient transformer based re-ranking schemes. 047

While the above work delivers good search rel- 048

evance with late interaction, their improvement 049

in time efficiency has come at the cost of a large 050

storage space in hosting token-based precomputed 051

document embeddings. For example, for the MS 052

MARCO document corpus, the footprint of embed- 053

ding vectors in ColBERT takes up to 1.8TB and 054

hosting them in a disk incurs substantial time cost 055

when many embeddings are fetched for re-ranking. 056

It is highly desirable to reduce embedding foot- 057

prints and host them in memory as much as possi- 058

ble for fast and high-throughput access, especially 059

when an online re-ranking server is required to effi- 060

ciently process many queries simultaneously. 061

The contribution of this paper is to propose a 062

compact representation for contextual token em- 063

beddings of documents called Contextual Quantiza- 064

tion (CQ). Specifically, we adopt codebook-based 065

quantization to compress embeddings while explic- 066

itly decoupling the ranking contributions of doc- 067

ument specific and document-independent infor- 068

mation in contextual embeddings. These ranking 069

contributions are recovered with weighted compo- 070

sition after quantization decoding during online 071

inference. Our CQ scheme includes a neural net- 072

work model that jointly learns context-aware de- 073

composition and quantization with an objective to 074

preserve correct ranking scores and order margins. 075

Our evaluation shows that CQ can effectively re- 076

duce the storage space of contextual representation 077

by 32 times or more for the tested datasets with 078

insignificant online embedding recovery overhead 079

and a small relevance degradation for re-ranking 080

passages or documents. 081
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2 Problem Definition and Related Work082

The problem of neural text document re-ranking083

is defined as follows. Given a query with multiple084

terms and a set of candidate documents, rank these085

documents mainly based on their embeddings and086

query-document similarity. With a BERT-based re-087

ranking algorithm, typically a term is represented088

by a token, and thus in this paper, word “term” is089

used interchangeably with “token”.090

Deep contextual re-ranking models. Neural091

re-ranking has pursued the representation-based or092

interaction-based algorithms (Guo et al., 2016; Dai093

et al., 2018; Xiong et al., 2017). Embedding inter-094

action based on query and document terms shows095

an advantage in these studies. The transformer ar-096

chitecture based on BERT (Devlin et al., 2019) has097

been recently adopted to re-ranking tasks by using098

BERT’s [CLS] token representation to summarize099

query and document interactions (Nogueira and100

Cho, 2019; Yang et al., 2019; Dai and Callan, 2019;101

Nogueira et al., 2019a; Li et al., 2020). Recently102

BERT is integrated in late term interaction (MacA-103

vaney et al., 2019; Hofstätter et al., 2020c,b; Mitra104

et al., 2020) which delivers strong relevance scores105

for re-ranking.106

Efficiency optimization for transformer-107

based re-ranking. Several approaches have108

been proposed to reduce the time complexity109

of transformer-based ranking. For example,110

architecture simplification (Hofstätter et al.,111

2020c; Mitra et al., 2020), late interaction with112

precomputed token embeddings (MacAvaney et al.,113

2020), early exiting (Xin et al., 2020), and model114

distillation (Gao et al., 2020; Hofstätter et al.,115

2020a; Chen et al., 2020b). We will focus on the116

compression of token representation following the117

late-interaction work of ColBERT (Khattab and118

Zaharia, 2020) and BECR (Yang et al., 2021) as119

they deliver fairly competitive relevance scores for120

several well-known ad-hoc TREC datasets. This121

late-interaction approach follows a dual-encoder122

design that separately encodes the two sets of texts,123

studied in various NLP tasks (Zhan et al., 2020;124

Chen et al., 2020a; Reimers and Gurevych, 2019;125

Karpukhin et al., 2020; Zhang et al., 2020).126

Several previous re-ranking model attempted to127

reduce the space need for contextual token embed-128

dings. ColBERT has considered an option of using129

a smaller dimension per vector and limiting 2 bytes130

per number as a scalar quantization. BECR (Yang131

et al., 2021) uses LSH for contextual embedding132

compression (Ji et al., 2019). PreTTR (MacAvaney 133

et al., 2020) uses a single layer encoder model to re- 134

duce the dimensionality of each token embedding. 135

Following PreTTR’s work, the SDR method in Co- 136

hen et al. (2021) considers neural encoding and 137

scalar quantization, and combines static BERT em- 138

beddings with contextual embeddings. SDR is sub- 139

stantially slower than ColBERT because SDR runs 140

two transformer layers in online inference. Inspired 141

by this work, our work decomposes contextual em- 142

beddings to decouple ranking contributions during 143

vector quantization. Unlike SDR, the document- 144

independent component does not use raw static 145

embeddings of BERT, but exploits corpus-specific 146

information using the output of the transformer 147

layers of BERT. 148

Vector quantization. Vector quantization with 149

codebooks was developed for data compression to 150

assist approximate nearest neighbor search, for ex- 151

ample, product quantizer (PQ) from Jégou et al. 152

(2011), optimized product quantizer (OPQ) from 153

Ge et al. (2013); residual additive quantizer(RQ) 154

from Ai et al. (2015) and local search additive quan- 155

tizer (LSQ) from Martinez et al. (2018). Recently 156

such a technique has been used for compressing 157

static word embeddings (Shu and Nakayama, 2018) 158

and document vectors in a dense retrieval scheme 159

called JPQ (Zhan et al., 2021). None of the previ- 160

ous work has worked on quantization of contextual 161

token vectors for the re-ranking task, and that is the 162

focus of this paper. 163

3 Contextual Quantization 164

Applying vector quantization naively to token em- 165

bedding compression does not ensure the rank- 166

ing effectiveness because a quantizer-based com- 167

pression is not lossless, and critical ranking sig- 168

nals could be lost during data transformation. To 169

achieve a high compression ratio while maintaining 170

the competitiveness in relevance, we consider the 171

ranking contribution of a contextual token embed- 172

ding for soft matching containing two components: 173

1) document specific component derived from the 174

self attention among context in a document, 2) 175

document-independent and corpus-specific com- 176

ponent generated by the transformer model. Since 177

for a reasonable sized document set, the second 178

component is invariant to documents, its storage 179

space is negligible compared to the first compo- 180

nent. Thus the second part does not need compres- 181

sion. We focus on compressing the first compo- 182
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Figure 1: Offline processing and online ranking with contextual quantization

nent using codebooks. This decomposition strategy183

can reduce the relevance loss due to compression184

approximation, which allows a more aggressive185

compression ratio. Our integrated vector quantizer186

with contextual decomposition contains a ranking-187

oriented scheme with an encoder and decoder net-188

work for jointly learning codebooks and compo-189

sition weights. Thus, the online composition of190

decompressed document-dependent information191

with document-independent information can retain192

a good relevance.193

3.1 Vector Quantization and Contextual194

Decomposition195

A vector quantizer consists of two steps as dis-196

cussed in Shu and Nakayama (2018). In the com-197

pression step, it encodes a real-valued vector (such198

as a token embedding vector in our case) into a199

short code using a neural encoder. The short code200

is a list of reference indices to the codewords in201

codebooks. During the decompression step, a neu-202

ral decoder is employed to reconstruct the original203

vector from the code and codebooks.204

The quantizer learns a set of M codebooks205

{C1, C2, · · · , CM} and each codebook contains K206

codewords (Cm = {cm1 , cm2 , · · · , cmK}) of dimen-207

sion h. Then for any D-dimensional real valued208

vector x ∈ RD, the encoder compresses x into an209

M dimensional code vector s. Each entry of code210

s is an integer j, denoting the j-th codeword in211

codebook Cm. After locating all M codewords212

as [c1, · · · , cM ], the original vector can be recov-213

ered with two options. For a product quantizer,214

the dimension of codeword is h = D/M , and215

the decompressed vector is x̂ = c1 ◦ c2 · · · ◦ cM216

where symbol ◦ denotes vector concatenation. For217

an additive quantizerthe decompressed vector is218

x̂ =
∑M

j=1 cj .219

Codebook-based contextual quantization. 220

Now we describe how codebook-based compres- 221

sion is used in our contextual quantization. Given 222

a token t, we consider its contextual embedding 223

vector E(t) as a weighted combination of two 224

components: E(t∆) and E(t̄). E(t∆) captures 225

the document-dependent component, and E(t̄) 226

captures the document-independent component 227

discussed earlier. For a transformer model such 228

as BERT, E(t) is the token output from the last 229

encoder layer, and we obtain E(t̄) by feeding 230

[CLS] ◦ t ◦ [SEP] into BERT model and taking last 231

layer’s output for t. 232

During offline data compression, we do not ex- 233

plicitly derive E(t∆) as we only need to store the 234

compressed format of such a value, represented 235

as a code. Let Ê(t∆) be the recovered vector 236

with codebook-based decompression, as a close 237

approximation of E(t∆). Let Ê(t) be the final com- 238

posed embedding used for online ranking with late- 239

interaction. Then Ê(t) = g(Ê(t∆),E(t̄)) where 240

g(.) is a simple feed-forward network to combine 241

two ranking contribution components. 242

The encoder/decoder neural architecture for 243

contextual quantization. We denote a token in 244

a document d as t. The input to the quantization 245

encoder is E(t) ◦ E(t̄). The output of the quanti- 246

zation encoder is the code vector s of dimension 247

M . Let code s be (s1, · · · , sm, · · · , sM ) and each 248

entry sm will be computed below in Eq. 4. This 249

computation uses the hidden layer h defined as: 250

h = tanh(w0(E(t) ◦ E(t̄)) + b0). (1) 251

The dimension of h is fixed as 1 ×MK/2. The 252

hidden layer a is computed by a feed forward layer 253

with a softplus activation (Eq. 2) with an output 254

dimension of M ×K after reshaping, Let am be 255
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the m-th row of this output.256

am =softplus(wm
1 h + bm

1 ). (2)257

To derive a discrete code entry for sm, follow-258

ing the previous work (Shu and Nakayama, 2018),259

we apply the Gumbel-softmax trick (Maddison260

et al., 2017; Jang et al., 2017) as shown in Eq. 3,261

where the temperature τ is fixed at 1 and εk is a262

noise term sampled from the Gumbel distribution263

− log(− log(Uniform[0, 1])). Here pm is a vector264

with dimension K. (pm)j is the j-th entry of the265

vector. Similarly, (am)j is the j-th entry of am.266

(pm)j =
exp(log((am)j + εj)/τ)∑K

j′=1 exp(log((am)j′ + εj′)/τ)
. (3)267

sm = arg max
1≤j≤K

(pm)j . (4)268

In the decompression stage, the input to the quan-269

tization decoder is the code s, and this decoder270

accesses M codebooks {C1, C2, · · · , CM} as M271

parameter matrices of size K × h which will be272

learned. For each m-entry of code s, sm value is273

the index of row vector in Cm to be used as its cor-274

responding codeword. Once all codewords c1 to275

cM are fetched, we recover the approximate vec-276

tor Ê(t∆) as
∑M

j=1 cj for additive quantization or277

c1 ◦ c2 · · · ◦ cM for product quantization.278

Next, we perform a composition with a one-layer279

or two-layer feed-forward network to derive the280

contextual embedding as Ê(t) = g(Ê(t∆,E(t̄)).281

With one feed-forward layer,282

Ê(t) = tanh(w2(Ê(t∆) ◦ E(t̄)) + b2). (5)283

The above encoder and decoder for quantiza-284

tion have parameter w0,b0,w1,b1,w3,b3, and285

{C1, C2, · · · , CM}. These parameters are learned286

through training. Once these parameters are287

learned, the quantization model is fixed and the288

code for any new token embedding can be com-289

puted using Eq. 4 in offline processing.290

Figure 1 depicts the flow of offline learning291

and the online inference with context quantiza-292

tion. Given a query with l tokens {q1, q2, ..ql},293

and a documents with n tokens {t1, t2, ..tn}, The294

query token embeddings encoded with a trans-295

former based model (e.g. BERT) are denoted as296

E(q1), · · · ,E(ql). The embeddings for document297

tokens through codebook base decompression are298

Ê(t1), · · · Ê(tn). The online inference then uses299

the interaction of query tokens and document to- 300

kens defined in a re-ranking algorithm such as Col- 301

BERT to derive a ranking score (denoted as fq,d). 302

The purpose of injecting E(t̄) in Eq. 1 is to de- 303

couple the document-independent ranking contri- 304

bution from contextual embedding Ê(t∆) so that 305

this quantization encoder model will be learned 306

to implicitly extract and compress the document- 307

dependent ranking contribution. 308

Table 1 gives an example with several token 309

codes produced by CQ for different sentences rep- 310

resenting different contexts, and illustrates context 311

awareness of CQ’s encoding with a small codebook 312

dimension (M=K=4). For example, 1 in code [4, 313

4, 3, 1] means the 4-th dimension uses the first 314

codeword of the corresponding codebook. Train- 315

ing of CQ uses the MS MARCO passage dataset 316

discussed in Section 4 and these sentences are not 317

from this dataset. Our observation from this exam- 318

ple is described as follows. First, in general token 319

codes in the same sentences are closer to each other, 320

and token codes in different sentences, even with 321

the same word “bank”, are far away with a visi- 322

ble Hamming distance. Thus CQ coding allows a 323

context-based separation among tokens residing in 324

different contexts. Second, by looking at boldfaced 325

tokens at each sentence, their distance in terms of 326

contextual semantics and proximity is reflected to 327

some degree in their CQ codes. For instance, a 328

small Hamming code distance of three words “ac- 329

tor”, “poet” and “writer” resembles their semantic 330

and positional closeness. A larger code distance 331

of two “bank”s in the 3rd and 4th sentences relates 332

with their word sense and positional difference. 333

Training loss for parameter learning. We 334

have explored three training loss functions. The 335

first option is to follow a general quantizer (Shu 336

and Nakayama, 2018) using the mean squared er- 337

ror (MSE) between the reconstructed and origi- 338

nal embedding vectors of all token ti. Namely 339

LMSE =
∑
‖E(ti)− Ê(ti)‖22. 340

The second option is the pairwise cross-entropy 341

loss based on rank orders. After warming up with 342

the MSE loss, we further train the quantizer using 343

LPairwiseCE =
∑

(−
∑

j=d+,d− Pj logPj) where 344

d+ and d− are positive and negative documents for 345

query q. 346

We adopt the third option which borrows the idea 347

of MarginMSE loss from Hofstätter et al. (2020a) 348

proposed for BERT-based ranking model distilla- 349

tion. In MarginMSE, a student model is trained to 350
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Context Token codes
William Shakespeare was widely regarded as the world’s greatest writer actor poet
actor, poet, writer and dramatist. [4,4,3,1] [4,4,3,1] [1,4,3,1]
I would like to have either a cup of coffee or a good fiction coffee fiction
to kill time. [3,3,3,4] [3,1,3,4]
She sat on the river bank across from a series of wide, 1st bank 2nd bank
large steps leading up a hill to the bank of America building. [3,1,4,2] [4,1,3,1]
Some language techniques can recognize word senses in phrases 1st bank 2nd bank
such as a river bank and a bank building. [4,3,2,2] [3,1,1,4]
If you get a cold, you should drink a lot of water and get some rest. 1st get 2nd get

[2,2,4,2] [2,1,2,4]

Table 1: Example context-aware token codes produced by CQ using M=K=4 for the illustration purpose.

mimic the teacher model in terms of both ranking351

scores as well as the document relative order mar-352

gins. In our case, the teacher model is the ranking353

model without quantization and the student model354

is the ranking model with quantization. It is defined355

as LMarginMSE =
∑

((fq,d+ − fq,d−)− (f̂q,d+ − f̂q,d−))2,356

where fq,d and f̂q,d denote the ranking score with357

and without quantization, respectively. The above358

loss function distills the ColBERT ranking charac-359

teristics into the CQ model for better preservation360

of ranking effectiveness.361

3.2 Related Online Space and Time Cost362

Online space for document embeddings. The363

storage cost of the precomputed document embed-364

dings in a late-interaction re-ranking algorithm is365

dominating its online space need. To recover token-366

based document embeddings, an online server with367

contextual quantization stores three parts: code-368

books, the short codes of tokens in each document,369

and the document-independent embeddings.370

Given a document collection of Z documents of371

length n tokens on average, let V be the number of372

the distinct tokens. For M codebooks with M ∗K373

codewords of dimension h, we store each entry of374

a codeword with a 4-byte floating point number.375

Thus the space cost of codebooks is M ∗K ∗ h ∗ 4376

bytes, and the space for document-independent em-377

beddings of dimension D is V ∗D ∗4 bytes. When378

M = 16,K = 256, D = 128 as in our experi-379

ments, if we use the product quantization with the380

hidden dimension h = 8, the codebook size is 131381

MB. In the WordPiece English token set for BERT,382

V ≈ 32K and the space for document-independent383

embeddings cost about 16.4 MB. Thus the space384

cost of the above two parts is insignificant.385

The online space cost of token-based document386

embeddings is Z ∗ n ∗M ∗ log2K/8 bytes. Here387

each contextual token embedding of length D is388

encoded into a code of length M and the space of 389

each code costs log2K bits. 390

In comparison, the space for document embed- 391

dings in ColBERT with 4 bytes per number costs 392

Z ∗D ∗ n ∗ 4 bytes. Then the space ratio of Col- 393

BERT without CQ and with CQ is approximately 394
32D

M log2 K
, which is 32:1 when D = 128, M = 16 395

and K = 256. BECR uses 5 layers of the refine- 396

ment outcome with the BERT encoder for each 397

token and stores each layer of the embedding with 398

a 256 bit LSH signature. Thus the space cost ratio 399

of BECR over ColBERT-CQ is 5×256
M log2 K

, which is 400

10:1 when M = 16 and K = 256. We can adjust 401

the parameters of each of ColBERT, BECR, and 402

ColBERT-CQ for a smaller space with a degraded 403

relevance, and their space ratio to CQ still remains 404

large, which will be discussed in Section 4. 405

Time cost for online decompression and com- 406

position. Let k be the number of documents to 407

re-rank. The cost of decompression with the short 408

code of a token using the cookbooks is O(M ∗ h) 409

for a product quantizer and O(M ∗D) for an addi- 410

tive quantizer. Notice M ∗ h = D. For a one-layer 411

feed-forward network as a composition to recover 412

the final embedding, the total time cost for decom- 413

pression and composition is O(k ∗ n ∗ D2) with 414

a product quantizer, and O(k ∗ n(M ∗D + D2)) 415

with an additive quantizer. When using two hidden 416

layers with D dimensions in the first layer output, 417

there is some extra time cost but the order of time 418

complexity remains unchanged. 419

Noted that because of using feed-forward layers 420

in final recovery, our contextual quantizer cannot 421

take advantage of an efficiency optimization called 422

asymmetric distance computation in Jégou et al. 423

(2011). Since embedding recovery is only applied 424

to top k documents after the first-stage retrieval, 425

the time efficiency for re-ranking is still reasonable 426

without such an optimization. 427
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4 Experiments and Evaluation Results428

4.1 Settings429

Please refer to the appendix for more details on430

datasets, implementation, training, and the source431

of relevance numbers cited for some models.432

Datasets and metrics. The well-known MS433

MARCO passage and document ranking datasets434

are used. Following the official leader-board stan-435

dard, for the development sets with sparse labels,436

we use mean reciprocal rank (MRR@10) for rel-437

evance. For the densely labeled TREC test sets,438

we use normalized discounted cumulative gain439

(NDCG@10). We also measure the dominating440

space need of the embeddings in bytes and re-441

ranking time latency in milliseconds.442

To evaluate latency, we uses an AWS g4dn in-443

stance with an NVIDIA T4 GPU and 4 Intel Cas-444

cade Lake CPUs.445

Choices of first-stage retrieval models. To446

retrieve top 1,000 results before re-ranking, we447

consider the standard BM25 method (Robert-448

son and Zaragoza, 2009), and also the recent449

retrieval work including neural sparse retriev-450

ers: DeepCT (Dai and Callan, 2020), DeepIm-451

pact (Mallia et al., 2021), and uniCOIL (Lin and452

Ma, 2021; Gao et al., 2021); and dense retriev-453

ers: TCT-ColBERT(v2) (Lin et al., 2021) and454

JPQ (Zhan et al., 2021).455

Re-ranking models and quantizers com-456

pared. We demonstrate the use of CQ for to-457

ken compression in ColBERT in this paper. We458

compare its relevance with ColBERT, BECR and459

PreTTR. Other re-ranking models compared in-460

clude: BERT-base (Devlin et al., 2019), a cross461

encoder re-ranker, which takes a query and a doc-462

ument at run time and uses the last layers output463

from the BERT [CLS] token to generate a rank-464

ing score; TILDEv2 (Zhuang and Zuccon, 2021),465

which expands each document and additively ag-466

gregates precomputed neural scores. We have also467

evaluated the use of other quantization methods468

discussed in Section 2 for ColBERT, including two469

product quantizers (PQ and OPQ), and two additive470

quantizers (RQ and LSQ).471

4.2 A Comparison of Relevance472

Table 2 and Table 3 show the ranking relevance in473

NDCG and MRR of the different methods and com-474

pare against the use of CQ with ColBERT (marked475

as ColBERT-CQ). We either report our experiment476

results or cite the relevance numbers from other477

Model Specs. Dev TREC DL19 TREC DL20
MRR@10 NDCG@10 NDCG@10

Retrieval choices
BM25∗ 0.167 0.488 0.480

docT5query∗ 0.277 0.642 –
DeepCT∗ 0.243 0.572 –

TCT-ColBERT(v2) 0.358 – –
JPQ∗ 0.341 0.677 –

DeepImpact 0.326 0.662 0.602
uniCOIL 0.340 0.702 0.674

Re-ranking baselines ( +BM25 retrieval)
BERT-base 0.349 0.682 0.655

BECR∗ 0.323 0.682 0.675
TILDEv2∗ 0.333 0.676 0.686
ColBERT 0.355 0.701 0.723

Quantization ( +BM25 retrieval)
ColBERT-PQ 0.290 (-18.3%) 0.684 (-2.3%) 0.714 (-1.2%)

ColBERT-OPQ 0.324 (-8.7%) 0.691 (-1.4%) 0.688 (-4.8%)
ColBERT-RQ – 0.675 (-3.7%) 0.696 (-3.7%)

ColBERT-LSQ – 0.664 (-5.3%) 0.656 (-9.3%)
ColBERT-CQ 0.352 (-0.8%) 0.704 (+0.4%) 0.716 (-1.0%)

( +uniCOIL retrieval)
ColBERT 0.369 0.692 0.701

ColBERT-CQ 0.360 (-2.4%) 0.696 (+0.6%) 0.720 (+2.7%)

Table 2: Relevance scores for MS MARCO passage
ranking. The % degradation from ColBERT is listed.

papers with a ∗ mark for such a model. For quan- 478

tization approaches, we adopt M=16, K=256, i.e. 479

compression ratio 32:1 compared to ColBERT. 480

In Table 2, we choose two retrieval options 481

(BM25 or uniCOIL) to select top 1,000 results for 482

re-ranking. BM25 is the standard reference point, 483

which is also the fastest method. UniCOIL delivers 484

good relevance score compared to other retrievers. 485

As a sparse retriever without the need of GPU, it is 486

also faster than dense retrievers in general. 487

For the passage task, ColBERT outperforms 488

other re-rankers in relevance for the tested cases. 489

ColBERT-CQ after BM25 or uniCOIL retrieval 490

only has a small relevance degradation with around 491

1% or less, while only requiring 3% of the stor- 492

age of ColBERT. The relevance of the ColBERT- 493

CQ+uniCOIL combination is also competitive to 494

the one reported in Mallia et al. (2021) for the Col- 495

BERT+DeepImpact combination which has MRR 496

0.362 for the Dev query set, NDCG@10 0.722 for 497

TREC DL 2019 and 0.691 for TREC DL 2020. 498

For the document re-ranking task, Table 3 sim- 499

ilarly confirms the effectiveness of ColBERT-CQ. 500

ColBERT-CQ and ColBERT after BM25 retrieval 501

also perform well in general compared to the rele- 502

vance results of the other baselines. 503

From both Table 2 and Table 3, we observe that 504

in general, CQ significantly outperforms the other 505

quantization approaches (PQ, OPQ, RQ, and LSQ). 506

As an example, we further explain this by plotting 507

the ranking score of ColBERT with and without a 508
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Model Specs. Dev TREC DL19
MRR@10 NDCG@10

Retrieval choices
BM25∗ 0.278 0.523

docT5query∗ 0.288 0.597
DeepCT∗ 0.320 0.544

TCT-ColBERT(v2) 0.351 –
JPQ∗ 0.401 0.623

uniCOIL∗ 0.353 –
Re-ranking baselines ( +BM25 retrieval)
BERT-base∗ 0.393 0.670

ColBERT 0.410 0.714
Quantization ( +BM25 retrieval)

ColBERT-PQ 0.400 (-2.4%) 0.702 (-1.7%)
ColBERT-OPQ 0.404 (-1.5%) 0.704 (-1.4%)

ColBERT-RQ – 0.704 (-1.4%)
ColBERT-LSQ – 0.707 (-1.0%)
ColBERT-CQ 0.405 (-1.2%) 0.712 (-0.3%)

Table 3: Relevance scores for MS MARCO document
ranking. The % degradation from ColBERT is listed.

quantizer in Figure 2(a). Compared to OPQ, CQ509

trained with two loss functions generates ranking510

scores much closer to the original ColBERT rank-511

ing score, and this is also reflected in Kendall’s512

τ correlation coefficients of top 1,000 re-ranked513

results between a quantized ColBERT and the orig-514

inal ColBERT (Figure 2(b)). There are two rea-515

sons that CQ outperforms the other quantizers:516

1) The previous quantizers do not perform con-517

textual decomposition to isolate intrinsic context-518

independent information in embeddings, and thus519

their approximation yields more relevance loss; 2)520

Their training loss function is not tailored to the521

re-ranking task.522

4.3 Effectiveness on Space Reduction523

Doc task Passage task
Model Space Space Disk I/O Latency MRR@10

BECR∗ 575G 77.4G >110ms 8ms 0.323
PreTTR∗ 1.8T 248G >182ms >1000ms 0.358

TILDEv2∗ – 5.2G – – 0.326
ColBERT 1.8T 248G >182ms 16ms 0.355

ColBERT-small∗ 172G 23G – – 0.339
ColBERT-OPQ – 7.7G – 56ms 0.324

ColBERT-CQ
undecomposed 57.5G 7.7G – 17ms 0.339

K=256 57.5G 7.7G – 17ms 0.352
K=16 28.7G 3.9G – 17ms 0.339

K=4 14.4G 1.9G – 17ms 0.326

Table 4: Embedding space size in bytes for the doc-
ument ranking task and for the passage ranking task.
Re-ranking time per query and relevance for top 1,000
passages in milliseconds on a GPU using the Dev query
set. M=16. For ColBERT-OPQ and ColBERT-CQ-
undecomposed, K=256. We assume embeddings in
BECR, PreTTR, and ColBERT do not fit in memory
and we report their disk I/O for each query.

(a) (b)

Figure 2: (a) Ranking score by quantized ColBERT
with OPQ and CQ using two loss functions, vs. orig-
inal ColBERT score. (b) Distribution of Kendall’s τ
correlation coefficient between the 1,000 ranked results
of quantized and original ColBERT.

Table 4 shows the space size in bytes for 3.2 524

million document embeddings in the MS MARCO 525

document corpus and the 8.8 million passage em- 526

beddings in the passage corpus, and compares CQ 527

with other approaches. To demonstrate the trade- 528

off, we also list their estimated time latency and 529

relevance in passage re-ranking as a reference and 530

notice that more relevance comparison results are in 531

Tables 2 and 3. The latency is the total time for em- 532

bedding decompression/recovery and re-ranking. 533

For BECR, PreTTR, and ColBERT, we assume 534

that their embedding data cannot fit in memory 535

given their large data sizes. The disk I/O latency 536

number is based on their passage embedding size 537

and our test on a Samsung 870 QVO solid-state 538

disk drive to fetch 1,000 passage embeddings ran- 539

domly. Their I/O latency takes 110ms or 182ms 540

with single-thread I/O and with no I/O contention, 541

and their disk access can incur much more time 542

when multiple queries are processed in parallel in 543

a server dealing with many clients. For example, 544

fetching 1,000 passage embeddings for each of 545

ColBERT and PreTTR takes about 1,001ms and 546

3,870ms respectively when the server is handling 547

16 and 64 queries simultaneously with multiple 548

threads. 549

For other methods, their passage embedding data 550

is relatively small and we assume that it can be 551

preloaded in memory. The query latency reported 552

in the 4-th column of Table 4 excludes the first- 553

stage retrieval time. The default ColBERT uses 554

embedding dimension 128 and 4 byte floating num- 555

bers. ColBERT-small denotes an optional config- 556

uration suggested from the ColBERT paper using 557

24 embedding dimensions and 2-byte floating num- 558

bers with a degraded relevance performance. 559
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As shown in Table 4, ColBERT CQ uses up to560

57.5GB for document re-ranking and 7.7GB for561

passage re-ranking. It can fit in the memory of a562

mid-end server while the embedding footprint of563

original ColBERT is huge. It will be expensive to564

configure a server satisfying its memory require-565

ment. By looking at the latency difference of Col-566

BERT with and without CQ, the time overhead of567

CQ for decompression and embedding recovery568

takes 1ms per query, which is insignificant.569

Compared with another quantizer ColBERT-570

OPQ, ColBERT-CQ can achieve the same level571

of space saving with K = 256 while having a572

substantial relevance improvement. ColBERT-CQ573

with K = 4 achieves the same level of relevance574

as ColBERT-OPQ while yielding a storage reduc-575

tion of 75% and a latency reduction of about 70%.576

Comparing ColBERT-CQ with no contextual de-577

composition, under the same space cost, ColBERT-578

CQ’s relevance is 4% higher. CQ with K = 16579

achieves the same level relevance as ColBERT-CQ-580

undecomposed with K = 256, while the storage581

of CQ reduces by 50%. Comparing with ColBERT-582

small which adopts more aggressive space reduc-583

tion, ColBERT-CQ with K = 4 would be com-584

petitive in relevance while its space is about 4x585

smaller. Comparing with other non-ColBERT base-586

lines (BECR, PreTTR, and TILDEv2), ColBERT-587

CQ strikes a good balance across relevance, space588

and latency. For the fast CPU based model (BECR,589

TILDEv2), our model achieves better relevance590

with either lower or comparable space usage.591

4.4 Design Options for CQ592

TREC19 TREC20
CQ, Product, 1 layer, MarginMSE 0.687 0.713
Different model configurations
No decomposition. Product 0.663 0.686
No decomposition. Additive 0.656 0.693
CQ, Product, 1 layer,

raw static embedding 0.655 0.683
CQ, Additive, 1 layer 0.693 0.703
CQ, Product, 2 layers 0.683 0.707
CQ, Additive, 2 layers 0.688 0.703
Different training loss functions
CQ, Product, 1 layer, MSE 0.679 0.704
CQ, Product, 1 layer, PairwiseCE 0.683 0.705

Table 5: NDCG@10 relevance score of different design
options for CQ in TREC DL passage ranking.

Table 5 shows the relevance scores for the TREC593

deep learning passage ranking task with different594

design options for CQ. As an alternative setting, the595

codebooks in this table uses M=16 and K=32 with 596

compression ratio 51.2:1 compared to ColBERT. 597

Row 1 is the default design configuration for CQ 598

with product operators and 1 composition layer, 599

and the MarginMSE loss function. 600

Different architecture or quantization op- 601

tions. Rows 2 and 3 of Table 5 denote CQ using 602

product or additive operators without decomposing 603

each embedding into two components, and there is 604

about 4% degradation without such decomposition. 605

Row 4 changes CQ using the raw static embed- 606

dings of tokens from BERT instead of the upper 607

layer outcome of BERT encoder and there is an up 608

to 4.7% degradation. Notice such a strategy is used 609

in SDR. From Row 5 to Row 7, we change CQ 610

to use additive operators or use a two-layer com- 611

position. The performance of product or additive 612

operators is in a similar level while the benefit of 613

using two layers is relatively small. 614

Different training loss functions for CQ. Last 615

two rows of Table 5 use the MSE and PairwiseCE 616

loss functions, respectively. There is an about 1.2% 617

improvement using MarginMSE. Figure 2 gives 618

an explanation why MarginMSE is more effective. 619

While CQ trained with MSE and MarginMSE gen- 620

erates ranking scores close to the original ranking 621

scores in Figure 2(a), the distribution of Kendall’s 622

τ correlation coefficients of 1,000 passages in Fig- 623

ure 2(b) shows that the passage rank order derived 624

by CQ with the MarginMSE loss has a better corre- 625

lation with that by ColBERT. 626

5 Concluding Remarks 627

Our evaluation shows the effectiveness of CQ used 628

for ColBERT in compressing the space of token 629

embeddings with a 32:1 ratio or more while incur- 630

ring a small relevance degradation in MS MARCO 631

passage and document re-ranking tasks. The quan- 632

tized token-based document embeddings for the 633

tested cases can be hosted in memory for fast and 634

high-throughput access. This is accomplished by 635

a neural network that decomposes ranking con- 636

tributions of contextual embeddings, and jointly 637

trains context-aware decomposition and quantiza- 638

tion with a loss function preserving ranking accu- 639

racy. The online time cost to decompress and re- 640

cover embeddings is insignificant with 1ms for the 641

tested cases. We plan to release the CQ implemen- 642

tation after the paper is accepted for publication. 643

Our future work is to investigate the use of CQ in 644

the other late-interaction re-ranking methods. 645
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A Details on DataSets, Retrieval,840

Relevance Numbers, and Model841

Implementations842

Dataset # Query # Doc Mean Doc # Judgments
Length per query

MS MARCO passage Dev 6980 8.8M 55 1
TREC DL 19 passage 200 – – 21
TREC DL 20 passage 200 – – 18
MS MARCO doc Dev 5193 3.2M 1123 1

TREC DL 19 doc 200 – – 33

Table 6: Dataset statistics

Datasets. As summarized the in Table 6, our843

evaluation uses the MS MARCO document and844

passage collections for document and passage rank-845

ing (Craswell et al., 2020; Campos et al., 2016).846

The original document and passage ranking tasks847

provide 367,013 and 502,940 training queries re-848

spectively, with about one judgment label per query.849

The development query sets are used for relevance850

evaluation. The TREC Deep Learning (DL) 2019851

and 2020 tracks provide 200 test queries with many852

judgment labels per query for each task.853

First-stage retrieval models considered. As a854

standard reference point, we use the popular BM25855

method based on term frequency (Robertson and856

Zaragoza, 2009) to retrieve top 1,000 results be-857

fore re-ranking. We have also considered the re-858

cent work in sparse and dense retrievers that out-859

performs BM25. For sparse retrieval with inverted860

indices, DeepCT (Dai and Callan, 2020) uses deep861

learning to assign more sophisticated term weights862

for soft matching. The docT5query work (Nogueira863

et al., 2019b) uses a neural model to pre-process864

and expand documents. Recently the sparse in-865

verted index is enriched with document expansion866

and neural computation in the work of DeepIm-867

pact (Mallia et al., 2021) and uniCOIL (Lin and868

Ma, 2021; Gao et al., 2021). For dense retrieval,869

TCT-ColBERT(v2) (Lin et al., 2021) is a recent870

scheme that produces a dense document represen-871

tation with knowledge distillation, and JPQ (Zhan872

et al., 2021) compresses dense document vectors873

with a jointly trained query encoder and PQ index.874

Model relevance numbers cited from other875

papers. As marked in Table 2 and Table 3,876

for BM25, we cite its relevance performance877

in (Craswell et al., 2020; Gao et al., 2021).878

For docT5query, DeepCT, JPQ, TILDEv2 and879

BECR (Yang et al., 2021), we directly copy the rel-880

evance numbers they reported in their papers. For881

TCT-ColBERT(v2), DeepImpact and uniCOIL, we882

obtain their performance using the released check- 883

points of pyserini 1. For PreTTR (MacAvaney et al., 884

2020) on the passage task and BERT-base on the 885

document task, we cite the relevance performance 886

reported in Hofstätter et al. (2020a). 887

Model implementation and training. The Col- 888

BERT code follows the original version released 2 889

and BERT implementation is from Huggingface 3. 890

For BERT-base and ColBERT, training uses pair- 891

wise softmax cross-entropy loss over the released 892

or derived triples in a form of (q,d+,d−) for the 893

MS MARCO passage task. For the MS MARCO 894

document re-ranking task, we split each positive 895

long document into segments with 400 tokens each 896

and transfer the positive label of such a document 897

to each divided segment. The negative samples are 898

obtained using the BM25 top 100 negative docu- 899

ments. The above way we select training triples 900

for document re-ranking may be less ideal and can 901

deserve an improvement in the future. 902

When training ColBERT, we use gradient accu- 903

mulation and perform batch propagation every 32 904

training triplets. All models are trained using Adam 905

optimizer (Kingma and Ba, 2015). The learning 906

rate is 3e-6 for ColBERT and 2e-5 for BERT-base 907

following the setup in its original paper. For Col- 908

BERT on the document dataset, we obtained the 909

model checkpoint from the authors. 910

Our CQ implementation leverages the open 911

source code 4 for Shu and Nakayama (2018). For 912

PQ, OPQ, RQ, and LSQ, we uses off-the-shelf im- 913

plementation from Facebook’s faiss5 library (John- 914

son et al., 2017). For MS MARCO documents, we 915

split each document into passages of size 400 to- 916

kens with 65 overlapping tokens between two con- 917

secutive passages, following the ColBERT setup. 918

To get training instances for each quantizer, we 919

generate the contextual embeddings of randomly- 920

selected 500,000 tokens from passages or docu- 921

ments using ColBERT. 922

When using the MSE loss, learning rate is 923

0.0001, batch size is 128, and the number of train- 924

ing epochs is 200,000. When fine-tuning with 925

PairwiseCE or MarginMSE, we freeze the encoder 926

based on the MSE loss, set the learning rate to 927

be 3e-6, and then train for additional 800 batch 928

iterations with 32 training pairs per batch. 929

1https://github.com/castorini/pyserini/
2https://github.com/stanford-futuredata/ColBERT
3https://huggingface.co/transformers/model_doc/bert.html
4https://github.com/mingu600/compositional_code_learning.git
5https://github.com/facebookresearch/faiss
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