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Abstract

Centered kernel alignment (CKA) and representational similarity analysis (RSA)
of dissimilarity matrices are two popular methods for comparing neural systems in
terms of representational geometry. Although they follow a conceptually similar
approach, typical implementations of CKA and RSA tend to result in numerically
different outcomes. Here, I show that these two approaches are largely equivalent
once one incorporates a mean-centering step into RSA. This equivalence holds for
both linear and nonlinear variants of these methods. These connections are simple
to derive, but appear to have been thus far overlooked in the context of comparing
neural representations. By unifying these measures, this paper hopes to simplify a
complex and fragmented literature on this subject.

1 Introduction

Representational similarity analysis (RSA) is a decades-old framework for comparing neural response
patterns across systems. It was developed in the cognitive science and computational neuroscience
communities, within which it remains a very popular technique [25, 17, 24, 13]. While the RSA
framework is quite general, most practical applications involve the construction of representational
dissimilarity matrices (RDMs). For an experiment where neural responses are measured across M
conditions, an RDM is a symmetric M ×M matrix that captures response dissimilarities across all
unique condition pairs. Similarity between networks is quantified by similarity in their RDMs (e.g.
by cosine similarity or Pearson correlation). I refer to this class of methods as RDM-RSA.

RDM-RSA bears a close resemblance to centered kernel alignment (CKA), a more recently developed
framework for comparing neural representations [6, 23]. CKA is massively popular within the deep
learning community, garnering over 1250 citations as of the time of this writing. In place of RDMs,
CKA constructs M ×M kernel matrices that capture neural response similarities through a positive
definite kernel function. CKA quantifies similarity between networks as similarity in their kernel
matrices, in exact analogy to how RSA quantifies similarity between RDMs.

To what extent are these methods quantifying the same thing? Here, I document several connections:

• First, a popular variant of RDM-RSA is to use squared Euclidean distance to construct
RDMs and then use cosine similarity to compare RDMs [45]. I show that if one applies
a centering operation before comparing the RDMs, the result is identical to linear CKA,
which is the most popular variant of CKA.

• It is also popular to construct RDMs with Mahalanobis distance [45]. Here, I show that
incorporating the centering operation on RDMs leads to a connection with canonical cor-
relations analysis (CCA). Specifically, under a particular choice of covariance matrix, the
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centered Mahalanobis RSA score equals the mean squared canonical correlation—a quantity
sometimes called Yanai’s generalized coefficient of determination [31, 47].

• Finally, I comment on nonlinear extensions of CKA and RSA. In CKA, this is achieved
by using nonlinear kernel functions [23], while a nonlinear extension of RDM-RSA was
recently introduced by Lin and Kriegeskorte [26]. I point out a simple way to construct an
RDM using a nonlinear kernel function. Here again, RSA on the centered RDM yields the
same result as CKA. This new approach conceptually mirrors that of Lin and Kriegeskorte
[26]. Thus, nonlinear variants of CKA and RSA are also quite similar. Moreover, I note
that performing RSA on centered Euclidean RDMs (instead of squared Euclidean RDMs) is
equivalent to a form of nonlinear CKA.

These relationships are straightforward to derive, but I have not seen them laid out explicitly in
the context of comparing neural representations. Kornblith et al. [23] documented a relationship
between linear CKA and CCA, which will be leveraged as part of point 2 above. Additionally,
Diedrichsen et al. [8] describe a relationship between linear CKA and RSA with whitened RDMs
in the presence of independent and identically distributed measurement noise. The relationships
between RSA and CKA I describe here are more basic—in fact, my exposition will treat neural
responses as noise-free. Finally, Sejdinovic et al. [37] characterize the equivalence of kernel-based
and distance-based hypothesis tests for variable independence. Similar results also appear in the
context of multidimensional scaling algorithms [5] and broader mathematical literature [34]. However,
it is easy for practitioners to overlook this prior literature because (a) existing papers are focused
on distinct motivating applications, and because (b) many presentations assume an audience with
strong mathematical background. I therefore believe there is utility in digesting and interpreting these
results in plain terms to the neuroscience and interpretable AI communities.

2 Background

2.1 Summary of RDM-RSA

RSA is motivated by decades-old concepts from psychology and philosophy. In particular, Shepard
and Chipman [38] posited that similar external objects (e.g. a square and rectangle) are mapped
onto mental representations that are also, in some sense, close together—more so than mental
representations of dissimilar external objects (e.g. a square and a cat). Or, as Edelman [12] succinctly
put it, “Representation is representation of similarities.”

RDM-RSA is a quantitative framework that enables practitioners to concretely apply these concepts to
neural data analysis [24]. Formally, given M stimulus conditions and N -dimensional neural response
vectors x1, . . . ,xM ∈ RNX , the first step of RDM-RSA is to compute an M ×M representational
dissimilarity matrix (RDM). For example, if the squared Euclidean distance is used to compare neural
responses, the elements of the RDM will be given by: DX

ij = ∥xi − xj∥22. Then, given responses
from a second system, a second RDM, DY

ij = ∥yi − yj∥22, is computed from neural responses
y1, . . . ,yM ∈ RNY across the same M stimulus conditions. Finally, similarity between the RDMs
is quantified by, for example, computing the Spearman or Pearson correlation between the upper
triangular elements of DX and DY . The overall workflow can be summarized as follows:

Procedure to compute RDM-RSA similarity scores:
• Given neural responses, x1, . . . ,xM ∈ RNX and y1, . . . ,yM ∈ RNY .
• Specify distance functions, dX and dY .
• Specify an RDM comparison function, s : RM×M × RM×M 7→ R+.

• Compute RDMs, DX
ij = dX(xi,xj) and DY

ij = dY (yi,yj).

• Finally, compute the RDM similarity S(DX ,DY ).

Throughout this paper we will use cosine similarity to compare RDMs. Thus we define:

S(A,B) =
Tr[AB]

∥A∥F ∥B∥F
=

vec(A)⊤vec(B)

∥vec(A)∥2∥vec(B)∥2
(1)
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as the comparison function between any two symmetric matrices A ∈ RM×M and B ∈ RM×M .

2.2 Summary of CKA

In machine learning, there has been a swell of recent interest on the topic of comparing neural
representations across networks. Popular approaches include centered kernel alignment (CKA; [6,
23]), canonical correlations analysis (CCA; [30]), and Procrustes shape distance [9, 46].

Of these approaches, CKA is most obviously similar to RDM-RSA. In fact, one can consider CKA
to be a special case of RSA that involves computing and comparing representational similarity
matrices (RSMs) instead of RDMs. However, both historically and in current practice, RSMs are
used considerably less frequently than RDMs by cognitive neuroscientists and psychologists. Thus, I
have focused the narrative of this paper on RDM-RSA to construct a foil of CKA.

Before describing the procedure for computing CKA, two definitions must be introduced. First, a
positive definite kernel function is, informally, a similarity function that, when applied pairwise
to a set of M neural response patterns, is guaranteed to produce a symmetric M ×M matrix with
nonnegative eigenvalues (i.e. a positive semidefinite matrix). Positive definite kernels are fundamental
to modern machine learning theory, and a more deep and formal treatment is provided, for example,
by [39]. We will use kX and kY to denote positive definite kernels, and we will see that these
functions play an analogous role to the distance/dissimilarity functions dX and dY in RDM-RSA.

Next, the M × M centering matrix as is a matrix given by C = I − 1
M 11⊤ where 1 ∈ RM is

a vector full of ones. The reader can verify that multiplying any M × N matrix on the left by C
results produces another M ×N matrix whose columns sum to zero. Furthermore, for a symmetric
matrix A ∈ RM×M the centered matrix CAC has rows and columns that sum to zero. Moreover,∑

ij [CAC]ij = 0.

With these definitions in hand, we are ready to state the procedure for computing CKA scores.

Procedure to compute CKA similarity scores:
• Given neural responses, x1, . . . ,xM ∈ RNX and y1, . . . ,yM ∈ RNY .
• Specify positive definite kernel functions, kX and kY .

• Compute kernel matrices, KX
ij = kX(xi,xj) and KY

ij = kY (yi,yj).

• Compute centered cosine similarity, S(CKXC,CKY C).

The kernel matrices KX and KX in CKA are analogous to the RDMs DX and DY . Furthermore,
the kernel matrices are guaranteed to be positive semidefinite (i.e. be symmetric with nonnegative
eigenvalues)—this guarantee comes from our definition of positive definite kernel functions, given
above. The centered kernel matrices CKXC and CKY C are also positive semidefinite because:
(a) the centering matrix, C, is positive semidefinite, and (b) positive semidefinite matrices are closed
under matrix multiplication.

It may not be entirely obvious to some readers why the entries of KX and KY should be interpreted
as similarity scores between neural population responses. This is due to a result called Mercer’s
theorem which states, in essence, that any positive definite kernel can be interpreted as an inner
product on some feature space (see [39] for a more rigorous introduction). Inner products are a
measure of similarity—they increase as the angle between vectors decreases (i.e. as the vectors
become more aligned with each other).

To summarize, there are two major differences between RDM-RSA and CKA. First, in place of
RDMs, CKA uses kernel matrices KX

ij and KY
ij which can be interpreted as M ×M representational

similarity (instead of dissimilarity) matrices. Second, to quantify similarity between kernel matrices,
CKA computes the cosine similarity between centered kernel matrices. This centering step is typically
absent in implementations of RSA, which will turn out to be critical.
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2.3 Summary of CCA

Canonical correlation analysis (CCA) is a classical multivariate analysis method that identifies a
sequence of maximally correlated one-dimensional projections from a pair of datasets [18]. When
applying CCA to neural representations, x1, . . . ,xM ∈ RNX and y1, . . . ,yM ∈ RNY as introduced
above, the outcome of CCA will be a sequence of N canonical correlation coefficients 1 ≥ ρ1 ≥
ρ2 ≥ · · · ≥ ρN ≥ 0 where N = min(NX , NY ). The canonical correlations are defined as the
solutions to sequence of optimization problems. The top coefficient, ρ1, is given by:

maximize
w,h

∑
i

w⊤(xi − x̄) · h⊤(yi − ȳ)

subject to
∑
i

(w⊤(xi − x̄))2 =
∑
i

(h⊤(yi − ȳ))2 = 1
(2)

where w ∈ RNX , h ∈ RNY parameterize linear projections, x̄ = 1
M

∑
i xi denotes the mean neural

response for the first system, and ȳ = 1
M

∑
i yi denotes the mean neural response of the second

system. Subsequent canonical correlation coefficients are found by solving the same optimization
problem subject to an appropriate orthogonality constraint on the projection vectors. See Eaton [11]
for more detailed background.

Larger canonical correlation coefficients indicate greater alignment between neural representations,
and past work in both machine learning [30, 27] and neuroscience [41, 14] has used CCA as a
framework for comparing representations across neural systems. The average canonical correlation,
1
N

∑
i ρi, and the average squared canonical correlation, 1

N

∑
i ρ

2
i , can be used to summarize the

overall similarity between two multivariate datasets [47, 30, 46].

Superficially, CCA does not ressemble RSA or CKA. But it turns out that they can be related by
a simple change of variables. Specifically, let ΣX and ΣY denote the NX × NX and NY × NY

covariance matrices across the M stimulus conditions within each neural system:

ΣX =
1

M

∑
i

(xi − x̄)(xi − x̄)⊤ and ΣY =
1

M

∑
i

(yi − ȳ)(yi − ȳ)⊤ (3)

Then we define a linearly transformed set of responses as:

x̃i = Σ
−1/2
X xi and ỹi = Σ

−1/2
Y yi (4)

for i = 1, . . . ,M . It is common to refer to this change of variables as a whitening transformation (see
e.g. [1]). Note that the whitening transformation assumes that ΣX and ΣY are invertible; it is
possible to incorporate regularization into this change of variables and achieve similar results.

The following lemma states that performing linear CKA on the transformed variables yields 1
N

∑
i ρ

2
i

as a similarity measure. This was previously noted by Kornblith et al. [23]; the lemma below is only
a slight reformulation of the statement in their paper.

Lemma 1. When using linear kernel matrices on whitened neural responses, KX
ij = x̃⊤

i x̃j and
KY

ij = ỹ⊤
i ỹj , the CKA similarity score is equal to the average squared canonical correlation

coefficient between {x1, . . . ,xM} and {y1, . . . ,yM}. That is,

S(CKXC,CKY C) =
1

N

∑
i

ρ2i (5)

We will make use of this relationship in section 3.2 to show that performing RSA with centered
squared Mahalanobis RDMs also yields 1

N

∑
i ρ

2
i as a measure of network similarity.

3 Results

It is clear that RDM-RSA and CKA are conceptually similar methods, but do they yield quantitatively
similar outcomes? I now document several instances where they coincide exactly. All of these are
special instances of the following result, stated formally below as proposition 1.
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Proposition 1. Let kX and kY be positive definite kernel functions associated with kernel matrices:

KX
ij = kX(xi,xj) and KY

ij = kY (yi,yj) (6)

Further, let DX and DY be RDMs defined in terms of this kernel function:

DX
ij = KX

ii +KX
jj − 2KX

ij and DY
ij = KY

ii +KY
jj − 2KY

ij (7)

Then, the centered cosine similarity scores between these matrices agree:

S(CDXC,CDY C) = S(CKXC,CKY C) (8)

This result follows from straightforward algebraic manipulations. A step-by-step derivation is
provided in appendix A. As mentioned in section 1, equivalences between distance metrics and
kernels are already established in the broader literature [34, 4, 37], but they appear to be overlooked,
or at least underappreciated, within the context of comparing neural representational geometry.

The rest of this section discusses three specific cases of interest. In each, proposition 1 is used to
show a near equivalence between a popular form of RDM-RSA and CKA or CCA.

3.1 Equivalence of Linear CKA and Squared Euclidean RDM-RSA

We first consider RDMs that are constructed using the squared Euclidean distance:

DX
ij = ∥xi − xj∥22 and DY

ij = ∥yi − yj∥22 (9)

Since ∥xi − xj∥22 = x⊤
i xi + x⊤

j xj − 2x⊤
i xj , we see that eq. (7) implies that the corresponding

kernel matrices are given by:

KX
ij = x⊤

i xj and KY
ij = y⊤

i yj (10)

The kernel function associated with these matrices is called the linear kernel, and the CKA score
between linear kernel matrices is called linear CKA. Proposition 1 implies that performing RSA on
the centered RDMs in eq. (9) is an equivalent to performing CKA on the kernel matrices in eq. (10).

We remark that this choice of distance (squared Euclidean) and kernel function (linear) are among
the most popular variants of RDM-RSA and CKA, respectively. As of this writing, the squared
Euclidean distance is currently the default option for constructing an RDM in the rsatoolbox
Python package [33]. Furthermore, recent work has leveraged the mathematical tractability of
squared Euclidean RDMs to establish statistical inference frameworks for RSA [36, 8]. Similarly, the
predominant form of CKA within the deep learning community uses linear kernels eq. (10). Indeed,
the paper popularizing CKA advocated explicitly for using linear kernels as a default choice [23].
Given the popularity of these two methods, it is somewhat surprising that their near equivalence has
not been previously documented.

3.2 Equivalence of CCA and Mahalanobis RDM-RSA

Next, we consider RDMs that are constructed by the squared Mahalanobis distance. Formally, let
PX ∈ RN×N and P Y ∈ RN×N be two arbitrary positive definite matrices and define:

DX
ij = (xi − xj)

⊤P−1
X (xi − xj) and DY

ij = (yi − yj)
⊤P−1

Y (yi − yj). (11)

as two RDMs. To achieve the desired relation in eq. (7), we choose the kernel matrices to be:

KX
ij = x⊤

i P
−1
X xj and KY

ij = y⊤
i P

−1
Y yj (12)

Proposition 1 implies that performing RSA on the centered RDMs in eq. (11) is an equivalent to
performing CKA on the kernel matrices in eq. (12) for any choice of PX and P Y .

Moreover, notice that the kernel matrices in eq. (12) can be interpreted as linear kernel matrices under
the change of variables x̃i = P

−1/2
X xi and ỹi = P

−1/2
Y yi. This change of variables corresponds

to a whitening transformation when we choose, PX = ΣX and P Y = ΣY using definitions from
eq. (3). Thus, by lemma 1, the CKA score computed from the kernel matrices in eq. (12) is equal
to the average squared canonical correlation coefficient. Therefore, by proposition 1, the cosine
similarity RSA score computed from the centered RDMs in eq. (11) is also equal to this quantity.
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Lin & Kriegeskorte (2024)(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

“Geo-Topological Transform”

RBF-RDM Transform

Figure 1: Nonlinear extensions of CKA and RSA. (a-b) Toy example of neural responses in NX = NY = 2
dimensional space. Different colors correspond to matched stimulus conditions across the two point clouds. (c-d)
Linear kernel matrices computed from the representations in panels (a) and (b). The network similarity is 0.595
according to linear CKA. (e-f) Nonlinear kernel matrices using RBF kernel functions with a bandwidth parameters
of ℓ = 0.3. The kernel matrices look more similar and indeed the network similarity score is higher, 0.982,
according to this nonlinear extension of CKA. (g) Lin and Kriegeskorte [26] proposed a nonlinear extension of
RSA in which RDMs are transformed elementwise by a monotonically increasing piecewise linear function.
(h) When we translate the nonlinear CKA procedure in panels (e-f) into an equivalent RDM-RSA procedure
according to proposition 1, we observe that the nonlinear RBF kernel induces a similar “geo-topological
transform” on the Euclidean distances between neural responses. The shape of this transform is modulated by
the bandwidth parameter, ℓ, plotted as different colors.

The squared Mahalanobis distance is a popular method for constructing RDMs. It is supported
by the rsatoolbox package [33] and discussed in multiple recent papers [45, 8, 36]. We must
mention, however, a key difference between these works and our above analysis with respect to CCA.
Typically, Mahalanobis RDMs are motivated by choosing PX to be the covariance of “noise” in the
neural response. To follow this motivation, PX and P Y are often set to the covariance matrices
computed from residuals of a simple model [45]. The choice of PX = ΣX and P Y = ΣY was
made to elucidate a connection to CCA. This does not capture “noise” per se, as it applies equally
well to a complete noiseless, deterministic system (e.g. a feedforward deep network). The choice
of PX = ΣX and P Y = ΣY is nonetheless similar in the sense that one could replace the average
neural responses, x̄ and ȳ in eq. (3), with a condition-specific model prediction.

3.3 Equivalence of Nonlinear CKA and Topological RSA [26]

One of the nice features of CKA is that it nicely extends to nonlinear kernel functions. For example,
the standard radial basis function (RBF) kernel (also known as the squared exponential kernel) is
a positive definite kernel with a tuneable bandwidth parameter, ℓ. Using this function leads to the
nonlinear kernel matrices:

KX
ij = exp

(
−∥xi − xj∥22

2ℓ2X

)
and KY

ij = exp

(
−
∥yi − yj∥22

2ℓ2Y

)
(13)

where we have allowed for the possibility of separating tuning different bandwidth parameters,
ℓX and ℓY , for each network. Kornblith et al. [23] briefly commented on using this approach to
compute nonlinear CKA similarity scores, but only a few works have seriously followed up on this
possibility [2].

A practitioner may be interested in using nonlinear CKA to achieve a similarity measure between
neural representations that have dissimilar shapes but have similar topological features. More
precisely, nonlinear CKA using RBF kernel matrices will characterize neural representations as
similar when short-range distances between neural responses are preserved, but long-range distances
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are potentially quite different. This results in a similarity measure that is mostly insensitive to
continuous deformations that do not change the topology such as bending. A toy example where
nonlinear CKA succeeds at capturing topological similarities, but linear CKA fails to do so, is shown
in Figure 1a-f. The idea of developing metrics that capture topological (and not geometric) similarity
between neural representations has garnered recent interest within the community, but requires more
research to be fully fleshed out and understood [26, 29, 3, 19].

Interestingly, Lin and Kriegeskorte [26] recently proposed a nonlinear extension to RDM-RSA that
involves applying an monotonic and saturating transform to the elements of an RDM (see Figure 1g).
They show that this results in similarity measures that are sensitive to topological features of the
neural representation. It is easy to see that this procedure is closely related to nonlinear CKA. In
particular, the form of the squared exponential kernel means that KX

ii = 1 and KY
ii = 1 for all

i = 1, . . . ,M . Thus, by eq. (7), the nonlinear RDMs associated with the RBF kernel take the form:

DX
ij = 2− 2KX

ij and DY
ij = 2− 2KY

ij (14)

Inspecting these expressions carefully, we realize that DX
ij and DY

ij are saturating, monotonically
increasing functions of the squared Euclidean distances, ∥xi−xj∥22 and ∥yi−yj∥22 respectively. The
bandwidth parameter ℓ2 controls the steepness of these nonlinear functions, as shown in Figure 1h.

In summary, a nonlinear kernel can be used to construct a RDM using eq. (7). This construction
of an RDM via a nonlinear kernel can be viewed as applying an elementwise nonlinearity to a
squared Euclidean RDM (as in eq. 14 for the case of a RBF kernel). By proposition 1, the centered
cosine similarity between nonlinearly transformed RDMs will be equivalent to performing nonlinear
CKA. Qualitatively, this approach resembles the topological RSA method introduced by Lin and
Kriegeskorte [26].

3.4 RSA on Euclidean RDMs is also a form of nonlinear CKA

Equation (7) shows how we can use a positive definite kernel function to create a notion of distance
for which RDM-RSA (with centering and cosine similarity comparison) is equivalent to CKA. It
is also possible to go on in the other direction—i.e. we can use a distance function1 to define a
positive definite kernel. For instance, consider the possibility of constructing RDMs using a fractional
Euclidean distance:

DX
ij = ∥xi − xj∥q2 and DY

ij = ∥yi − yj∥
q
2 (15)

where 0 < q ≤ 2 is a user-defined hyperparameter. Of course, when q = 2 we recover the squared
Euclidean distance, for which RDM-RSA is equivalent to linear CKA. However, the choice of q = 1
(i.e. the classic Euclidean distance) is also popular within the RSA literature and it may not be
immediately clear how to map this onto a form of CKA.

It turns out that computing the centered RDM-RSA score with the distance matrices in eq. (15) is
equivalent to performing CKA on the following kernel matrices (see, e.g., Example 15 in [37]):

KX
ij = 1

2 (∥xi∥q2 + ∥xi∥q2 − ∥xi − xj∥q2) and KY
ij =

1
2

(
∥yi∥

q
2 + ∥yi∥

q
2 − ∥yi − yj∥

q
2

)
(16)

Indeed, it is easy to verify that eqs. (15) and (16) satisfy the relationship in eq. (7), which is the
main requirement of proposition 1. It is less obvious that the expressions in eq. (16) define positive
definite kernels, but it can be shown that they correspond to the covariance function of fractional
Brownian motion [28], which is positive definite. This reduces to classical Brownian motion (or a
Wiener process) when q = 1, which is a popular choice within RSA literature.

Interestingly, tuning the parameter 0 < q ≤ 2 can result in a family of nonlinear similarity scores
similar to the nonlinear RBF kernel with different bandwidth parameters, ℓ, that was discussed above
in section 3.3. To show this, Figure 2 revisits the toy example shown in Figure 1a-b, using fractional
Euclidean distance RDMs in place of RBF kernel matrices. Figure 2a visualizes the raw RDMs, DX

and DY , for various values of q. Qualitatively, we see that these RDMs appear more similar as q
decreases. A similar trend is seen in the centered RDMs, shown in Figure 2b.

1More precisely, the distance function must be a semimetric of negative type. See lemma 12 in Sejdinovic
et al. [37] for a formal statement.
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(a)

(b)

(c)

(d)

near

far

negative

positive

Figure 2: RSA on Euclidean RDMs is a form of nonlinear CKA. (a) RDMs computed from the toy example in
Figure 1a-b using fractional Euclidean distance, eq. (15), for various choices of 0 < q ≤ 2. (b) Centered RDM
matrices from panel a. By proposition 1, these centered RDMs are equal to negative two times the centered
kernel matrices given in eq. (16). (c) The hyperparameter q can be interpreted as applying an elementwise,
monotonically increasing function to the squared Euclidean RDM (similar to the distance induced by the RBF
kernel in Figure 1h). (d) The cosine similarity between CDXC and CDY C, which is equivalent to the CKA
score on the kernel matrices in eq. (16), is plotted as a function of q. When q = 2, this converges to the linear
CKA score (shown as black dashed line). Smaller values of q result in higher similarity scores, emphasizing
topological similarity between the response patterns in Figure 1a-b.

Intuitively, the fractional exponent q applies an elementwise nonlinearity to the squared Euclidean
RDM matrices (Figure 2c), which is similar to the RBF-RDM transform previously highlighted in
Figure 2h. In the limit that q → 0, the nonlinearity is a step function, equal to one everywhere except
zero. Because of this step function behavior, the cosine similarity between centered RDMs will equal
one in the limit that q → 0 because every RDM will have zeros along the diagonal and ones on the
off diagonals. On the other extreme, when q = 2, we recover squared Euclidean RDMs, and the
resulting RDM-RSA score after centering will be equal to linear CKA. Intermediate values of q will
smoothly interpolate between these outcomes, as shown in Figure 2d.

In summary, this section has shown a new interpretation of RSA with Euclidean RDMs (q = 1) as a
form of nonlinear CKA with a kernel function defined by Brownian motion or Wiener process. More
generally, one can choose any value of 0 < q < 2, which can be interepreted as a form of nonlinear
CKA with a kernel related to fractional Brownian motion. When q = 2, we recover linear CKA or
squared Euclidean RDM-RSA with centering.

4 Importance and Interpretation of Centering

We have seen that the key difference between CKA and commonly used RDM-RSA methods is the
presence of the centering operation, A 7→ CAC for a symmetric marix A. Beyond deriving an
equivalence between CKA and RDM-RSA, are there desirable reasons for this centering operation?

There is a simple justification for centering in the case of linear CKA. Specifically, consider translating
the neural responses, x̃i = xi + α and ỹi = yi + β for some arbitrary vectors α ∈ RNX and
β ∈ RNY . Translating the responses in this manner is akin to choosing a different origin for the
coordinate system defining neural responses. It is easy to show that the linear CKA score computed on
x̃1, . . . x̃M and ỹ1, . . . ỹM is invariant to the value of α and β, while the uncentered cosine similarity
is sensitive and can be made arbitrarily close to one. Thus, the centering operation on kernel matrices
is necessary if one desires a translation-invariant measure of representational similarity. Readers
seeking further intuition should take a closer look at Cortes et al. [6], who originally introduced the
CKA score, and who argue that the centering step is “critical” at length in their paper.
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(d)(a)

(b)

(e)(c)

Figure 3: Intuition for centering operation on RDMs. (a) Explicit example of M = 3 neural response vectors in
N = 2 dimensions. This toy example is illustrated for the rest of this figure. (b) Similarity scores for uncentered
squared Euclidean RSA (uc-RSA), squared Euclidean RSA with centering (c-RSA), and linear CKA on the
example activations given in panel a. Note that c-RSA and CKA give the same numeric value, as expected.
Further, CKA and c-RSA are essentially zero, meaning that the two neural representations are “maximally
dissimilar.” (c) The top panel shows the 2D response vectors for the first system, {x1,x2,x3}. The bottom
panel shows the 2D response vectors for the second system, {y1,y2,y3}. Red, green, and blue dots respectively
denote the response on the first condition (x1 and y1), response on the second condition (x2 and y2), and
response on the third condition (x3 and y3). (d) The 3× 3 squared Euclidean RDMs associated with the two
point configurations in panel c. (e) The same RDMs in panel d after the centering operation. Negative entries are
colored in blue and positive entries are colored in red.

The intuition behind centering RDMs is different. Unlike linear kernel matrices, the elements
of RDMs are already invariant to the translations. That is, ∥x̃i − x̃j∥22 = ∥xi − xj∥22 for any
transformation of the form x̃i = xi +α. On the other hand, because distances are nonnegative, the
cosine similarity between uncentered RDMs can be inflated above zero. Incorporating the centering
operation results in matrices with positive and negative entries, which intuitively can be “more
orthogonal” resulting in cosine similarity scores closer to zero. Figure 3 illustrates this intuition in a
simple toy example. Briefly, two neural systems are defined in N = 2 dimensions across M = 3
stimulus conditions (fig. 3a). The centered RSA and linear CKA scores are essentially zero, indicating
that the two neural systems are maximally dissimilar; however, the uncentered RDM-RSA score
is roughly 1/3 (fig. 3b). In fact, these two triangular point configurations (visualized in fig. 3c)
are maximally different shapes, as shown for example in [22]. Thus, in this setting where M = 3
conditions and N = 2 neural dimensions, uncentered RDM-RSA can only output a similarity score
on the interval [1/3, 1]. Once centering is incorporated, the resulting score, equivalent to CKA, is
normalized to lie on [0, 1].

Applying the centering operation to distance matrices appears to have deeper importance in other
contexts. For example, the distance covariance statistic [43, 42], which can be used to test for
independence among random variables, is computed from centered distance matrices. One can
show that removing the centering step is undesirable—the resulting statistic can fail to detect
dependencies among random variables, effectively resulting in false negatives when hypothesis
testing for independence. A concrete example of this failure is described in [32].

Centering is also included in distance covariance analysis [7], a method that leverages the distance
covariance framework for dimensionality reduction. Kernel principal components analysis (kernel
PCA) is a similar method to achieve nonlinear dimensionality reduction, and this too typically
includes a centering step (see [35], appendix B). Intuitively, PCA fits a hyperplane passing through
the origin to approximate high-dimensional data. Centering around the origin is therefore a sensible
and important preprocessing step for this analysis.
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The centering operation is also applied to squared Euclidean distance matrices in the context of
multidimensional scaling [15, 5]. Here, the problem is to reconstruct a set of points, x1, . . . ,xM ,
that are consistent with a given pairwise distance matrix, DX . There are of course many solutions to
this problem—any valid configuration of points can be freely rotated, reflected, and translated. If
the configuration generating the squared distance matrix spans the full space, then one can perform
an eigendecomposition of CDXC to obtain a solution. Specifically, one obtains CDXC = GG⊤

where G is a matrix with orthogonal columns (scaled eigenvectors). The rows of G are taken as
M points in an NX -dimensional space, and one can show that they indeed recover the appropriate
pairwise Euclidean distance scores. Of course, GG⊤ is a linear kernel matrix, which is the core
insight highlighted in this paper. Gower [15] remarks that the origin of the configuration will be the
centroid of the points (i.e. a centered kernel matrix).

5 Conclusion

The contribution of this paper is to document some precise equivalences between two popular
frameworks for quantifying representational similarity between neural systems: CKA and RDM-
RSA. This was done by exploiting one-to-one relationships between positive kernel functions and
distance functions that are already well-established in mathematical literature, tracing back to work
by Schoenberg [34] (for more background, see [4]). Closely related work has highlighted similar
equivalences within in the context of statistical tests for independence [37]. Nonetheless, to my best
knowledge, the relationship between CKA and RDM-RSA has not been explicitly spelled out in prior
work and is not widely understood by researchers in this area.

Indeed, while conceptual similarities between CKA and RDM-RSA are often acknowledged, they are
mostly treated as being distinct methods (e.g. in [21]). Moreover, CKA and RDM-RSA are preferred
by different research communities in machine learning and cognitive neuroscience for historical
reasons. By illustrating deeper mathematical connections, I hope to encourage more exchanges
and cross-citations between these communities. For example, Cortes et al. [6] provide a detailed
theoretical analysis of CKA including results on bounds on how many sampled stimuli, M , are
needed to achieve good estimates. Our analysis shows that these results can be immediately applied
to RSA with centered squared Euclidean RDMs. Likewise, our results may also enable statistical
frameworks developed for RDM-RSA (e.g. [8, 36]) to be adapted and applied to CKA-based analysis.

More broadly, the literature on comparing neural representations is complex and federated. A
recent review by Klabunde et al. [20] catalogues over thirty methods for quantifying similarity. It is
difficult for practitioners to choose among this large menu of options, many of which give different
numerical outputs [40]. Cases where methods are truly identical ought to be widely appreciated and
highlighted. Harvey et al. [16] previously showed that the Procrustes shape distances (advocated by [9,
46]) are equivalent to the normalized Bures similarity score (advocated in [44]) up to a monotonic
transformation. This paper adds to this list by documenting several additional examples where RSA
on centered RDMs coincides with linear CKA, CCA, and nonlinear CKA.

The analyses detailed in this paper focus on deterministic (i.e. noise-free) and static (i.e. non-
dynamical) neural representations. This is a limitation, and there is growing interest within the
literature to characterize the stochastic [10] and dynamical [29] aspects of neural representations.
Future work that connects these emerging methodologies to CKA and RSA-based analyses would be
of great interest.
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A Proof of proposition 1

Let ⟨KX⟩i = 1
M

∑
j K

X
ij denote the average of row i in KX . Likewise, let ⟨DX⟩i = 1

M

∑
j D

X
ij

denote the average of row i in DX . By symmetry, note that ⟨KX⟩i and ⟨DX⟩i are also equal to the
average of column i in KX and DX , respectively. Additionally, let ⟪KX⟫ = 1

M2

∑
ij K

X
ij denote

the average element of KX . Likewise, let ⟪DX⟫ = 1
M2

∑
ij D

X
ij denote the average element of

DX . Finally, we write the elements of the M × M centering matrix as Cij = δij − 1
M , where

δij = 1 if i = j and equal to zero otherwise (i.e. the Kronecker delta function).

Using this notation, we can write the elements of the centered RDM as:

[CDXC]ij =
∑
kℓ

CikD
X
kℓCℓj (17)

=
∑
kℓ

(δik − 1
M )DX

kℓ(δℓj − 1
M ) (18)

=
∑
kℓ

δikδℓjD
X
kℓ −

1

M

∑
kℓ

δikD
X
kℓ −

1

M

∑
kℓ

δℓjD
X
kℓ +

1
M2

∑
kℓ

DX
kℓ (19)

= DX
ij − ⟨DX⟩i − ⟨DX⟩j + ⟪DX⟫ (20)

Using identical algebriac manipulations, we see that the centered kernel matrix is given by:

[CKXC]ij = KX
ij − ⟨KX⟩i − ⟨KX⟩j + ⟪KX⟫ (21)

Now substitute in the definition of the RDM in terms of the the kernel matrix to achieve the following
set of relations:

DX
ij = KX

ii +KX
jj − 2KX

ij (22)

⟨DX⟩i = KX
ii +

1

M
Tr[KX ]− 2⟨KX⟩i (23)

⟨DX⟩j =
1

M
Tr[KX ] +KX

jj − 2⟨KX⟩j (24)

⟪DX⟫ = 2

M
Tr[KX ]− 2⟪KX⟫ (25)

Plugging these four relationships into eq. (20) and simplifying yields:

[CDXC]ij = −2KX
ij + 2⟨KX⟩i + 2⟨KX⟩j − 2⟪KX⟫ = −2[CKXC]ij (26)

Thus, the centered RDM is equal to negative two times the centered kernel matrix. The proposition
then immediately follows by recognizing that the cosine similarity function, defined in eq. (1), is
invariant to this rescaling. That is, for any c ̸= 0 and any symmetric matrices A and B we have:

S(cA, cB) =
Tr[c2AB]

∥cA∥F ∥cB∥F
=

c2

|c| · |c|
S(A,B) = S(A,B) (27)

Thus, we have:

S(CDXC,CDY C) = S(−2 ·CKXC,−2 ·CKY C) = S(CKXC,CKY C) (28)

as claimed by the proposition.
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